制作增益天线

合集下载

无线WiFi天线增益计算公式

无线WiFi天线增益计算公式

无线WiFi-天线增益计算公式附1:天线口径和2.4G频率的增益0.3M 15.7DBi0.6M 21.8DBi0.9M 25.3DBi1.2M 27.8DBi1.6M 30.3DBi1.8M 31.3DBi2.4M 33.8DBi3.6M 37.3DBi4.8M 39.8DBi附2:空间损耗计算公式Ls=92.4+20Logf+20Logd附3:接收场强计算公式Po-Co+Ao-92.4-20logF-20logD+Ar-Cr=Rr其中Po为发射功率,单位为dbm.Co为发射端天线馈线损耗.单位为db.Ao为天线增益.单位为dbi.F为频率.单位为GHz.D为距离,单位为KM.Ar为接收天线增益.单位为dbi.Cr为接收端天线馈线损耗.单位为db.Rr为接收端信号电平.单位为dbm.例如:AP发射功率为17dbm(50MW).忽略馈线损耗.天线增益为10dbi.距离为2KM.接收天线增益为10dbi.到达接收端电平为17+10-92.4-7.6-6+10=-69dbm附4: 802.11b 接收灵敏度22 Mbps (PBCC): -80dBm11 Mbps (CCK): -84dBm5.5 Mbps (CCK): -87dBm2 Mbps (DQPSK): -90dBm1 Mbps (DBPSK): -92dBm(典型的测试环境:包错误率PER < 8% 包大小:1024 测试温度:25&ordm;C + 5&ordm;C)附5: 802.11g 接收灵敏度54Mbps (OFDM) -66 dBm8Mbps (OFDM) -64 dBm36Mbps (OFDM) -70 dBm24Mbps (OFDM) -72 dBmbps (OFDM) -80 dBm2Mbps (OFDM) -84 dBm9Mbps (OFDM) -86 dBm6Mbps (OFDM) -88 dBm---------------------------------------------------------------发一个计算抛物面半径的公式,不少人拿到抛物面可以一下子计算不出来焦点。

高增益14MHz二单元半固定式HB9CV天线制作

高增益14MHz二单元半固定式HB9CV天线制作

高增益 14MHz 二单元半固定式 HB9CV 天线制作李锦鸿 / VR2GY, CPO Box 73328 Kowloon HongKong聪明的读者都可看到,包括本刊在内的世界各地的 CQ 杂志,其中的 QSO 龙虎榜,QSL 卡及各渠道的消息,无需详细分析,都表明最多的 QSO 是在 20 米波的 14MHz 频段中进行的(依次是 7MHz 和 21MHz)。

14MHz 是各业余波段中,金中之金,是无庸置疑的,而台、港、澳的 HAM 亦算是幸运,只需通过较简单的考试就可使用 14.000-14.350 的整个 20 米波及使用较大功率,比较美、日、德这些业余无线电大国,要经过较严格的考试 (每分钟 20 组 CW) 才能随意使用 14MHz,就方便得多了 (可惜仍有人只埋怨考试过严而不去努力学习 )。

基于 14MHz 的 DX 优点,所以笔者在制作各波段的天线时,首先就要考虑 14MHz 天线,其它天线如果对其有阻碍,则通通都要让路。

要通联较多的 DX 电台,良好的天线处于很重要的地位,所以在架好 DIPOLE 天线使用后,就日思夜想地考虑怎样架设八木天线或框形天线 (QUAD)。

由于笔者制作 VHF/UHF 商用波段八木天线已有多年,因此自然就将以前的经验改用在14MHz 上。

但 20 米天线与 2m/70cm 天线的体积相差太大,在目前条件下,只能架设 2~3 单元的八木,因此就要从各种方案中,找出最小单元而又高增益的天线。

终于在排除方形天线这种最高增益天线 (体积太大 ),而决定制作 HB9CV 这种变形的八木天线。

对于 HB9CV 天线,笔者首先在 80 年代初期北京的冯昶及陈惠琼老师的「无线电猎狐」一书中看到,当知道它有体积小、重量轻、高增益的优点后,觉得很适合香港的挤迫环境,便立刻改装应用在 150-160MHz 的商业波段上,效果很不错,除了高增益外,它的抗干扰能力比标准的八木天线更佳 (因有高 F/B 比 )。

自制无线网卡增益天线制作大全-蹭网卡制作大全

自制无线网卡增益天线制作大全-蹭网卡制作大全

一、易拉罐天线:需要准备得工具和原料如下:1、剪子一把2、靓工刀一把3、普通电工胶带适量4、空易拉罐一只(铁壳铝壳均可,可乐雪碧都可以)这几样工具都是通常家庭得常备工具啥?你找不到易拉罐?FT,马上给我到楼下去买一罐雪碧上来,一口气喝完它。

工具和原料备齐以后,咱们就要吧。

首先把易拉罐清洗干净,把里头得水倒掉。

接着用靓工刀沿着易拉罐接缝得地儿慢慢切开,参考图片接下来找到和这条接缝180度相对得还有一点一边,也用靓工刀慢慢切开接着用剪子慢慢地沿着底边剪半个圆过去,另一头则剪还有一点半个圆,参考图片:做好以后自己处理一下,主要是清理一下边缘(易拉罐非常锋利)预防日后得使用中弄伤了手。

在罐子底部和顶部开两个孔,和你原来得AP天线非常一下,直径大小可能大于天线一点就行了,套到AP天线上去试一下,必须可以自如地套进去,自然此时候没办法固定,罐子这原因是孔比天线大,只能松松地靠在天线上。

:)将贴不错得半个罐子套到原来得AP天线上试一下松紧程度,可能以能够套进天线而且保持必须得固定能力为准。

如果太松得话就再贴部分胶带上去。

再试一下旋转这半个罐子,要做到能够旋转自如。

象下面相片中是可以得松紧程度:OK 成功成效大伙尝试一下就了解了,信号有特明显得提升二、奶粉罐天线:DIY精神是利用手头得资源,发挥第一得做用,咱们身边非常多得金属罐子,奶粉罐是最常见得了。

下面介绍下DIY 奶粉罐天线得过程:根据测试,首先确定自己DIY得数据:各数据如下:中心频点=2.445G圆筒直径=127mm圆筒长度=111mm振子长度=31mm振子距圆筒底部边距=37mm你必须能问这数值是哪里来得?微波天线得制做精度很高,起码要达到毫米级,要不非常容易以至天线不可用,由于每个人获得得圆筒不一样,这有一个圆筒天线得通用计算器,可以精确得计算各参数,以此使这款天正在制做上达到实用化!通用计算器:http://www.saunalahti.fi/elepal/antenna2calc.php从图片可以看出,馈线得屏蔽网连接金属圆筒,信号通过圆筒反射到振子上,自然振子是馈线得芯线了,芯线与金属筒是绝缘得,这点必须得要小心!非常多爱好者都Like在圆筒加装N座或BNC座,接着在馈线得连接处做对应得N头或BNC头,用在连接。

天线增益的计算公式

天线增益的计算公式

天线增益的计算公式
天线增益G的计算公式主要有以下几种:
1. 对于定向天线,其增益计算公式为G=10Lg(P2/P1),其中P1和P2分别为换用被测天线前后的接收功率。

