全等三角形之三垂直模型

合集下载

人教版 八年级数学上册 第12章 全等三角形之垂直模型(含答案)

人教版 八年级数学上册 第12章 全等三角形之垂直模型(含答案)

人教版 八年级数学上册 第12章 全等三角形之垂直模型(含答案)1.三垂直模型(1)如图,已知矩形中,E 是AD 上的一点,F 是AB 上的一点,,且ABCD EF EC ⊥,,矩形的周长为32cm ,求AE 的长.EF EC =4DE cm =ABCD EF DCBA【答案】6cm .(2)已知:如图,在ABC 中,,CD ⊥AB 于点D ,点E 在AC 上,V 90ACB ∠=︒CE =BC ,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB =FC.【答案】易证,所以.Rt CEF Rt BCA ∆∆≌AB CF =(3)如图,在中,,,CF 交AB 于点E ,,Rt ABC △AC BC =90ACB ∠=︒BD CF ⊥,若,,求CF 的长.AF CF ⊥5DF =3AF =【答案】易证:,∴,.Rt ACF Rt BCD ∆∆≌3CD AF ==8CF CD DF =+=2.在中,,,直线经过点,且于,ABC △90ACB ∠=︒AC BC =MN C AD MN ⊥D 于.BE MN ⊥E (1)当绕点旋转到图1的位置时,请你探究线段、、之间的数量关系;MN C DE AD BE (2)当绕点旋转到图2的位置时,你在(1)中得到的结论是否发生变化?请写出MN C 你的猜想,并加以证明;(3)当绕点旋转到图3的位置时,你在(1)中得到的结论是否发生变化?请写出MN C 你的猜想,并加以证明.图1NMABCDE图2MNABCDE图3NMAC D E 【答案】(1)三垂直模型,易得,所以有;ACD CBE ≅△△DE AD BE =+(2)猜想:(1)中得到的结论发生了变化,同理可证:.DE AD BE =-(3)猜想:(1)中得到的结论发生了变化,同理可证:.DE BE AD =-3.已知等腰中,为直角,为的中点,于点G .求证:Rt ABC △C ∠M BC CD AM ⊥.∠=∠AMC DMBB EB BC【答案】如图,过作,交延长线于.⊥CD E三垂直模型,易证:,≌∆∆Rt CBE Rt ACMM BC=∵为的中点,∴,.∠=∠=AMC ECM BM BE∠=∠∵,而,∴.∠=︒EBD MBDMBD∠+∠=︒4590MBD EBD≌E DMB AMC∆∆BD BED BMD又为公共边,∴,∴.∠=∠=∠4.已知CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且.∠=∠=∠BEC CFAα(1)如图1,若∠BCA=60°,时,线段BE和CF大小关系如何,猜想线段α∠=︒120BE、AF、和EF之间的数量关系,并证明.(2)如图2,若时,(1)中的结论是否仍然成立,请说明.∠=︒-180BCAα【答案】(1),;(2)成立.BE CF =EF BE AF =-5.(1)如图1,在中,,D 、A 、E 三点都在直线m 上,并且有ABC △AB AC =,其中α为任意锐角或钝角,请证明DE 、BD 、CE 三条线段的BDA AEC BAC α∠=∠=∠=数量关系.(2)在(1)的基础上,D 、E 是直线m 上两个动点(D 、A 、E 三点不重合),点F 是的平分线上一点,且、均为等边三角形,连接DF 、EF ,判断BAC ∠ABF △ACF △的形状,并证明.DEF △图1图2【答案】(1)∵,,易证,BDA AEC BAC α∠=∠=∠=AB AC =ADB CEA ≅△△∴,. BD AE AD CE ==,DE BD CE =+(2)是等边三角形.由(1)知:DEF △,∴,ADB CEA ≅△△ BD EA DBA CAE =∠=∠, 又∵、均为等边三角形,∴,ABF △ACF △60ABF CAF ∠=∠=︒,FBD FAE ∠=∠∴,,,∴,等边.DBF EAF ≅△△DF EF =BFD AFE ∠=∠60DFE ∠=︒DEF △6.如图,在中,是斜边上的高,是的平分线,交 于Rt ABC ∆AD BC BE ABC ∠AD BE ,于,求证:.O EF AD ⊥F AF OD =【答案】如图,过作.O OG AB ⊥∵,,∴.12∠=∠OD BC ⊥OG OD =∵,,∴.190AEO ∠+∠=︒290BOD ∠+∠=︒AEO BOD ∠=∠而,∴,∴.BOD AOE ∠=∠AEO AOE ∠=∠AE AO =∵,∴.EF DC ∥AEF C ∠=∠∵,,90C CAD ∠+∠=︒90GAO CAD ∠+∠=︒∴,故.C GAO ∠=∠AEF GAO ∠=∠∴,,∴.Rt AEF Rt OAG ∆∆≌OG AF =AF OD =(也可以过E 作BC 的垂线,按照模型来证明.)7.如图1,在中,,,垂足为D .AF 平分,交Rt ABC △90ACB ∠=︒CD AB ⊥CAB ∠CD 于点E ,交CB 于点F .图1 图2(1)求证:.CE CF =(2)将图1中的沿AB 向右平移到的位置,使点落在BC 边上,其它ADE △'''A D E △'E 条件不变,如图2所示.试猜想:与CF 有怎样的数量关系?请证明你的结论.'BE 【答案】(1)在中,;在中,Rt AED △90EAD AED ∠+∠=︒Rt ACF △;90CAF AFC ∠+∠=︒又有,∴,则有.CAF EAD ∠=∠AFC AED CEF ∠=∠=∠CE CF =(2)如图,过点E 作于G ,易证:,∴,EG AC ⊥''CEG BE D ≅△△'CE BE =由(1)中的结论,可得:.'CF BE =E‘图2G A ′FE CBA8.如图1,已知ABC 是等边三角形,点D 是边BC 的中点,∠ADE =60°,且DE 与V ∠ACB 的外角平分线CE 相交于点E .过点作交于点,则有D DF AC ∥AB F ,易证:ADE 是等边三角形.那么请问:ADF EDC ≅△△V (1)若D 是线段BC 上(B 、C 点除外)的任意一点,其他条件不变(如图2),试判断ADE 的形状,并说明理由.V (2)若D 是BC 的延长线上(C 点除外)的任意一点,其他条件不变(如图3),那么(1)的结论是否仍然成立?请说明理由.图1 图2 图3【答案】(1)等边三角形;(2)成立,过点作交的延长线于点,则有,即证.D DF AC∥AB F AFD DCE≌∆∆9.如图,在ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点VD,BE⊥MN于点E,AD=5,BE=2,求线段DE的长.【答案】;710.如图,已知中,AC=BC,D是BC的中点,,垂足为Rt ABCV90ACB∠=o CE AD⊥E.,交CE的延长线于点F.求证:AC=2BF.BF ACPABC DEF 【答案】∵,,∴,.90ACB ∠=oBF AC P 90ACD CBF ∠=∠=o90ADC CAD ∠+∠=o∵,∴,∴.CE AD ⊥90FCB ADC ∠+∠=oCAD FCB ∠=∠又∵AC =CB ,∴,∴DC =FB .ADC CFB ≅V V ∵D 是BC 的中点,∴BC =2BF ,即AC =2BF .11.如图,中,,,D 是AB 上任意一点, 交CDABC △AC BC =90ACB ∠=︒AE CD ⊥延长线于E ,于F .求证:.BF CD ⊥EF BF AE =-F E D CBA【答案】三垂直模型,易证:,则CE =BF ,AE =CF ,∴EF =CE -CF =BF -AE .ACE CBF ≅V V 12.(1)如图,在中,,点、、分别在边、、上,且ABC △AB AC =D E F AB BC AC ,.图中是否存在和全等的三角形?说明理由.BD CE =DEF B ∠=∠BDE △FEDCBA(2)如图,在等边ABC 的边BC 上任取一点D ,作∠ADE =60°,DE 交∠C 的外角平分线于V E ,则ADE 是____________三角形.V 【答案】(1);(2)等边.CEF 13.如图,已知△ABC 中,∠ACB =90°,CD ⊥AB 于D ,∠ABC 的角平分线BE 交CD 于G ,交AC 于E ,M 是CG 上一点且满足CM =DG . 求证:EM //AB .【答案】提示:过点作的垂线.G BC 14.八年级数学兴趣小组展示了他们小组探究的过程和发现的结果,内容如下:(1)如图1,正三角形ABC 中,在AB 、AC 边上分别取点M 、N ,使BM =AN ,连接BN 、CM ,发现BN =CM ,当M 、N 改变位置且保持BM =AN 时,∠NOC 保持不变,请猜测∠NOC 的度数:∠NOC =______度.(2)如图2,正方形ABCD 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、DM ,那么AN =DM ,且∠DON =_______度.(3)如图3,正五边形ABCDE 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、EM ,那么AN =EM ,且∠EON =________度.(4)在正n 边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:______________________________________.【答案】(1); (2) ;(3);(4)以上所求的角正好等于正边形的内角60︒90︒108︒n ()2180n n-︒。

三垂直模型

三垂直模型

三垂直模型知识导航三垂直模型是经典的全等三角形模型之一,综合性较强。

解题方法通常是根据三垂直倒角来证明题目中有一对边相等的两个全等三角形。

一线三等角是三垂直模型的变式,包括一线三等锐角、一线三直角、一线三等钝角,这类型题型通常是利用三垂直模型原理进行倒角,证明两个三角形全等。

【核心考点】三垂直模型1. 如图,AC CE =,90ACE ∠=︒,AB BD ⊥,ED BD ⊥,6AB cm =,2DE cm =,则BD等于( )A .6cmB .8cmC .10cmD .4cm【解答】 解:AB BD ⊥,ED BD ⊥,90B D ACE ∴∠=∠=∠=︒,90BAC ACB ∴∠+∠=︒,90ACB ECD ∠+∠=︒, BAC ECD ∴∠=∠,在Rt ABC ∆与Rt CDE ∆中, B D BAC DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, Rt ABC Rt CDE(AAS)∴∆≅∆,2BC DE cm ∴==,6CD AB cm ==, 268BD BC CD cm ∴=+=+=,故选:B .2. 如图,已知ABC CDE ∆≅∆,90B D ∠=∠=︒,且B ,C ,D 三点在同一条直线.(1)试说明:BD AB ED =+.(2)试判定ACE ∆的形状, 并说明理由 .【解答】证明:(1)Rt ABC Rt CDE ∆≅∆,BC DE ∴=,AB CD =, BD CD CB =+, BD AB ED ∴=+.(2)结论:ACE ∆是等腰直角三角形 . 理由:Rt ABC Rt CDE ∆≅∆,90B D ∠=∠=︒,ACB CED ∴∠=∠,BAC ECD ∠=∠,AC EC =, 90BAC ACB ∠+∠=︒, 90ECD ACB ∴∠+∠=︒, 90ACB ∴∠=︒,ACE ∴∆是等腰直角三角形 .3. 已知在平面直角坐标系中,ABC ∆的顶点A 、C 分别在y 轴、x 轴上,90ACB ∠=︒,AC BC =.如图,当(0,2)A -,(1,0)C ,点B 在第四象限时,则点B 的坐标为_______.【解答】解:作BD x ⊥轴,90ACO CAO ∠+∠=︒,90ACO BCD ∠+∠=︒, CAO BCD ∴∠=∠,在AOC ∆和CDB ∆中, 90AOC CDB CAO BCDAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AOC CDB AAS ∴∆≅∆,1DB OC ∴==,2CD AO ==, 3OD ∴=,∴点B 的坐标为(3,1)-.故答案为(3,1)-.4. 如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为2,3,m ,A ,B ,N ,E ,F 五点在同一直线上,则正方形CNHM 的边长m 是多少?【解答】解:四边形ABCD 、EFGH 、NHMC 都是正方形,90CNB ENH ∴∠+∠=︒,又90ENH NHE ∠+∠=︒,CNB EHN ∴∠=∠,在CBN ∆和NEH ∆中, CBN NEH CNB NHE CN NH ∠=∠⎧⎪∠=∠⎨⎪=⎩CBN NEH ∴∆≅∆, HE BN b ∴==,故在Rt CBN ∆中,222BC BN CN +=, 又2a =,3b =,m ∴=则正方形CNHM 的边长m5. 已知:在平面直角坐标系中,等腰直角ABC ∆顶点A 、C 分别在y 轴、x 轴上,且90ACB ∠=︒,AC BC =.(1)如图1,当(0,2)A -,(1,0)C ,点B 在第四象限时,先写出点B 的坐标,并说明理由. (2)如图2,当点C 在x 轴正半轴上运动,点(0,)A a 在y 轴正半轴上运动,点(,)B m n 在 第四象限时,作BD y ⊥轴于点D ,试判断a ,m ,n 之间的关系,请证明你的结论.【解答】解:(1)点B 的坐标为(3,1)-. 理由如下:作BD x ⊥轴于D ,90BOC BDC ∴∠=︒=∠, 90OAC ACO ∴∠+∠=︒, 90ACB ∠=︒,AC BC =, 90ACO BCD ∴∠+∠=︒, OAC BCD ∴∠=∠,在AOC ∆和CDB ∆中,90OAC BCDAOC CDB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()AOC CDB AAS ∴∆≅∆,AO CD ∴=,OC BD =,(0,2)A -,(1,0)C ,2AO CD ∴==,1OC BD ==,3OD ∴=,B 在第四象限,∴点B 的坐标为(3,1)-;(2)0a m n ++=. 证明:作BE x ⊥轴于E ,90BEC AOC ∴∠=∠=︒, 1290∴∠+∠=︒, 90ACB ∠=︒, 1390∴∠+∠=︒, 23∴∠=∠,在CEB ∆和AOC ∆中,23BEC AOC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEB AOC AAS ∴∆≅∆,AO CE a ∴==,BE CO =, BE x ⊥轴于E ,//BE y ∴轴,BD y ⊥轴于点D ,EO y ⊥轴于点O ,EO BD m ∴==, BE n ∴=-,a m n ∴+=-,0a m n ∴++=.6. 如图1,ABC ∆中,90BAC ∠=︒,AB AC =,直线l 经过点A ,分别过点B ,C 作直线l 的垂线,垂足分别为D ,E ,求证:DE BD CE =+;(1)将直线l 绕点A 逆时针旋转到直线l 与BC 相交,且45BAD ∠<︒(如图2)时,其它条件不变,请你探索DE ,BD ,CE 之间的数量关系,并证明之;(2)继续旋转,使4590BAE ︒<∠<︒(如图3),其它条件不变,此时(1)中的结论还成立吗?若成立,给出证明;若不成立,DE ,BD ,CE 之间又怎样的数量关系?(不需证明).【解答】证明:如图1,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒, 90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒, ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =.DE AD AE =+, DE CE BD ∴=+;(1)DE CE BD =-理由:如图2,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒,90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒,ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =DE AD AE =-, DE CE BD ∴=-;(2)DE BD CE =-.理由:如图3,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒, 90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒, ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =DE AE AD =-, DE BD CE ∴=-.7. 如图所示,已知ABC ∆中,90ABC ∠=︒,AB BC =,三角形的顶点分别在相互平行的三条直线1l 、2l 、3l 上,且115∠=︒,则2∠=_________度.【解答】解:123////l l l ,13∴∠=∠,24∠=∠, 1234∴∠+∠=∠+∠. 90ABC ∠=︒,AB BC =, 45BAC BCA ∴∠=∠=︒. 34BAC ∠+∠=∠, 3445∴∠+∠=︒, 1245∴∠+∠=︒. 115∠=︒, 230∴∠=︒.故答案为:30.8.问题背景:(1)如图①,已知ABC∠=︒,AB AC=,直线m经过点A,BAC∆中,90=+.BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE BD CE拓展延伸:(2)如图②,将(1)中的条件改为:在ABC=,D、A、E∆中,AB AC 三点都在直线m上,并且有BDA AEC BAC∠=∠=∠请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图③,在ACB-,=,点C的坐标为(2,0)∆中,90∠=︒,AC BCACB点A的坐标为(6,3)-,请直接写出B点的坐标.【解答】(1)证明:BD AD ⊥,90ABD BAD ∴∠+∠=︒,90BAC ∠=︒,90CAE BAD ∴∠+∠=︒,ABD CAE ∴∠=∠,在ABD ∆和CAE ∆中,90ABD CAEADB CEA AB CA∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABD CAE AAS ∴∆≅∆AE BD ∴=,AD CE =,DE AD AE BD CE ∴=+=+;(2)解:DE BD CE =+,理由如下:在ABD ∆中,180ABD ADB BAD ∠=︒-∠-∠, 180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠, ABD CAE ∴∠=∠,在ABD ∆和CAE ∆中,ABD CAEBDA AEC AB CA∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABD CAE AAS ∴∆≅∆AE BD ∴=,AD CE =,DE AD AE BD CE ∴=+=+;(3)解:如图③,作AE x ⊥轴于E ,BF x ⊥轴于F , 由(1)可知,AEC CFB ∆≅∆,3CF AE ∴==,4BF CE OE OC ==-=, 1OF CF OC ∴=-=,∴点B 的坐标为(1,4).。

