2016年全国高考真题集

合集下载

2016高考真题——全国Ⅰ卷(Word版含答案).doc

2016高考真题——全国Ⅰ卷(Word版含答案).doc

绝密★启封前2016年普通高等学校招生全国统一考试(新课标I)英语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷第一部分:听力(共两节,满分 30 分)做题时,现将答案标在试卷上,录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共 5 小题;每小题 1.5 分,满分 7.5 分)听下面 5 段对话,每段对话后有一个小题。

从题中所给的A,B,C 三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10 秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A.£ 19.15B.£ 9.18C.£ 9.15答案是 C。

1. What are the speakers talking about?A. Having a birthday party.B. Doing some exercise.C. Getting Lydia a gift2. What is the woman going to do?A. Help the man.B. Take a bus.C. Get a camera3. What does the woman suggest the man do?A. Tell Kate to stop.B. Call Kate, s friends.C. Stay away from Kate.4. Where does the conversation probably take place?A. In a wine shop.B. In a supermarket.C. In a restaurant.5. What does the woman mean?A. Keep the window closed.B. Go out for fresh air.C. Turn on the fan.听第6段材料,回答第6、7题。

【历史】2016年高考真题——全国Ⅱ卷(精校解析版)

【历史】2016年高考真题——全国Ⅱ卷(精校解析版)

2016年普通高等学校招生全国统一考试全国甲卷新课标全国Ⅱ(文综历史)24.(2016·课标全国Ⅱ,24)下图为三国曹魏《三体石经》的残片,经文中的每个字均用先秦古文、小篆等三种字体刻写。

这三种字体反映了( )A.当时统一文字的努力B.汉字演变的历史过程C.当时字体流行的实际状况D.汉字尚未形成完整的体系25.(2016·课标全国Ⅱ,25)两汉实行州郡推荐、朝廷考试任用的察举制;经魏晋九品中正制,至隋唐演变为自由投考、差额录用的科举制。

科举制更有利于( )A.选拔最优秀的官吏B.鉴别官员道德水平C.排除世家子弟入仕D.提升社会文化水平26.(2016·课标全国Ⅱ,26)宋代,有田产的“主户”只占民户总数20%左右,其余大都是四处租种土地的“客户”。

导致这种状况的重要因素是( )A.经济严重衰退B.土地政策调整C.坊市制度崩溃D.政府管理失控27.(2016·课标全国Ⅱ,27)福建各地族谱中有大量关于入台族裔回乡请祖先牌位赴台的记载,此类现象在清乾隆年间骤然增多。

这说明乾隆年间( )A.族谱编修顺应了移民的需求B.大陆移民已在台湾安居繁衍C.内地宗族开始整体迁移台湾D.两岸居民正常往来受到阻碍28.(2016·课标全国Ⅱ,28)19世纪中期以后,中国市场上的洋货日益增多,火柴、洋布等日用品,“虽穷乡僻壤,求之于市,必有所供”。

这种状况表明( )A.中国市场由被动开放转为主动开放B.商品经济基本取代自然经济C.日常生活与世界市场联系日趋密切D.中国关税主权开始丧失29.(2016·课标全国Ⅱ,29)1930年,鄂豫皖革命根据地英山县水稻单位面积产量增加二三成,有的甚至达到五成,出现“赤色区米价一元一斗,白色区一元只能买四五升”的情况。

这主要是因为根据地( )A.农民生产的积极性高涨B.红军英勇奋战保卫农民生产C.政府主要精力用于增产D.人民打破国民党的经济封锁30.(2016·课标全国Ⅱ,30)抗战胜利后,国民政府将日伪纺织企业合并,成立了国有的中纺公司。

2016年全国3卷高考理科数学真题及详细解析(解析版,学生版,精校版,新课标Ⅲ卷)

2016年全国3卷高考理科数学真题及详细解析(解析版,学生版,精校版,新课标Ⅲ卷)