2. 对于一般天线,其增益可用下式估算:G(dBi)=10Lg{32000/
(2θ3dB,E×2θ3dB,H)},式中,2θ3dB,E与2θ3dB,H分别为天线在两个
主平面上的波瓣宽度;32000 是统计出来的经验数据。

3. 对于抛物面天线,其增益可用下式近似计算:G(dBi)=10Lg{×(D/λ0)2},式中,D 为抛物面直径;λ0为中心工作波长;是统计出来的经验数据。

4. 对于直立全向天线,其增益有近似计算式 G(dBi)=10Lg{2L/λ0},式中,L 为天线长度;λ0 为中心工作波长。

5. 增益通常用分贝表示。

即:G=10lgPino/Pin,其中Pino为无耗理想点
源天线的输入功率,Pin为天线的输入功率。

6. G=η4πS/λ2=10lg(η(πD/λ)²),其中S-天线口径面积(平方米);λ-工作波长(米);D-抛物面口径(即面口直径)(米);η-天线效率。

需要注意的是,上述计算公式并不一定适用于所有情况,且公式的使用取决于天线的具体类型。

在使用公式计算天线增益时,还需要注意公式的适用范围和限制。

自制wi-fi信号放大器-无线路由器增益天线

自制wi-fi信号放大器-无线路由器增益天线

自制wi-fi信号放大器-无线路由器增益天线近年来,随着无线网络的普及,Wi-Fi信号的稳定性和覆盖范围成为用户关注的重点。

为了解决这一问题,许多人开始自制Wi-Fi信号放大器,其中无线路由器增益天线是一种常见且有效的方法。

本文将介绍如何自制无线路由器增益天线,并提供一些建议,以帮助您提升家庭无线网络的信号强度。

一、材料准备在开始制作无线路由器增益天线之前,我们需要准备以下素材:1. 2个饮料易拉罐。

2. T型RF连接头(无线电频率连接器)。

3. 同轴电缆(长度根据实际需求决定)。

4. 螺丝刀和剪刀。

二、制作步骤以下是制作无线路由器增益天线的简单步骤:Step 1:清洗易拉罐将两个饮料易拉罐从顶部和底部切开,并将它们清洗干净,确保没有残留物。

Step 2:测量和切割用尺子测量无线路由器的原有天线,并在易拉罐壁上进行标记。

然后,用剪刀沿着标记线将易拉罐剪成合适的形状,以适应原有天线的长度。

Step 3:安装RF连接头将T型RF连接头插入易拉罐的一侧,确保连接牢固。

这将成为您的无线路由器增益天线的接口。

Step 4:连接同轴电缆在无线路由器的天线接口上,将同轴电缆连接到T型RF连接头的另一侧。

确保连接牢固且不松动。

Step 5:调整天线位置将制作好的无线路由器增益天线与原有天线替换连接,然后根据实际需求和信号强度调整天线的方向和位置。

您可以通过观察信号强度指示器或使用Wi-Fi信号检测器来帮助您找到最佳的放置方式。

三、使用建议在使用自制的无线路由器增益天线时,以下是一些建议:1. 将天线放在较高的位置:由于信号在垂直方向上传播得更好,将天线放置在家庭中较高的位置可以增强信号覆盖范围。

2. 避免障碍物:尽量减少天线与物体、墙壁等障碍物的距离,以避免信号衰减。

3. 调整天线方向:根据信号强度和覆盖范围,适时调整天线的方向,以实现最佳的信号接收。

四、安全注意事项在制作和使用自制的无线路由器增益天线时,请注意以下安全事项:1. 谨防触电:在制作过程中,务必确保断开电源并将无线路由器断开连接,以免引发触电危险。

一种新型高增益全向天线的制作方法

一种新型高增益全向天线的制作方法

一种新型高增益全向天线的制作方法
以下是一种新型全向天线制作方法:
1. 准备材料:需要准备四副宽带单极天线、支撑柱、功率合路器、上支撑板、下支撑板、十字状交叉的脊片、馈电插件、空心柱、开口以及射频电缆。

2. 制作步骤:首先将四副宽带单极天线沿着馈电方向呈线阵排布,然后每个宽带单极天线单元接收信号时其信号分别由电缆经由空心匹配柱传送给功率合路器,并由其实现功率合成。

3. 安装脊片:在上支撑板和下支撑板之间设有十字状交叉的脊片,脊片与上支撑板固定连接,脊片的底部配装有馈电插件。

4. 连接空心柱:在上支撑板和下支撑板之间通过多个空心柱连接,空心柱的个数与单极天线的个数相等,各个空心柱围绕脊片中心成圆周形均匀分布。

5. 安装开口:在上支撑板和下支撑板上与空心柱相对的开有开口,每个单极天线的空心柱与相邻的单极天线的空心柱一一对应的相正对形成通路。

6. 调整形状:所述的脊片由第一脊片和第二脊片组成,第一脊片的底部为逐渐缩小锥形,以调整天线的方向性。

7. 测试与调整:制作完成后,需要对天线进行测试和调整,以确保其性能符合要求。

以上步骤仅供参考,建议咨询专业人士获取更准确的信息。

无线WiFi天线增益计算公式

无线WiFi天线增益计算公式

无线WiFi-天线增益计算公式附1:天线口径和2.4G频率的增益0.3M 15.7DBi0.6M 21.8DBi0.9M 25.3DBi1.2M 27.8DBi1.6M 30.3DBi1.8M 31.3DBi2.4M 33.8DBi3.6M 37.3DBi4.8M 39.8DBi附2:空间损耗计算公式Ls=92.4+20Logf+20Logd附3:接收场强计算公式Po-Co+Ao-92.4-20logF-20logD+Ar-Cr=Rr其中Po为发射功率,单位为dbm.Co为发射端天线馈线损耗.单位为db.Ao为天线增益.单位为dbi.F为频率.单位为GHz.D为距离,单位为KM.Ar为接收天线增益.单位为dbi.Cr为接收端天线馈线损耗.单位为db.Rr为接收端信号电平.单位为dbm.例如:AP发射功率为17dbm(50MW).忽略馈线损耗.天线增益为10dbi.距离为2KM.接收天线增益为10dbi.到达接收端电平为17+10-92.4-7.6-6+10=-69dbm附4: 802.11b 接收灵敏度22 Mbps (PBCC): -80dBm11 Mbps (CCK): -84dBm5.5 Mbps (CCK): -87dBm2 Mbps (DQPSK): -90dBm1 Mbps (DBPSK): -92dBm(典型的测试环境:包错误率PER < 8% 包大小:1024 测试温度:25&ordm;C + 5&ordm;C)附5: 802.11g 接收灵敏度54Mbps (OFDM) -66 dBm8Mbps (OFDM) -64 dBm36Mbps (OFDM) -70 dBm24Mbps (OFDM) -72 dBmbps (OFDM) -80 dBm2Mbps (OFDM) -84 dBm9Mbps (OFDM) -86 dBm6Mbps (OFDM) -88 dBm---------------------------------------------------------------发一个计算抛物面半径的公式,不少人拿到抛物面可以一下子计算不出来焦点。

430MHz高增益(棒杆天线)制作

430MHz高增益(棒杆天线)制作

430MHz高增益(棒杆天线)制作根据85'年日本CQ杂志的介绍自制廉价VHF 或UHF 同轴电缆多段式1/2波高增益天线.其特点乃是用普通之5D-2V同轴线按(图1)之尺寸裁剪出数段二分一波长的线段及首尾两段各四分一波长之线段即可。

