人教版初中数学九年级下册同步测试-第27章--相似(共21页)(2021年)

合集下载

人教版九年级数学下册《第27章相似》单元测试卷(有答案)

人教版九年级数学下册《第27章相似》单元测试卷(有答案)

人教版九年级数学下册第27章相似单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 若ab =23,则ba+b的值等于()A.5 3B.25C.35D.522. 下列各组线段中,能成比例线段的一组是()A.2,3,4,6B.2,3,4,5C.2,3,5,7D.3,4,5,63. 若△ABC∽△DEF,且AB:DE=1:3,则S△ABC:S△DEF=( )A.1:3B.1:9C.1:√3D.1:1.54. 有四组线段,每组线段长度如下,则成比例(排列顺序可调换)线段的有()①1,2,3,4②3,2,6,4③1.1,2.2,3.3,4.4④4,2,3,1.5.A.1组B.2组C.3组D.4组5. 某校要举办国庆联欢会,主持人站在舞台的黄金分割点处最自然得体.如图,若舞台AB的长为20m,C为AB的一个黄金分割点(AC<BC),则AC的长为(结果精确到0.1m)()A.6.7mB.7.6mC.10mD.12.4m6. 如图在△ABC中,DE // FG // BC,AD:AF:AB=1:3:6,则S△ADE:S四边形DEGF:S四边形FGCB=( )A.1:8:27B.1:4:9C.1:8:36D.1:9:367. 如图,等腰△ABC中,腰AB=a,∠A=36∘,∠ABC的平分线交AC于D,∠BCD的平分线交BD于E.设k=√5−12,则DE=( )A.k2aB.k3aC.ak2D.ak38. 如图,在△ABC中,AB=4,AC=3,DE // BC交AB于点D,交AC于点E,若AD=3,则AE 的长为()A.43B.34C.94D.499. 下列说法中正确的有()①位似图形都相似;②两个等腰三角形一定相似;③两个相似多边形的面积比为4:9,则周长的比为16:81;④若一个三角形的三边分别比另一个三角形的三边长2cm,那么这两个三角形一定相似.A.1个B.2个C.3个D.4个10. 已知:△ABC∽△A′B′C′,且△ABC的面积:△A′B′C′的面积=1:4,则两三角形周长比为()A.1:4B.1:2C.1:16D.1:5二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是________cm.12. 如图,在△ABC中,∠BAC=90∘,AB=6,AC=8,N是AC上的点,且AN=AB,连接BN,作AD⊥BN于D,点M是BC上的动点,则当BM=________时,△BMD∽△BCN.13. △ABC的长分别是6,8,10,与其相似的三角形的两条边长是3和4,那么这个三角形第三边的长是________.14. 如图,在△ABC中,D为直线BC上任意一点,给出以下判断:①若点D到AB,AC距离相等,且BD=DC,则AB=AC;②若AD⊥BC且AD2=BD⋅DC,则∠BAC=90∘;③若AB=AC,则AD2+BD⋅DC=AC2;④若∠BAC=90∘,且AD⊥BC,则AD2=BD⋅DC.其中正确的是________(把所有正确结论序号都填在横线上)15. 已知线段AB=10cm,C、D是AB上的两个黄金分割点,则线段CD的长为________.16. 如图,要使△AEF和△ACB相似,已具备条件________,还需补充的条件是________,或________,或________.17. 两个相似三角形高的比为1:√3,则它们的相似比为________;对应中线之比为________;对应角平分线之比为________;周长之比为________;面积之比为________.18. 把一个三角形变成和它位似的另一个三角形,若边长缩小到12倍,则面积缩小到原来的________倍.19. 上午某一时刻,身高1.7米的小刚在地面上的投影长为3.4米,则影长26米的旗杆高度为________米.20. 已知在平面直角坐标系中,点A(−3, −1)、B(−2, −4)、C(−6, −5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)21. 如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)以点E为中心,在位似中心的同侧画出△EDF的一个位似△ED1F1,使得它与△EDF的相似比为2:1;(3)求△ABC与△ED1F1的面积比.22. 已知线段a,b,c满足a3=b2=c6,且a+2b+c=26.(1)求a,b,c的值;(2)若线段x是线段a,b的比例中项,求x.23. 如图,在△ABC中,AG为∠BAC的平分线,点D在AB边上,点E在AC边上,DE // BC,DE= 6cm,BC=10cm,AG=8cm,求FG的长.24. 