初中数学常见模型之三垂直全等模型

初中数学常见模型之三垂直全等模型
三垂直图形变形如图③、图④,这也是由弦图演变而来的
模型实例
例1.如图, AB ⊥ BC , CD ⊥ BC , AE ⊥ DE , AE=DE 求证: AB+CD=BC
例2.如图,∠ ACB-90 °,AC=BC,BE ⊥ CE 于点 D, AD=2.5cm ,BE=0.8cm 求 DE 的长
例3.如图,在平面直角坐标系中,等腰 Rt △ ABC 有两个顶点在坐标轴上 求第三个顶点的坐标
典例精选
1.如图,正方形 ABCD , BE=CF 。 求证:( 1 ) AE=BF ;( 2 ) AE ⊥ BF
2.直线 上有三个正方形 a 、b 、 c ,若 a 、 c 的面积分别是 5 和 11,则 b AB=AC ,点 P 为 BC 上一动点( B P<CP ), 分别过 B 、 C 作 BE ⊥ AP 于点 E 、 CF ⊥ AP 于点 F
( 1 )当α=45°时,求△ EAD 的面积;
( 2 )当α=30°时,求△ EAD 的面积;
( 3 )当0°<α<90°时,猜想△ EAD 的面积与大小有无关系?若有关,写出△ EAD 的面积S与α的关系式;若无关,请证明结论。
5.如图,向△ ABC 的外侧作正方形 ABDE 、正方形 ACFG , 过点 A 作 AH ⊥ BC 于 H , AH 的反向延长线与 EG 交于点 P 求证: BC=2AP
初中数学常见模型
三垂直全等模型
模型:三垂直全等模型
如图,∠ D= ∠ BCA= ∠ E=90 °, BC=AC 。 结论: Rt △ BCD ≌ Rt △ CAE
模型分析
说到三垂直模型,不得不说一下弦图,弦图的运用在初中直角三角形中占有 举足轻重的地位,很多利用垂直倒角,勾股定理求边长,相似求边长都会用到从 弦图中支离出来的一部分几何图形去求解。图①和图②就是我们经常会见到的两 种弦图。

数学模型—三垂直模型,手拉手模型优质讲义(含答案)

数学模型—三垂直模型,手拉手模型优质讲义(含答案)

全等三角形的综合复习(教师版)学生/课程年级学科授课教师日期时段核心内容全等三角形的综合应用必杀技课型教学目标1.掌握全等三角形的性质与判定,灵活运用各种判定方法证明三角形全等2.理解与掌握全等三角形综合应用中的几个必杀技重、难点重点:全等三角形性质与判定的灵活应用难点:理解并掌握全等三角形的综合应用必杀技知识导图导学一:全等三角形的综合应用必杀技之“三垂直模型”1.[全等三角形的判定与性质] [难度:★★★ ] 在中,,AC=BC,直线MN经过C点,且于D,于E,当直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD—BE当直线MN绕点C旋转到图(3)的位置时,试问:DE,AD,BE有怎样的等量关系?并加以证明。

【参考答案】【思维对话】常见思维障碍:(1)学生不清楚什么是“三垂直模型”;(2)学生想到了“三垂直模型”,但不知道怎么用;(3)“三垂直模型”的解题方法能不能用于其他题型呢?思维障碍突破方法:(1)如果题目中出现两个直角三角形,它们接触的部分也是一个直角三角形,这就是典型的“三垂直模型”;(2)对于“三垂直模型”,我们根据直角相等,同角的余角相等,容易证明出三角形全等;(3)当两个三角形中出现相等的角,“公共的角”时,虽然不是直角,但是也可以用“三垂直模型”的方法得到两个相等的角,从而证明三角形全等。

2.[全等三角形的性质;全等三角形的判定] [难度:★★★ ] 如图CD是经过∠BCA顶点C的一条直线,CA=CB,E,F分别是直线CD上两点,且∠BEC=∠CFA=∠a。

若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:如图1,若∠BCA=90°,∠a=90°,则:则BE CF;EF |BE -AF|(填“>”,“<”或“=”);如图2,若0°<∠BCA<180°,请添加一个关于∠a与∠BCA关系的条件,使中的两个结论仍然成立,并证明。

4、全等三角形模型——三垂直模型

4、全等三角形模型——三垂直模型

全等三角形模型——三垂直模型真题精炼1、如图,已知:AB=AC,直线m经过点A,点D、E是直线m上两个动点,连接BD、CE.(1)如图1,若∠BAC=90°,BD⊥DE,CE⊥DE.求证:DE=BD+CE.(2)如图2,若∠BAC=∠BDA=∠AEC,则(1)中的结论DE=BD+CE是否成立,若成立,请证明;若不成立,请说明理由.2、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.3、(16-17学年南师江宁月考)如图,B 、C 、D 三点在同一条直线上,AC CD =,90B E ∠=∠=︒,AC CD ⊥,则不正确...的结论是()A .A ∠与D ∠互为余角B .2A ∠=∠C .ABC CED≌△△D .12∠=∠4、(16-17学年南外月考)如图,Rt ABC △的直角顶点B 在直线PQ 上,AD PQ ⊥于D ,CE PQ ⊥于E ,且7cm BD CE ==,3cm AD =,则梯形ADEC 的面积是________2cm .5、(17-18学年求真月考)如图,AE ⊥AB ,且AE=AB ,BC ⊥CD ,且BC=CD ,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S 是50.6、如图,在正方形ABCD 中,如果AF=BE ,那么∠AOD 的度数是_______.7、(16-17学年育外期中)如图,过正方形ABCD 的顶点B 作直线L ,过A 、C 、D 作L 的垂线,垂足分别为点E 、F 、G .若AE=2,CF=6,则DG 的值为________.8、(17-18学年南师江宁月考)【提出问题】如图①,点B 、A 、C 在同一条直线上,DB BC ⊥,EC BC ⊥,且90DAE ∠=︒,AD AE =,易证DBA △≌ACE △.【类比探究】(1)如图②,在DBA △和ACE △中,AD AE =,若60DAE ∠=︒,120BAC ∠=︒,120B C ∠=∠=︒.求证:DBA △≌ACE △.【知识应用】(2)如图②,在DBA △和ACE △中,AD AE =,若60DAE ∠=︒,120BAC ∠=︒,120B C ∠=∠=︒,若DAC ∠的度数是E ∠的4倍,则D ∠=__________︒.【数学思考】(3)如图②,在DBA △和ACE △中,AD AE =,若(090)DAE αα∠=︒<<︒,2BAC α∠=,当DBA △≌ACE △时,B C ∠=∠=__________.(结果用含有α的代数式表示)。

三垂直模型及练习题

三垂直模型及练习题
的结论并证明。
2. 如图 1,等腰 Rt△ABC 中,AB=CB,∠ABC=90º,点 P 在线段 BC 上(不与 B、C 重合), 以 AP 为腰长作等腰直角△PAQ,QE⊥AB 于 E ,连 CQ 交 AB 于 M。 (1)求证:M 为 BE 的中点
(2)若 PC=2PB,求 PC 的值 MB
1
2
变式 1:如图,在 R t △ABC 中,∠ACB=45º,∠BAC=90º,AB=AC,点 D 是 AB 的中点,AF⊥CD
于 H 交 BC 于 F,BE∥AC 交 AF 的延长线于 E,求证:BC 垂直且平分 DE.
变式 2:等腰 Rt△ABC 中,AC=AB,∠BAC=90°,点 D 是 AC 的中点,AF⊥BD 于点 E, 交 BC 于点 F,连接 DF,求证:∠1=∠2。
9
6、如图,在等腰 Rt△ABC 中,∠ACB=90°,D 为 BC 的中点,DE⊥AB,垂足为 E,过点 B 作 BF∥AC 交 DE 的延长线于点 F,连接 CF. (1)求证:AD⊥CF; (2)连接 AF,求证:AF=CF.
8
7、已知:如图所示,在△ABC 中,AB=AC,∠BAC=90°,D 为 AC 中点,AF⊥BD 于点 E,交 BC 于 F,连接 DF . 求证:∠ADB=∠CDF .
变式 1、已知:如图所示,在△ABC 中,AB=AC,AM=CN,AF⊥BM 于 E,交 BC 于 F, 连接 NF . 求证:(1)∠AMB=∠CNF;(2)BM=AF+FN .
变式 2、在变式 1 的基础上,其他条件不变,只是将 BM 和 FN 分别延长交于点 P, 求证:(1)PM=PN;(2)PB=PF+AF .
★模型一 等腰三垂直全等模型
(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三角形:

中考数学几何经典模型之“三垂直模型”.doc

中考数学几何经典模型之“三垂直模型”.doc

中考数学几何经典模型之“三垂直模型”两个全等的三角形△ACD≌△BEC,拼成如图形状,使得A、C、B三点共线。

条件:△ACD≌△BEC结论:1、△DCE是等腰直角三角形2、AB=AD+BE二、模型变形:条件:△ABD≌△BEC结论:1、BD⊥CE2、AC=BE-AD三、模型应用:在下列各图中构造出三垂直模型:1、△OCD为等腰直角三角形2、四边形OABC为正方形“三垂直模型”是一个应用非常广泛的模型,它可以应用在三角形,矩形,平面直角坐标系,网格,一次函数,反比例函数,三角函数,二次函数以及圆等诸多的中考重要考点之中,所以掌握好这一模型会使你在中考中技高一筹,下面看一道典型例题,从这道题大家可以体会到“三垂直模型”的强大之处。

例题分析:如图,在△ABC中,∠C=90°,D、E分别为BC、AC上一点,BD=AC,DC=AE,BE与AD交于点P,求∠ADC+∠BEC.如图,过点B作BF⊥BC,且BF=AE=CD,连接AF,∠FBC=90°∵∠C=90°,∴AC⊥BC,∠FBC=∠DCA.∴BF∥AC,∴四边形AFBE为平行四边形.∴∠BFA=∠AEB.在△BDF和△CAD中,BF=CD∠FBC=∠DCABD=CA∴△BDF≌△CAD(SAS).∴∠BFD=∠ADC,∠BDF=∠DAC,DF=DA.∵∠ADC+∠DAC=90°,∴∠ADC+∠BDF=90°,∴∠ADF=90°,∴∠DFA=∠DAF=45°.∵∠AEB+∠BEC=180°,∴∠AFB+∠BEC=180°,∴∠BFD+∠DFA+∠BEC=180°,∴∠ADC+∠AFD+∠BEC=180°,∠ADC+∠BEC=135°.故答案为:135.。