全支天线并无其他昂贵元件, 唯一比较美中不足之处就是此天线的驻波比调较比较麻烦, 因为每次都要每一条线段作出相同之改变才能达致理想效果。

另一特点则是线段数目的多少可由制作者自由决定。

段数越多, 则增益数字越大, 反之则越少。

制作方法非常简单:只需如(图1)图中尺寸剪出各段同轴电线并把每段头尾的外皮用利刀切去少许并露出中芯金属铜枝3-4mm以供焊接之用, 然後把第一段四分一波的中芯焊接至第二段开首的外皮铜网, 而第二段尾的外皮铜网则焊接至第三段的开首的中芯, 如此类推至最尾的一段四分一波为止。

实际的焊接可参看图。

至最未一段的尾部时则把它的芯线和网线焊在一起, 再在其上焊上一支四分一波长的铜枝, 如图3图。

另外最低下的一段则要如(图1)下半部份所展示般造一个小环焊在如图的位臵上, 尺寸亦在该图中可找得到。

该小环的实物图一如 Fig.4 般大小一样便可, 此环并无太准确的要求, 故大可安心去造。

整支各段同轴电缆都焊接完毕并检查好没有短路後即可把整条同轴线如完成图所示一样藏在一截 PVC 胶通内把它架设起来便成为一支很美观实用的天线了我的制作和上面的介绍完全一样,几乎没有什么差异,我中间的二分之一波长的线段一共八节,据说可以达到6db的增益。

今天又仔细看了一下图纸,发现上图之所以乘以百分之六十六应该是根据线径来的。

同轴电缆的传输的速度系数电磁波在真空中传播的速度最大,通过其他媒介传播时,因为折射率所以电磁波速度会变小,但是频率不变,频率是波固有的属性,推导公式:V=C/n n为折射率。

虽然速度慢,但是单位时间内仍能走完一个波长,速度变小,所以波长会变短!由公式速度等于波长乘以频率可推导。

增益天线工作原理

增益天线工作原理

增益天线工作原理
增益天线是一种电磁辐射器件,它能根据其物理结构和特定的工作原理来增加辐射功率和方向性。

下面是增益天线的工作原理:
1. 物理结构:增益天线通常采用一定长度的导体作为辐射器。

常见的增益天线类型包括偶极子天线、微带天线、抛物面天线等。

这些天线都具有特定形状和尺寸,用于提供特定的辐射特性。

2. 受激辐射和辐射功率:当增益天线上施加高频电流时,电流将在导体中引起电磁波的辐射。

辐射的功率与电流的强度和导体的尺寸有关。

增益天线通过优化导体的长度和形状,使得辐射功率相对于输入功率有所增加。

3. 相位和幅度调整:增益天线通常通过调整导体的长度、形状和分布来控制电磁波的辐射。

这些参数的调整可以改变天线的频率响应、波束方向和辐射模式。

通过调整相位和幅度,增益天线可以将辐射功率聚焦在特定的方向上,增加信号的接收或发送效率。

4. 调谐:增益天线通常会根据工作频率的需求进行调谐。

调谐是通过调整导体的长度或者添加调谐元件来实现的,以确保天线在特定频率范围内具有良好的工作性能。

总之,增益天线通过优化导体的结构和调整电流分布,实现辐
射功率增加和辐射方向性的提高。

这些工作原理使得增益天线成为无线通信和雷达系统中不可或缺的组成部分。

高增益天线制作

高增益天线制作

一、天线概述及图纸准备本天线的图纸源自Anywlan版主“风筝”从国外挖回的个人珍藏。

据资料所述此天线理论增益在18.2db左右,本人DIY出来后测试实际增益在15-17db之间,因此非常接近于理论增益,而影响我DIY效果的两个关键问题就是铜丝长度可能没精确好,该天线焊接点比较多,可能误差产生于焊接点处,另一个原因可能是反射板不平整。

我想只要找到好的反射板和有好的焊工,该天线做出来效果绝对是非常好的!DIY天线要细心和有耐心,天线制作工艺的细致与否、材料的选择等都将直接影响天线的增益。

特别是远距离无线通信使用的定向天线,制作时偏差一毫米,到了一公里外的时候差别可就大了。

文章尾部有设计图纸供下载。

二、材料收集以及工具准备1、直径2mm的铜丝或者铝丝,优先选择铜丝,因为其阻值小、抗氧化能力强;2、尼龙扎线带,这个具体用处请往下看;3、闭路电视线线皮,用来支撑振子与反射板;4、一块大于392*308mm的反射板,可以用电脑机箱盖子(论坛某牛人就用的这玩意)或者薄铁皮或者铝板,因为当时找不到那么大的铝板,所以我用了两张铁皮铆在一起来做反射板,如何把两张铁皮如何铆接在一起是有技巧的;1) 把两张裁剪好的铁皮合在一起,使其对其不要晃动;2) 截取几节长5mm,直径1-2mm左右的铝线;3) 用钉子或者其他尖的东西在合在一起的铁皮上打一个小洞,小洞的直径以刚好可以插入前一步骤中准备的铝线为最佳,铝线穿过两层铁皮后每一边露出相同的长度;4) 用锤子斜敲一边露出来的铝线,弯曲度自己掌握好,不掉出来即可;5) 用锤子继续斜着敲打另一边露出来的铝线,铝线不活动为止;6) 把铁皮放在平整的地面上,用锤子使劲敲打铝线,铝线舒张开后就把两张铁皮铆接在一起了!铆接两张铁皮5、另外还需要准备好铁锤、钳子、游标卡尺、签字笔、锉刀、焊锡膏、烙铁、焊锡丝、美工刀、计算器。