如图,为了估算河的宽度,我们可以在河对岸选定一个目标点A,再在河岸的这一边选取点B 和点C,使AB⊥BC,然后再选取点E,使EC⊥BC,用视线确定BC和AE的交点D,此时如果测得BD=160m,DC=80m,EC=50m,求A、B间的大致距离.25. 如图,在△PAB中,点C、D在边AB上,PC=PD=CD,∠APB=120∘.(1)试说明△APC与△PBD相似.(2)若CD=1,AC=x,BD=y,请你求出y与x之间的函数关系式.(3)小明猜想:若PC=PD=1,∠CPD=α,∠APB=β,只要α与β之间满足某种关系式,问题(2)中的函数关系式仍然成立.你同意小明的观点吗?如果你同意,请求出α与β所满足的关系式;若不同意,请说明理由.26. 已知在Rt△ABC中,∠ABC=90∘,∠A=30∘,点P在BC上,且∠MPN=90∘.(1)当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1).过点P作PE⊥AB于点E,请探索PN与PM之间的数量关系,并说明理由;(2)当PC=√2PA,①点M、N分别在线段AB、BC上,如图2时,请写出线段PN、PM之间的数量关系,并给予证明.②当点M、K分别在线段AB、BC的延长线上,如图3时,请判断①中线段PN、PM之间的数量关系是否还存在.(直接写出答案,不用证明)答案1. C2. A3. B4. B5. B6. A7. B8. C9. A10. B11. 1512. 513. 514. ①②③④15. 10√5−20cm16. ∠EAF=∠CAB∠AEF=∠C∠AFE=∠B AEAC =AFAB17. 1:√31:√31:√31:√31:318. 1419. 1320. (1, 2)或(−1, −2)21. 解:(1)∵AB=2√5,AC=√5,BC=5,EF=√10,FD=√2,ED=2√2,∴BC EF =√10=√102,ACFD=√5√2=√102,ABED=√52√2=√102,∴BC EF =ACFD=ABED,∴△ABC∽△DEF;(2)延长ED到点D1,使ED1=2ED,延长EF到点F1,使EF1=2EF,连结D1F1,则△ED1F1为所求,如图;(3)∵△ABC∽△DEF,△DEF∽△D1EF1,∴△ABC∽△D1EF1,∴△ABC与△ED1F1的面积比=(ACD1F1)2=(√52√2)2=58.22. 解:(1)设a3=b2=c6=k,则a=3k,b=2k,c=6k,所以3k+2×2k+6k=26,解得k=2,所以a=3×2=6,b=2×2=4,c=6×2=12.(2)∵线段x是线段a,b的比例中项,∴x2=ab=6×4=24,∴线段x=2√6.23. 解:设GF=xcm,则AF=8−x(cm);∵DE // BC,∴△ADE∽△ABC,△ADF∽△ABG,∴ADAB=DEBC,ADAB=AFAG,∴DEBC=AFAG;而DE=6,BC=10,AF=8−x,AG=8,∴810=8−x8,解得x=85(cm),即FG的长为85cm.24. A、B间的距离为100m.25. 解:(1)∵PC=PD=CD,∴∠PCD=∠PDC=∠CPD=60∘,∴∠ACP=∠BDP=120∘,∵∠A+∠APC=60∘,∠APC+∠BPD=∠APB−∠CPD=120∘−60∘=60∘,∴∠A=∠BPD,∴△APC∽△PBD;(2)由(1)得△APC∽△PBD,∴AC PC =PDBD ,∴x1=1y ,即y =1x (x >0);(3)同意,α和β的关系式为α+2β=180∘. 过程如下: ∵PC =PD ,∴∠PCD =∠PDC , ∴∠PCA =∠PDB ,当ACPC =PDBD 时,则有△APC ∽△PBD ,∴∠A =∠DPB ,∵∠APC +∠DPB =∠APB −∠CPD =β−α, ∴∠PCD =∠PDC =∠A +∠APC =β−α,在△PCD 中,∠PCD +∠PDC +∠CPD =180∘, ∴β−α+β−α+α=180∘,即−α+2β=180∘. 26.解:(1)PN =√3PM , 理由:如图1,作PF ⊥BC , ∵∠ABC =90∘,PE ⊥AB , ∴PE // BC ,PF // AB , ∴四边形PFBE 是矩形, ∴∠EPF =90∘ ∴P 是AC 的中点,∴PE =12BC ,PF =12AB , ∵∠MPN =90∘,∠EPF =90∘, ∴∠MPE =∠NPF , ∴△MPE ∽△NPF ,∴PN PM =PF PE=ABBC , ∵∠A =30∘,在RT△ABC 中,cot30∘=AB Bc=√3,∴PNPM =√3, 即PN =√3PM .(2)解;①PN =√6PM ,如图2 在Rt △ABC 中,过点P 作PE ⊥AB 于E ,PF ⊥BC 于点F ∴四边形BFPE 是矩形, ∴△PFN ∽△PEM ∴PFPE =PNPM ,又∵Rt △AEP 和Rt △PFC 中,∠A =30∘,∠C =60∘∴PF =√32PC ,PE =12PA∴PN PM=PFPE =√3PCPA∵PC =√2PA ∴PNPM =√6, 即:PN =√6PM②如图3,成立.。