三垂直全等模型

三垂直全等模型

三垂直全等模型模型 三垂直全等模型如图:∠D =∠BCA =∠E =90°,BC =AC .结论:Rt △BCD ≌Rt △CAE .模型分析说到三垂直模型,不得不说一下弦图,弦图的运用在初中直角三角形中占有举足轻重的地位,很多利用垂直求角,勾股定理求边长,相似求边长都会用到从弦图支离出来的一部分几何图形去求解.图①和图②就是我们经常会见到的两种弦图. 图①图②三垂直图形变形如下图③、图④,这也是由弦图演变而来的.图③A图④DE ABC例1 如图,AB ⊥BC ,CD ⊥BC ,AE ⊥DE ,AE =DE ,求证:AB +CD =BC . DAB证明:∵AE ⊥DE ,AB ⊥BC ,DC ⊥BC ,∴∠AED =∠B =∠C =90°.∴∠A +∠AEB =∠AEB +∠CED =90°.∴∠BAE =∠CED .在△ABE 和△ECD 中,B C A CED AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ABE ≌△ECD . A∴AB =EC ,BE =CD .∴AB +CD =EC +BE =BC.例2 如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE 于D ,AD =2.5cm ,BE =0.8cm ,则DE 的长为多少? EDA解答:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°.∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CEB ≌△ADC .∴BE =DC =0.8cm ,CE =AD =2.5cm .∴DE =CE -CD =2.5-0.8=1.7cm .例3 如图,在平面直角坐标系中,等腰Rt △ABC 有两个顶点在坐标轴上,求第三个顶点的坐标. xy图①BA (0,3)C (-2,0)O x y 图②C (0,3)A O B (-1,0)解答:(1)如图③,过点B 作BD ⊥x 轴于点D .∴∠BCD +∠DBC =90°.由等腰Rt △ABC 可知,BC =AC ,∠ACB =90°,∴∠BCD +∠ACO =90°.∴∠DBC =∠ACO .在△BCD 和△CAO 中,BDC AOC DBC ACO BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BCD ≌△CAO .∴CD =OA ,BD =OC .∵OA =3,OC =2.∴CD =3,BD =2.∴OD =5.∴B (-5,2). xy图③BA (0,3)C (-2,0)OD(2)如图④,过点A 作AD ⊥y 轴于点D .在△ACD 和△CBO 中,ADC COB DAC OCB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBO .∴CD =OB ,AD =CO .∵B (-1,0),C (0,3)∴OB =1,OC =3.∴AD =3,OD =2.∴OD =5.∴A (3,2). xy图④C (0,3)A OB (-1,0)D1.如图,正方形ABCD ,BE =CF .求证:(1)AE =BF ;(2)AE ⊥BF .FA证明:(1)∵四边形ABCD 是正方形,∴AB =BD ,∠ABC =∠BCD =90°.在△ABE 和△BCF 中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△BCF .∴AE =BF .(2)∵△ABE ≌△BCF .∴∠BAE =∠CBF .∵∠ABE =90°,∴∠BAE +∠AEB =90°.∴∠CBF +∠AEB =90°.∴∠BGE =90°,∴AE ⊥BF .2.直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别是5和11,则b 的面积是_____. c b aD A解答:∵a 、b 、c 都是正方形,∴AC =CD ,∠ACD =90°.∵∠ACB +∠DCE =∠ACB +∠BAC =90°,∴∠BAC =∠DCE .在△ABC 和△CBE 中,ABC CED BAC DCE AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△CDE .∴AB =CE ,BC =DE .在Rt △ABC 中,2AC =2AB +2BC =2AB +2DE即b S =a S +c S =5+11=16.3.已知,△ABC 中,∠BAC =90°,AB =AC ,点P 为BC 上一动点(BP <CP ),分别过B 、C 作BE ⊥AP 于E 、CF ⊥AP 于F .(1)求证:EF =CF -BE ;(2)若P 为BC 延长线上一点,其它条件不变,则线段BE 、CF 、EF 是否存在某种确定的数量关系?画图并直接写出你的结论.FC A BPP解答:∵BE ⊥AP ,CF ⊥AP ,∴∠AEB =∠AFC =90°.∴∠F AC +∠ACF =90°,∵∠BAC =90°,∴∠BAE +∠F AC =90°,∴∠BAE =∠ACF .在△ABE 和△CAF 中,AEB AFC BAE ACF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE -AF ,∴EF =CF -BE .(2)如图,EF =BE +CF .理由:同(1)易证△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE +AF ,∴EF = BE + CF . FA4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,设∠BCD =α,以D 为旋转中心,将 腰DC 绕点D 逆时针旋转90°至DE .(1)当α=45°时,求△EAD 的面积;(2)当α=45°时,求△EAD 的面积;(3)当0°<α<90°,猜想△EAD 的面积与α大小有无关系?若有关,写出△EAD 的面积S 与α的关系式;若无关,请证明结论.D解答:(1)1;(2)1;(3)过点D 作DG ⊥BC 于点G ,过点E 作EF ⊥AD 交AD 延长线于点F .∵AD ∥BC ,DG ⊥BC ,∴∠GDF =90°.又∵∠EDC =90°,∴∠1=∠2.在△CGD 和△EFD 中,12DGE DFE CD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCG ≌△DEF∴EF =CG ,∵AD ∥BC ,AB ⊥BC ,AD =2,BC =3,∴BG =AD =2,∴CG =1.∴EAD S =12AD ·EF =1. ∴△EAD 的面积与α大小无关. 12FD5.向△ABC 的外侧作正方形ABDE 、正方形ACFG ,过A 作AH ⊥BC 于H ,AH 的反向延长线与EG 交于点P . 求证:BC =2AP . PE AG解答:过点G 作GM ⊥AP 于点M ,过点E 作EN ⊥AP 交AP 延长线于点N .∵四边形ACFG 是正方形,∴AC =AG ,∠CAG =90°.∴∠CAH +∠GAM =90°.又∵AH ⊥BC ,∴∠CAH +∠ACH =90°.∴∠ACH =∠GAM .在△ACH 和△GAM 中,AHC GMA ACH GAM AC GA ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ACH ≌△GAM∴CH =AM ,AH =GM .同理可证△ABH ≌△EAN∴BH =AN ,AH =EN .∴EN =GM .在△EPN 和△GPM 中, EPN GPM ENP GMP EN GM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EPN ≌△GPM . ∴NP =MP ,∴BC =BH +CH=AN +AM=AP +PN +AP -PM =2AP . P EAG M。

中考数学难点突破与经典模型精讲练全等三角形中的一线三垂直模型(解析版)

中考数学难点突破与经典模型精讲练全等三角形中的一线三垂直模型(解析版)