三、制作步骤1、首先制作天线的两条长边,截取铜丝时注意长度的精确性。

一种新型高增益全向天线的制作方法

一种新型高增益全向天线的制作方法

一种新型高增益全向天线的制作方法新型高增益全向天线是一种可以在不同方向上接收和发射电磁波的天线,它可以广泛应用于通信、雷达、卫星通信等领域。

本文将介绍一种新型高增益全向天线的制作方法,共分为材料准备、天线设计和制作步骤三个部分。

一、材料准备制作新型高增益全向天线需要准备的材料包括:导电材料、绝缘材料、连接器、支架等。

1.导电材料:选择尺寸适中、导电性能良好的金属材料,如铜箔、铝板等。

导电材料的选择将直接影响到天线的性能和稳定性。

2.绝缘材料:在导电材料的基础上需要添加绝缘材料,用于隔离不同部分的导电材料,防止短路和干扰。

3.连接器:选择合适的连接器用于天线的连接,确保信号的传输稳定可靠。

4.支架:天线需要设置支架用于固定和支撑,支架的稳固性和结构设计对天线的性能影响较大。

以上是制作新型高增益全向天线的基本材料准备,接下来将介绍具体的天线设计和制作步骤。

二、天线设计新型高增益全向天线的设计需要考虑到频率范围、增益、方向性和阻抗匹配等因素。

通常可以采用天线模拟软件进行仿真分析,选择合适的天线结构和参数。

1.结构设计:根据具体的通信需求和使用环境,设计合适的天线结构,如单极天线、双极天线、贴片天线等。

2.参数选择:根据频段和增益要求,选择合适的天线参数,包括天线长度、宽度、导体间距等。

3.阻抗匹配:设计天线的阻抗匹配网络,确保天线与驱动电路或信号源之间的匹配良好。

以上是新型高增益全向天线设计的基本步骤,接下来将介绍具体的制作方法。

三、制作步骤1. 制备基底板:将绝缘材料切割成合适大小的基底板,清洁表面杂质,为后续的导电材料粘贴做好准备。

2. 粘贴导电材料:根据设计要求,将导电材料粘贴在基底板上,并按照天线的结构设计和参数要求进行布局和连接。

3. 制作阻抗匹配网络:根据设计要求,制作阻抗匹配网络,确保天线与信号源之间的阻抗匹配良好。

4. 连接器安装:在天线上安装连接器,确保天线与外部信号源的连接稳固可靠。

适用于470-510 mhz频段通信的内置高增益天线的制作方法

适用于470-510 mhz频段通信的内置高增益天线的制作方法

适用于470-510 mhz频段通信的内置高增益天线的制作方法全文共四篇示例,供读者参考第一篇示例:在当今的通信领域中,无线通信技术已经得到了广泛的应用,而对于频段在470-510 MHz的通信系统而言,内置高增益天线的设计和制作显得尤为重要。

高增益天线可以提升通信信号的强度和稳定性,从而改善通信质量和覆盖范围。

本文将介绍一种适用于470-510 MHz 频段通信的内置高增益天线的制作方法。

我们需要了解470-510 MHz频段的特点。

这个频段通常被用于无线电通信系统,如无线电广播、航空通信、军事通信等。

在设计天线时,我们需要考虑频段所处的环境和应用场景,以确保天线的性能和稳定性。

接下来,我们将介绍制作内置高增益天线的具体步骤:1. 材料准备:我们需要准备一根长度合适的铜线作为天线的主体。

铜线的直径和长度将影响天线的频率和增益特性。

还需要准备一块PCB板作为天线的支撑结构。

2. 天线设计:根据470-510 MHz的频段特点,我们可以选择合适的天线类型进行设计,如单极天线、双极天线、贴片天线等。

在设计天线的过程中,需要考虑天线的尺寸、形状和布局,以确保天线能够有效地辐射和接收信号。

3. 天线制作:根据设计方案,在PCB板上绘制天线的布局图和尺寸标注。

然后,将铜线焊接到PCB板上,形成天线的主体结构。

在焊接过程中,需要确保铜线与PCB板的连接牢固,以防止天线松动或断裂。

4. 天线调整:制作完成后,需要进行天线的调试和测试。

通过专业的测试仪器和设备,可以测量天线的频率响应、驻波比、增益等参数。

根据测试结果,可以对天线进行调整和优化,以提高其性能和稳定性。

5. 安装部署:将制作好的高增益天线安装在通信设备中,并放置在合适的位置。

在安装和部署过程中,需要注意避免天线与其他金属结构或干扰源的干扰,以确保通信信号的质量和稳定性。

制作适用于470-510 MHz频段通信的内置高增益天线是一项复杂而细致的工作,需要综合考虑天线设计、制作和调试等多个环节。

教你制作无线增益天线

教你制作无线增益天线

最简单的方案应该是在原有的天线上加反射器,反射器可以是金属箔片或金属网,最酷的要算用金属漏勺做反射器,有的用装薯片的筒做反射器的不过已经替换了原有的天线了。

其实最简单的解决方案是将原有的天线用铜轴电缆延长,但延长线有损耗,效果不会好。

在原有天线上加反射器可以增加增益,但没有改变我电脑上天线的位置,加上机箱到墙之间的位置有限,效果也不会太好;螺旋天线和Cantenna的增益较高但积较大,最后我选择BiQuad 天线,体积较小,虽然增益没有螺旋天线和Cantenna天线高,比起原有的天线增益要高,这在家里用足够了。

天线的具体制作方法懂英语的可以看这个网站http://koti.mbnet.fi/zakifani/biquad/,不懂英语的看看上面的图片也就应该能明白了。

我根据手头有的材料进行了小小的改动。

制作天线所用的材料:1、铜线:家里装修时电工剪断的电线线头长244mm,直径1.5mm。

2、反射器:装修剩余的铝扣板15cm宽,123mm长。

3、同轴电缆:50ohm同轴电缆,型号RG-58,长1m,75ohm同轴电缆,长5mm。

4、同轴电缆接插头:一对。

5、9伏废电池一个。

制作天线的工具:1、老虎钳2、电烙铁3、小刀4、起子5、镊子为了废物利用,反射板我用了铝扣板,节约了买敷铜板的费用,但是铝上面无法焊接,不能像Miikka Raninen那样将同轴电缆的屏蔽层直接焊在反射板上,所以我决定用同轴电缆接插头为天线进行支撑和馈电,这样天线和同轴电缆是通过接插头连在一起的,为以后测试不同的天线提供了方便,其代价是增加了损耗,不过影响应该不大。

第一步、首先在铝扣板中心打一个孔,去除表面的涂层,然后将接插头拧在铝扣板上。

用尺测量反射平面到插座顶端的距离是15mm,按要求反射板到天线的距离要16mm到18mm,而且都应该有屏蔽层包着。

接插头的顶端5mm是裸露的焊接铜芯,因此需要将屏蔽层向上延伸5mm,同时也将铜芯加长2mm。

同轴高增益棒子天线的制作

同轴高增益棒子天线的制作

棒子的制作_430MHz/144MHz廉价同轴高增益天线一、用普通5D-2V同轴电缆(相当于国产的50-5)按图所示尺寸,剪出数段1/2λ线段,1/4λ首尾两段,并把每段头尾外皮用利刀切去少许,露出中心金属铜线3-4mm以供焊接。

然后把第一段1/4λ的中芯焊接至第二段1/2λ段的外层导体铜网,而第二段尾的外层铜网则焊接到第三段的中芯。

如此类推至末尾的一段1/4λ段为止,如图一。

至最末一段的网尾部时则把它的中芯和外层导体铜网焊在一起,再在其上焊上一根1/4λ的铜棒。

另外,最下面一段要如图一所示焊一小环(尺寸无太准确的要求),或在馈电电缆与最后1/4λ段连接处接3至4根长度为1/4λ奇数倍的地网辐射条,以使天线的电流形成完整的通路。

二、关于同轴天线自上到下各节的一般结构、原理和调试1,同轴阵列天线的顶部为一截1/4波长振子,可以是金属杆,也可以利用电缆外皮(或和芯线接在一起)做成。

2,振子下面为一截1/4波长同轴电缆,起阻抗变换作用,上端以低阻抗与1/4 波长振子的低阻抗匹配,下端呈现高阻抗,与下面各节来的高阻抗馈电相匹配。

3,再下面为若干节1/2波长的同轴电缆,各节之间芯线和外皮交叉连接。

交叉连接破坏了电缆的连续性,所以高频电流不再被屏蔽在电缆芯线和内壁,使一部分高频电流从电缆外壁流过而辐射能量,每一节都有点类似于一支半波长垂直天线。

流过每一截电缆段的电流相位比前面一段落后1/2 波长,而电缆又被交叉连接,所有外皮的电流正好变成同方向,组成了一个半波长同相振子陈列,它们在水平方向辐射的电磁场互相叠加,而在垂直方向的辐射由于路径差别而互相抵消,使能量集中在水平面附近,形成较高的天线增益。