2021年秋九年级数学下册第27章相似检测卷新版新人教版202106073146

2021年秋九年级数学下册第27章相似检测卷新版新人教版202106073146

感谢您使用本资源,本资源是由订阅号”初中英语资源库“制作并分享给广大用户,本资源制作于2020年底,是集实用性、可编辑性为一体。

本资源为成套文件,包含本年级本课的相关资源。

有教案、教学设计、学案、录音、微课等教师最需要的资源。

我们投入大量的人力、物力,聘请精英团队,从衡水中学、毛毯厂中学、昌乐中学等名校集合了一大批优秀的师资,精研中、高考,创新教学过程,将同学们喜闻乐见的内容整体教给学生。

本资源适用于教师下载后作为教学的辅助工具使用、适合于学生家长下载后打印出来作为同步练习使用、也适用于同学们自己将所学知识进行整合,整体把握进度和难度,是一个非常好的资源。

如果需要更多成套资料,请微信搜索订阅号“初中英语资源库”,在页面下方找到“资源库”,就能得到您需要的每一份资源(包括小初高12000份主题班会课课件免费赠送!)第二十七章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分) 1.观察下列每组图形,相似图形是( )2.如果两个相似三角形对应边中线之比是1∶4,那么它们的对应高之比是( ) A .1∶2 B.1∶4 C.1∶8 D.1∶16 3.已知△ABC ∽△DEF ,且AB ∶DE =1∶2,则△ABC 的面积与△DEF 的面积之比为( ) A .1∶2 B.1∶4 C.2∶1 D.4∶14.如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别交于点A 、B 、C 和点D 、E 、F .若ABBC=23,DE =4,则EF 的长是( ) A.83 B.203C .6D .10 第4题图第5题图第6题图5.如图,在直角坐标系中,有两点A (6,3),B (6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到CD ,则C 的坐标为( ) A .(2,1) B .(2,0) C .(3,3) D .(3,1)6.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABCC.AP AB =AB AC D.AB BP =AC CB7.如图,在6×6的正方形网格中,连接两格点A ,B ,线段AB 与网格线的交点为M ,N ,则AM ∶MN ∶NB 为( )A .3∶5∶4 B.1∶3∶2 C.1∶4∶2 D.3∶6∶5第7题图第8题图8.如图,为测量河的宽度,在河对岸选定一个目标点A ,在近岸取点B 、C 、D ,使得AB ⊥BC ,点E 在BC 上,并且点A 、E 、D 在同一直线上.若测得BE =15m ,EC =9m ,CD =16m ,则河的宽度AB 等于( )A .35m B.653m C.803m D.503m9.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A.EA BE =EG EF B.EG GH =AG GD C.AB AE =BC CF D.FH EH =CF AD第9题图第10题图10.如图,若∠1=∠2=∠3,则图中的相似三角形有( ) A .1对 B .2对 C .3对 D .4对11.如图,把△ABC 沿AB 边平移到△A ′B ′C ′的位置,它们重叠部分(即图中阴影部分)的面积是△ABC 面积的一半.若AB =2,则此三角形移动的距离AA ′是( )A.2-1B.22 C .1 D.12第11题图第12题图12.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④S 四边形CDEF =52S △ABF .其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题4分,共24分) 13.在比例尺为1∶4000 000的地图上,两城市间的图上距离为3cm ,则这两城市间的实际距离为 km.14.若实数a 、b 、c 满足b +c a =a +c b =a +bc=k ,则k = . 15.