专题03 全等三角形中的一线三垂直模型【模型展示】【已知】如图,ABC ∆为等腰直角三角形,DE CE DE AD ⊥⊥, 【证明】由BAD CBE ABD CBE ABD BAD ∠=∠⇒︒=∠+∠︒=∠+∠90,90,同理BCE ABD ∠=∠,在ABD ∆和BCE ∆中,⇒⎪⎪⎩⎪⎪⎨⎧∠=∠=∠=∠BCEABD BCAB CBE BAD ABD BCE ∆≅∆.,ABD BCE DE AD CE ∆≅∆=+【模型证明】BE△MN于E,则有以下结论成立:△△ADC△△CEB;△DE=AD+BE【证明】:△证明:△AD△DE,BE△DE,△△ADC=△BEC=90°,△△ACB=90°,△△ACD+△BCE=90°,△DAC+△ACD=90°,△△DAC=△BCE,在△ADC和△CEB中△△ADC△△CEB(AAS).△证明:由(1)知:△ADC△△CEB,△AD=CE,CD=BE,△DC+CE=DE,△DE=AD+BE.【结论二】(其他形状一线三垂直)△DE=AD﹣BE△DE =BE ﹣AD【题型演练】一、单选题1.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a =8cm ,则DE 的长为( )A .40cmB .48cmC .56cmD .64cm【答案】C【详解】由等腰直角三角形的性质可得△ACB =90°,AC =CB ,因此可以考虑证明△ACD 和△CBE 全等,可以证明DE 的长为7块砖的厚度的和.【分析】解:由题意得△ADC =△CEB =△ACB =90°,AC =CB ,△△ACD =90°﹣△BCE =△CBE ,在△ACD 和△CBE 中, ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ACD △△CBE (AAS ),△CD =BE =3a ,AD =CE =4a ,△DE =CD +CE =3a +4a =7a ,△a =8cm ,△7a =56cm ,△DE =56cm ,故选C .【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.2.如图,点P ,D 分别是△ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边△DPE ,连结BE ,则△BDE 的面积为( )A .B .2C .4D .【答案】A【分析】要求BDE ∆的面积,想到过点E 作EF BC ⊥,垂足为F ,因为题目已知60ABC ∠=︒,想到把ABC ∠放在直角三角形中,所以过点D 作DG BA ⊥,垂足为G ,利用勾股定理求出DG 的长,最后证明GPD FDE ∆≅∆即可解答.【详解】解:过点E 作EF BC ⊥,垂足为F ,过点D 作DG BA ⊥,垂足为G ,在Rt BGD 中,4BD =,60ABC ∠=︒,30BDG ∴∠=︒,122BG BD ∴==,GD ∴PDE ∆是等边三角形,60PDE ∴∠=︒,PD DE =,180120PDB EDF PDE ∴∠+∠=︒-∠=︒,60ABC ∠=︒,180120PDB BPD ABC ∴∠+∠=︒-∠=︒,BPD EDF ∴∠=∠,90PGD DFE ∠=∠=︒,()GPD FDE AAS ∴∆≅∆,GD EF ∴==BDE ∴∆的面积12BD EF =⋅,142=⨯⨯=,故选:A .【点睛】本题考查了等边三角形的性质,全等三角形、勾股定理,解题的关键是根据题目的已知条件并结合图形添加适当的辅助线.3.如图,AC =CE ,△ACE =90°,AB △BD ,ED △BD ,AB =6cm ,DE =2cm ,则BD 等于( )A .6cmB .8cmC .10cmD .4cm【答案】B【分析】根据题意证明ABC CDE △≌△即可得出结论.【详解】解:△AB △BD ,ED △BD ,△90ABC CDE ∠=∠=︒,△△ACE =90°,△90ACB DCE ∠+∠=︒,△90ACB BAC ∠+∠=︒,△BAC DCE ∠=∠,在ABC 和CDE △中,90ABC CDE BAC DCE AC CE ∠=∠=︒⎧⎪∠=∠⎪⎨⎪⎪⎩=, △()ABC CDE AAS ≌,△6cm AB CD ==,2cm BC DE ==,△268cm BD BC CD =+=+=,故选:B .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理以及性质定理是解本题的关键.二、填空题4.如图,已知ABC 是等腰直角三角形,△ACB =90°,AD △DE 于点D ,BE △DE 于点E,且点C 在DE 上,若AD =5,BE =8,则DE 的长为_____.【答案】13【分析】先根据AD △DE ,BE △DE ,△ADC =△CEB =90°,则△DAC +△DCA =90°,△ABC 是等腰直角三角形,△ACB =90°,可得AC =CB ,推出△DAC =△ECB ,即可证明△DAC △△ECB 得到CE =AD =5,CD =BE =8,由此求解即可.【详解】解:△AD △DE ,BE △DE ,△△ADC =△CEB =90°,△△DAC +△DCA =90°,△△ABC 是等腰直角三角形,△ACB =90°,△△DCA +△BCE =90°,AC =CB△△DAC =△ECB ,△△DAC △△ECB (AAS ),△CE =AD =5,CD =BE =8,△DE =CD +CE =13,故答案为:13.【点睛】本题主要考查了全等三角形的性质与判定,垂线的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.5.如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【详解】解:△BE △l ,CF △l ,△△AEB =△CF A =90°.△△EAB +△EBA =90°.又△△BAC =90°,△△EAB +△CAF =90°.△△EBA =△CAF .在△AEB 和△CF A 中△△AEB =△CF A ,△EBA =△CAF ,AB =AC ,△△AEB △△CF A .△AE =CF ,BE =AF .△AE +AF =BE +CF .△EF =BE +CF .△2,5==BE CF ,△257EF =+=;故答案为:7.【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的证明三角形全等.三、解答题6.已知:如图,AB △BD ,ED △BD ,C 是BD 上的一点,AC △CE ,AB =CD ,求证:BC =DE .【答案】见解析【分析】根据直角三角形全等的判定方法,ASA 即可判定三角形全等.【详解】证明:△AB △BD ,ED △BD ,AC △CE (已知)△△ACE =△B =△D =90°(垂直的意义)△△BCA +△DCE +△ACE =180°(平角的意义)△ACE =90°(已证)△△BCA +△DCE =90°(等式性质)△△BCA +△A +△B =180°(三角形内角和等于180°)△B =90°(已证)△△BCA +△A =90°(等式性质)△△DCE =△A (同角的余角相等)A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△ABC △△CDE (ASA )△BC =DE (全等三角形对应边相等)【点睛】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.7.在△ABC 中,△ACB =90°,AC =BC ,直线MN 经过点C ,且AD △MN 于D ,BE △MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:△△ADC △△CEB ;△DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,AD =5,BE =2,求线段DE 的长.【答案】(1)△证明见解析;△证明见解析;(2)DE =3【分析】(1)△由已知可知,AD △MN ,BE △MN ,得到90ADC CEB ∠=∠=︒,再根据三角形内角和与平角性质,得到CAD BCE ∠=∠,即可证明ADC CEB △≌△(AAS );△根据ADC CEB △≌△,得到AD CE =,DC BE =,即可证明DE =AD +BE .(2)由已知可知,AD △MN ,BE △MN ,得到90ADC CEB ∠=∠=︒,再根据90CAD ACD ∠+∠=︒、90ACD BCE ∠+∠=︒,得到CAD BCE ∠=∠,可证明ADC CEB △≌△,得到CE AD =,CD BE =,即可求出DE 长.(1)△证明:△AD △MN ,BE △MN ,90ACB ∠=︒△90ADC CEB ACB ∠=∠=∠=︒,△180CAD ADC ACD ∠+∠+∠=︒,180ACD ACB BCE ∠+∠+∠=︒,△CAD BCE ∠=∠,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADC CEB △≌△(AAS );△证明:△ADC CEB △≌△,△AD CE =,DC BE =,△DE CE DC AD BE =+=+;(2)证明:△AD △MN ,BE △MN ,△90ADC CEB ∠=∠=︒,△90CAD ACD ∠+∠=︒,△90ACB ∠=︒,△90ACD BCE ∠+∠=︒△CAD BCE ∠=∠,在ADC △和CEB △中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ADC CEB △≌△(AAS ),△5CE AD ==,2CD BE ==,△523DE CE CD =-=-=.【点睛】本题主要考查了三角形全等的判定与性质,根据已知准确找到符合全等的条件是解题关键.8.(1)课本习题回放:“如图△,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E , 2.5cm AD =, 1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图△,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN ∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌.(3)拓展应用:如图△,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB △△ADC ,根据全等三角形的性质解答即可;(2)由条件可得△BEA =△AFC ,△4=△ABE ,根据AAS 可证明△ABE △△CAF ; (3)先证明△ABE △△CAF ,得到ACF ∆与BDE ∆的面积之和为△ABD 的面积,再根据2CD BD =故可求解.【详解】解:(1)△BE △CE ,AD △CE ,△△E =△ADC =90°,△△EBC +△BCE =90°.△△BCE +△ACD =90°,△△EBC =△DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△CEB △△ADC (AAS ),△BE =DC ,CE =AD =2.5cm .△DC =CE −DE ,DE =1.7cm ,△DC =2.5−1.7=0.8cm ,△BE =0.8cm故答案为:0.8cm ;(2)证明:△△1=△2,△△BEA =△AFC .△△1=△ABE +△3,△3+△4=△BAC ,△1=△BAC ,△△BAC =△ABE +△3,△△4=△ABE .△△AEB =△AFC ,△ABE =△4,AB =AC ,△△ABE △△CAF (AAS ).(3)△BED CFD BAC ∠=∠=∠△△ABE +△BAE =△F AC +△BAE =△F AC +△ACF△△ABE =△CAF ,△BAE =△ACF又AB AC =△△ABE △△CAF ,△ABE CAF S S =△ACF ∆与BDE ∆的面积之和等于ABE ∆与BDE ∆的面积之和,即为△ABD 的面积, △2CD BD =,△ABD 与△ACD 的高相同 则13ABD ABC S S =△△=5 故ACF ∆与BDE ∆的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.9.问题背景:(1)如图△,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图△,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图△,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.【答案】(1)BD ;CE ;证明见详解;(2)DE=BD+CE ;证明见详解;(3)点B 的坐标为()1,4B .【分析】(1)根据全等三角形的判定和性质得到AE BD =,AD CE =,结合图形解答即可; (2)根据三角形内角和定理、平角的定义证明ABD CAE ∠=∠,证明ABD CAE ≌,根据全等三角形的性质得到AE BD =,AD CE =,结合图形解答即可;(3)根据AEC CFB ≌,得到3CF AE ==,4BF CE OE OC ==-=,根据坐标与图形性质解答即可.【详解】(1)证明:△BD m ⊥,CE m ⊥,△90ADB CEA ∠=∠=︒,△90BAC ∠=︒,△90BAD CAE ∠+∠=︒,△90BAD ABD ∠+∠=︒,△ CAE ABD ∠=∠,在ADB 和CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADB CEA ≌,△AE BD =,AD CE =,△DE AE AD BD CE =+=+,即:DE BD CE =+,故答案为:BD ;CE ;(2)解:数量关系:DE BD CE =+ ,证明:在ABD 中,180ABD ADB BAD ∠=︒-∠-∠,△180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠,△ABD CAE ∠=∠,在ABD 和CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== △ABD CAE ≌,△AE BD =,AD CE =,△DE AD AE BD CE =+=+;(3)解:如图,作AE x ⊥轴于E ,BF x ⊥轴于F ,由(1)可知,AEC CFB ≌,△3CF AE ==,4BF CE OE OC ==-=,△1OF CF OC =-=,△点B 的坐标为()1,4B .【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.10.如图,在ABC 中,AB BC =.(1)如图△所示,直线NM 过点B ,AM MN ⊥于点M ,⊥CN MN 于点N ,且90ABC ∠=︒.求证:MN AM CN =+.(2)如图△所示,直线MN 过点B ,AM 交MN 于点M ,CN 交MN 于点N,且AMB ABC BNC ∠=∠=∠,则MN AM CN =+是否成立?请说明理由.【答案】(1)见解析;(2)MN AM CN =+仍然成立,理由见解析【分析】(1)首先根据同角的余角相等得到BAM CBN ∠=∠,然后证明()AMB BNC AAS ≅△△,然后根据全等三角形对应边相等得到AM BN =,BM CN =,然后通过线段之间的转化即可证明MN AM CN =+;(2)首先根据三角形内角和定理得到MAB CBN ∠=∠,然后证明()AMB BNC AAS ≅△△,根据全等三角形对应边相等得到MN MB BN =+,最后通过线段之间的转化即可证明MN AM CN =+.【详解】证明:(1)△AM MN ⊥,⊥CN MN ,△90AMB BNC ∠=∠=︒,△90ABM BAM ∠+∠=︒,△90ABC ∠=︒,△90ABM CBN ,△BAM CBN ∠=∠,在AMB 和BNC 中,AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△()AMB BNC AAS ≅△△,△AM BN =,BM CN =,△BN MB MN +=,△MN AM CN =+;(2)MN AM CN =+仍然成立,理由如下:△180AMB MAB ABM ABM ABC CBN ∠+∠+∠=∠+∠+∠=︒,△AMB ABC ∠=∠,△MAB CBN ∠=∠,在AMB 和BNC 中,AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△()AMB BNC AAS ≅△△,△AM BN =,NC MB =,△MN MB BN =+,△MN AM CN =+.【点睛】此题考查了全等三角形的性质和判定,同角的与相等,三角形内角和定理等知识,∠=∠.解题的关键是根据同角的余角相等或三角形内角和定理得到BAM CBN11.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足△BDA =△AEC=△BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)DE=BD+CE.(2)DE=BD+CE仍然成立,证明见解析【分析】(1)由△BDA=△BAC=△AEC=90°得到△BAD+△EAC=△BAD+△DBA=90°,进而得到△DBA=△EAC,然后结合AB=AC得证△DBA△△EAC,最后得到DE=BD+CE;(2)由△BDA=△BAC=△AEC=α得到△BAD+△EAC=△BAD+△DBA=180°﹣α,进而得到△DBA=△EAC,然后结合AB=AC得证△DBA△△EAC,最后得到DE=BD+CE.(1)解:DE=BD+CE,理由如下,△△BDA=△BAC=△AEC=90°,△△BAD+△EAC=△BAD+△DBA=90°,△△DBA=△EAC,△AB=AC,△△DBA△△EAC(AAS),△AD=CE,BD=AE,△DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,△△BDA=△BAC=△AEC=α,△△BAD +△EAC =△BAD +△DBA =180°﹣α,△△DBA =△EAC ,△AB =AC ,△△DBA △△EAC (AAS ),△BD =AE ,AD =CE ,△DE =AD +AE =BD +CE ;【点睛】本题是三角形综合题,考查了全等三角形的判定与性质、直角三角形的性质,解题的关键是熟练掌握全等三角形的判定与性质.12.如图,90,ABC FA AB ∠=⊥于点A ,点D 在直线AB 上,,AD BC AF BD ==.(1)如图1,若点D 在线段AB 上,判断DF 与DC 的数量关系和位置关系,并说明理由;(2)如图2,若点D 在线段AB 的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.【答案】(1)DF =DC ,DF △DC ;理由见解析(2)成立,理由见解析【分析】(1)先证△ADF △△BCD ,得DF =DC ,ADF BCD ∠=∠,再证△FDC =90°即可得垂直; (2)先证△ADF △△BCD ,得DF =DC ,ADF BCD ∠=∠,再证△FDC =90°即可得垂直.(1)解:△90,ABC FA AB ∠=⊥,△90ABC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩,△△ADF △△BCD ,△DF =DC ,ADF BCD ∠=∠,△△BDC +△BCD =90°,△△BDC +△ADF =90°,△△FDC =90°,即DF △DC .(2)△90,ABC FA AB ∠=⊥,△90DBC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩,△△ADF △△BCD ,△DF =DC ,ADF BCD ∠=∠,△△BDC +△BCD =90°,△△BDC +△ADF =90°,△△FDC =90°,即DF △DC .【点睛】本题考查全等三角形的判定与性质,解题关键是能判断哪两个三角形全等.13.(1)如图1,已知:在△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD △直线m ,CE △直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC =α,其中α为任意钝角,请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)见解析;(2)成立,见解析【分析】(1)根据AAS 可证明△ADB △△CEA ,可得AE =BD ,AD =CE ,可得DE =BD +CE .(2)由已知条件可知△BAD +△CAE =180α︒-,△DBA +△BAD =180α︒-,可得△DBA =△CAE ,结合条件可证明△ADB △△CEA ,同(1)可得出结论.【详解】(1)如图1,△ BD △ 直线m ,CE △直线m ,△△BDA =△CEA =90°,△△BAC =90°,△△BAD +△CAE =90°△△BAD +△ABD =90°,△△CAE =△ABD ,在△ADB 和△CEA 中,BDA CEA CAE ABD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ADB △△CEA (AAS ),△AE =BD ,AD =CE ,△DE =AE +AD =BD +CE ;(2)如图2,△△BDA =△BAC =α,△△DBA +△BAD =△BAD +△CAE =180α︒-,△△DBA =△CAE ,在△ADB 和△CEA 中,BDA CEA CAE ABD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ADB △△CEA (AAS ),△AE =BD ,AD =CE ,△DE =AE +AD =BD +CE ;【点睛】本题主要考查了全等三角形的判定和性质,由条件证明三角形全等得到BD =AE ,CE =AD 是解题的关键.14.在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE 的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由△BDA =△BAC =△AEC =90°得到△BAD +△EAC =△BAD +△DBA =90°,进而得到△DBA =△EAC ,然后结合AB =AC 得证△DBA △△EAC ,最后得到DE =BD +CE ;(2)由△BDA =△BAC =△AEC =α得到△BAD +△EAC =△BAD +△DBA =180°﹣α,进而得到△DBA =△EAC ,然后结合AB =AC 得证△DBA △△EAC ,最后得到DE =BD +CE ;(3)由△BAD >△CAE ,△BDA =△AEC =△BAC ,得出△CAE =△ABD ,由AAS 证得△ADB △△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.(1)解:DE =BD +CE ,理由如下,△△BDA =△BAC =△AEC =90°,△△BAD +△EAC =△BAD +△DBA =90°,△△DBA =△EAC ,△AB =AC ,△△DBA △△EAC (AAS ),△AD =CE ,BD =AE ,△DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,△△BDA =△BAC =△AEC =α,△△BAD +△EAC =△BAD +△DBA =180°﹣α,△△DBA =△EAC ,△AB =AC ,△△DBA △△EAC (AAS ),△BD =AE ,AD =CE ,△DE =AD +AE =BD +CE ;(3)解:△△BAD <△CAE ,△BDA =△AEC =△BAC ,△△CAE =△ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABD △△CAE (AAS ),△S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,△S △ABC =12BC •h =12,S △ABF =12BF •h ,△BC =3BF ,△S △ABF =4,△S △ABF =S △BDF +S △ABD =S △+S △ACE =4,△△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,三角形的面积,解题的关键是熟练掌握全等三角形的判定与性质.15.在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C 且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:△ADC △CEB △;△DE AD BE =+;(2)当直线MN 烧点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)△证明见解析;△证明见解析(2)证明见解析(3)DE BE AD =-(或者对其恒等变形得到AD BE DE =-,BE AD DE =+),证明见解析【分析】(1)△根据AD MN ⊥,BE MN ⊥,90ACB ∠=︒,得出CAD BCE ∠=∠,再根据AAS即可判定ADC CEB ∆≅∆;△根据全等三角形的对应边相等,即可得出CE AD =,CD BE =,进而得到DE CE CD AD BE =+=+;(2)先根据AD MN ⊥,BE MN ⊥,得到90ADC CEB ACB ∠=∠=∠=︒,进而得出CAD BCE ∠=∠,再根据AAS 即可判定ADC CEB ∆≅∆,进而得到CE AD =,CD BE =,最后得出DE CE CD AD BE =-=-;(3)运用(2)中的方法即可得出DE ,AD ,BE 之间的等量关系是:DE BE AD =-或恒等变形的其他形式.(1)解:△AD MN ⊥,BE MN ⊥,90ADC ACB CEB ∴∠=∠=︒=∠,90CAD ACD ∴∠+∠=︒,90BCE ACD ∠+∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;△ADC CEB ∆≅∆,CE AD ∴=,CD BE =,DE CE CD AD BE ∴=+=+;(2)证明:AD MN ⊥,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;CE AD ∴=,CD BE =,DE CE CD AD BE ∴=-=-;(3)证明:当MN 旋转到题图(3)的位置时,AD ,DE ,BE 所满足的等量关系是:DE BE AD =-或AD BE DE =+或BE AD DE =+.理由如下:AD MN ⊥,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆,CE AD ∴=,CD BE =,DE CD CE BE AD ∴=-=-(或者对其恒等变形得到AD BE DE =+或BE AD DE =+).【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质的综合应用,解题时注意:全等三角形的对应边相等,同角的余角相等,解决问题的关键是根据线段的和差关系进行推导,得出结论.16.(1)如图1,在△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD △直线m ,CE △直线m ,垂足分别为点D 、E .求证:△ABD △△CAE ;(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC =α,其中α为任意锐角或钝角.请问结论△ABD △△CAE 是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为△BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD ,CE ,若△BDA =△AEC =△BAC ,求证:△DEF 是等边三角形.【答案】(1)见详解;(2)成立,理由见详解;(3)见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得90BDA CEA ∠=∠=︒,而90BAC ∠=︒,根据等角的余角相等得CAE ABD ∠=∠,然后根据“AAS ”可判断ADB CEA ∆∆≌;(2)利用BDA BAC α∠=∠=,则180DBA BAD BAD CAE ∠∠∠∠α+=+=︒-,得出CAE ABD ∠=∠,然后问题可求证;(3)由题意易得,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,由(1)(2)易证ADB CEA ∆∆≌,则有AE BD =,然后可得FBD FAE ∠=∠,进而可证DBF EAF ∆∆≌,最后问题可得证.【详解】(1)证明:BD ⊥直线m ,CE ⊥直线m ,90BDA CEA ∴∠=∠=︒,90BAC ∠=︒,90BAD CAE ∴∠+∠=︒,90BAD ABD ∠+∠=︒,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌;解:(2)成立,理由如下:α∠=∠=BDA BAC ,180α∴∠+∠=∠+∠=︒-DBA BAD BAD CAE ,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌;(3)证明:△△ABF 和△ACF 均为等边三角形,△,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,△△BDA =△AEC =△BAC =120°,△180120DBA BAD BAD CAE ∠+∠=∠+∠=︒-︒,△CAE ABD ∠=∠,△()ADB CEA AAS ∆∆≌,△AE BD =,△,FBD FBA ABD FAE FAC CAE∠=∠+∠∠=∠+∠,△FBD FAE∠=∠,△DBF EAF∆∆≌(SAS),△,FD FE BFD AFE=∠=∠,△60BFA BFD DFA AFE DFA DFE∠=∠+∠=∠+∠=∠=︒,△△DFE是等边三角形.【点睛】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键.17.已知△ABC中,△ACB=90°,AC=BC.BE、AD分别与过点C的直线垂直,且垂足分别为D,E.学习完第十二章后,张老师首先让同学们完成问题1:如图1,若AD=2.5cm,DE=1.7cm,求BE的长;然后,张老师又提出问题2:将图1中的直线CE绕点C旋转到△ABC的外部,BE、AD与直线CE的垂直关系不变,如图2,猜想AD、DE、BE三者的数量关系,并给予证明.【答案】BE的长为0.8cm;DE=AD+BE.【分析】如图1,由“AAS”可证△ACD△△CBE,可得AD=CE=2.5cm,BE=CD,由线段的和差关系可求解;如图2,由“AAS”可证△ACD△△CBE,可得AD=CE,BE=CD,即可求解.【详解】解:如图1,△△ACB=△BEC=△ADC=90°,△△ACD+△BCE=90°=△ACD+△CAD,△△BCE=△CAD,在△ACD和△CBE中,BEC ADCBCE CADBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ACD△△CBE(AAS),△AD=CE=2.5cm,BE=CD,△DE=1.7cm,△BE =CD =CE -DE =2.5-1.7=0.8cm ,△BE 的长为0.8cm ;如图2,DE =AD +BE ,理由如下:△△ACB =△BEC =△ADC =90°,△△ACD +△BCE =90°=△ACD +△CAD ,△△BCE =△CAD ,在△ACD 和△CBE 中,BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ACD △△CBE (AAS ),△AD =CE ,BE =CD ,△DE =AD +BE .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,灵活运用这些性质解决问题是解题的关键.18.在△ABC 中,△ACB =90°,AC =BC ,且AD △MN 于D ,BE △MN 于E .(1)直线MN 绕点C 旋转到图(1)的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图(2)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系(不写证明过程);(3)当直线MN 绕点C 旋转到图(3)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系(不写证明过程).【答案】(1)证明见详解(2)DE +BE =AD .理由见详解(3)DE =BE -AD (或AD =BE -DE ,BE =AD +DE 等).理由见详解.【分析】(1)根据题意由垂直得△ADC =△BEC =90°,由同角的余角相等得:△DAC =△BCE ,因此根据AAS 可以证明△ADC △△CEB ,结合全等三角形的对应边相等证得结论;(2)由题意根据全等三角形的判定定理AAS 推知△ACD △△CBE ,然后由全等三角形的对应边相等、图形中线段间的和差关系以及等量代换证得DE +BE =AD ;(3)由题意可知DE 、AD 、BE 具有的等量关系为:DE =BE -AD (或AD =BE -DE ,BE =AD +DE等).证明的方法与(2)相同.(1)证明:如图1,△AD △MN ,BE △MN ,△△ADC =△BEC =90°,△△DAC +△ACD =90°,△△ACB =90°,△△ACD +△BCE =90°,△△DAC =△BCE ,在△ADC 和△CEB 中,△ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADC △△CEB ;△DC =BE ,AD =EC ,△DE =DC +EC ,△DE =BE +AD .(2)解:DE +BE =AD .理由如下:如图2,△△ACB =90°,△△ACD +△BCE =90°.又△AD △MN 于点D ,△△ACD +△CAD =90°,△△CAD =△BCE .在△ACD 和△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ACD △△CBE (AAS ),△CD =BE ,AD =CE ,△DE +BE =DE +CD =EC =AD ,即DE +BE =AD .(3)解:DE =BE -AD (或AD =BE -DE ,BE =AD +DE 等).理由如下:如图3,易证得△ADC △△CEB ,△AD =CE ,DC =BE ,△DE=CD-CE=BE-AD,即DE=BE-AD.【点睛】本题属于几何变换综合题,考查等腰直角三角形和全等三角形的性质和判定,熟练掌握全等三角形的四种判定方法是关键:SSS、SAS、AAS、ASA;在证明线段的和与差时,利用全等三角形将线段转化到同一条直线上得出结论.。