所有芯线段的电流互相之间也是同方向的(但与外皮反向),不过它们被屏蔽在内腔,不会影响外皮的辐射。

1/2 波长的同轴电缆从两端看进去的阻抗总是一样的。

如果我们以高阻抗从最下面一节馈电,则这一节的上端也呈现高阻抗,继续以高阻抗向更上一节馈电,直到第2项所说的阻抗变换节。

适用于470-510 mhz频段通信的内置高增益天线的制作方法

适用于470-510 mhz频段通信的内置高增益天线的制作方法

适用于470-510 mhz频段通信的内置高增益天线的制作方法全文共四篇示例,供读者参考第一篇示例:在当今的无线通信领域,频段选择是至关重要的。

在470-510MHz频段范围内,天线的选择对于通信质量有着至关重要的作用。

本文将介绍一种适用于470-510MHz频段通信的内置高增益天线的制作方法,以帮助读者更好地了解和应用该技术。

第一步:材料准备制作内置高增益天线需要准备以下材料:1. PCB板:选择适合的尺寸和厚度的PCB板,一般选择FR4材质;2. 天线元件:选择适合470-510MHz频段的天线元件,一般为印刷电路板(PCB)天线;3. 焊锡丝和焊锡膏:用于焊接天线元件和PCB板之间的连接;4. 天线调整工具:用于调整天线元件的位置和角度,以获得最佳的天线性能;5. 天线测试仪器:用于测试天线的性能和指标。

第二步:设计天线结构在制作内置高增益天线之前,需要进行天线结构的设计。

根据470-510MHz频段的特点,选择合适的天线元件,并设计出符合要求的天线结构。

天线结构主要包括天线元件的布局、长度、角度等参数设置。

第三步:制作PCB板根据设计好的天线结构,将其转化为PCB板上的天线布局。

利用软件进行PCB设计,将天线元件的布局转移到PCB板上,并根据实际需要调整天线元件的位置和角度。

然后进行PCB板的制作,包括切割、钻孔、印刷等工艺。

第四步:焊接天线元件将天线元件焊接到PCB板上,注意保持天线元件与PCB板之间的良好接触。

使用焊锡丝和焊锡膏进行焊接,确保焊接牢固且导通正常。

调整天线元件的位置和角度,以获得最佳的天线性能。

第五步:测试和调整将制作好的内置高增益天线连接到天线测试仪器上,进行性能测试。

测试参数包括增益、辐射方向图、阻抗匹配等指标。

根据测试结果进行调整,优化天线性能,达到设计要求。

总结:通过以上步骤,就可以制作一款适用于470-510MHz频段通信的内置高增益天线。

在制作过程中,需要注意天线结构设计的合理性、PCB板的制作质量、天线元件的焊接质量以及性能测试的准确性。

天线 赋形增益-概述说明以及解释

天线 赋形增益-概述说明以及解释

天线赋形增益-概述说明以及解释1.引言1.1 概述概述部分的内容主要是对整篇文章的主题和内容进行简要介绍。

以下是概述部分的内容示例:概述天线赋形增益是指采用赋形技术使天线能够在不同工作状态下改变其形状和结构以提高性能的一种技术。

天线作为无线通信系统中的核心组成部分,其性能的优劣直接影响着通信质量和系统的可靠性。

通过利用天线赋形增益技术,我们能够在保持天线原有结构基础上,通过改变其形状和参数,实现对其电磁特性的调控和优化,进而使其具备更好的信号增益和辐射特性。

本文将从以下几个方面对天线赋形增益技术进行深入讨论。

首先,我们将介绍天线的基本概念和作用,帮助读者对天线有一个更全面的了解。

其次,我们将详细介绍赋形技术的概念和原理,以及其在天线领域的应用。

最后,我们将总结天线赋形增益技术的优势和应用领域,并展望其未来的发展趋势。

通过本文对天线赋形增益技术的介绍和探讨,我们希望能够帮助读者理解并掌握这一领域的核心概念和关键技术,以便在实际应用中能够更好地利用天线赋形增益技术,提升无线通信系统的性能和可靠性。

文章结构部分的内容可以是关于文章的章节分布和每个章节的主要内容的介绍。

在本文中,文章结构包括三个主要章节:引言、正文、结论。

接下来将介绍每个章节的主要内容。

1. 引言:1.1 概述:引言部分将简要介绍天线赋形增益的概念和意义。

1.2 文章结构:该部分将详细描述本文的章节结构,说明每个章节的主要内容以及它们之间的关系。

1.3 目的:紧接着将说明本文的目的,即探讨天线赋形增益的原理、优势、应用领域和未来发展趋势。

2. 正文:2.1 什么是天线:正文第一个章节将介绍天线的基本概念和主要功能,以使读者对天线有一个初步的了解。

2.2 赋形技术的概念:该章节将详细介绍赋形技术及其在天线中的应用,以帮助读者理解天线赋形增益的概念。

2.3 天线赋形的原理:该章节将深入探讨天线赋形的原理和工作机制,涉及相关的技术和算法,以及如何通过调整天线结构来实现增益的改变。

高增益四菱形无线数字电视接收天线制作

高增益四菱形无线数字电视接收天线制作

高增益四菱形无线数字电视接收天线制作中心频率为600MHz+----+|__|/\__C/F/4*1。

01=12。

6cm|\/||/\||\/||/\||\/||/\||\/|||+----+辐射器距反射板约8.2 cm 细调之, 至接收讯号最强反射板到五金行购镀锌铁网来作辐射器使用一般1.0 的PVC 单心电线绕制辐射体详图:/\/\/\\/\/\/此处交叉, 但不短路/\/\/\\/\/)(此处不交叉, 形成><, 中央> < 处接/\5c2v同轴电缆, 同轴电缆中心导体接一边/\> , 外部导体接另一边<\/\/\/此处交叉, 但不短路/\/\/\\/\/\/将5c2v 同轴电缆接在>< 处, 直接往后透过铁丝网引出增益约有15dbi 上下水平波束角约60 度到70 度之间利用PVC 水管及木螺纹钉作为支撑骨架即可若还要提高增益, 可再加装导波环四组____/\____C/F/4*0。

8=10cm\//\\//\\//\\/每个导波环置放于辐射体前方约18cm 处细调之, 至信号最强加装一组(四个)导波环, 增益可达17dbi 上下加装导波环后, 水平波束角会减小..辐射器或导波环的骨架固定例(此处以导波环为例):木螺纹钉|︿|*/*\|<-此处绕线/||\-|-/||\-。