2016年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)2.(5分)若z=1+2i,则=()A.1B.﹣1C.i D.﹣i3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.6.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b 7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.68.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.B.C.﹣D.﹣9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.8110.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个二、填空题:本大题共4小题,每小题5分.13.(5分)若x,y满足约束条件,则z=x+y的最大值为.14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f (x)在点(1,﹣3)处的切线方程是.16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.2016年全国统一高考数学试卷(理科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)【考点】1E:交集及其运算.【专题】37:集合思想;4O:定义法;5J:集合.【分析】求出S中不等式的解集确定出S,找出S与T的交集即可.【解答】解:由S中不等式解得:x≤2或x≥3,即S=(﹣∞,2]∪[3,+∞),∵T=(0,+∞),∴S∩T=(0,2]∪[3,+∞),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)若z=1+2i,则=()A.1B.﹣1C.i D.﹣i【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.【点评】本题考查复数的代数形式混合运算,考查计算能力.3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°【考点】9S:数量积表示两个向量的夹角.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【点评】考查向量数量积的坐标运算,根据向量坐标求向量长度的方法,以及向量夹角的余弦公式,向量夹角的范围,已知三角函数值求角.4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个【考点】F4:进行简单的合情推理.【专题】31:数形结合;4A:数学模型法;5M:推理和证明.【分析】根据平均最高气温和平均最低气温的雷达图进行推理判断即可.【解答】解:A.由雷达图知各月的平均最低气温都在0℃以上,正确B.七月的平均温差大约在10°左右,一月的平均温差在5°左右,故七月的平均温差比一月的平均温差大,正确C.三月和十一月的平均最高气温基本相同,都为10°,正确D.平均最高气温高于20℃的月份有7,8两个月,故D错误,故选:D.【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键.5.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.【考点】GF:三角函数的恒等变换及化简求值.【专题】11:计算题;35:转化思想;4R:转化法;56:三角函数的求值.【分析】将所求的关系式的分母“1”化为(cos2α+sin2α),再将“弦”化“切”即可得到答案.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题.6.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【考点】4Y:幂函数的单调性、奇偶性及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】b==,c==,结合幂函数的单调性,可比较a,b,c,进而得到答案.【解答】解:∵a==,b=,c==,综上可得:b<a<c,故选:A.【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档.7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.6【考点】EF:程序框图.【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图.【分析】模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.【解答】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4满足条件s>16,退出循环,输出n的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.8.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.B.C.﹣D.﹣【考点】HT:三角形中的几何计算.【专题】35:转化思想;44:数形结合法;58:解三角形.【分析】作出图形,令∠DAC=θ,依题意,可求得cosθ===,sinθ=,利用两角和的余弦即可求得答案.【解答】解:设△ABC中角A、B、C、对应的边分别为a、b、c,AD⊥BC于D,令∠DAC=θ,∵在△ABC中,B=,BC边上的高AD=h=BC=a,∴BD=AD=a,CD=a,在Rt△ADC中,cosθ===,故sinθ=,∴cosA=cos(+θ)=cos cosθ﹣sin sinθ=×﹣×=﹣.故选:C.【点评】本题考查解三角形中,作出图形,令∠DAC=θ,利用两角和的余弦求cosA 是关键,也是亮点,属于中档题.9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.81【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,其底面面积为:3×6=18,侧面的面积为:(3×3+3×)×2=18+18,故棱柱的表面积为:18×2+18+18=54+18.故选:B.【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.10.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】根据已知可得直三棱柱ABC﹣A1B1C1的内切球半径为,代入球的体积公式,可得答案.【解答】解:∵AB⊥BC,AB=6,BC=8,∴AC=10.故三角形ABC的内切圆半径r==2,又由AA1=3,故直三棱柱ABC﹣A1B1C1的内切球半径为,此时V的最大值=,故选:B.【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程.【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=﹣c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即为=,化简可得=,即为a=3c,可得e==.另解:由△AMF∽△AEO,可得=,由△BOH∽△BFM,可得==,即有=即a=3c,可得e==.故选:A.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【考点】8B:数列的应用.【专题】16:压轴题;23:新定义;38:对应思想;4B:试验法.【分析】由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故选:C.【点评】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.二、填空题:本大题共4小题,每小题5分.13.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;4R:转化法;57:三角函数的图像与性质.【分析】令f(x)=sinx+cosx=2sin(x+),则f(x﹣φ)=2sin(x+﹣φ),依题意可得2sin(x+﹣φ)=2sin(x﹣),由﹣φ=2kπ﹣(k∈Z),可得答案.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.【点评】本题考查函数y=sinx的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象,得到﹣φ=2kπ﹣(k∈Z)是关键,也是难点,属于中档题.15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f (x)在点(1,﹣3)处的切线方程是2x+y+1=0.【考点】6H:利用导数研究曲线上某点切线方程.【专题】34:方程思想;51:函数的性质及应用;52:导数的概念及应用.【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=4.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;49:综合法;5B:直线与圆.【分析】先求出m,可得直线l的倾斜角为30°,再利用三角函数求出|CD|即可.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较基础.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.【考点】87:等比数列的性质;8H:数列递推式.【专题】34:方程思想;4R:转化法;54:等差数列与等比数列.【分析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可.【解答】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即(λ﹣1)a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,(n≥2),∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•()n﹣1.(2)若S5=,则若S5=1+λ[•()4]=,即()5=﹣1=﹣,则=﹣,得λ=﹣1.【点评】本题主要考查数列递推关系的应用,根据n≥2时,a n=S n﹣S n﹣1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:y i=9.32,t i y i=40.17,=0.55,≈2.646.参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;35:转化思想;5I:概率与统计.【分析】(1)由折线图看出,y与t之间存在较强的正相关关系,将已知数据代入相关系数方程,可得答案;(2)根据已知中的数据,求出回归系数,可得回归方程,2016年对应的t值为9,代入可预测2016年我国生活垃圾无害化处理量.【解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:∵r==≈≈≈0.993,∵0.993>0.75,故y与t之间存在较强的正相关关系;(2)==≈≈0.103,=﹣≈1.331﹣0.103×4≈0.92,∴y关于t的回归方程=0.10t+0.92,2016年对应的t值为9,故=0.10×9+0.92=1.82,预测2016年我国生活垃圾无害化处理量为1.82亿吨.【点评】本题考查的知识点是线性回归方程,回归分析,计算量比较大,计算时要细心.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.【考点】LS:直线与平面平行;MI:直线与平面所成的角.【专题】15:综合题;35:转化思想;44:数形结合法;5F:空间位置关系与距离;5G:空间角.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD 内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN 所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG⊂平面PAB,NM⊄平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA⊂平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA•AM=PM•AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.【点评】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【考点】J3:轨迹方程;K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)连接RF,PF,利用等角的余角相等,证明∠PRA=∠PQF,即可证明AR∥FQ;(Ⅱ)利用△PQF的面积是△ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,=|FN||y1﹣y2|,∴S△ABF∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.【考点】6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4J:换元法;51:函数的性质及应用;53:导数的综合应用;56:三角函数的求值.【分析】(Ⅰ)根据复合函数的导数公式进行求解即可求f′(x);(Ⅱ)讨论a的取值,利用分类讨论的思想方法,结合换元法,以及一元二次函数的最值的性质进行求解;(Ⅲ)由(I),结合绝对值不等式的性质即可证明:|f′(x)|≤2A.【解答】(I)解:f′(x)=﹣2asin2x﹣(a﹣1)sinx.(II)当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a|cos2x|+(a﹣1)|(cosx+1)|≤a|cos2x|+(a﹣1)(|cosx|+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2.当0<a<1时,f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1,令g(t)=2at2+(a﹣1)t﹣1,则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2,且当t=时,g(t)取得极小值,极小值为g()=﹣﹣1=﹣,(二次函数在对称轴处取得极值)令﹣1<<1,得a<(舍)或a>.①当0<a≤时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|,∴A=2﹣3a,②当<a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g(),又|g()|﹣|g(﹣1)|=>0,∴A=|g()|=,综上,A=.(III)证明:由(I)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|,当0<a≤时,|f′(x)|<1+a≤2﹣4a<2(2﹣3a)=2A,当<a<1时,A==++>1,∴|f′(x)|≤1+a≤2A,当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A,综上:|f′(x)|≤2A.【点评】本题主要考查函数的导数以及函数最值的应用,求函数的导数,以及换元法,转化法转化为一元二次函数是解决本题的关键.综合性较强,难度较大.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.【考点】NC:与圆有关的比例线段.【专题】35:转化思想;49:综合法;5M:推理和证明.【分析】(1)连接PA,PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,运用圆的性质和四点共圆的判断,可得E,C,D,F共圆,再由圆内接四边形的性质,即可得到所求∠PCD的度数;(2)运用圆的定义和E,C,D,F共圆,可得G为圆心,G在CD的中垂线上,即可得证.【解答】(1)解:连接PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,由⊙O中的中点为P,可得∠4=∠5,在△EBC中,∠1=∠2+∠3,又∠D=∠3+∠4,∠2=∠5,即有∠2=∠4,则∠D=∠1,则四点E,C,D,F共圆,可得∠EFD+∠PCD=180°,由∠PFB=∠EFD=2∠PCD,即有3∠PCD=180°,可得∠PCD=60°;(2)证明:由C,D,E,F共圆,由EC的垂直平分线与FD的垂直平分线交于点G可得G为圆心,即有GC=GD,则G在CD的中垂线,又CD为圆G的弦,则OG⊥CD.【点评】本题考查圆内接四边形的性质和四点共圆的判断,以及圆的垂径定理的运用,考查推理能力,属于中档题.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程;5S:坐标系和参数方程.【分析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.另外:设P(cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).【点评】本题考查参数方程和普通方程的互化、极坐标和直角坐标的互化,同时考查直线与椭圆的位置关系,主要是相切,考查化简整理的运算能力,属于中档题.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】11:计算题;35:转化思想;49:综合法;59:不等式的解法及应用.【分析】(1)当a=2时,由已知得|2x﹣2|+2≤6,由此能求出不等式f(x)≤6的解集.(2)由f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,得|x﹣|+|x﹣|≥,由此能求出a的取值范围.【解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,2|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞).【点评】本题考查含绝对值不等式的解法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意不等式性质的合理运用.。

高考物理真题(2016年全国Ⅰ卷)完整版.doc

高考物理真题(2016年全国Ⅰ卷)完整版.doc

2016年全国高考理科综合Ⅰ卷物理部分(真题)二、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第14~17小题只有一项符合题目要求,第18~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

14. 一平行板电容器两极板之间充满云母介质,接在恒压直流电源上,若将云母介质移出,则电容器()A. 极板上的电荷量变大,极板间电场强度变大B. 极板上的电荷量变小,极板间电场强度变大C. 极板上的电荷量变大,极板间电场强度不变D. 极板上的电荷量变小,极板间电场强度不变15. 现代质谱仪可用来分析比质子重很多的离子,其示意图如图所示,其中加速电压恒定。

质子在入口处从静止开始被加速的电场加速,经匀强磁场偏转后从出口离开磁场。

若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。

此离子和质子的质量比约为()A.11B. 12C. 121D. 14416. 一含理想变压器的电路如图所示,图中电阻R1、R2、R3的阻值分别为3Ω、1Ω、4Ω,○A为理想交流电流表,U为正弦交流电压源,输出电压的有效值恒定。

当开关S断开时,电流表的示数为I;当S闭合时,电流表的示数为4I。

该变压器原、副线圈匝数之比为()A.2B. 3C. 4D. 517. 利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯。

目前地球同步卫星的轨道半径约为地球半径的6.6倍。

假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为()A. 1hB. 4hC. 8hD. 16h18. 一质点做匀速直线运动。