全等三角形单元复习: 一线三等角模型课件(16张PPT)2024-2025学年人教版八年级上学期

全等三角形单元复习: 一线三等角模型课件(16张PPT)2024-2025学年人教版八年级上学期
在△ 和 △ 中,
∠ = ∠
ቐ ∠ = ∠
=
∴△ ≌△ (AAS)
方法总结
“一线三等角”模型最关键的要点是证明角相等:
(1)三垂直:利用同角的余角相等。
(2)一般角:利用三角形外角的性质。
(3)证明全等三角形的判定方法可以用AAS,也可以
用ASA。
∴∠ + ∠ = 90°
∵∠ + ∠ + ∠ = 180°
∴∠ = 90°.
2. 如图,在 △ 中,∠ = ∠,点、、分别在、、上,且
= , + = .
(1)试说明: = ;
(2)当∠ = 40°时,求∠的度数;
∴∠ = ∠ + ∠
又∵∠ = ∠ + ∠,∠ = ∠
∴∠ = ∠
在△ 和 △ 中,
∠ = ∠

∠ = ∠
思考:若α为钝角,
=
上面结论仍然成立
∴△ ≌△ (AAS)
吗?
∴ = , =
∵ = +
(3)请你猜想:当∠为多少度时,∠ + ∠ = 120°,并说明理由.
(3)当∠ = 60°时,∠ + ∠ = 120°.
理由如下:
∵∠ + ∠ = 120°
∴∠ = 60°
由(2)得,∠ = ∠
∴ ∠ = ∠ = 60°
∴∠ = 180° − ∠ − ∠ = 60°.
= , + = .
(1)试说明: = ;
(2)当∠ = 40°时,求∠的度数;
(3)请你猜想:当∠为多少度时,∠ + ∠ = 120°,并说明理由.
(2)∵∠ = 40°

专题06 全等三角形之一线三等角模型全攻略(解析版)

专题06 全等三角形之一线三等角模型全攻略(解析版)

专题06全等三角形之一线三等角模型全攻略目录【知识点归纳】 (1)【例题精讲】 (2)【课后练习】 (13)【知识点归纳】“一线三垂直”模型,是初中几何图形中的最重要模型,一般只要图形中出现一线三垂直或二垂或一垂图形,不管它是出现在全等图形中,还是在以后学习的相似图形中,函数图形中,它的辅助线、解题思路过程基本固定,一定要熟悉它的变化及用法。

“三垂直模型”是一个应用非常广泛的模型,它可以应用在三角形,矩形,平面直角坐标系,网格,一次函数,反比例函数,三角函数,二次函数以及圆等诸多的中考重要考点之中,所以掌握好这一模型会使你在中考中技高一筹。

基本图形如下:同侧型一线三等角(常见):锐角一线三等角直角一线三等角钝角一线三等角条件:A CED B ∠=∠=∠,CE=DE证明思路:,A B C BED ∠=∠∠=∠,任一边相等BED ACE⇒ ≌异侧型一线三等角:锐角一线三等角直角一线三等角钝角一线三等角条件:FAC ABD CED ∠=∠=∠,任意一边相等证明思路:,A B C BED ∠=∠∠=∠,任一边相等BED ACE ⇒ ≌【例题精讲】例1.(同侧一线三直角)(1)如图1,已知:在ABC ∆中,90BAC ∠=︒,AB AC =,直线l经过点A ,BD l ⊥,CE l ⊥垂足分别为点D 、E .证明:①CAE ABD ∠=∠;②DE BD CE =+.(2)如图2,将(1)中的条件改为:在ABC ∆中,AB AC =,D 、A 、E 三点都在l 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图3,过ABC ∆的边AB 、AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高,延长HA 交EG 于点I ,求证:I 是EG 的中点.【答案】(1)①见解析;②见解析;(2)成立:DE=BD+CE ;证明见解析;(3)见解析【分析】(1)①根据平行线的判定与性质即可求解;②由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°−α,且∠DBA +∠BAD =180°−α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,同(1)可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【详解】(1)①∵BD ⊥直线l ,CE ⊥直线l∴∠BDA=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD②在△ADB 和△CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△CEA (AAS )∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE ;(2)成立:DE=BD+CE 证明如下:∵∠BDA=∠BAC=α∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α∴∠DBA=∠CAE在△ADB 和△CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△CEA (AAS )∴AE=BD 、AD=CE∴DE=AE+AD=BD+CE ;(3)如图过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N∴∠EMI=GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI 和△GNI 中GIH EIM EM GN GHI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△EMI ≌△GNI (AAS )∴EI=GI∴I 是EG 的中点.【点睛】本题主要考查全等三角形的判定和性质,由条件证明三角形全等得到BD =AE 、CE =AD 是解题的关键.例2.(异侧一线三直角)如图1,OA OB ⊥,OC OD ⊥,OA OB =,OC OD =,连接AD 、BC ,交于点H .(1)写出AD 和BC 的数量关系及位置关系,并说明理由;(2)如图2,连接BD ,若DO 、BO 分别平分ADB ∠和CBD ∠,求BOD ∠的度数;(3)如图3,连接AC 、BD ,设AOC 的面积为1S ,BOD 的面积为2S ,探究1S 与2S 的数量关系,并说明理由.OA OB ⊥,OC OD ⊥90AOB COD ∴∠=∠=︒,AOB AOC AOC ∠+∠=∠ AOD BOC ∴∠=∠,又 OA OB =,OC OD =AOD BOC ∴ ≌()SAS ,(3)如图,过点,C D ,分别作90CFO OGD ∴∠=∠=︒,90COD ∠=︒ ,90COF GOD ∴∠=︒-∠=∠又CO DO = ,()AAS CFO OGD ∴ ≌,FO GD ∴=,AOC 的面积为1S ,BOD 在MAN ∠的边AM 、AN 上,且AB AC =,CF AE ⊥于点F ,BD AE ⊥于点D ,求证:ABD CAF V V ≌;(2)如图2,点B 、C 分别在MAN ∠的边AM 、AN 上,点E 、F 都在MAN ∠内部的射线AD 上,已知AB AC =,且12BAC ∠=∠=∠,求证:ABE CAF V V ≌;(3)如图3,已知ABC 的面积为15,且AB AC =,AB BC >,点D 在边BC 上,点E 、F 在线段AD 上,12BAC ∠=∠=∠,若ACF △与BDE △的面积之和是6,求:CD BC 的值.∵12∠=∠,∴AFC BEA ∠=∠,∵34BAC ∠+∠=∠,1∠∴4ABE ∠=∠,∵AB AC =,∴()AAS ABE CAF △≌△∵12BAC ∠=∠=∠,∴3ACF ∠=∠,BEA ∠∵AB AC =,∴(AAS ABE CAF △≌△∴ABE CAF S S = ,∵ACF △与BDE △的面积之和是∴ABD ABE BDE S S S =+ △△∵ACD 与ABC 等高,∴底边之比3:5,∴:3:5CD BC =.【点睛】本题主要考查了三角形全等的判定和性质,等的判定方法,是解题的关键.例4.(坐标系中的K 字模型)A B y 轴上.(1)如图①,若点C 的横坐标为5,求点B 的坐标;(2)如图②,若x 轴恰好平分BAC ∠,BC 交x 轴于点M ,过点C 作CD x ⊥轴于点D ,求CD AM的值;(3)如图③,若点A 的坐标为()4,0-,点B 在y 轴的正半轴上运动时,分别以OB 、AB 为边在第一、第二象限中作等腰Rt OBF ,等腰Rt ABE ,连接EF 交y 轴于点P ,当点B 在y 轴上移动时,PB 的长度是否发生改变?若不变求PB 的值;若变化,求PB 的取值范围.例.()已知等腰ABE 和,连接,若直线BD CE 、交于点O ,则BOC ∠=;(2)如图所示,90,,BAE DAC AB AE AD AC ∠=∠=︒==,连接BC 和DE ,过点A 作AF D E ⊥交BC 于点G ,垂足为F ,若11,10AG GF ==,求ABC 的面积.如图:∵100,,BAE DAC AB AE AD ∠=∠=︒==∴BAD EAC ∠=∠,(2)作BM AF ⊥于M ,CN AF ⊥于N ,∵AF D E ⊥,∴90BMA AFE ∠=∠=︒,∵90,BAE AB AE ∠=︒=,∴90BAM FAE ∠+∠=︒,E FAE ∠+∠=∴BAF E ∠=∠,∴BAM AEF ≌,【点睛】本题考查了全等三角形的判定与性质,解题关键是恰当作辅助线,构建全等三角形,利用全等三角形的性质解决问题.【课后练习】1.通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE △≌△.进而得到AC =___________,BC =___________.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;【模型应用】(2)①如图2,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,6,点B 为平面内任一点.若AOB 是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.【答案】(1)DE ;AE(2)①证明见解析;②()4,2或()2,4-【分析】(1)根据全等三角形的对应边相等解答;(2)①作DM AF ⊥于M ,EN AF ⊥于N ,证明ABF DAM △≌△,ACF EAN △≌△,根据全等三角形的性质得到EN DM =,再证明DMG ENG △≌△,根据全等三角形的性质证明结论;②过点B 作DC x ⊥轴于点C ,过点A 作DE y ⊥轴于点E ,两直线交于点D ,过点B '作B H x '⊥轴于点H ,B H '交DE 于点G ,利用(1)的结论即可解答.【详解】(1)解:∵12290D ∠+∠=∠+∠=︒,∴1D ∠=∠,在ABC 和DAE 中,1D ACB DEA AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC DAE △≌△,∴AC DE =,BC AE =.故答案为:DE ;AE .(2)①证明:如图2,作DM AF ⊥于M ,EN AF ⊥于N ,∵BC AF ⊥,90BAD ∠=︒,∴90BFA AMD ∠=∠=︒,12190B ∠+∠=∠+∠=︒∴2B ∠=∠,在ABF △和DAM △中,2BFA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABF DAM △≌△,∴AF DM =,∵BC AF ⊥,90CAE ∠=︒,∴90CFA ANE ∠=∠=︒,90FAC NAE FAC C ∠+∠=∠+∠=︒∴C NAE =∠∠,在ACF △和EAN 中,CFA ANE C NAE AC EA ∠=∠⎧⎪∠=∠⎨⎪=⎩,一副三角板(在ABC 中,90ABC ∠=︒,AB BC =;DEF 中,90DEF ∠=︒,30EDF ∠=︒),并提出了相应的问题(1)【发现】如图1,将两个三角板互不重叠地摆放在一起,当顶点B 摆放在线段DF 上时,过点A 作AM DF ⊥,垂足为点M ,过点C 作CN DF ⊥,垂足为点N ,易证ABM BCN ≌△△,若2AM =,7CN =,则MN =______;(2)【类比】如图2,将两个三角板叠放在一起,当顶点B 在线段DE 上且顶点A 在线段EF 上时,过点C 作CP DE ⊥,垂足为点P ,猜想AE ,PE ,CP 的数量关系,并说明理由;(3)【拓展】如图3,将两个三角板叠放在一起,当顶点A 在线段DE 上且顶点B 在线段EF 上时,若5AE =,1BE =,连接CE ,则ACE △的面积为______.【答案】(1)9(2)=-PE CP AE ;理由见解析(3)10【分析】本题综合考查了全等三角形的判定与性质,熟记相关定理内容进行几何推理是解题关键.(1)由ABM BCN ≌△△,利用两个三角形全等的性质,得到2AM BN ==,7BM CN ==,即可得到MN ;(2)根据两个三角形全等的判定定理,得到ABE BCP ≌△△,利用两个三角形全等的性质,得到AE BP =,BE CP =,由BE BP PE =+中,即可得到三者的数量关系;(3)延长FE ,过点C 作CP FE ⊥于P ,由两个三角形全等的判定定理得到ABE BCP ≌△△,从而1PC BE ==,5PB AE ==,则可求得PE ,延长AE ,过点C 作CF AE ⊥于F ,由平行线间的平行线段相等可得4CF PE ==,代入面积公式得ACE S ,即可得到答案.【详解】(1)解:ABM BCN ≌,2AM =,7CN =,2AM BN ∴==,7BM CN ==,9MN BM BN ∴=+=;故答案为:9.(2)解:=-PE CP AE理由:90ABC ∠=︒ ,90ABE CBE ∴∠+∠=︒,CP BE ⊥ ,90CPB ∴∠=︒,90BCP CBP ∴∠+∠=︒ABE BCP ∴∠=∠,90AEB ∠=︒ ,90AEB CPB ∴∠=∠=︒,AB BC = ,ABE BCP ∴V V ≌,AE BP ∴=,BE CP=BE BP PE =+ ,PE BE BP PC AE ∴=-=-;90ABE EBC ∠+∠=︒ ,ABE ∠EBC BAE ∴∠=∠,90AEB CPB ∠=∠=︒Q ,AB ABE BCP ∴V V ≌,1PC BE ∴==,5PB AE ==514PE PB BE ∴=-=-=,延长AE ,过点C 作CF AE ⊥AF PE ⊥Q ,CP PE ⊥,AF CP ∴∥,AF PE ⊥Q ,CF AF ⊥,PE CF ∴∥,由平行线间的平行线段相等可得115422ACE S AE CF =⨯⨯=⨯⨯V 故答案为:10.3.通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图,90ACE ∠=︒,AC CE =,过点A 作AB BC ⊥于点B ,过点E 作ED BC ⊥交BC 的延长线于点D .由90ACB DCE DCE E ∠+∠=∠+∠=︒,得CAB E ∠=∠.又90ABC CDE ∠=∠=︒,AC CE =,可以推理得到ABC CDE △△≌,进而得到AB =______,BC =______.(请完成填空)我们把这个数学模型称为“K 字”模型或“一线三等角”模型.【模型应用】(2)①如图,90ACE BCD ∠=∠=︒,AC CE =,BC CD =,连接AB 、DE ,且DE CG ⊥于点G ,AB 与直线CG 交于点F ,求证:点F 是AB 的中点;②如图,若点M 为x 轴上一动点,点N 为y 轴上一动点,点P 的坐标为()51,,是否存在以M 、N 、P 为顶点且以PM 为斜边的三角形为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)CD ,DE ;(2)见解析;(3)存在,()4,0-或()6,0-【分析】本题是三角形综合题目,考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、坐标与图形性质、直角三角形的性质等知识;(1)由全等三角形的性质可得出答案;(2)过点A 作AM FG ⊥交FG 于点M ,过点B 作BN FG ⊥交FG 于点N ,证明(AAS)ACM CEG ≌,得出AM CG =;同理可得:BCN CDG ≌.得出BN CG =,证明ED CG ⊥ ,90ACE ∠=︒,ACF ECG ECG ∴∠+∠=∠+∠ACF E ∴∠=∠,在ACM △和CEG 中,ACM E AMC CGE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ACM CEG ∴ ≌514DP ∴=-=,4EN ∴=,(4,0)M ∴-;当点N 在x 轴负半轴上时,同理可得(6,0)M -.综上所述,点M 的坐标为(4,0)-或(6,0)-.4.综合与实践:在ABC 中,90ACB ∠=︒,AC BC =,点C 在直线l 上,点A 、B 在直线l 的同侧,过点A 作AD l ⊥于点D .(1)问题情境:如图1,在直线l 上取点E ,使BE l ⊥.则BE 与CD 的数量关系是_________________,此时AD BE DE 、、之间的数量关系是_________________.(2)探究证明:如图2,在直线l 上取点F ,使BF BC =,猜想CF 与AD 的数量关系,并说明理由.(3)拓展延伸:在直线l 上任取一点P ,连接BP ,以点P 为直角顶点作等腰直角三角形BPM ,作MN l ⊥于点N ,请直接写出在图3、图4中MN AD CP 、、之间的数量关系.【答案】(1),BE CD AD BE DE =+=;(2)2CF AD =,理由见解析(3),MN AD CP MN AD CP+=-=【分析】本题考查了全等三角形的判定与性质,熟练掌握“一线三垂直”模型是解答本题的关键.(1)根据AAS 证明ACD CBE ≌,得BE CD =,CE AD =,进而可证AD BE DE +=;(2)过点B 作BH l ⊥于点H ,根据AAS 证明DAC HCB ≌,得AD CH =,由三线合一得2CF CH =,进而可得;2CF AD=(3)如图3,作BH l ⊥于点H ,作PF l ⊥,作BF PF ⊥于点F ,作ME PF ⊥于点E ,可证四边形MEPN 和四边形PFBH 都是矩形,从而BF BH =,MN PE =.结合ACD CBH △≌△,可证MN AD CP +=;如图4,作BH l ⊥于点H ,由ACD CBH △≌△,MNP PHB ≌,得MN PH =,AD CH =,进而可证MN AD CP -=.【详解】(1)解:∵AD l ⊥,BE l ⊥,∴90ADC CEB ∠=∠=︒.∵90ACB ∠=︒,∴90ACD BCE ∠+∠=︒,∵90CAD ACD ∠+∠=︒,∴CAD BCE ∠=∠.∵AC BC =,∴()AAS ACD CBE ≌,∴BE CD =,CE AD =,∵CE CD DE +=,∴AD BE DE +=.故答案为:BE CD =,AD BE DE +=;(2)2CF AD=理由如下:过点B 作BH l ⊥于点H ,如图,则90BHC ∠=︒,∴四边形MEPN 和四边形PFBH 都是长方形,∴BF BH =,MN PE =.由(1)知,ACD CBH △≌△, ∴AD CH PE BF ==,,∴PH MN =,∵CH PH CP +=,∴MN AD CP +=;由(1)知,ACD CBH △≌△,MNP PHB ≌,∴MN PH AD CH ==,,∵PH CH CP -=,∴MN AD CP -=.5.如图1所示,已知AB 为直线a 上两点,点C 为直线a 上方一动点,连接AC 、BC ,分别以AC 、BC 为边向△ABC 外作△ACD 和△BCE ,且90DAC CBE ∠=∠=︒,AD AC =,BC BE =,过点D 作1DD a ⊥于点1D ,过点E 作1EE a ⊥于点1E .(1)【问题探究】小华同学想探究图1中线段1DD 、1EE 、AB 之间的数量关系.他的方法是:作直线CH AB ⊥于点H ,可以先证明1ADD CAH ≌△△和1BEE ≌△________,于是可得:________和________,所以得到线段1DD 、1EE 、AB 之间的数量关系是________;(2)【方法应用】在图2中,当D 、E 两点分别在直线a 的上方和下方时,试探究三条线段1DD 、1EE 、AB 之间的数量关系,并说明理由;(3)【拓展延伸】在图2中,当D 、E 两点分别在直线a 的上方和下方时,小华同学测得线段11D E m =,AB n =,请用含有m 、n 的代数式表示△ABC 的面积为________.三角形面积公式求出答案.【详解】解:(1)∵1DD a ⊥,CH AB ⊥,∴∠1DD A =∠CHA=90DAC ∠=︒,∴∠1D DA+∠1D AD=90°,∠1D AD+∠CAH=90°,∴∠1D DA=∠CAH ,∵AD=AC ,∴△1D DA ≌△HAC ,同理1BEE ≌△△CBH ,∴D 1D =AH ,1EE =BH ,∴11AB DD EE =+故答案为:△CBH ,1DD AH =,1EE BH =,11AB DD EE =+;(2)11AB DD EE =-.理由:如图,过点C 作CG a ⊥于点G ,∵1DD a ⊥,CG a ⊥,1EE a ⊥,∴1DD A AGC ∠=∠,1CGB BE E ∠=∠,∴1190DAD ADD ︒∠+∠=,90∠+∠=︒CBG BCG ,∵90DAC CBE ∠=∠=︒,∴190DAD CAG ︒∠+∠=,190CBG E BE ︒∠+∠=,∴1ADD CAG ∠=∠,1BCG EBE ∠=∠,在1ADD 和CAG 中,11,,,ADD CAG DD A AGC AD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴1ADD ≌CAG ,∴1DD AG =,同理可得:1BCG EBE ≅△△,∴1BG EE =,由图可得:AB AG BG =-,∴11AB DD EE =-;侧作AE AD ⊥,且AE AD =.(1)如图1,当点D 在线段BC 上时,过点E 作EF AC ⊥于F ,求证:ACD EFA △≌△;(2)如图2,当点D 在线段BC 的延长线上时,连接BE 交直线AC 于点M .试探究BM 与EM 的数量关系,并说明理由.(3)当点D 在射线CB 上时,连接BE 交直线AC 于点M ,若4AC CM =,求ADB AEMS S △△的值.=90DAE ∠︒,F ACD MCB ∴∠=∠=∠,90FAE CDA ∠=∠=在FAE 和CDA 中,F ACD FAE CDA AE DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS FAE CDA ∴ ≌,EF AC BC ∴==,MCB F ∠=∠⎧90FAE D DAC ∴∠=∠=︒-∠,在AFE △和DCA △中,F ACD FAE D AE DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS AFE DCA ∴ ≌,AF DC ∴=,EF AC BC ==,AF AC DC BC ∴-=-,CF DB ∴=,18090BCM ACB ∠=︒-∠=︒ ,4AC n ∴=,3AM n ∴=,11222ADB S DB AC n AC n AC ∴=⋅=⨯⋅=⋅ ,12AEM S AM EF =⋅ ∴2332ADB AEM S n AC S n AC ⋅==⋅ ,综上所述,ADB AEM S S △△的值为25或23.。