如图,身高为1.7m 的小明AB 站在河的一岸,利用树的倒影去测量河对岸一棵树CD 的高度,CD 在水中的倒影为C ′D ,A 、E 、C ′在一条线上.已知河BD 的宽度为12m ,BE =3m ,则树CD 的高为 .第15题图16.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶3,点E 的坐标为(3,3),则点A 的坐标是 .第16题图第17题图第18题图17.如图,在Rt△ABC 中,AB =BC ,∠B =90°,AC =10 2.四边形BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上),则此正方形的面积是 .18.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则1AM +1AN= .三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)如图,在△ABC 中,DE ∥BC ,DE =2,BC =3.求AE AC的值.20.(10分)如图,已知在四边形ABCD 中,∠ADB =∠ACB ,延长AD ,BC 相交于点E .求证:AC ·DE =BD ·CE .21.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点).(1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)请画一个格点△A 2B 2C 2,使△A 2B 2C 2∽△ABC ,且相似比不为1.22.(10分)如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.23.(12分)如图,已知在梯形ABCD中,AD∥BC,AB⊥BC,∠AEB=∠ADC.(1)求证:△ADE∽△DBC;(2)连接EC,若CD2=AD·BC,求证:∠DCE=∠ADB.24.(12分)一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC 方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m.已知李明直立时的身高为1.75m ,求路灯CD 的高.25.(12分)如图,△ABC 中,∠ACB =90°,D 为AB 上一点,以CD 为直径的⊙O 交BC 于点E ,连接AE 交CD 于点P ,交⊙O 于点F ,连接DF ,∠CAE =∠ADF .(1)判断AB 与⊙O 的位置关系,并说明理由; (2)若PF ∶PC =1∶2,AF =5,求CP 的长.26.(14分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线y =k x(x >0)的图象经过BC 上的点D ,与AB 交于点E ,连接DE ,若E 是AB 的中点.(1)求点D 的坐标;(2)点F 是OC 边上一点,若△FBC 和△DEB 相似,求点F 的坐标.答案1.D 2.B 3.B 4.C 5.A 6.D 7.B 8.C 9.C 10.D 11.A 12.A 解析:过D 作DM ∥BE 交AC 于点N ,交BC 于点M .∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∴∠EAC =∠ACB .∵BE ⊥AC 于点F ,∴∠AFE =∠ABC =90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE BC =AF CF .∵AE =12AD =12BC ,∴AFCF=12,∴CF =2AF ,故②正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC ,∴BM =CM ,∴CN =NF .∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DN 垂直平分CF ,∴DF =DC ,故③正确;∵△AEF ∽△CBF ,EF BF =AE BC =12,∴S △AEF =12S △ABF ,∴S △AEF =13S △ABE =112S 矩形ABCD .