现对其施加一恒力,且原来作用在质点上的力不发生变化,则()A. 质点速度的方向总是与该恒力的方向相同B. 质点速度的方向不可能总是与该恒力的方向垂直C. 质点加速度的方向总是与该恒力方向相同D. 质点单位时间内速率的变化量总是不变19. 如图,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一段悬挂物块a,另一端系一位于水平粗糙桌面上的物块b。

16年高考数学真题高考题(8套)

16年高考数学真题高考题(8套)

2016年高考题全国Ⅰ卷文数题干+解析1.(2016·全国Ⅰ卷,文1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B等于( B )(A){1,3} (B){3,5} (C){5,7} (D){1,7}解析:集合A与集合B公共元素有3,5,故A∩B={3,5},选B.2.(2016·全国Ⅰ卷,文2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于( A )(A)-3 (B)-2 (C)2 (D)3解析:(1+2i)(a+i)=a-2+(1+2a)i,由已知,得a-2=1+2a,解得a=-3,选A.3.(2016·全国Ⅰ卷,文3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( C ) (A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

解析:将4种颜色的花中任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为错误!未找到引用源。

,选C.4.(2016·全国Ⅰ卷,文4)△ABC的内角A,B,C的对边分别为a,b,c.已知a=错误!未找到引用源。

,c=2,cos A=错误!未找到引用源。

,则b等于( D )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)2 (D)3解析:由余弦定理得5=b2+4-2×b×2×错误!未找到引用源。

,解得b=3(b=-错误!未找到引用源。

舍去),选D.5.(2016·全国Ⅰ卷,文5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!未找到引用源。

,则该椭圆的离心率为( B )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

2016年新课标高考真题全国三卷文科数学

2016年新课标高考真题全国三卷文科数学

2016年新课标高考真题全国三卷文科数学一、单选题1.设集合4 = {0,2,4,6,8,10}1 = {4,8},则QB =A. {4,8}B. {0, 2,6}C. {0, 2, 6,10}D. {0,2, 4, 6, 8,10}2.若z = 4 + 3i,则高=()A. 1B. -1C. l+UD.D D D D3. (2016高考新课标HI,理3)已知向量方1 堂)前=(今]则乙4c=A. 30 °B. 45 0C. 60 °D. 120 °4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15:B点表示四月的平均最低气温约为5二.下面叙述不正确的是( )▼.均・低气* 一▼均MT*A.各月的平均最低气温都在0匚以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20:j的月份有5个5.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M, 1,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是6.若tan6 =:,则cos26 =( )D- IA. B- 一! C.青7.已知a = = 3^c = 252,则D. c < a < b8 .执行下面的程序框图,如果输入的a=4, b=6,那么输出的n=() (W)n = =5][。

=6-0]■:[a = b + 司CWA. 3B. 4C. 5D. 69 .在△4BC 中,F = p BC 边上的高等于则sin/=10 .如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多11 .在封闭的直三棱柱— 内有一个体积为V 的球,若48 = 6,BC = 8,/& = 3,则该球体枳V 的最大值是932A. 4TTB. -7TC. 67rD. —n2312 .己知。

2016年高考真题 新课标2卷(配解析)

2016年高考真题       新课标2卷(配解析)

2016年普通高等学校招生全国统一考试(课标全国卷Ⅱ)理数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)2.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}3.已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m=( )A.-8B.-6C.6D.84.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-B.-C.D.25.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.96.下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π7.若将函数y=2sin2x的图象向左平移个单位长度,则平移后图象的对称轴为( )A.x=-(k∈Z)B.x=+(k∈Z)C.x=-(k∈Z)D.x=+(k∈Z)8.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=( )A.7B.12C.17D.349.若cos=,则sin2α=( )A. B. C.- D.-10.从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A. B. C. D.11.已知F1,F2是双曲线E:-=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为( )A. B. C. D.212.已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=( )A.0B.mC.2mD.4m第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= .14.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)15.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2.”乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1.”丙说:“我的卡片上的数字之和不是5.”则甲的卡片上的数字是. 16.若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b= .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.(本小题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF 交BD于点H.将△DEF沿EF折到△D'EF的位置,OD'=.(Ⅰ)证明:D'H⊥平面ABCD;(Ⅱ)求二面角B-D'A-C的正弦值.20.(本小题满分12分)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(本小题满分12分)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x-2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程; (Ⅱ)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l的斜率.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=+,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.2016年普通高等学校招生全国统一考试(课标全国卷Ⅱ)答案解析一、选择题1.A 由已知可得⇒⇒-3<m<1.故选A.2.C 由(x+1)(x-2)<0⇒-1<x<2,又x∈Z,∴B={0,1},∴A∪B={0,1,2,3}.故选C.3.D 由题可得a+b=(4,m-2),又(a+b)⊥b,∴4×3-2×(m-2)=0,∴m=8.故选D.4.A 圆的方程可化为(x-1)2+(y-4)2=4,则圆心坐标为(1,4),圆心到直线ax+y-1=0的距离为=1,解得a=-.故选A.5.B 分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.6.C 由三视图可得圆锥的母线长为=4,∴S圆锥侧=π×2×4=8π.又S圆柱侧=2π×2×4=16π,S 圆柱底8.C k=0,s=0,输入a=2,s=0×2+2=2,k=1;输入a=2,s=2×2+2=6,k=2;输入a=5,s=6×2+5=17,k=3>2,输出s=17.故选C.9.D 解法一:sin2α=cos=cos2=2cos2-1=2×-1=-.故选D.解法二:cos=(cosα+sinα)=⇒cosα+sinα=⇒1+sin2α=,∴sin2α=-.故选D.10.C 如图,数对(x i,y i)(i=1,2,…,n)表示的点落在边长为1的正方形OABC内(包括边界),两数的平方和小于1的数对表示的点落在半径为1的四分之一圆(阴影部分)内,则由几何概型的概率公式可得=⇒π=.故选C.11.A 解法一:由MF1⊥x轴,可得M,∴|MF1|=.由sin∠MF2F1=,可得cos∠MF2F1==,又tan∠MF2F1==,∴=,∴b2=ac,∵c2=a2+b2⇒b2=c2-a2,∴c2-a2-ac=0⇒e2-e-1=0,∴e=.故选A.解法二:由MF1⊥x轴,得M,∴|MF1|=,由双曲线的定义可得|MF2|=2a+|MF1|=2a+,又2221对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,则x1+x m=x2+x m-1=…=0,y1+y m=y2+y m-1=…=2,∴(x i+y i)=0×+2×=m.故选B.二、填空题13.答案解析由已知可得sinA=,sinC=,则sinB=sin(A+C)=×+×=,再由正弦定理可得=⇒b==.14.答案②③④解析由m⊥n,m⊥α,可得n∥α或n在α内,当n∥β时,α与β可能相交,也可能平行,故①错.易知②③④都正确.15.答案1和3解析由丙说的话可知丙的卡片上的数字一定不是2和3.若丙的卡片上的数字是1和2,则乙的卡片上的数字是2和3,甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则乙的卡片上的数字是2和3,此时,甲的卡片上的数字只能是1和2,不满足题意.故甲的卡片上的数字是1和3.16.答案1-ln2解析直线y=kx+b与曲线y=lnx+2,y=ln(x+1)均相切,设切点分别为A(x 1,y1),B(x2,y2),由y=lnx+2得y'=,由y=ln(x+1)得y'=,∴k==,∴x1=,x2=-1,∴y1=-lnk+2,y2=-lnk.即A,B,∵A、B在直线y=kx+b上,∴⇒三、解答题17.解析(Ⅰ)设{a n}的公差为d,据已知有7+21d=28,解得d=1.所以{a n}的通项公式为a n=n.b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(6分)(Ⅱ)因为b n=(9分)n18.解析(Ⅰ)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(3分)(Ⅱ)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)====.因此所求概率为.(7分)19.解析(Ⅰ)由已知得AC⊥BD,AD=CD.又由AE=CF得=,故AC∥EF.因此EF⊥HD,从而EF⊥D'H.(2分)由AB=5,AC=6得DO=BO==4.由EF∥AC得==.所以OH=1,D'H=DH=3.于是D'H2+OH2=32+12=10=D'O2,故D'H⊥OH.(4分)又D'H⊥EF,而OH∩EF=H,所以D'H⊥平面ABCD.(5分)(Ⅱ)如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D'(0,0,3),=(3,-4,0),=(6,0,0),=(3,1,3).(6分)设m=(x1,y1,z1)是平面ABD'的法向量,则即所以可取m=(4,3,-5).(8分)设n=(x2,y2,z2)是平面ACD'的法向量,则即所以可取n=(0,-3,1).(10分)于是cos<m,n>===-.sin<m,n>=.因此二面角B-D'A-C的正弦值是.(12分)20.解析(Ⅰ)设M(x 1,y1),则由题意知y1>0.当t=4时,E的方程为+=1,A(-2,0).(1分)由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为y=x+2.(2分)将x=y-2代入+=1得7y2-12y=0.解得y=0或y=,所以y1=.(4分)因此△AMN的面积S△AMN=2×××=.(5分)(Ⅱ)由题意,t>3,k>0,A(-,0).将直线AM的方程y=k(x+)代入+=1得(3+tk2)x2+2·tk2x+t2k2-3t=0.(7分)由x1·(-)=得x1=,故|AM|=|x1+|=.(8分)由题设,直线AN的方程为y=-(x+),故同理可得|AN|=.(9分)由2|AM|=|AN|得=,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=.(10分)t>3等价于=<0,即<0.(11分)由此得或解得<k<2.21.解析(Ⅰ)f(x)的定义域为(-∞,-2)∪(-2,+∞).(2分)f'(x)==≥0,且仅当x=0时,f'(x)=0,所以f(x)在(-∞,-2),(-2,+∞)单调递增.因此当x∈(0,+∞)时,f(x)>f(0)=-1.所以(x-2)e x>-(x+2),(x-2)e x+x+2>0.(4分)(Ⅱ)g'(x)==(f(x)+a).(5分)由(Ⅰ)知,f(x)+a单调递增.对任意a∈[0,1),f(0)+a=a-1<0,f(2)+a=a≥0.因此,存在唯一x a∈(0,2],使得f(x a)+a=0,即g'(x a)=0.(6分)当0<x<x a时,f(x)+a<0,g'(x)<0,g(x)单调递减;当x>x a时,f(x)+a>0,g'(x)>0,g(x)单调递增.(7分)因此g(x)在x=x a处取得最小值,最小值为g(x a)===.(8分)于是h(a)=,由'=>0,得y=单调递增.所以,由x a∈(0,2],得=<h(a)=≤=.(10分)因为y=单调递增,对任意λ∈,存在唯一的x a∈(0,2],a=-f(x a)∈[0,1),使得h(a)=λ.所以h(a)的值域是.22.解析(Ⅰ)因为DF⊥EC,所以△DEF∽△CDF,则有∠GDF=∠DEF=∠FCB,==,所以△DGF∽△CBF,由此可得∠DGF=∠CBF.因此∠CGF+∠CBF=180°,所以B,C,G,F四点共圆.(5分)(Ⅱ)由B,C,G,F四点共圆,CG⊥CB知FG⊥FB.连结GB.由G为Rt△DFC斜边CD的中点,知GF=GC,故Rt△BCG≌Rt△BFG,因此,四边形BCGF的面积S是△GCB面积S△GCB的2倍,即S=2S△GCB=2×××1=.(10分)23.解析(Ⅰ)由x=ρcosθ,y=ρsinθ可得圆C的极坐标方程ρ2+12ρcosθ+11=0.(3分)(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).(4分)设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcosα+11=0.于是ρ1+ρ2=-12cosα,ρ1ρ2=11.(6分)|AB|=|ρ1-ρ2|==.(8分)由|AB|=得cos2α=,tanα=±.(9分)所以l的斜率为或-.(10分)24.解析(Ⅰ)f(x)=(2分)当x≤-时,由f(x)<2得-2x<2,解得x>-1;(3分)当-<x<时,f(x)<2;(4分)当x≥时,由f(x)<2得2x<2,解得x<1.(5分)所以f(x)<2的解集M={x|-1<x<1}.(6分)(Ⅱ)证明:由(Ⅰ)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.因此|a+b|<|1+ab|.(10分)。