【差中】全等三角形三垂直模型(解析版)

【差中】全等三角形三垂直模型(解析版)

全等三角形之三垂直模型【模型讲解】模型1、三垂直模型如图:【巩固训练】1.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,CE=AC,则下列结论中正确的是()A.E为BC中点B.2BE=CD C.CB=CD D.△ABC≌△CDE 【答案】D【分析】首先利用HL定理证明Rt△ABC≌Rt△CDE,然后根据全等三角形的性质,即可一一判断.【详解】∵∠ACB =∠CED =90°在Rt △ABC 与Rt △CDE 中,AB CD CE AC =⎧⎨=⎩,∴Rt △ABC ≌Rt △CDE (HL ),∴CB =DE ,CE =AC ,CD =AB ,△ABC ≌△CDE ,故D 符合题意,其他选项不符合题意故选:D .【点睛】本题考查全等三角形的判定与性质,掌握HL 定理判定三角形全等是解题关键2.在ABC 中,AD BC ⊥于点D ,点E 为AD 上一点,连接CE ,CE =AB ,ED =BD .(1)求证:ABD CED △≌△;(2)若22ACE ∠︒=,则B Ð的度数为.【答案】(1)理由见解析;(2)67︒,理由见解析.【分析】(1)由SAS 证明ABD CED △≌△即可;(2)由全等三角形的性质,即可得出答案.【详解】解:(1)∵AD ⊥BC ,∴∠ADB =∠CDE =90°,在Rt ADB 与Rt CDE △中,CE AB ED BD =⎧⎨=⎩,∴Rt ADB Rt CDE HL ≌();(2)∵Rt ADB Rt CDE △≌△,∴AD =CD ,∴ADC 是等腰直角三角形,∴∠ACD =45°,∴∠ECD =∠ACD ﹣∠ACE =45°﹣22°=23°,∴∠CED =90°﹣23°=67°,∴∠B =∠CED =67°,【点睛】本题考查了三角形全等的判定、几何图形中角度的计算、等腰直角三角形的性质;关键在于熟练掌握证明三角形全的方式方法、运用等腰直角三角形的性质.3.如图,在等腰直角三角形ABC 中,,90AB BC ABC =∠=︒,点B 在直线l 上,过A 作AD l ⊥于D ,过C 作CE l ⊥于E .下列给出四个结论:①BD CE =;②BAD ∠与BCE ∠互余;③AD CE DE +=.其中正确结论的序号是()A .①②B .①③C .②③D .①②③【答案】D 【分析】证△ADB ≌△BEC 即可.【详解】证明:∵AD l ⊥,CE l ⊥,∴∠ADB=∠BEC=90°,∴∠BAD+∠ABD=90°,∠BCE+∠CBE=90°,∵90ABC ∠=︒,∴∠ABD+∠CBE=90°,∴∠BAD=∠CBE ,∴∠BCE+∠BAD=90°,故②正确;∵∠BAD=∠CBE ,∠ADB=∠BEC=90°,,AB BC =∴△ADB ≌△BEC ,∴BD CE =,AD=BE ,故①正确;DE=DB+BE=CE+AD ,故③正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,解题关键是找到并证明全等三角形.4.如图,两座建筑物AB ,CD 相距160km ,小月从点B 沿BC 走向点C ,行走ts 后她到达点E ,此时她仰望两座建筑物的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知建筑物AB 的高为60m ,小月行走的速度为1/m s ,则小月行走的时间t 的值为()A .100B .80C .60D .50【答案】A 【分析】首先证明∠A=∠DEC ,然后可利用AAS 判定△ABE ≌△ECD ,进而可得EC=AB=60m ,再求出BE 的长,然后利用路程除以速度可得时间.【详解】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC ,在△ABE 和△DCE 中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ECD (AAS ),∴EC=AB=60m ,∵BC=160m ,∴BE=100m ,∴小华走的时间是100÷1=100(s ),故选:A .【点睛】本题主要考查了全等三角形的应用,关键是正确判定△ABE ≌△ECD .5.如图,90B C ∠=∠=︒,BAE CED ∠=∠,且AB CE =.(1)试说明:ADE 是等腰直角三角形;(2)若2CDE BAE ∠=∠,求CDE ∠的度数.【答案】(1)见解析;(2)60°.【分析】(1)利用ASA 证明△BAE ≌△CED ,可证AE=DE ,后利用∠BAE+∠BEA=90°,证明∠BEA+∠CED=90°,问题得证;(2)利用直角三角形的两个锐角互余,求解即可.【详解】(1)∵90B C ∠=∠=︒,BAE CED ∠=∠,且AB CE =,∴△BAE ≌△CED ,∴AE=DE ,∵∠BAE+∠BEA=90°,∴∠BEA+∠CED=90°,∴∠AED=90°,∴△AED 是等腰直角三角形;(2)∵2CDE BAE ∠=∠,BAE CED ∠=∠,∴2CDE CED ∠=∠,∵∠CDE+∠CED=90°,∴∠CDE=60°.【点睛】本题考查了三角形的全等,等腰直角三角形的定义,直角三角形的锐角互余的性质,根据图形,结合条件选择对应判定方法,根据性质构造基本的计算等式是解题的关键.6.将Rt ABC △的直角顶点C 置于直线l 上,AC BC =,分别过点A 、B 作直线l 的垂线,垂足分别为点D 、E ,连接AE .若3BE =,5DE =.求ACE △的面积.【答案】32【分析】根据AAS 即可证明ACD CBE ≌,根据全等三角形的对应边相等,得出 3CD BE ==, AD CE =,所而 358CE CD DE =+=+=,从而求出AD 的长,则可得到ACE △的面积.【详解】解:∵ AD CE ⊥, BE CE ⊥,∴90ADC CEB ∠=∠=︒,∵90ACB ∠=︒,∴90ACD CBE ECB ∠=∠=︒-∠,在ACD △与CBE △中,ADC CEB ACD CBE AC BC ìïïïïÐ?=íïïïïî∴ACD CBE ≌ (AAS)∴ 3CD BE ==,AD CE =,∵ 358CE CD DE =+=+=,∴ 8AD =.ACE 11883222S CE AD ==创=g △.【点睛】本题考查全等三角形的判定与性质,余角的性质等知识,熟悉相关性质是解题的关键.7.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,2.5cm AD =,求1cm BE =,求DE的长.【答案】 1.5cm DE =.【分析】根据垂直定义求出∠BEC =∠ACB =∠ADC ,根据等式性质求出∠ACD =∠CBE ,根据AAS 证明△BCE ≌△CAD ;根据全等三角形的对应边相等得到AD =CE ,BE =CD ,利用DE =CE−CD ,即可解答.【详解】AD CE ⊥Q ,BE CE ⊥90ADC CEB ∴∠=∠=︒90BCE CBE ∴∠+∠=︒又90ACB ∠=︒ 90BCE ACD ∴∠+∠=︒CBE ACD∴=∠在ACD △和CBE △中ADC CEB ACD CBE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBE ∴△≌△CD BE ∴=,AD CE=又2.5cm AD = ,1cm BE = 2.5cm CE ∴=,1cm=CD 2.51 1.5cm DE CE CD ∴=-=-=.【点睛】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明ACD CBE ∴ ≌的三个条件.模型2、一线三等角模型,如图:【巩固训练】1.如图,在△ABC 中,点D 是边BC 上一点,CD =AB ,点E 在边AC 上,且AD =DE ,∠BAD =∠CDE .(1)如图1,求证:BD =CE ;(2)如图2,若DE 平分∠ADC ,在不添加辅助线的情况下,请直接写出图中所有与∠ADE 相等的角(∠ADE 除外).【解题】(1)由“SAS ”可证△ABD ≌△DCE ,可得BD =CE ;(2)由全等三角形的性质可得∠B =∠C ,由三角形的外角性质和角平分线的性质可求解.【解答】解:(1)在△ABD 和△DCE 中,AB CD∠BAD ∠CDE AD DE,∴△ABD ≌△DCE (SAS ),∴BD =CE ;(2)∵△ABD ≌△DCE ,∴∠B =∠C ,∵DE 平分∠ADC ,∴∠ADE =∠CDE =∠BAD ,∵∠ADC =∠B +∠BAD =∠ADE +∠CDE ,∴∠B =∠ADE =∠BAD =∠EDC =∠C ,∴与∠ADE 相等的角有∠EDC ,∠BAD ,∠B ,∠C .2.如图,在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC ∠∠∠==,求证:DE BD CE =+.【答案】见解析【分析】首先根据等量代换得出CAE ABD ∠=∠,从而可证ADB CEA △≌△,最后利用全等三角形的性质即可得出结论.【详解】证明:设BDA BAC α∠=∠=,∴180-DBA BAD BAD CAE α∠+∠=∠+∠=︒,∴CAE ABD ∠=∠,∵在ADB △和CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADB CEA AAS ≌△△,∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+.【点睛】本题主要考查全等三角形的判定及性质,掌握全等三角形判定方法和性质是解题的关键.3.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅ ;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.【答案】(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB AC BAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.4.(1)如图1,已知OAB 中,OA OB =,90AOB ∠=︒,直线l 经过点O ,BC ⊥直线l ,AD ⊥直线l ,垂足分别为点C ,D .依题意补全图l ,并写出线段BC ,AD ,CD 之间的数量关系为______;(2)如图2,将(1)中的条件改为:在OAB 中,OA OB =,C ,O ,D 三点都在直线l 上,并且有BCO ODA BOA ∠=∠=∠,请问(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,在ABC 中,AB AC =,90CAB ∠=︒,点A 的坐标为(0,1),点C 的坐标为()3,2,请直接写出点B 的坐标.【答案】(1)补全如图所示见解析;CD BC AD =+;(2)成立,证明见解析;(3)点B 的坐标为()1,2-.【分析】(1)依题意补全图,易证△AOD ≌△OBC ,则有AD =CO ,OD =BC ,从而可得CD BC AD =+;(2)利用三角形内角和易证23∠∠=,再证明BCO ODA ≌,同(1)即可证明结论;(3)过B 、C 两点作y 轴垂线,构造如(1)图形,即可得三角形全等,再将线段关系即可求出点B 坐标.【详解】(1)补全图1如图所示,CD BC AD =+;证明:∵90AOB ∠=︒,BC ⊥直线l ,AD ⊥直线l ,∴∠BCO =∠ODA =90°,∴∠BOC +∠OBC =90°,又∵90AOB ∠=︒,∴∠BOC +∠AOD =90°,∴∠OBC =∠AOD ,在△AOD 和△OBC 中BCO ODA OBC AOD BO AO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△OBC (AAS )∴AD =CO ,OD =BC ,∵CD OD CO =+,∴CD BC AD =+.(2)成立.证明:如图,∵12180BOA ∠+∠=︒-∠,13180BOA ∠+∠=︒-∠,BOA BCO ∠=∠∴23∠∠=在BCO 和ODA V 中32BCO ODA BO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴BCO ODA ≌(AAS )∴BC OD =,CO AD =∴CD CO OD AD BC=+=+(3)点B 的坐标为()1,2-.过程如下:过B 、C 两点作y 轴垂线,垂足分别为M 、N,同理(1)可得,CN =AM ,AN =MB ,∵点A 的坐标为(0,1),点C 的坐标为()3,2,∴CN =AM =3,ON =2,OA =1,∴MB =AN =ON -OA =1,OM =AM -OA =2,∵点B 在第四象限,∴点B 坐标为:()1,2-.【点睛】主要考查了等腰直角三角形的性质,全等三角形的判定和性质、图形与坐标变换,构造出全等三角形是解本题的关键.。