又∵S四边形CDEF=S △ACD -S △AEF =12S矩形ABCD-112S 矩形ABCD=512S 矩形ABCD=5S △AEF =52S △ABF ,故④正确.故选A.13.120 14.-1或2 15.5.1m 16.(0,1) 17.25 18.119.解:∵DE ∥BC ,∴△ADE ∽△ABC ,(5分)∴AE AC =DE BC =23.(10分)20.证明:∵∠ADB =∠ACB ,∴∠EDB =∠ECA .(3分)又∵∠E =∠E ,∴△ECA ∽△EDB ,(7分)∴AC BD =CEDE,即AC ·DE =BD ·CE .(10分)21.解:(1)作出△A 1B 1C 1,如图所示;(5分)(2)作出△A 2B 2C 2,如图所示(本题是开放题,答案不唯一,只要作出的△A 2B 2C 2满足条件即可)(10分).22.解:∵在△ACD 和△ABC 中,⎩⎪⎨⎪⎧∠A =∠A ,∠ACD =∠B ,∴△ACD ∽△ABC ,∴AD AC =ACAB .(5分)∵AD=8cm ,BD =4cm ,∴AB =12cm ,∴8AC =AC12,(8分)∴AC =46cm.(10分)23.证明:(1)∵AD ∥BC ,∴∠ADE =∠DBC ,∠ADC +∠BCD =180°.(2分)∵∠AEB =∠ADC ,∠AEB +∠AED =180°,∴∠AED =∠BCD ,(5分)∴△ADE ∽△DBC ;(6分)(2)由(1)可知△ADE ∽△DBC ,∴AD DB =DE BC,∴DB ·DE =AD ·BC .(7分)∵CD 2=AD ·BC ,∴CD 2=DB ·DE ,∴CD DB =DECD.(8分)又∵∠CDE =∠BDC ,∴△CDE ∽△BDC ,∴∠DCE =∠DBC .(10分)又∵∠ADB =∠DBC ,∴∠DCE =∠ADB .(12分)24.解:设CD =x m.∵AE =AM ,AM ⊥EC ,∴∠E =45°,∴EC =CD =x m ,AC =(x -1.75)m.(2分)∵CD ⊥EC ,BN ⊥EC ,BN ∥CD ,∴△ABN ∽△ACD ,(7分)∴BN CD =AB AC ,即1.75x = 1.25x -1.75,解得x =6.125.(11分)答:路灯CD 的高为6.125m.(12分)25.解:(1)AB 是⊙O 的切线.(1分)理由如下:∵∠ACB =90°,∴∠CAE +∠CEA =90°.(3分)又∵∠CEA =∠CDF ,∠CAE =∠ADF ,∴∠ADF +∠CDF =90°,∴∠ADC =90°,∴CD ⊥AD ,∴AB 是⊙O 的切线;(6分)(2)∵∠CPF =∠APC ,连接DE 、CF ,如图.∵CD 是直径,∴∠DEC =90°.∵∠ACB =90°,∴∠DEC +∠ACE =180°,∴DE ∥AC ,∴∠DEA =∠CAE ,又∵∠PCF =∠DEA ,∴∠PCF =∠PAC .∴△PCF ∽△PAC ,∴PC PA =PF PC,∴PC 2=PF ·PA .(9分)设PF =a ,∵PF ∶PC =1∶2,则PC =2a ,PA =a +5,∴4a 2=a (a +5),∴a =53或a =0(舍去),∴PC =2a =103.(12分)26.解:(1)∵四边形OABC 为矩形,∴AB ⊥x 轴.∵E 为AB 的中点,点B 的坐标为(2,3),∴点E 的坐标为⎝ ⎛⎭⎪⎫2,32.∵点E 在反比例函数y =k x 的图象上,∴k =3,∴反比例函数的解析式为y =3x.(4分)∵四边形OABC 为矩形,∴点D 与点B 的纵坐标相同,将y =3代入y=3x可得x =1,∴点D 的坐标为(1,3);(6分)(2)由(1)可得BC =2,CD =1,∴BD =BC -CD =1.∵E 为AB 的中点,∴BE =32.(8分)若△FBC ∽△DEB ,则CB BE =CF BD ,即232=CF 1,∴CF =43,∴OF =CO -CF =3-43=53,∴点F 的坐标为⎝ ⎛⎭⎪⎫0,53;(11分)若△FBC ∽△EDB ,则BC DB =CF BE ,即21=CF 32,∴CF =3,此时点F 和点O 重合.(13分)综上所述,点F 的坐标为⎝ ⎛⎭⎪⎫0,53或(0,0).(14分)精品“正版”资料系列,由本公司独创。