高考语文真题2016年语文全国卷II(答案)

高考语文真题2016年语文全国卷II(答案)

2016年普通高等学校招生全国统一考试课标全国卷Ⅱ1.B原文第二段中说“除流传形式上的简单差异外,早期小说和故事的本质区别并不明显,经历和见闻是它们的共同要素”,意思是早期小说和故事只是流传形式略有差异,本质并无太大区别,选项错把形式差异说成本质差异,与原文不符。

另外,“后者则是由作家创作加工后的游历见闻”错,原文第一段的表述为“小说家则通常记录见闻传说,虚构故事,经过艺术处理,把它们变成小说交给读者”,选项把“通常”去掉了,属于混淆范围。

2.C由文章第四段“一个故事的好坏并不看它的‘成色’如何,而是取决于讲故事的方式”可知,现代小说重视的是一个故事如何来讲,而非“不太注重”。

此外“故事情节已不再是现代小说最重要的因素”与“现代小说不太注重一个故事如何来讲”之间也不存在因果关系。

3.B根据文章第四段内容可知,“这将降低小说对虚构的依赖”有误,应是“这将降低小说对故事的依赖”。

4.C本题考查文言断句能力。

“怀祸藏奸”与“窥觊储贰”均为动宾短语,其后要断开,排除A、D两项;“事由己发”语意完整,其后要断开,排除B项。

故选C。

5.D本题考查对古代文化常识的掌握能力。

移疾:犹言“移病”,古代官员上书称病。

是为官者要求隐退的委婉语。

6.D本题考查对文本内容的分析概括能力。

“筹措钱款赈济灾民”错,“帑金”是指国库银两。

7.答案(1)其中难道没有刚正的人,但禁不住抵触排挤,大多无法安身。

(2)副使崔应麟见到百姓吃湖泽中的雁粪,便装入袋中给陈登云看,登云随即送至朝廷。

解析本题考查翻译文言句子的能力。

首先找出关键词重点翻译,然后根据语境逐字翻译,力争达到“信、达、雅”的要求。

(1)胜:禁得住。

龃龉:抵触,排挤。

安:安身。

(2)啖:吃。

矢:通“屎”,此处指雁粪。

囊:名词活用作动词,用袋装。

[参考译文]陈登云,字从龙,唐山人。

万历五年进士。

被任命为鄢陵知县,后又被征召授给御史之职。

出行巡视辽东,给皇上上疏陈明安定边境的十条对策,又请求加速建立首功赏赐的制度。

2016年高考英语真题全国Ⅲ卷及答案详细解析

2016年高考英语真题全国Ⅲ卷及答案详细解析

2016年普通高等学校招生全国统一考试(全国Ⅲ卷)英语第Ⅰ卷注意事项:1.答第I卷前,考考生务必将自己的姓名、考生号填写在答题卡上。

2.选出每小题答案后,用铅笔把答题卡上对应的题目的答案标号涂黑。

如需改动,用橡皮擦干净后,在选涂其他答案标号。

不能答在本试卷,否则无效。

第一部分听力(共两节,满分30 分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题。

从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £ 19. 15B. £ 9. 18C. £ 9. 15答案是C。

1. What will Lucy do at 11:30 tomorrow?A. Go out for lunch.B. See her dentist.C. Visit a friend.2. What is the weather like now?A. It’s sunny.B. It’s rainy.C. It’s cloudy.3. Why does the man talk to Dr. Simpson?A. To make an apology.B. To ask for help.C. To discuss his studies.4. How will the woman get back from the railway station?A. By train.B. By car.C. By bus.5. What does Jenny decide to do first?A. Look for a job.B. Go on a trip.C. Get an assistant.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