三角形全等中的三垂直模型

三角形全等中的三垂直模型

“三垂直”模型知识目标模块一三垂直基本模型知识导航一、三垂直模型的构成等腰直角△ABC过直角顶点A的直线l过两底角顶点B、C分别作直线l的垂线,垂足分别为M、N题型一三垂直模型基本应用例1过等腰Rt△ABC的直角顶点C作直线l,过A、B分别作AD⊥l于D,BE⊥l于E,已知AD=5,BE=3,求DE的长.CBACBACBA练习已知△ABC 中,∠BAC =90°,点E 在线段BC 上 ,点D 在线段AC 上,且△BDE 为等腰直角三角形,∠BDE =90°,BD =DE ,当∠ACB =30°时,试判断AD 与CE 的数量关系,并加以证明.模型二 三垂直模型与“婆罗摩笈多”例2如图,△ABE 和△ACD 为等腰直角三角形,AM ⊥BC 于M ,MA 交ED 于N 求证:EN =DN .练习 如图,直线AB 分别与x 轴、y 轴相交于点A (2,0)和点B (0,4),以B 为顶点在第一象限作等腰Rt △ABC . (1)在y 轴上存在一点M ,使得MA +MC 最小,请画出点M ;(保留画图痕迹) (2)求点C 的坐标;(3)若P 点为y 轴正半轴上一个动点,分别以AP 、OP 为腰在第一象限、第二象限作等腰Rt △APC 和等腰Rt △OPD ,连接CD 交y 轴于N 点,当点P 在y 轴正半轴上移动时,求PN 的长度.EDCBANMEDCBA模型三 三垂直模型与“八字”全等综合例3(1)如图,已知等腰Rt △ABC ,∠C =90°,D 在AC 上,△BDE 为等腰直角三角形,∠DBE =90°,连AE 交BC 于F ,求证:BF +CF =CD .(2)如图,D 点在AC 延长线上,其余条件不变,试探究BF 、CF 、CD 之间的关系.练习等腰Rt △ABC 中,∠B =90°,点P 在BC 上,以AP 为腰在△ABC 外侧作等腰Rt △APQ ,连PQ 交AB 于N ,连CQ 交AB 于M .(1)如图,当P 在边BC 上,且CP =2BP 时,求CPBM的值.FEDCBA DABCEFN MQPCBA(2)P 点在CB 延长线上,且CP =nBP ,M 、N 分别在AB 边和AB 边的延长线上,求AMBM.真题演练(2016年江岸区八上期末第23题) 如图,Rt △ABC 中,∠ACB =90°,AC =BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF =AE (1)如图1,过F 点作FD ⊥AC 交AC 于点D ,求证:CE +CD =DF ; (2)如图2,连接BF 交AC 于点G ,若AGCG=3,求证:E 为BC 中点; (3)当E 点在射线CB 上,连接BF 交直线AC 于点G ,若43BC BE,则AG CG= .MNPQCB A图1FEDCBA图2GFECBA模块二 三垂直模型与坐标系综合知识导航三垂直模型在坐标系中有着非常广泛的应用,尤其是与等腰直角三角形的综合,具体来说:已知等腰直角三角形三个顶点中任意两个点的坐标,便可以求出第三个点的坐标 情况一如下图:直角顶点在坐标轴上情况二如下图:直角顶点不在坐标轴上例4(1)如图,△ABC 为等腰直角三角形,AC =BC ,AC ⊥BC ,A (0,3),C (1,0),求B 点坐标.B(2)如图,△ABC为等腰直角三角形,AC=BC,AC⊥BC,A(-1,0),C(1,3),求B点坐标.(3)如图,△ABC为等腰直角三角形,AC=BC,AC⊥BC,B(2,2),C(4,-2),求A点坐标.练习如图,在△ABC中,∠ACB=90°,AC=BC,BC与y轴交于D点,点C的坐标为(-2,0),点A的坐标为(-6,3),则D点的坐标是.真题演练如图,已知A(-2,0),(1)如图,以A为顶点,AB为腰在第三象限作等腰Rt△ABC,若B(0,-4),求C点坐标.(2)如图,P为y轴负半轴上一动点,以P为顶点,P A为腰做等Rt△APD,过D作DE⊥x轴于E点,当P点沿y轴负半轴向下运动时,试问OP-DE的值是否发生变化?若不变,求其值;若变化,请说明理由.(3)如图,已知F点坐标为(﹣4,﹣4),G是y轴负半轴上一点,以FG为直角边作等腰Rt△FGH,H 点在x轴上,∠GFH=90°.设G(0,m),H(n,0),当G点在y轴负半轴上沿负方向运动时,m+n的值是否变化?若不变,求其值;若变化,请说明理由.例5在平面直角坐标系中,A(2,﹣1),B(1,﹣4),C(5,﹣2),求∠ABC的度数.练习如图,在平面直角坐标系中,已知A(a,b),且a、b满足221b a a(1)求点A的坐标;(2)若点F(1,0),C(0,3),连AC、FC,试确定∠ACO+∠FCO的值是否发生变化.若不变,说明理由.若变化,请求出变化范围.Array例6(2015年粮道街八上期中)在平面直角坐标系中,点A(4,0),B(0,8),以AB为斜边作等腰直角△ABC,则点C坐标为.练习在平面直角坐标系中,已知A(0,4),B(2,0),在第一象限内的点C,使△ABC为面积最小的等腰直角三角形,求点C的坐标以及面积的最小值.挑战压轴题如图1,已知A (a ,0),点B (0,b )且a 、b 满足2(4)40ab(1)求A 、B 两点的坐标;(2)若点C 是第一象限内一点,且∠OCB =45°,过点A 作AD ⊥OC 于点F ,求证:F A =FC ; (3)如图2,若点D 的坐标为(0,1),过点A 作AE ⊥AD ,且AE =AD ,连接BE 交x 轴于点G ,求S △BOG .本讲课后作业○A 基础巩固 1、如图,在△ABC 中,∠ACB =90°,AC =BC ,BC 与y 轴交于D 点,点C 的坐标为(﹣1,0),点A 的坐标为(﹣5,2),求点D 的坐标.2、在平面直角坐标系中,点A (2,0),B (0,4),以AB 为斜边作一个等腰直角三角形ABC ,则点C 的坐标为 .图13、已知,△ABC是等腰直角三角形,BC=AB,A点在x轴负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),求点C的坐标;(2)如图2,过点C作CD⊥y轴于D,请直接写出线段OA、OD、CD之间等量关系;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于F,问C F与AE有怎样的数量关系?并说明理由.三角形全等中的三垂直模型综合练习4、如图1,OA =2,OB =4,以A 点为顶点、AB 为腰在第三象限作等腰Rt △ABC .(1)求C 点坐标;(2)如图2,P 为y 轴负半轴上一个动点,当P 点向y 轴负半轴向下运动时,以P 为顶点,P A 为腰作等腰Rt △APD ,过D 作DE ⊥x 轴于E 点,求OP -DE 的值;(3)如图3,已知点F 坐标为(﹣2,﹣2),当点G 在y 轴负半轴上沿负方向运动时,作Rt △FGH ,始终保持∠GFH =90°,FG 与y 轴负半轴交于点G (0,m ),FH 与x 轴正半轴交于点H (n ,0),当G 点在y 轴的负半轴上沿负方向运动时,以下两个结论:①m -n 为定值;②m +n 为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.x。

【例题讲解】全等三角形的“三垂直”模型例完整版课件

【例题讲解】全等三角形的“三垂直”模型例完整版课件

解 ∵AE⊥AB,BG⊥FH
: ∴∠EAB=∠BGA=90°,
∴∠EAF+∠BAG=90°,∠ABG+∠BAG=90°
∴∠EAF=∠ABG,
E
又∵AE=AB,∠EFA=∠AGB,
6
∴△EFA≌△AGB
∴AF=BG=3,AG=EF=6.
F3A
同理证得△BGC≌△Cபைடு நூலகம்D得GC=DH=4,CH=BG=3.
故FH=FA+AG+GC+CH=3+6+4+3=16
故S=S梯EFHD-2S△BGC-2S△EFA
= (1 6+4)×16-3×4×1×2-6×3×1 ×2=50.
2
2
2
B
3
6 G4
D
4
C3H
再见
△EFA≌△AGB
同理证得△BGC≌△CHD,GC=DH
可得CH=BG, FH=FA+AG+GC+CH=3+6+4+3=16
所以AF=BG,AG=EF
然后用大梯形的面积减去下面四个小直 角三角形的面积,即可求出图形的面积
例.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按图中所标注的数据,计算图中实 线所围成的图形的面积是____。
例.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按图中所标注的数据,计算图中实
线所围成的图形的面积是____。
分析 :
参考全等三角形的判定和性质,以及割补法求面积 由题得AE⊥AB,EF⊥FH,BG⊥AG
E 6 FA
D
B 3
4
G CH
可以得到∠EAF=∠ABG 由AE=AB,∠EFA=∠AGB可得

专题11 全等三角形中的一线三等角模型(解析版)

专题11 全等三角形中的一线三等角模型(解析版)

专题11全等三角形中的一线三等角模型【模型1】三垂直全等模型【说明】上图三垂直模型中,只要知道一组对应边相等,即可证明两三角形全等。

【模型2】一线三直角全等模型【说明】上图中的两个三角形中三组对应角相等,只要知道一组对应边相等,即可证明两三角形全等。

【模型3】一线三等角与一组对应边相等全等模型【说明】上图中可根据平角的概念和三角形内角和定理可求得的两个三角形中三组对应角相等,只要再知道一组对应边相等,即可证明两三角形全等。