2020-2021学年人教版数学九年级下学期《第27章 相似》测试卷及答案解析

2020-2021学年人教版数学九年级下学期《第27章 相似》测试卷及答案解析
A.(6﹣2 )B.(2 ﹣2)C.( ﹣1)D.(3﹣ )
9.如图,AD是△ABC的中线,点E在AD上,AD=4DE,连接BE并延长交AC于点F,则AF:FC的值是( )
A.3:2B.4:3C.2:1D.2:3
10.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是( )
A.(﹣22019,22019)B.(22019,﹣22019)
C.(﹣22018,22018)D.(22018,﹣22018)
20.如图,▱ABCD中,∠C=120°,AB=AE=5,AE与BD交于点F,AF=2EF.则BC的长为( )
A.12B.10C.8D.6
21.如图,在⊙O中,CD是直径,且CD⊥AB于P,则下列结论中①AP=PB②PO=PD③∠BOD=2∠ACD④AP2=PC•PD,正确的个数有( )
A.①和②B.②和③C.①和③D.①和④
11.下面不是相似图形的是( )
A. B.
C. D.
12.观察下列每组图形,相似图形是( )
A. B.
C. D.
13.如图,下列条件中,不能判定△ACD∽△ABC的是( )
A.∠ADC=∠ACBB.∠B=∠ACDC.∠ACD=∠BCDD.
14.如图,点D、E分别在△ABC的边AB、AC上,且AB=9,AC=6,AD=3,若使△ADE与△ABC相似,则AE的长为( )
2020-2021学年人教版数学九年级下学期
《第27章相似》测试卷
一.选择题(共27小题)
1.已知 ,则 等于( )
A. B. C.2D.3
2.若 ,则 =( )
A. B.﹣ C.7D.﹣7
3.如图,用图中的数据不能组成的比例是( )

人教版九年级数学下册第27章《相似》单元检测及答案(2021新)

人教版九年级数学下册第27章《相似》单元检测及答案(2021新)
∵BD=4,CD=9,∴AD=6.
12.【答案】∵BC= AC,∴ ,∵AD∥BE∥CF,∴ ,∵DE=4,∴EF=2.故答案为:2.
13.【答案】因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,
因为S△ABC:S△DEF=2:9=(2:3)2,
所以△ABC与△DEF的相似比为2:3,
(1)当t=3秒时,这时,P,Q两点之间的距离是多少?
(2)若△CPQ的面积为S,求S关于t的函数关系式.
(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?
第27章《相似》单元测试卷解析
一、选择题
1.【答案】∵2x=5y,∴ .故选B.
2.【答案】设 =k,
则a=2k,b=3k,c=4k,
D、∠A=∠E且 不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;
故选:C.
4.【答案】∵四边形ABCD是正方形,∴AB=BC,
∵BE=CE,∴AB=2BE,
又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN
∴DM2+DN2=MN2=1∴DM2+ DM2=1,解得DM= ;
①当Rt△CPQ∽Rt△CAB时,CP:CA=CQ:CB,即(20-4t):20=2t:15,解得t=3秒;
②当Rt△CPQ∽Rt△CBA时,CP:CB=CQ:CA,即(20-4t):15=2t:20,解得t= 秒.
因此t=3秒或t= 秒时,以点C、P、Q为顶点的三角形与△ABC相似.
②DM与BE是对应边时,DM= DN,∴DM2+DN2=MN2=1,
即DM2+4DM2=1,解得DM= .∴DM为 或 时,△ABE与以D、M、N为顶点的三角形相似.