2016年高考语文真题全国卷1(答案与解析)

2016年高考语文真题全国卷1(答案与解析)

2016年高考语语文真题全国卷1(答案与解析)2016年普通高等学校全国统一考试(语文)一、现代文阅读(9分,每小题 3分)阅读下面的文字,完成1~3题殷墟甲骨文是商代晚期在龟甲兽骨上的文字,是商王室及其他贵族利用龟甲兽骨占卜吉凶时写刻的卜辞和与占卜有关的记事文字。

殷墟甲骨文的发现对中国学术界产生了巨大而深远的影响。

甲骨文的发现证实了商王朝的存在。

历史上,系统讲述商史的是司马迁的《史记·殷本纪》,但此书撰写的时代距商代较远;即使公认保留了较多商人语言的《尚书·盘庚》篇,其中亦多杂有西周时的词语,显然是被改造过的文章。

因此,胡适曾主张古史作为研究对象,可“缩短二三千年,从诗三百篇做起”。

甲骨文的发现,将商人亲手书写、契刻的文字展现在学者面前,使商史与传说时代分离而进入历史时代。

特别是1917年王国维写了《殷卜辞中所见先公先王考》及《续考》,证明《史记·殷本纪》与《世本》所载殷王世系几乎皆可由卜辞资料印证,是基本可靠的。

论文无可辩驳地证明《殷本纪》所载的商王朝是确实存在的。

甲骨文的发现也使《史记》之类的历史文献中有关中国古史记载的可信性增强。

因为这一发现促使史学家们想到,既然《殷本纪》中的商王世系基本可信,司马迁的《史记》也确如刘向、扬雄所言是一部“实录”,那么司马迁在《史记·夏本纪》中所记录的夏王朝与夏王世系恐怕也不是向壁虚构。

特别是在20世纪20年代疑古思潮流行时期,甲骨文资料证实了《殷本纪》与《世本》的可靠程度,也使历史学家开始摆脱困惑,对古典文献的可靠性恢复了信心。

甲骨文的发现同时引发了震撼中外学术界的殷墟发掘。

“五四运动”促使中国的历史学界发生了两大变化:一是提倡实事求是的科学态度,古史辨派对一切经不住史证的旧史学的无情批判,使人痛感中国古史上科学的考古资料的极端贫乏;二是历史唯物主义在史学界产生了巨大影响。

1925年王国维在清华国学研究院讲授《古史新证》,力倡“二重证据法”,亦使中国历史学研究者开始注重地下出土的新材料。

2016年高考真题全国卷文综2

2016年高考真题全国卷文综2

2016年高考真题文综(全国II卷)单选题本大题共11小题,每小题4分,共44分。

在每小题给出的4个选项中,有且只有一项是符合题目要求。

1.庄园经济是一种实现农业资源聚集化、生产规模化、经营多元化、管理企业化、建设生态化的经营组织模式。

某县生产的优质铁观音茶获得“中国地理标志”认证。

该县茶企业通过整合特色山水,建设集茶树种植、茶叶加工储存、旅游和文化为一体的现代茶庄园。

据此完成1—2题。

发展庄园经济的前提条件是当地拥有A丰富廉价的劳动力B知名品牌的农产品C发达便捷的交通网D高精尖的技术水平2.与传统的茶园相比,现代茶庄园的突出优势是A品牌更多,环境更优B市场更广,产品价格更低C产品更多,效益更高D投入更少,生产成品更低3.自20世纪70年代开始,日本家电企业将组装工厂向某国外转移,图1示意日资家电组装工厂转移目的地随时间的变化。

据此完成3-5题。

影响日资家电组装工厂不断转移的主要因素是A市场规模B劳动力成本C原材料成本D技术水平4.20世纪90年代末,越南对日资家电组装工厂的投资吸引力已超过中国,但其日资家电组装工厂数量却远少于中国,主要原因是中国A市场规模大B技术水平高C劳动力素质高D基础设施水平高5.在日资家电组装工厂向越南等国家转移的背景下,中国家电产业发展的战略是A加大政策支持,吸引日资回归B进口越南产品,替代国内生产C扩大生产规模,保持价格优势D加强技术研发,培育竞争优势6.在全球气候变暖的背景下,我国长白上高山苔原带矮小灌木的冻害反而加剧,调查发现,长白山雪期缩短;冻害与坡度密切相关,而与海拔基本无关;西北坡为冻害高发区。

据此完成6-8题。

在高山苔原带,与坡度密切相关,而与海拔基本无关的指标是A大气温度B降水量C积雪厚度D植被覆盖度7.长白山西北坡比其他坡向冻害高发,是因为该坡A年降水量最少B冬季气温最低C年日照最少D冬季风力最大8.气候变暖但冻害加剧的原因可能是A蒸腾加剧B低温更低C降雪期推后D太阳辐射减弱9.某河流位于浙江东部,下游河床受径流与潮汐共同影响:枯水期,以潮流带来的泥沙淤积为主;汛期,上游下泄的径流冲刷河床。

2016年高考真题——语文(全国Ⅱ卷)Word版含答案

2016年高考真题——语文(全国Ⅱ卷)Word版含答案

绝密★启用前2016 年普通高等学校招生全国统一考试语文注意事项:1.本试卷分第I 卷(阅读题)和第Ⅱ卷(表达题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上.写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

第I 卷阅读题甲必考题―、现代文阅读(9分,每小题3 分)阅读下面的文宇,完成1? 3 題.人们常说“小说是讲故事的艺术” ,但故事不等于小说,故事讲述人与小说家也不能混为一谈。

就传统而言,讲故事的讲述亲身经历或道题听途说的故事,口耳相传,把它们转化为听众的经验;小说家则通常记录见闻传说,虚构故事,经过艺术处理,把它们变成小说交给读者。

除流传形式上的简单差异外,早起小说和故事的本质区别并不明显,经历和见闻是它们的共同要素,在传媒较为落后的过去,作为远行者的商人和水手最适合充当故事讲述人的角色,故事的丰富程度与远行者的游历成正比。

受此影响,国外古典小说也常以人物的经历为主线组织故事,《荷马史诗》《一千零一夜》都是描述某种特殊的经历和遭遇,《堂吉诃德》中的故事是堂吉诃德的行侠奇遇和所见所闻,17 世纪欧洲的流浪汉小说也体现为游历见闻的连缀。

在中国,民间传说和历史故事为志怪录类和史传类的小说提供了用之不竭的素材,话本等古典小说形式也显示出小说和传统故事的亲密关系。

虚构的加强使小说和传统故事之间的区别清晰起来。

小说中的故事可以来自想象。

不一定是作者的亲历亲闻。

小说家常闭门构思,作品大多诞生于他们的离群索居的时候,小说家可以闲坐在布宜诺斯艾利斯的图书馆中,或者在巴黎一间终年不见阳光的阁楼里,杜撰他们想象中的历险故事,但是,一名水手也许要经历千辛万苦才能把在东印度群岛听到的事带回伦敦;一个匠人漂泊一生,积攒下无数的见闻、掌故或趣事,当他晚年坐在火炉旁给孩子们讲述这一切的时候,他本人就是故事的一部分,传统故事是否值得转述,往往只取决于故事本事的趣味性和可流传性,与传统的故事方式不同,小说家一般并不单纯转述故事,他是在从事故事的制作和生产,有深思熟虑的讲述目的。

【物理】2016年高考真题——全国Ⅰ卷(解析版)

【物理】2016年高考真题——全国Ⅰ卷(解析版)

2016年高考真题——全国Ⅰ卷1.一平行板电容器两极板之间充满云母介质,接在恒压直流电源上。

若将云母介质移出,则电容器( )A. 极板上的电荷量变大,极板间电场强度变大B. 极板上的电荷量变小,极板间电场强度变大C. 极板上的电荷量变大,极板间电场强度不变D. 极板上的电荷量变小,极板间电场强度不变2.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。