-/||\-/---+-+---\-(。

*。

)-\---+-+---/-\||/\||/\\||/。

如此绕线就可以\*/\|\在同一平面上|﹀||\||*\*|︿|*\|\/*\-|-----\\----/||\||\\/||\-。

-----。

-\\--/||\\。

-/---+-+---\-\|\(。

*。

)|-\---+-+---/-*\\||/\||/\||/\*/|﹀|︴︴︴︴此天线很适合安装在墙面上或绑在水塔侧边..若觉得您的接收讯号不佳, 试试这个自制天线, 我拿它在宜兰可以收到台北竹子山的讯号.. ---------------------------------------------------------------------------------------------------------------信号强度的差距, 若排除天线频率响应的问题, 主要是看转播站位置, 距离及接收与发射天线的辐射涵盖图形, 另直射波与反射波也会有所关系..在无线电领域, 基本的评估方式如下(理想状况):Ri = Po - Co + Ao - 92.4 - 20 log D - 20 log F + Ar - CrRi : 接收到的信号准位, 单位dbmPo : 发射机输出功率, 单位dbmCo : 发射机电波馈送电缆传输损失, 单位dbAo : 以接收者的位置观察, 发射机天线在此角度的增益,单位dbi , 通常发射天线增益会以最大增益方向角度的增益值来标示,但是以广播发射站而言, 会因接收者位置的不同, 相对于天线角度的不同, 而呈现不同的增益..92.4 : 真空传播衰减常数, 若频率单位改用MHz 时, 常数值则为32.4, 因为20log F(Ghz) = 60 + 20log F(MHz),同理, 若距离单位改用公尺或英里, 也是如此转换,我个人是喜欢用92.4 的常数..D : 接收点到发射点间的距离, 单位公里F : 所使用频率, 单位GHzAr : 接收器天线增益, 单位dbi 但若发射站位置不在该天线最大增益方向, 记得扣除相对增益..Cr : 接收器传输电缆传输损失, 单位db以上式子是电波在真空中, 理想状态下的传输, 这里要特别提到一点是, 式子中, 似乎频率越高, 传输衰减越严重,故有些文章会如此描述, 但实则不然, 式子中频率越高, 衰减越多是因为天线的长度随着所使用波长的缩短而缩短, 故等效截收截面积跟着缩减的关系, 也因为是面积, 故用20 log 而不是10 log..由此式子我们也可以知道, 距离每增一倍, 在其它条件都不变的情况下, 接收信号准位少6db, 故距离增一倍, 若要维持相同的接收信号强度, 除了增加功率6db 外, 就是要提升天线系统Ao + Ar 6db..这是理想状况的式子, 在实际情况下, 我们还会碰到障碍物所引起的绕射, 反射等多重影响, 这就用到"夫累聂" 带的评估, 这在以后有兴趣时, 再来谈谈..至于为何要乘上 1.01, 主要是环型天线周长约略等于 1.01~1.1 波长时, 虚数阻抗几近为零(天线谐振), 此时其阻抗值约为100 ohm, 我们看这种天线结构, 刚好主要是两个环型并接, 故可得到50 ohm 的天线阻抗, 虽然用在75 ohm 的接收系统时, 因阻抗不完全匹配, 其SWR 会稍高, 但因为是接收系统, 没有发射机, 故不必担心因阻抗不匹配而损坏发射机, 更何况加上反射板时, 天线整体会呈电感性, 阻抗也会增加, 用在75 ohm 的接收系统, 不会有啥大问题..转载请注明出自中国无线论坛/,本贴地址:/thread-1871-1-1.html单一组(四个环)的不须特别做阻抗匹配, 但要再合并多个时就需要..这种利用两组环形天线并联, 加上反射板的天线, 记得好像是一位德国人发明的, 因为效能良好, 尤其是在UHF 频带, 制作也简单, 水平波束角宽, 且为水平极化, 阻抗在50ohm 附近, 在UHF 及微卫星通讯的业余自制天线, 常被采用..一个环形天线的圆周长等于所使用波长乘上 1.01~1.1 时, 处于谐振状态, 且等长线段涵盖最大截面积是呈现圆形, 在此状况下, 环形天线有效截面比dipole 大, 故约比dipole 天线多出1db 的增益, 已知标准dipole 天线增益为 2.15dbi, 故一组环形天线增益约为3.15dbi, 当将两组环形并接时, 截面积增一倍, 增益加3db, 再加上反射板, 将朝后的能量往前送, 增益再增一倍, 故双环形天线加上反射板, 增益可达3.15+3+3 = 9.15dbi, 实作上可以利用调整到反射板的距离, 将波束集中一些, 故可获得约9~12 dbi 的天线增益; 而四环形天线, 环形数量比双环形多一倍, 有效截面积多出将近一倍, 故增益约可达12~15dbi..我们以4 菱形天线来看其动作原理..假设馈电缆中心导体接天线右侧激励点" < ", 外部导体接天线左侧激励点" > ", 那么呈现在天线的高频电波相位如下:0/\↗↘270/\90\/↖↙180\/0/\↙↖270/\90\/↘↗此处接同轴电缆中心导体, 定义相位为0 度180)(0换言之另一侧相位就是180 度, 在经过四分↗↘之一波长的单边长度, 电波延迟移相90 度,/\再经过四分之一波长单边长度, 电波再移相\/成为180 度到左侧, 从图面箭头路径可知, 从↖↙上到下, 所有天线激励均左右同相位, 依天线\/收发等效原理, 接收天线所截收下来的电波,/\在馈电点相位都一样, 故波幅增加..↗↘但因为实际环周长是比所使用波长还长, 再/\考虑导体传送电波时应有的波长缩短因子,\/故实际上每经过单边长度后, 电波延迟所呈↖↙现的相位增加比90 度还多, 故像这样的迭\/接, 以中心点起算到上下两端, 以两个环形(一共四个) 为限, 再多也提升不了多少增益,且当以此天线为发射天线的立场观之, 较大部分的能量集中在靠近中央的两个环上, 故若再增加迭接数量, 提升的效果非常有限..若还要再提升增益, 有几个方法:1.利用导波板(四个环):作用原理如同Y AGI 的导波器, 在增加一组导波板时, 增益约可增加3db, 在天线方向上再增加导波板数量, 适当调整距离间格,导波板数量每增一倍, 增益多3db, 而实际上如同Y AGI 的导波器,并不到3db 那么多, 且有一定极限..下图是运用在2.45 GHz 的频率上, 若要用在DVB-T的频带, 记得换算波长:2.利用反射板:作用原理如同碟形天线的碟子一般, 如图3.数个四菱形天线, 利用功率分配合成网络, 将每个天线的讯号合并在一起, 在UHF 带, 因为有现成的分配合成器, 且价位低廉, 不像在SHF 带那么昂贵, 建议直接购用现成的分配成器即可, 就如同将两个Y AGI 天线迭接一般, 须考虑各个分支电缆长度, 让每个天线所截收下来的信号, 到达合并点时须为同相位, 但因为4菱形天线的水平波束角相当宽, 若想让天线最大增益方向不是在正前方时, 可以增减各个分支电缆的长度, 让在某方向的电波, 经由各个天线接收下来到达合并点时能够同相..如下图, 希望天线组增益最大方向是斜向左侧N 度同相位的位置\\\/各个天线所接收的电波相位, 以最左边的\\/\天线为零度来当基准, 则\\/\X = x / (C / F) * 360\\/\\z= 电波路径长Y = y / (C / F) * 360\\/\y\Z = z / (C / F) * 360↘/↘x↘↘↘↘↘↘OXYZ所使用的电缆长度-+--+--+--+-c1.c2.c3.c4 , 须让电||||波传送到合并器时||||相位一样, 那么天线c1|c2|c3|c4|最大增益方向就会||||朝向左侧N 度的位置\\//, 这种做法, 就如同\||/相位数组天线一般..\||/此处以c1 的电缆出口+-------------+为0 度, 那么c2 相位||延迟就是-X, C3 为-Y||C4 为-Z, 那么电波到||达合并器时, 相位就||会一样..另外要注意, 一般VHF/UHF 的功率合并分配器, 其每组分支出口的相位有可能相差180 度, 譬如一分二(二合一), 其两组输出相位可能刚好相反(视分配合成器的结构而定), 须把此项因素考虑进去, 通常的做法是若发现此种现象, 将天线馈电点位置左右互换即可..这里要注意的是, 电波在电缆中传送的速度较真空慢, 故利用电缆长度来达到电波相位延迟, 须先查表得知电波在该种电缆的波长缩减比例, 以RG58 来说, 这个值约为0.66, 换言之, 300MHz 的电波在真空中波长约为1M, 该电波在真空中传输一公尺远的点, 电压与原点同相, 故利用一米长的RG58 传输该电波, 在电缆出口处的电波相位与电缆入口比较将会是L/ (C/F*0.66) * 360 = 1米/ (光速/300MHz * 0.66) * 360 = 185.5 度..而SHF 因为频率高, 一般市售VHF/UHF 功率合成分配器(变压器结构) 不适用, 此时可以利用电缆来制作, 大体上有两种方式, 一是共振线法, 一是迭接并接法, 参考以下我以前写的网页:/mysite/ch...ant-network.htm网页中的数值, 是以50 ohm 阻抗的系统来举例, 75 ohm 的系统也可用, 只是共振线的取得较困难, 尤其是1 to 2 时, 其共振线传输阻抗会是sqr(150*75)= 106ohm 及sqr(37.5*75) = 53ohm两种数值,前者很难找到这样的电缆, 后者倒是可以用rg58 (50~52ohm); 而1 to 4 及迭接合并法则没这样的困扰..这里顺带一提, 使用共振线法, 因为频率不同, 共振线长度就需要不同, 故共振线方式只能用在窄频带..而底下这张照片中的16 菱形天线, 就是利用迭接法将四组四菱形天线合并, 故每两组天线的馈电点左右相反, 而分支电缆长度都相同, 故最大增益方向垂直于天线面, 也就是朝向您的方向..这个天线排列方式, 其水平波束角相当窄, 约在10~20 度之间, 若全部以垂直方式来合并如同下图方式, 则水平波束角与原 4 菱形同, 但垂直波束角约只有3 度:/\↓共16 个\/ /\\/ /\\/ /\\/ /\\/ /\\/ /\\/ /\\/ ↑至于所制作出来的天线大小, 请各位以天线单边长来绘图想象一下吧.... 当初我所制作的那个拿来收台北数字电视讯号的4x 含一组导波, 印象中高近90 cm, 厚近30cm (不做导波装置会薄很多), 宽约30~40 cm 忘了!故真要像照片那样做16 菱形, 则天线长宽各约. 1 米, 若想垂直方向迭接, 天线将高达3 米.....><"最初由antion 发表车机建议还是使用全方位的垂直天线比较适当。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果无线路由器或无线AP不适合加装增益天线,那么我们只有给无线网卡增加增益天线了。