人教版数学九年级下学期第27章《相似》测试题含答案

人教版数学九年级下学期第27章《相似》测试题含答案

人教版数学九年级下学期第27章《相似》测试题(测试时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如果23a b =,则a bb +=( ) A .13 B .12 C .53 D . 352.如图△ABC 中,点D 、E 分别在边AB 、AC 上,31==ACAD ABAE ,则BCED ADE S S 四边形△:的值为( )A 、3:1B 、1:3C 、1:8D 、1:93.如图,Rt △ABC 和Rt △DCA 中,∠B=∠ACD=90°,AD ∥BC ,AB=2,DC=3,则△ABC 与△DCA 的面积比为( )A .2:3B .2:5C .4:9D .2:34.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF的值为( ).A .12 B .2 C .25 D .355.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3 米,则地面上阴影部分的面积为( )A .0..36π米2B . 0.81π米2C .2π米2D .3. 24π米26.如图,在平面直角坐标系中,以原点为位似中心,将线段CD 放大得到线段AB ,若点B 、C 、D 的坐标分别为B (5,0)、C (1,2)、D (2,0),则点A 的坐标是( )A .(2.5,5)B .(2.5,3)C .(3,5)D .(2.5,4)7.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA , OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:68.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则DEFEFBCSS 四边形:为( )A .2:5B .4:25C .4:31D .4:359.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m10.如图,在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE=∠BAD .有下列结论:①FD=F E ;②AH=2CD ;③BC •AD=AE 2;④S △ABC =4S △ADF .其中正确的有( )A.1个 B.2 个 C.3 个 D.4个二、填空题(每小题3分,共30分)11.已知两个相似三角形的周长比是,它们的面积比是________.12.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).13.李明同学利用影长测学校旗杆的高度,某一时刻身高1.8米的李明的影长为1米,同时测得旗杆的影长为7米,则学校的旗杆的高为________米.14.在中,,是的中点,过点作直线,使截得的三角形与原三角形相似,这样的直线有________条.15.如图,在□ABCD中,F是AD延长线上一点,连接BF交DC于点E,在不添加辅助线的情况下,请写出图中一对相似三角形:__________________.16.如图,数学趣闻:上世纪九十年代,国外有人传说:“从月亮上看地球,长城是肉眼唯一看得见的建筑物.”设长城的厚度为,人的正常视力能看清的最小物体所形成的视角为,且已知月、地两球之间的距离为,根据学过的数学知识,你认为这个传说________.(请填“可能”或“不可能”,参考数据:)17.△ABC的三边长分别为,,2,△A1B1C1的两边长为1,,要使△ABC∽△A1B1C1,那么△A1B1C1的第三边长为_______.18.如图,等边△ ABC 的边长为30,点M 是边AB 上一动点,将等边△ ABC 沿过点M 的直线折叠,该直线与直线AC 交于点N,使点A 落在直线BC 上的点D 处,且BD:DC=1 :4,折痕为MN,则AN 的长为_____.19.如图:已知在中,是斜边上的高.在这个图形中,与相似的三角形是________(只写一个即可).20.如图,在梯形中,,点、、、是两腰上的点,,,且四边形的面积为,则梯形的面积为________.三、解答题(共60分)21.(本题7分)如图,D是△ABC外一点,E是BC边上一点,∠1=∠2,∠3=∠4.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.22.(本题7分)如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)、若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1;(2)、求△ABC中AC边上的高;(3)、若△ABC外接圆的圆心为P,则点P的坐标为23.(本题7分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.24.(本题6分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.25.(本题8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.26.(本题8分)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC 的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.27.(本题8分)如图1,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的一动点(不与端点A、D重合),连结PC,过点P作P E⊥PC交AB于点E,在P点运动过程中,图中各角和线段之间是否存在的某种关系和规律?特例求解当E为AB的中点,且AP>AE时,求证:PE=PC.深入探究当点P在AD上运动时,对应的点E也随之在AB上运动,求整个运动过程中B E的取值范围.28.(本题9分)如图,AB是⊙O的直径,直线l与⊙O相切于点C,AE⊥l交直线l于点E、交⊙O于点F,BD⊥l交直线l于点D.(1)求证:△AEC∽△CDB;(2)求证:AE+EF=AB;cm s的速度运动,点Q从点B出发沿(3)若AC=8cm,BC=6cm,点P从点A出发沿线段AB向点B以2/cm s的速度运动,两点同时出发,当点P运动到点B时,两点都停止运动.设运动时线段BC向点C以1/间为t秒,求当t为何值时,△BPQ为等腰三角形?