质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。

若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。

此离子和质子的质量比约为( )A. 11B. 12C. 121D. 1443.一含有理想变压器的电路如图所示,图中电阻12R R 、和3R 的阻值分别是31ΩΩ、和4Ω,○A 为理想交流电流表,U 为正弦交流电压源,输出电压的有效值恒定。

当开关S 断开时,电流表的示数为I ;当S 闭合时,电流表的示数为4I 。

该变压器原、副线圈匝数比为( )A. 2B. 3C. 4D. 54.利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯。

目前,地球同步卫星的轨道半径约为地球半径的6.6倍。

假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( ) A. 1hB. 4hC. 8hD. 16h5.一质点做匀速直线运动。

现对其施加一恒力,且原来作用在质点上的力不发生改变,则( )A. 质点速度的方向总是与该恒力的方向相同B. 质点速度的方向不可能总是与该恒力的方向垂直C. 质点加速度的方向总是与该恒力的方向相同D. 质点单位时间内速率的变化量总是不变6.如图,一光滑的轻滑轮用细绳'OO悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b。

外力F向右上方拉b,整个系统处于静止状态。

2016年高考全国卷1生物试题(含 答案)精校WORD版

2016年高考全国卷1生物试题(含    答案)精校WORD版

2016年普通高等学校招生全国统一考试(新课标I)理科综合生物一、选择题1. 下列与细胞相关的叙述,正确的是A. 核糖体、溶酶体都是具有膜结构的细胞器B. 酵母菌的细胞核内含有DNA和RNA两类核酸C. 蓝藻细胞的能量来源于其线粒体有氧呼吸过程D. 在叶绿体中可进行CO2的固定但不能合成ATP2. 离子泵是一张具有ATP水解酶活性的载体蛋白,能利用水解ATP释放的能量跨膜运输离子。

下列叙述正确的是A. 离子通过离子泵的跨膜运输属于协助扩散B. 离子通过离子泵的跨膜运输是顺着浓度阶梯进行的C. 动物一氧化碳中毒会降低离子泵跨膜运输离子的速率D. 加入蛋白质变性剂会提高离子泵跨膜运输离子的速率3. 若除酶外所有试剂均已预保温,则在测定酶活力的试验中,下列操作顺序合理的是A.加入酶→加入底物→加入缓冲液→保温并计时→一段时间后检测产物的量B. 加入底物→加入酶→计时→加入缓冲液→保温→一段时间后检测产物的量C. 加入缓冲液→加入底物→加入酶→保温并计时→一段时间后检测产物的量D. 加入底物→计时→加入酶→加入缓冲液→保温并计时→一段时间后检测产物的量4. 下列与神经细胞有关的叙述,错误的是A. ATP能在神经元线粒体的内膜上产生B. 神经递质在突触间隙中的移动消耗ATPC. 突触后膜上受体蛋白的合成需要消耗ATPD. 神经细胞兴奋后恢复为静息状态消耗ATP5. 在漫长的历史时期内,我们的祖先通过自身的生产和生活实践,积累了对生态方面的感性认识和经验,并形成了一些生态学思想,如:自然与人和谐统一的思想。

根据这一思想和生态学知识,下列说法错误的是A.生态系统的物质循环和能量流动有其自身的运行规律B. 若人与自然和谐统一,生产者固定的能量便可反复利用C. “退耕还林、还草”是体现自然与人和谐统一思想的实例D. 人类应以保持生态系统相对稳定为原则,确定自己的消耗标准6. 理论上,下列关于人类单基因遗传病的叙述,正确的是A. 常染色体隐性遗传病在男性中的发病率等于该病致病基因的基因频率B. 常染色体隐性遗传病在女性中的发病率等于该病致病基因的基因频率C. X染色体隐性遗传病在女性中的发病率等于该病致病基因的基因频率D. X染色体隐性遗传病在男性中的发病率等于该病致病基因的基因频率二、非选择题(一)必做题29.有关DNA分子的研究中,常用32P来标记DNA分子。

2016年全国统一高考真题物理试卷(新课标ⅲ)(含答案及解析)

2016年全国统一高考真题物理试卷(新课标ⅲ)(含答案及解析)

2016年全国高考统一物理试卷(新课标Ⅲ)一、选择题1.(6分)关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律2.(6分)关于静电场的等势面,下列说法正确的是()A.两个电势不同的等势面可能相交B.电场线与等势面处处相互垂直C.同一等势面上各点电场强度一定相等D.将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功3.(6分)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍。

该质点的加速度为()A.B.C.D.4.(6分)如图,两个轻环a和b套在位于竖直面内的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m的小球,在a和b之间的细线上悬挂一小物块。

平衡时,a、b间的距离恰好等于圆弧的半径。

不计所有摩擦,小物块的质量为()A.B.m C.m D.2m5.(6分)平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30°角.已知粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场.不计重力.粒子离开磁场的射点到两平面交线O的距离为()A.B.C.D.6.(6分)如图,理想变压器原、副线圈分别接有额定电压相同的灯泡a和b.当输入电压U为灯泡额定电压的10倍时,两灯泡均能正常发光.下列说法正确的是()A.原、副线圈匝数之比为9:1B.原、副线圈匝数之比为1:9C.此时a和b的电功率之比为9:1D.此时a和b的电功率之比为1:97.(6分)如图,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P.它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W.重力加速度大小为g.设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则()A.a=B.a=C.N=D.N=8.(6分)如图,M为半圆形导线框,圆心为O M;N是圆心角为直角的扇形导线框,圆心为O N;两导线框在同一竖直面(纸面)内;两圆弧半径相等;过直线O M O N的水平面上方有一匀强磁场,磁场方向垂直于纸面。

2016年全国高考文综真题全国卷1

2016年全国高考文综真题全国卷1

2016年全国高考文综真题全国卷112.互补品战略是企业利用两种商品之间的互补关系,优化产品组合,达到一定目标的经营战略。

下列做法属于该战略的是①某快餐店与饮料商合作,提供汉堡包与饮料搭配的套餐②为降低碳排放,某运输公司将动力燃料由汽油改为天然气③为促销增利,某企业降低其喷墨打印机价格,题高墨盒价格④玉米价格上涨,某饲料厂在生产中减少玉米用量,增加小麦用量A.①②B.①③C.②④D. ③④13.2015年8月,国务院批复的《基本养老保险基数投资管理办法》规定,养老基金在投资国债、银行债券等债权性资产的同时,可以投资股票、股票基金,但投资股票等权益类资产的比重不超过30%。

上述规定的主要目的是学科&网A.增强资本流动性,平抑资本市场的波动B.扩大投资渠道,实现投资收益的最大化C.优化投资组合,追求收益与风险的平衡D.提高投资安全性,促进资本市场的增长14.因原材料价格上涨,生产流感特效药的制药企业陷入经营困境,为保证药品的正常供给,政府对该类制药企业实施生产补贴,若用S、S’表示补贴前后该药品的供给曲线,不考虑其他因素,准确反映补贴前后该药品供给变化的图示是15.2015年,某国宏观经济形势如下:产能利用率不足;固定资产投资同比下降4.0%;居民消费价格指数(CPI)增幅从2.5%下跌至1%,低于国际公认的合理值3%。

据此,预防通货紧缩成为关注的焦点。

若不考虑其他因素,可能引发通货紧缩的传导路径是①产能过剩→工业品供过于求→工业品价格走低→企业利润下滑②消费低迷→消费品供过于求→消费品价格走低③社会总供给大于社会总需求→物价总水平持续下跌④企业投资萎缩→失业率上升→居民收入下降A.①→④→②→③B.④→①→③→②C.①→③→④→②D.④→②→①→③16.某市规定,对下派社区的工作事务,实行清单管理:属于各部门/街道办事处职责范围内的事项,不得转嫁给社区:需要社区协助的事项,应当为社区提供必要的经费和工作条件。