本日志以USB无线网卡为基础,整理一下无线网卡的增益天线如何diy制作。

家里的铁锅质量较重不适合固定。

而漏勺除了可以用来捞饺子和面条,还能用来制作增益天线呢,因为它有个金属抛物面。

一、准备制作材料。

漏勺、USB无线网卡、橡胶管、USB连接线。

手锯、尖头钳子、尺子、计算器、纸、笔第三步,计算出漏勺的焦点位置。

确定好焦点位置,也就是焦点距离漏勺底部中心长度。

直接套用公式计算,计算公式:F=D×D/16H(m)更简单的估算公式:F=0.3D~0.4D其中,D为抛物面的直径,H为抛物面的深度,单位为m。

四、将USB无线网卡的内置天线安装在漏勺的焦点。

USB无线网卡的底部有内置天线,如图USB无线网卡的内置天线位于左侧白色位置。

这个内置天线要位于焦点位置(原理参见: 增益天线的工作原理),所以,USB 无线网卡的长度加上胶皮管的长度,应等于计算好的焦点距离。

(usb无线网卡,参见:/taobao-wifi)第四步,如下图固定USB无线网卡,并为天线制作支架。

漏勺增益天线制作完成。

第五步、然后将USB连接线的另一端与笔记本电脑相连。

检查一下自制的漏勺增益天线效果如何?更多制作成型漏勺增益天线,制作原理一致,具体安装固定天线的方法稍有差异。

如上,漏勺增益天线安装方法二如上,漏勺增益天线放在公园里如上,漏勺增益天线测试效果pda的信号增益效果也不错。

呵呵动心了吧?适合做信号集中的天线的漏勺,参见:/wireless-signal-colander【转】无线网卡增益天线的手工制作方法2010-12-26 15:00转载自gsswf最终编辑gsswf简介:自己制作无线网卡天线人家在淘宝上买一块钱,我这里公开,不收费,还有一个说明,就是说USB无线网卡,卡王、卡霸、十公里、八公里的都是骗人的。

家用的不可能,只是信号强一点而已。

最近迷上用笔记本电脑无线上网,就是家里放一个无线的路由器,用笔记本电脑可以在任何地点上网,不用受网线的束缚。

可是因为无线网络使用的是频率高达2.4GHz的高频信号,而且发射功率小,功率衰减得也十分厉害,在其它房间因为有墙壁的阻隔,接收到的信号就更弱了,严重影响到上网的速度。

于是查了一些资料,决定自己动手做一个适用于无线上网卡的外接天线。

如下面的图纸,这种天线叫做“双菱形天线”。

背面的金属圆盘是用来反射电磁信号的,圆盘前面的双菱形才是接收信号的天线。

步骤1:2mm直径的铜丝一根、铝板一块、50欧姆同轴电缆一段、AB胶、焊锡、化妆品的瓶盖一个;步骤2:卷尺、电烙铁、尖嘴钳、壁纸刀、圆锉、钢锯、手电钻(后面两样没在照片里);步骤3:我们先来计算一下无线网络信号使用的无线电波的波长。

所有天线的尺寸都是根据它所接收或发射的无线电波的波长决定的,所以这一点至关重要。

传输无线网络信号使用的是频率大约在2.4GHz的高频电磁波,根据公式:波长=波速/频率,当然这个波速就是光速,一般近似为30万公里每秒。

经计算得这个波长大约为12.5CM。

我们用连接对角线的办法找到铝板的中心,在上面用手电钻打孔。

铝板的长度应该略微大于无线电波的波长,也就是12.5CM,原因是这样反射电波的效果比较好。

这个孔是给同轴电缆留的,因此略大于电缆直径即可,我用的是7mm的钻头。

步骤4:用尖嘴钳把2mm直径的铜丝折成2个同样大小的菱形。

注意每个菱形的周长应该等于一个波长12.5CM,即一条边长为12.5/4=3.125CM。

可是菱形的边长还与铜丝的粗细有关,而且实际使用的无线网络的电磁波也不绝对等于2.4GHz,因此在网络上查资料菱形的边长会有N个版本,我用的是整数3CM。

经过实际操作大家会发现,即使事先量得很准确,在用尖嘴钳弯曲铜丝的时候,误差可能也不止1个毫米,因此计算得再精确也没用。

其实这种高频的线圈对天线的尺寸要求是非常严格的,当然对于个人DIY来讲,没办法达到很高的精度。

步骤5:把50欧姆同轴电缆的芯线和屏蔽线剥开,分别焊接在菱形的两个“腰”上步骤6:把化妆品的瓶盖剪成大约20mm高,这个瓶盖的作用是固定菱形天线,并使天线与后面的金属板保持特定的距离。