【例1】如图,AC =CE ,∠ACE =90°,AB ⊥BD ,ED ⊥BD ,AB =6cm ,DE =2cm ,则BD 等于()A .6cmB .8cmC .10cmD .4cm【答案】B 【分析】根据题意证明ABC CDE △≌△即可得出结论.【解析】解:∵AB ⊥BD ,ED ⊥BD ,∴90ABC CDE ∠=∠=︒,∵∠ACE =90°,∴90ACB DCE ∠+∠=︒,∵90ACB BAC ∠+∠=︒,∴BAC DCE ∠=∠,在ABC 和CDE △中,90ABC CDE BAC DCE AC CE ∠=∠=︒⎧⎪∠=∠⎪⎨⎪⎪⎩=,∴()ABC CDE AAS ≌,∴6cm AB CD ==,2cm BC DE ==,∴268cm BD BC CD =+=+=,故选:B .【例2】如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【解析】解:∵BE ⊥l ,CF ⊥l ,∴∠AEB =∠CFA =90°.∴∠EAB +∠EBA =90°.又∵∠BAC =90°,∴∠EAB +∠CAF =90°.∴∠EBA =∠CAF .在△AEB 和△CFA 中∵∠AEB =∠CFA ,∠EBA =∠CAF ,AB =AC ,∴△AEB ≌△CFA .∴AE =CF ,BE =AF .∴AE +AF =BE +CF .∴EF =BE +CF .∵2,5==BE CF ,∴257EF =+=;故答案为:7.【例3】(1)观察理解:如图1,∠ACB =90°,AC =BC ,直线l 过点C ,点A ,B 在直线l 同侧,BD ⊥l ,AE ⊥l ,垂足分别为D ,E ,求证:△AEC ≌△CDB .(2)理解应用:如图2,过△ABC边AB、AC分别向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I.利用(1)中的结论证明:I是EG的中点.(3)类比探究:①将图1中△AEC绕着点C旋转180°得到图3,则线段ED、EA和BD的关系_______;∥,AB⊥BC,AD=2,BC=3,将腰DC绕D点逆②如图4,直角梯形ABCD中,AD BC时针旋转90°至DE,△AED的面积为.【答案】(1)见解析;(2)见解析;(3)①ED=EA-BD;②1【分析】(1)根据同角的余角相等可得∠A=∠BCD,再利用AAS证得△AEC≌△CDB,即可;(2)分别过点E、G向HI作垂线,垂足分别为M、N,由(1)可证得△EMA≌△AHB,△ANG ≌△CHA ,从而得到EM =GN ,可得到△EMI ≌△GNI ,从而得到EI =IG ,即可求证;(3)①由(1)得:△AEC ≌△CDB ,可得CE =BD ,AE =CD ,即可;②过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据旋转的性质可得根据题意得:∠CDE =90°,CD =DE ,再由(1)可得△CDP ≌△DEQ ,从而得到DP =EQ ,然后根据两平行线间的距离,可得AP =BC ,进而得到PD =1,即可求解.【解析】(1)证明:∵BD ⊥l ,AE ⊥l ,∴∠AEC =∠BDC =90°,又∵∠ACB =90°∴∠A +∠ACE =∠ACE +∠BCD =90°,∴∠A =∠BCD ,在△AEC 和△CDB 中,AEC CDB A BCD AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△CDB (AAS );(2)证明:分别过点E 、G 向HI 作垂线,垂足分别为M 、N,由(1)得:△EMA ≌△AHB ,△ANG ≌△CHA ,∴EM =AH ,GN =AH ,∴EM =GN ,在△EMI 和△GNI 中,90EIM GIN EMI GNI EM GN ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△EMI ≌△GNI (AAS );∴EI =IG ,即I 是EG 的中点;(3)解:①由(1)得:△AEC ≌△CDB ,∴CE =BD ,AE =CD ,∵ED =CD -CE ,∴ED =EA -BD ;故答案为:ED =EA -BD②如图,过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据题意得:∠CDE =90°,CD =DE ,由(1)得:△CDP ≌△DEQ ,∴DP =EQ ,直角梯形ABCD 中,AD BC ∥,AB ⊥BC ,∴AB ⊥AD ,∴AB ∥CP ,∴BC ⊥CP ,∵BC =3,∴AP =BC =3,∵AD =2,∴DP =AP -AD =1,∴EQ =1,∴△ADE 的面积为1121122AD EN 创=.故答案为:1一、单选题1.如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边△DPE ,连结BE ,则△BDE 的面积为()A .B .2C .4D .【答案】A【分析】要求BDE ∆的面积,想到过点E 作EF BC ⊥,垂足为F ,因为题目已知60ABC ∠=︒,想到把ABC ∠放在直角三角形中,所以过点D 作DG BA ⊥,垂足为G ,利用勾股定理求出DG 的长,最后证明GPD FDE ∆≅∆即可解答.【解析】解:过点E 作EF BC ⊥,垂足为F ,过点D 作DG BA ⊥,垂足为G ,在Rt BGD 中,4BD =,60ABC ∠=︒,30BDG ∴∠=︒,122BG BD ∴==,GD ∴=PDE ∆是等边三角形,60PDE ∴∠=︒,PD DE =,180120PDB EDF PDE ∴∠+∠=︒-∠=︒,60ABC ∠=︒,180120PDB BPD ABC ∴∠+∠=︒-∠=︒,BPD EDF ∴∠=∠,90PGD DFE ∠=∠=︒,()GPD FDE AAS ∴∆≅∆,GD EF ∴==,BDE ∴∆的面积12BD EF =⋅,142=⨯⨯,=故选:A .2.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB =90°,AC =BC ,从三角板的刻度可知AB =20cm ,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方的是().A .20013cm 2B .15013cm 2C .10013cm 2D .5013cm 2【答案】A【分析】设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,然后证明△DAC ≌△ECB 得到CD =BE =2x cm ,再利用勾股定理求解即可.【解析】解:设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,由题意得:∠ACB =∠ADC =∠BEC =90°,∴∠ACD +∠DAC =∠ACD +∠BCE =90°,∴∠DAC =∠ECB ,又∵AC =CB ,∴△DAC ≌△ECB (AAS ),∴CD =BE =2x cm ,∵222AC BC AB +=,222AD DC AC +=,∴()()222232220x x +=,∴220013x =,故选A .3.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a =8cm ,则DE 的长为()A .40cmB .48cmC .56cmD .64cm【答案】C 【分析】由等腰直角三角形的性质可得∠ACB =90°,AC =CB ,因此可以考虑证明△ACD 和△CBE 全等,可以证明DE 的长为7块砖的厚度的和.【解析】解:由题意得∠ADC =∠CEB =∠ACB =90°,AC =CB ,∴∠ACD =90°﹣∠BCE =∠CBE ,在△ACD 和△CBE 中,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD=BE=3a,AD=CE=4a,∴DE=CD+CE=3a+4a=7a,∵a=8cm,∴7a=56cm,∴DE=56cm,故选C.二、填空题4.如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ,则OQ的长等于_____.【答案】6【分析】由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性质和直角三角形的性质可求解.【解析】解:如图,连接PO,并延长交l2于点H,∵l1⊥l3,l2⊥l3,∴l1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,∠=∠⎧⎪∠=∠⎨⎪=⎩PAC BCQ APC BQC AC BC ,∴△ACP ≌△CBQ (AAS ),∴AP =CQ ,PC =BQ ,∴PC +CQ =AP +BQ =PQ,∵AP ∥BQ ,∴∠OAP =∠OBH ,∵点O 是斜边AB 的中点,∴AO =BO ,在△APO 和△BHO 中,∠=∠⎧⎪∠=∠⎨⎪=⎩AOP BOH APO BHO AO BO ,∴△APO ≌△BHO (AAS ),∴AP =BH ,OP =OH ,∴BH +BQ =AP +BQ =PQ ,∴PQ =QH,∵∠PQH =90°,∴PHPQ =12,∵OP =OH ,∠PQH =90°,∴OQ =12PH =6.故答案为:65.如图,已知ABC 是等腰直角三角形,∠ACB =90°,AD ⊥DE 于点D ,BE ⊥DE 于点E ,且点C 在DE 上,若AD =5,BE =8,则DE 的长为_____.【答案】13【分析】先根据AD ⊥DE ,BE ⊥DE ,∠ADC =∠CEB =90°,则∠DAC +∠DCA =90°,△ABC 是等腰直角三角形,∠ACB =90°,可得AC =CB ,推出∠DAC =∠ECB ,即可证明△DAC ≌△ECB得到CE =AD =5,CD =BE =8,由此求解即可.【解析】解:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠DAC +∠DCA =90°,∵△ABC 是等腰直角三角形,∠ACB =90°,∴∠DCA +∠BCE =90°,AC =CB∴∠DAC =∠ECB ,∴△DAC ≌△ECB (AAS ),∴CE =AD =5,CD =BE =8,∴DE =CD +CE =13,故答案为:13.三、解答题6.已知:如图,AB ⊥BD ,ED ⊥BD ,C 是BD 上的一点,AC ⊥CE ,AB =CD ,求证:BC =DE.【答案】见解析【分析】根据直角三角形全等的判定方法,ASA 即可判定三角形全等.【解析】证明:∵AB ⊥BD ,ED ⊥BD ,AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中,A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)7.如图,∠B =∠C =∠FDE =80°,DF =DE ,BF =1.5cm ,CE =2cm ,求BC的长.【答案】3.5【分析】由平角定义及三角形内角和定理解得EDC BFD ∠=∠,继而证明()BFD CDE AAS ≅V V ,得到=1.5,=2BF CD BD CE ==,最后根据线段的和差解题.【解析】解:∠B =∠C =∠FDE =80°,100,100BDF EDC BDF BFD ∴∠+∠=︒∠+∠=︒EDC BFD∴∠=∠在BFD △与CDE △中,B C EDC BFD DE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩()BFD CDE AAS ∴≅=1.5,=2BF CD BD CE ∴==2 1.5 3.5BC BD DC ∴=+=+=.8.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.①求证:ABP PCD △△∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.【答案】感知:(1)AEDE;应用:(2)①见解析;②3.6;拓展:(3)2或113【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分PA=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【解析】感知:(1)∵△ABC∽△DAE,∴BC AC AE DE=,∴BC AE AC DE=,故答案为:AE DE;应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP=∠CPD,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCD;②BC=12,点P为BC中点,∴BP=PC=6,·∵△ABP∽△PCD,∴AB BPPC CD=,即1066CD=,解得:CD=3.6;拓展:(3)当PA=PD时,△ABP≌△PCD,∴PC=AB=10,∴BP=BC-PC=12-10=2;当AP=AD时,∠ADP=∠APD,∵∠APD =∠B =∠C ,∴∠ADP =∠C ,不合题意,∴AP ≠AD ;当DA =DP 时,∠DAP =∠APD =∠B ,∵∠C =∠C ,∴△BCA ∽△ACP ,∴BC AC AC CP =,即121010CP=,解得:253CP =,∴25111233BP BC CP =-=-=,综上所述,当APD △为等腰三角形时,BP 的长为2或113.9.问题背景:(1)如图①,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图③,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.【答案】(1)BD ;CE ;证明见详解;(2)DE=BD+CE ;证明见详解;(3)点B 的坐标为()1,4B .【分析】(1)根据全等三角形的判定和性质得到AE BD =,AD CE =,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明ABD CAE ∠=∠,证明ABD CAE ≌,根据全等三角形的性质得到AE BD =,AD CE =,结合图形解答即可;(3)根据AEC CFB ≌,得到3CF AE ==,4BF CE OE OC ==-=,根据坐标与图形性质解答即可.【解析】(1)证明:∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵90BAD ABD ∠+∠=︒,∴ CAE ABD ∠=∠,在ADB 和CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADB CEA ≌,∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+,即:DE BD CE =+,故答案为:BD ;CE ;(2)解:数量关系:DE BD CE =+,证明:在ABD 中,180ABD ADB BAD ∠=︒-∠-∠,∵180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠,∴ABD CAE ∠=∠,在ABD 和CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩===∴ABD CAE ≌,∴AE BD =,AD CE =,∴DE AD AE BD CE =+=+;(3)解:如图,作AE x ⊥轴于E ,BF x ⊥轴于F,由(1)可知,AEC CFB ≌,∴3CF AE ==,4BF CE OE OC ==-=,∴1OF CF OC =-=,∴点B 的坐标为()1,4B .10.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA =∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)DE=BD+CE.(2)DE=BD+CE仍然成立,证明见解析【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE.【解析】(1)解:DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE =AD +AE =BD +CE ;11.如图,90,ABC FA AB ∠=⊥于点A ,点D 在直线AB 上,,AD BC AF BD ==.(1)如图1,若点D 在线段AB 上,判断DF 与DC 的数量关系和位置关系,并说明理由;(2)如图2,若点D 在线段AB 的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.【答案】(1)DF =DC ,DF ⊥DC ;理由见解析(2)成立,理由见解析【分析】(1)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直;(2)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直.【解析】(1)解:∵90,ABC FA AB ∠=⊥,∴90ABC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵90,ABC FA AB ∠=⊥,∴90DBC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .12.在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE 的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD +∠EAC =∠BAD +∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.【解析】(1)解:DE =BD +CE ,理由如下,∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD +∠EAC =∠BAD +∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC •h =12,S △ABF =12BF •h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4,∴△FBD 与△ACE 的面积之和为4.13.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到AC =,BC =AE .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)如图2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC ,DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;(深入探究)(3)如图,已知四边形ABCD 和DEGF 为正方形,△AFD 的面积为S 1,△DCE 的面积为S 2,则有S 1S 2(填“>、=、<”)【答案】(1)DE ;(2)见解析;(3)=【分析】(1)根据全等三角形的性质可直接进行求解;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,进而可得∠BAF =∠ADH ,然后可证△ABF ≌△DAH ,则有AF =DH ,进而可得DH =EQ ,通过证明△DHG ≌△EQG 可求解问题;(3)过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M ,由题意易得∠ADC =∠90°,AD =DC ,DF =DE ,然后可得∠ADO =∠DCM ,则有△AOD ≌△DMC ,△FOD ≌△DNE ,进而可得OD =NE ,通过证明△ENP ≌△CMP 及等积法可进行求解问题.【解析】解:(1)∵ABC DAE △≌△,∴AC DE =;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,如图所示:∴90DAH ADH ∠+∠=︒,∵90BAD ∠=︒,∴90BAF DAH ∠+∠=︒,∴BAF ADH ∠=∠,∵BC AF ⊥,∴90BFA AHD ∠=∠=︒,∵AB DA =,∴△ABF ≌△DAH ,∴AF =DH ,同理可知AF =EQ ,∴DH =EQ ,∵DH ⊥FG ,EQ ⊥FG ,∴90DHG EQG ∠=∠=︒,∵DGH EGQ∠=∠∴△DHG ≌△EQG ,∴DG =EG ,即点G 是DE 的中点;(3)12S S =,理由如下:如图所示,过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M∵四边形ABCD 与四边形DEGF 都是正方形∴∠ADC =∠90°,AD =DC ,DF =DE∵DO ⊥AF ,CM ⊥OD ,∴∠AOD =∠CMD =90°,∠OAD +∠ODA =90°,∠CDM +∠DCM =90°,又∵∠ODA +∠CDM =90°,∴∠ADO =∠DCM ,∴△AOD ≌△DMC ,∴AOD DMC S S =△△,OD =MC ,同理可以证明△FOD ≌△DNE ,∴FOD DNE S S =△△,OD =NE ,∴MC =NE ,∵EN ⊥OD ,CM ⊥OD ,∠EPN =∠CMP ,∴△ENP ≌△CMP ,∴ENP CMP S S △△=,∵,ADF AOD FOD DCE DCM CMP DEN ENP SS S S S S S S =+=-++,∴DCE DCM DEN AOD FOD S S S S S =+=+,∴DCE ADF S S △△=即12S S =.14.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D ,E .求证:DE BD CE =+.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线l 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过ABC 的边AB ,AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△,则AEI S =△______.【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5【分析】(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,同(1)可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【解析】解:(1)证明:如图1中,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(2)解:成立.理由:如图2中,∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α,∴∠DBA =∠CAE ,在△ADB 和△CEA 中,BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N.∴∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN∴EM =GN在△EMI 和△GNI 中,GIN EIM EM GN GNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点.∴S △AEI =12S △AEG =3.5.故答案为:3.5.15.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证:△BEC ≌△CDA ;(2)模型应用:①已知直线y =34x +3与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y =2x ﹣5上的一点,若△APD 是不以A 为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.【答案】(1)见解析;(2)137y x =-+;(3)(3,1)或(913),或1923(33,【分析】(1)由条件可求得EBC ACD ∠=∠,利用AAS 可证明BEC CDA ≌;(2)由直线解析式可求得A 、B 的坐标,利用模型结论可得CE BO =,BE AO =,从而可求得C 点坐标,利用待定系数法可求得直线AC 的解析式;(3)分两种情况考虑:如图2所示,当90ADP ∠=︒时,AD PD =,设D 点坐标为(,25)x x -,利用三角形全等得到1128x x -+=,易得D 点坐标;如图3所示,当90APD ∠=︒时,AP PD =,设点P 的坐标为(8,)m ,表示出D 点坐标为(14,8)m m -+,列出关于m 的方程,求出m 的值,即可确定出D 点坐标;如图4所示,当90ADP ∠=︒时,AD PD =时,同理求出D 的坐标.【解析】解:(1)由题意可得,90ACB ADC BEC ∠=∠=∠=︒,∴90EBC BCE BCE ACD ∠+∠=∠+∠=︒,∴EBC ACD ∠=∠,在BEC △和CDA 中EBC ACD E D BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BEC CDA AAS ≌;(2)过点C 作CD x ⊥轴于点D ,如图2,在334y x =+中,令0y =可求得4x =-,令0x =可求得3y =,∴3OA =,4OB =同(1)可证得CDB BOA ≌,∴4CD BO ==,3BD AO ==,∴437OD =+=,∴()7,4C -且()0,3A ,设直线AC 解析式为3y kx =+,把C 点坐标代入可得734k -+=,解得17k =-,∴直线AC 解析式为137y x =-+;(3)如图2,当90ADP ∠=︒时,AD PD =,过点D 作DE OA ⊥于E ,过点D 作DF BC ⊥于F ,同理可得:AED DFP△≌△设D 点坐标为(,25)x x -,则6(25)112AE DF x x ==--=-,∵DE DF EF BC +==,即1128x x -+=,解得3x =,可得D 点坐标(3,1);如图3,当90APD ∠=︒时,AP PD =,过点P 作PE OA ⊥于E ,过点D 作DF PE ⊥于F ,设点P 的坐标为()8,m ,同理可得:APE PDF ≌△△,∴6PF AE m ==-,8DF PE ==,∴D 点坐标为()14,8m m -+,∴()82145m m +=--,得5m =,∴D 点坐标(913),;如图4,当90ADP ∠=︒时,AD PD =时,同理可得ADE DPF △△≌,设(,25)D n n -,则DE PF n ==,25OE n =-,AE DF =则256211DF AE n n ==--=-,∵8DE DF EF OC +===∴2118n n +-=,解得193n =,23253n -=∴D 点坐标1923()33,,综上可知满足条件的点D 的坐标分别为(3,1)或(913),或1923(33,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档