2016年高考数学理科真题试卷及答案(word版)

2016年高考数学理科真题试卷及答案(word版)

2016年普通高等学校招生考试真题试卷数 学(理科)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=PA .+PB . S=4лR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=PA .+PB . 球的体积公式1+2+…+n 2)1(+n n V=334R π 12+22+…+n 2=6)12)(1(++n n n 其中R 表示球的半径 13+23++n 3=4)1(22+n n 第Ⅰ卷(选择题 共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列函数中,反函数是其自身的函数为A .[)+∞∈=,0,)(3x x x f B .[)+∞∞-∈=,,)(3x x x f C .),(,)(+∞-∞∈=x e x f x D .),0(,1)(+∞∈=x xx f 2.设l ,m ,n 均为直线,其中m ,n 在平面α内,“l ⊥α”是l ⊥m 且“l ⊥n ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是A .a <-1B .a ≤1C . a <1D .a ≥14.若a 为实数,iai212++=-2i ,则a 等于 A .2 B .—2 C .22 D .—225.若}{8222<≤Z ∈=-x x A ,{}1log R 2>∈=x x B ,则)(C R B A ⋂的元素个数为A .0B .1C .2D .3 6.函数)3π2sin(3)(-=x x f 的图象为C , ①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中,正确论断的个数是A .0B .1C .2D .37.如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P 的最小值为A .15-B .154- C .122- D .12-8.半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为A .)33arccos(-B .)36arccos(-C .)31arccos(- D .)41arccos(- 9.如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a br a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为A .3B .5C .25D .31+10.以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率)(σμξ<-P 等于 A .)(σμφ+-)(σμφ-B .)1()1(--φφC .)1(σμφ-D .)(2σμφ+ 11.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A .0B .1C .3D .5二、填空题:本大题共4小题,每小题4分,共16分。

2016年高考真题——全国Ⅰ卷(扫描版含答案).doc

2016年高考真题——全国Ⅰ卷(扫描版含答案).doc

2016年普通高等学校招生全国统一考试理科综合能力测试(化学)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4. 考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷(选择题共126分)本卷共21小题,每小题6分,共126分。

可能用到的相对原子质量:一、选择题:本大题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

7.化学与生活密切相关,下列有关说法错误的是A.用灼烧的方法可以区分蚕丝和人造纤维B.食用油反复加热会产生稠环芳香烃等有害物质C.加热能杀死流感病毒是因为蛋白质受热变性D.医用消毒酒精中乙醇的浓度为95%8.设N A为阿伏加德罗常数值。

下列有关叙述正确的是A.14 g乙烯和丙烯混合气体中的氢原子数为2N AB.1 molN2与4 molH2反应生成的NH3分子数为2N AC.1 molFe溶于过量硝酸,电子转移数为2N AD.标准状况下,2.24 LCCl4含有的共价键数为0.4N A9.下列关于有机化合物的说法正确的是A.2-甲基丁烷也称异丁烷B.由乙烯生成乙醇属于加成反应C.C4H9Cl有3中同分异构体D.油脂和蛋白质都属于高分子化合物10.下列实验操作能达到实验目的的是A.用长颈漏斗分离出乙酸与乙醇反应的产物B.用向上排空气法收集铜粉与稀硝酸反应产生的NOC.配制氯化铁溶液时,将氯化铁溶解在较浓的盐酸中再加水稀释D.将Cl2与HCl混合气体通过饱和食盐水可得到纯净的Cl211.三室式电渗析法处理含Na2SO4废水的原理如图所示,采用惰性电极,ab、cd均为离子交换膜,在直流电场的作用下,两膜中间的Na +和可通过离子交换膜,而两端隔室中离子被阻挡不能进入中间隔室。

下列叙述正确的是 A.通电后中间隔室的24SO -离子向正极迁移,正极区溶液pH 增大B.该法在处理含Na 2SO 4废水时可以得到NaOH 和H 2SO 4产品C.负极反应为2H 2O –4e –=O 2+4H +,负极区溶液pH 降低D.当电路中通过1mol 电子的电量时,会有0.5mol 的O 2生成 12.298K 时,在20.0mL 0.10mol24SO-氨水中滴入0.10mol24SO-的盐酸,溶液的pH 与所加盐酸的体积关系如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国甲卷·语文·1—(这是边文,请据需要手工删加)2016年普通高等学校招生全国统一考试·全国甲卷语文本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分,共150分,考试时间150分钟。

第Ⅰ卷(阅读题,共70分)甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1~3题。

人们常说“小说是讲故事的艺术”,但故事不等于小说,故事讲述人与小说家也不能混为一谈。

就传统而言,讲故事的人讲述亲身经历或道听途说的故事,口耳相传,把它们转化为听众的经验;小说家则通常记录见闻传说,虚构故事,经过艺术处理,把它们变成小说交给读者。

除流传形式上的简单差异外,早期小说和故事的本质区别并不明显,经历和见闻是它们的共同要素。

在传媒较为落后的过去,作为远行者的商人和水手最适合充当故事讲述人的角色,故事的丰富程度与远行者的游历成正比。

受此影响,国外古典小说也常以人物的经历为主线组织故事。

《荷马史诗》《一千零一夜》都是描述某种特殊的经历和遭遇,《堂吉诃德》中的故事是堂吉诃德的行侠奇遇和所见所闻,17世纪欧洲的流浪汉小说也体现为游历见闻的连缀。

在中国,民间传说和历史故事为志怪类和史传类的小说提供了用之不竭的素材,话本等古典小说形式也显示出小说和传统故事的亲密关系。

虚构的加强使小说和传统故事之间的区别清晰起来。

小说中的故事可以来自想象,不一定是作者亲历亲闻。

小说家常闭门构思,作品大多诞生于他们离群索居的时候。

小说家可以闲坐在布宜诺斯艾利斯的图书馆中,或者在巴黎一间终年不见阳光的阁楼里,杜撰他们想象中的历险故事。

但是,一名水手也许要历尽千辛万苦才能把在东印度群岛听到的事带回伦敦;一个匠人漂泊一生,积攒下无数的见闻、掌故和趣事,当他晚年坐在火炉边给孩子们讲述这一切的时候,他本人就是故事的一部分。

传统故事是否值得转述,往往只取决于故事本身的趣味性和可流传性。

与传统讲故事的方式不同,小说家一般并不单纯转述故事,他是在从事故事的制作和生产,有深思熟虑的讲述目的。

就现代小说而言,虚构一个故事并非其首要功能,现代小说的繁荣对应的是故事不同程度的减损或逐渐消失。

现代小说家对待故事的方式复杂多变,以实现他们特殊的叙事目的。

小说家呈现人生,有时会写到难以言喻的个人经验,他们会调整讲故事的方式,甚至将虚构和表述的重心挪到故事之外。

在这些小说家笔下,故事成了幌子,故事之外的附加信息显得更有意味。

19世纪末期以来,小说家对小说故事性的破坏日趋强烈。

这时,一个故事的好坏并不看它的“成色”如何,而是取决于讲故事的方式。

契诃夫曾经把那些不好好讲故事的小说家称为“耍弄蹩脚花招的人”,但这种花招的大量出现也有其内在的合理性——他们要摆脱陈旧的故事模式,摆脱虚假的因果关系和矫揉造作的戏剧冲突,甚至摆脱故事本身。

现代小说家认为,传统的故事模式早已失去了弹性和内在活力,也失去了起初的存在价值,那些千百年来一直在给小说提供养料的故事模式已经成为制约想象力的障碍之一。

(摘编自格非《塞壬的歌声》)1.下列关于原文内容的表述,不正确的一项是()A.讲故事的人不一定是小说家,小说家在讲故事的时候,不像传统的故事讲述者那么依赖亲身经历和耳闻目睹的事。