我们使用的图纸设定的距离是18mm,因此可以用圆锉在相应的位置上锉出4个2mm深的凹坑,便于固定菱形的4条边。

步骤7:用AB胶把瓶盖与铝板、瓶盖与天线、同轴电缆与铝板之间粘牢。

普通的万能胶也可以用,只是没有AB胶坚固。

步骤8:完成了的无线网卡用的双菱形天线。

步骤9:因为手头没有专用的插头,所以我把黑色的线剪开,连接在自制的天线上。

原先显示2格的信号强度变成了3格,而且十分稳定,说明自制的天线起作用了!注意这种双菱形天线是有方向性的,实际使用中应该加一个底座,慢慢转动方向,以便找到最强的接收信号。

因为我的笔记本电脑无线网卡带有原配的内置天线,因此自制天线起的作用还不是特别明显,但是对于许多外置的无线网卡,因为它们没有天线,配上自制的天线之后,对信号的改善作用就很强烈了!usb无线网卡一般都有内置天线。

如果想改装为外接增益天线,很不方便。

怎样给USB无线网卡加装外接天线?有人改造了usb无线网卡的内置天线,然后用usb 延长线接到外接增益无线。

改造后的无线网卡以及usb无线网卡,接受无线信号的增益还是不错的,但是改造起来并不容易。

拆开usb无线网卡,内部大概结构,有天线接口插座!可买转接线直接插天线插座。

但转接线贵?内置天线位置在中间拆掉原来天线后焊信号线。

这个麻烦,有风险装上外壳后的无线网卡,以及外接延长线如果有银子,可以买带外接天线的usb无线网卡,美观,省心。

其实,改造内置无线网卡,再加装外接天线,目的就相当于diy一个带外接天线的usb无线网卡了.diy的英语意思是 Do It Youself,自己动手做。

下面是带外置天线的无线网卡。

注意是外置天线,不是外接天线。

你可以想办法在usb无线网卡(usb wireless adapter)和外置天线之间接延长线,那样的话,是不是可以称作是室外天线了?超强pre-mimousb无线网卡搜索无线网卡一、易拉罐天线:需要准备得工具和原料如下:1、剪子一把2、靓工刀一把3、普通电工胶带适量4、空易拉罐一只(铁壳铝壳均可,可乐雪碧都可以)这几样工具都是通常家庭得常备工具啥?你找不到易拉罐?FT,马上给我到楼下去买一罐雪碧上来,一口气喝完它。

工具和原料备齐以后,咱们就要吧。

首先把易拉罐清洗干净,把里头得水倒掉。

接着用靓工刀沿着易拉罐接缝得地儿慢慢切开,参考图片接下来找到和这条接缝180度相对得还有一点一边,也用靓工刀慢慢切开接着用剪子慢慢地沿着底边剪半个圆过去,另一头则剪还有一点半个圆,参考图片:做好以后自己处理一下,主要是清理一下边缘(易拉罐非常锋利)预防日后得使用中弄伤了手。

在罐子底部和顶部开两个孔,和你原来得AP天线非常一下,直径大小可能大于天线一点就行了,套到AP天线上去试一下,必须可以自如地套进去,自然此时候没办法固定,罐子这原因是孔比天线大,只能松松地靠在天线上。

:)将贴不错得半个罐子套到原来得AP天线上试一下松紧程度,可能以能够套进天线而且保持必须得固定能力为准。

要是太松得话就再贴部分胶带上去。

再试一下旋转这半个罐子,要做到能够旋转自如。

象下面相片中是可以得松紧程度:OK 成功成效大伙尝试一下就了解了,信号有特明显得提升二、奶粉罐天线:DIY精神是利用手头得资源,发挥第一得做用,咱们身边非常多得金属罐子,奶粉罐是最常见得了。

下面介绍下DIY 奶粉罐天线得过程:根据测试,首先确定自己DIY得数据:各数据如下:中心频点=2.445G圆筒直径=127mm圆筒长度=111mm振子长度=31mm振子距圆筒底部边距=37mm你必须能问这数值是哪里来得?微波天线得制做精度很高,起码要达到毫米级,要不非常容易以至天线不可用,由于每个人获得得圆筒不一样,这有一个圆筒天线得通用计算器,可以精确得计算各参数,以此使这个天正在制做上达到实用化!通用计算器:http://www.saunalahti.fi/elepal/antenna2calc.php从图片可以看出,馈线得屏蔽网连接金属圆筒,信号通过圆筒反射到振子上,自然振子是馈线得芯线了,芯线与金属筒是绝缘得,这点必须得要小心!非常多爱好者都Like在圆筒加装N座或BNC座,接着在馈线得连接处做对应得N头或BNC 头,用在连接。

可mr7感到虽说该办法对使用十分便利,可同时也对信号造成了损耗(估计1-2DBI),特别在2.4G得频段愈加明显!正是这个原因,mr7决定把屏蔽网直接焊在圆筒上(焊接前先把外壳打磨光滑),而做为振子得芯线则保留其原来得泡沫绝缘。

这么一来把损耗减到最低。

有点专线专用得味道了!提议大伙最好在焊接前找根直径稍比馈线粗一点得小铜管和热缩套管,先把铜管套在馈线上,接着跟屏蔽网一块儿焊牢在金属圆筒得外壳上,接着用热风筒把热缩套管来回吹多次,把馈线固定在铜管上,这么一来可以非常不错得减低由于调节天线时给馈线和振子送去得影响!是选用双屏蔽得RG-58电缆,接头是SMA母头,用在接在WIFI得AP上面。

通常看馈线直径愈粗愈好,而且长度要尽量短,要不馈线过长所造成得损耗比天线增益还大,失去DIY 得意义!mr7使用得馈线直径由于非常小,因此长度取在1米这数值。

特不错得馈线是制做天线得主要,2.4G频段得信号在线材中得损耗和泄漏比400Mhz得大非常多,因此馈线必须得要用屏蔽网加铝薄双屏蔽,而且芯线要尽量粗。

把接头做好也就成功了。

成效那自然不是通常得行了小结:1、该天线得确适合初学者业余制做,大伙别被未尝试过得制做而难倒,要信任自己信任科学。

我也是菜鸟,以前也没抱多少期望制做天线得,当果断迈出第一步以后,你能尝试到实践送去得无穷本文来自:生活DIY-肉丁网地址:/life-DIY/dianzidianqi/30096.htm趣味和知识!2、多与身旁得同好们交流心得,听取各方意见,边做边学,这么能少走弯路。

3、制做天线时得尺寸和用料是成功得主要,要把握好尺寸得精确度,原料要选质量过关得。

在这次制做中我每次裁剪时都要反复量度尺寸,精确度起码是mm级。

原料方面,我用得是厚底得铁罐,而馈线则是进口得双屏蔽电缆。

4、由于附近非常多写字楼,自然用无线网上得公司也非常多,同时楼宇之间距离非常宽,因此在家中得阳台可以收到这么多网上得信号,这一点再次验证了“好机不如好天线,好天线不如好传播!”这经验。

5、根据玩家给予得数据,该WIFI圆筒天线得增益在12DBI左右。

假如改进一下,在天线外口加一个喇叭状得金属圆环,该天线还可以增加3DBI得增益,大伙不妨试试!同时说明一下该天线不适合担当无线中继功能得AP用,提议做无线中继时最好使用高增益得同轴全向天线。

相关文档
最新文档