B.传统故事和早期小说的本质差异在于,前者是故事的口耳相传,后者则是由作家创作加工后的游历见闻。

C.17世纪的欧洲流浪汉小说和部分中国古典小说,或在叙述形式方面,或在素材来源方面,都受到了传统故事的影响。

D.当小说家越来越依靠想象力虚构故事的时候,小说和传统故事在内容来源方面的差异使它们之间的关联不再像过去那么紧密。

2.下列理解和分析,不符合原文意思的一项是()A.水手在伦敦讲东印度群岛的所见所闻,匠人在火炉边讲自己的人生经历,他们讲的故事各有特点,但同属于传统故事模式。

B.传统的故事讲述者大多会讲述那些为听众喜闻乐见的事,小说家则会根据自己的写作意图审慎构思,创作新的故事。

C.现代小说不太注重一个故事如何来讲,因为故事情节已不再是现代小说最重要的因素,人们更注意故事之外的附加意味。

D.现代小说家不喜欢传统故事模式,视它为绊脚石,是因为他们觉得这种故事模式显得僵化古板,已经不能促进小说艺术的发展。

3.根据原文内容,下列说法不正确的一项是()A.传统的故事讲述人如果把自己的故事记录下来,进行加工整理,就能形成一种和早期小说接近的文字,有些讲述人也会成为小说家。

B.现代小说家尝试用新的方式讲故事,会削弱小说的故事性,这将降低小说对虚构的依赖,小说的个人表达功能却会因此得到强化。

C.契诃夫不大认可“不好好讲故事的小说家”,对他们的做法评价不高,由此可知当时这股写作潮流与他的创作理念相悖。

D.现代小说的发展加剧了故事在小说中的衰变,与此同时,随着现代传媒的不断发展,传统的故事讲述方式也可能消亡。

二、古代诗文阅读(36分)(一)文言文阅读(19分)阅读下面的文言文,完成4~7题。

陈登云,字从龙,唐山人。

万历五年进士。

除鄢陵知县,征授御史。

出按辽东,疏陈安攘十策,又请速首功之赏。

改巡山西。

还朝,会廷臣方争建储。

登云谓议不早决,由贵妃家阴沮之。

十六年六月遂因灾异抗疏,劾妃父郑承宪,言:“承宪怀祸藏奸窥觊储贰且广结术士之流曩陛下重惩科场冒籍承宪妻每扬言事由己发用以恐喝勋贵簧鼓朝绅不但惠安遭其虐焰,即中宫..享国久长,自由敬德所致,而承宪每对人言,以为不立..与太后家亦谨避其锋矣。

陛下东宫之效。

干挠盛典,蓄隐邪谋,他日何所不至?”疏入,贵妃、承宪皆怒,同列亦为登云危,帝竟留中不下。

久之,疏论吏部..尚书陆光祖,又论贬四川提学副使冯时可,论罢应天巡抚李涞、顺天巡抚王致祥,又论礼部侍郎韩世能、尚书罗万化、南京太仆卿徐用检。

朝右皆惮之。

时方考选科道,登云因疏言:“近岁言官,壬午以前怵于威,则摧刚为柔;壬午以后昵于情,则化直为佞。

其间岂无刚直之人,而弗胜龃龉,多不能安其身。

二十年来,以刚直擢京卿者百止一二耳。

背公植党,逐嗜乞怜,如所谓‘七豺’‘八狗’者,言路顾居其半。

夫台谏为天下持是非,而使人贱辱至此,安望其抗颜直绳,为国家锄大奸、歼巨蠹哉!与其误用而斥之,不若慎于始进。

”因条数事以献。

出按河南。

岁大饥,人相食。

副使崔应麟见民啖泽中雁矢,囊示登云,登云即进之于朝。

帝立遣寺丞锺化民赍帑金振之。

登云巡方者三,风裁峻厉。

以久次当擢京卿,累寝不下,遂移疾..归。

寻卒。

(节选自《明史·陈登云传》)4.下列对文中画波浪线部分的断句,正确的一项是()(3分)A.承宪怀祸藏奸/窥觊储贰且广结术士之流/曩陛下重惩科场/冒籍承宪妻每扬言事由己发/用以恐喝勋贵/簧鼓朝绅/B.承宪怀祸藏奸/窥觊储贰/且广结术士之流/曩陛下重惩科场冒籍/承宪妻每扬言/事由己发用以恐喝勋贵/簧鼓朝绅/C.承宪怀祸藏奸/窥觊储贰/且广结术士之流/曩陛下重惩科场冒籍/承宪妻每扬言事由己发/用以恐喝勋贵/簧鼓朝绅/D.承宪怀祸藏奸/窥觊储贰且广结术士之流/曩陛下重惩科场/冒籍承宪妻每扬言/事由己发用以恐喝勋贵/簧鼓朝绅/5.下列对文中加点词语的相关内容的解说,不正确的一项是()(3分)A.中宫是皇后所居之宫,后来又可以借指皇后,这与东宫又可借指太子是同样道理。

B.陛下指宫殿中立有护卫的台阶下,因群臣不可直呼帝王,于是借用为对帝王的尊称。

C.吏部是古代六部之一,掌管文官任免、考核、升降、调动等,长官为吏部尚书。

D.移疾指官员上书称病,实际是官员受到权臣诋毁,不得不请求退职的委婉说法。

6.下列对原文有关内容的概括和分析,不正确的一项是()(3分)A.陈登云不畏权贵,弹劾贵妃之父。

他出于对朝廷的忠心,即便对郑承宪这样的国戚,也大胆揭发对方为非作歹,包藏祸心,幸而皇上并未因此发怒。

B.陈登云敢于直言,检举多名重臣。

他在朝既久,发现诸多问题,于是奏告一干大臣,其中有些人因此遭到贬职或罢免,以至朝廷大官们都很畏惧他。

C.陈登云上疏指出,选才慎于始进。

他认为二十年来,刚直者很少被提拔进京,在朝者却背公结党,谄媚权贵,与其误用后罢免,不如进用时慎重。

D.陈登云关心百姓,奏请救助灾区。

在他巡视河南期间,当地年成歉收,百姓相食,他向朝廷呈告灾情,皇上当即派遣寺丞锺化民筹措钱款赈济灾民。

7.把文中画横线的句子翻译成现代汉语。

(10分)(1)其间岂无刚直之人,而弗胜龃龉,多不能安其身。

________________________________________________________________________________________________________________________________________________(2)副使崔应麟见民啖泽中雁矢,囊示登云,登云即进之于朝。

________________________________________________________________________________________________________________________________________________(二)古代诗歌阅读(11分)阅读下面这首唐诗,完成8~9题。

丹青引赠曹将军霸①(节选)杜甫先帝天马玉花骢②,画工如山貌不同。

是日牵来赤墀下③,迥立阊阖生长风④。

诏谓将军拂绢素,意匠惨淡经营中。

斯须九重真龙出⑤,一洗万古凡马空。

【注】①曹将军霸:即曹霸,唐代著名画家,官至左武卫将军。

②玉花骢:唐玄宗御马名。

③赤墀:宫殿前的红色台阶。

④阊阖:传说中的天门,这里指宫门。

⑤斯须:一会儿。

8.如何理解曹霸画的马“一洗万古凡马空”?曹霸是怎样做到的?请简要分析。

(5分) ________________________________________________________________________________________________________________________________________________9.为了突出曹霸的高超画技,诗人作了哪些铺垫?请简要分析。

(6分)________________________________________________________________________________________________________________________________________________(三)名篇名句默写(6分)10.补写出下列句子中的空缺部分。

(6分)(1)《孟子·鱼我所欲也》中表示,生是我希望得到的,义也是我希望得到的,但“______________,______________”。

(2)李白《蜀道难》中“______________,______________”两句,以感叹的方式收束对蜀道凶险的描写,转入后文对人事的关注。

相关文档
最新文档