答案(测试时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如果23a b =,则a bb +=( ) A .13 B .12 C .53 D . 35【答案】C 【解析】先根据比例的性质可得a b +1=23+1,进而可得53a b b +=. 故选C .2.如图△ABC 中,点D 、E 分别在边AB 、AC 上,31==ACAD ABAE ,则BCED ADE S S 四边形△:的值为( )A 、3:1B 、1:3C 、1:8D 、1:9【答案】C 【解析】根据题意可得:△ADE ∽△ACB ,则ADE ACB S S △△:=1:9,则BCED ADE S S 四边形△:=1:8.故选C3.如图,Rt △ABC 和Rt △DCA 中,∠B=∠ACD=90°,AD ∥BC ,AB=2,DC=3,则△ABC 与△DCA 的面积比为( )A .2:3B .2:5C .4:9D .2:3 【答案】C 【解析】由AD ∥BC ,得出∠ACB=∠DAC ,证得△A BC ∽△DCA ,可得AB BC ACDC AC AD==,再由面积的比等于相似比的平方,即可得到24()9ABC DCAS AB SDC ==, 故选C .4.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF的值为( ).A .12 B .2 C .25 D .35【答案】D .5.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3 米,则地面上阴影部分的面积为( )A .0..36π米2B . 0.81π米2C .2π米2D .3. 24π米2【答案】B 【解析】如图设C ,D 分别是桌面和其地面影子的圆心,依题意可以得到△OBC ∽△OAD ,然后由它们的对应边成比例可以得CB OC AD OD =,再把OD=3,CD=1代入可求出OC= OD-CD=3-1=2,BC=12×1.2=0.6,然后求出地面影子的半径AD=0.9,这样可以求出阴影部分的面积S ⊙D =π×0.92=0.81πm 2,这样地面上阴影部分的面积为0.81πm 2. 故选B6.如图,在平面直角坐标系中,以原点为位似中心,将线段CD 放大得到线段AB ,若点B 、C 、D 的坐标分别为B (5,0)、C (1,2)、D (2,0),则点A 的坐标是( )A .(2.5,5)B .(2.5,3)C .(3,5)D .(2.5,4) 【答案】A7.如图,△D EF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA , OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:6【答案】B 【解析】由D ,F 分别是OA ,OC 的中点,根据三角形的中位线的性质得DF=12AC ,根据三角形相似的性质可知△DEF 与△ABC 的相似比是1:2,因此△DEF 与△ABC 的面积比是1:4. 故选B .8.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则DEFEFBCSS 四边形:为( )A .2:5B .4:25C .4:31D .4:35 【答案】C9.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A .0.5mB .0.55mC .0.6mD .2.2m 【答案】A【解析】 根据题意可得:1.185.07.1x,解得:x=2.2,则2.2-1.7=0.5m ,即小刚举起的手臂超出头顶0.5m. 10.如图,在△ABC 中,AD 和BE 是高,∠ABE=45°,点F 是AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE=∠BAD .有下列结论:①FD=FE ;②AH=2CD ;③BC •AD=AE 2;④S △ABC =4S △ADF .其中正确的有( )A.1个 B.2 个 C.3 个 D.4个【答案】D二、填空题(每小题3分,共30分)11.已知两个相似三角形的周长比是,它们的面积比是________.【答案】【解析】∵两个相似三角形的周长比是1:3,∴它们的面积比是,即1:9.故答案为:1:9.12.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割,已知AB=10 cm,AC>BC,那么AC的长约为____________cm(结果精确到0.1 cm).【答案】6.2【解析】由题意知AC:AB=BC:AC,∴AC:AB≈0.618,∴AC=0.618×10cm≈6.2(结果精确到0.1cm)故答案为:6.2.13.李明同学利用影长测学校旗杆的高度,某一时刻身高1.8米的李明的影长为1米,同时测得旗杆的影长为7米,则学校的旗杆的高为________米.【答案】12.614.在中,,是的中点,过点作直线,使截得的三角形与原三角形相似,这样的直线有________条.【答案】【解析】作DE∥AB,DF∥BC,可得相似,作∠CDG=∠B,∠ADH=∠C,也可得相似三角形.所以可作4条.故答案为:4.15.如图,在□ABCD中,F是AD延长线上一点,连接BF交DC于点E,在不添加辅助线的情况下,请写出图中一对相似三角形:__________________.【答案】答案不唯一,如△DFE∽△CBE【解析】∵四边形ABCD是平行四边形,∴BC//AD,即BC//DF,∴△DEF∽△CEB,故答案为:△DEF∽△CEB(答案不唯一).16.如图,数学趣闻:上世纪九十年代,国外有人传说:“从月亮上看地球,长城是肉眼唯一看得见的建筑物.”设长城的厚度为,人的正常视力能看清的最小物体所形成的视角为,且已知月、地两球之间的距离为,根据学过的数学知识,你认为这个传说________.(请填“可能”或“不可能”,参考数据:)【答案】不可能这就是说,按照人的最小视角1′观察地球上长城的厚度,最远的距离只能是34.4km,而月球与地球之间的距离为380000km,这个数字很大,它相当于34.4km的11046倍,从这么远看长城,根本无法看见. 17.△ABC的三边长分别为,,2,△A1B1C1的两边长为1,,要使△ABC∽△A1B1C1,那么△A1B1C1的第三边长为_______.【答案】【解析】由三边对应成比例的两个三角形相似,易得相似比为:,故要使△ABC和△A1B1C1的三边成比例,则第三边长为2÷=,故答案为:.18.如图,等边△ ABC 的边长为30,点M 是边AB 上一动点,将等边△ ABC 沿过点M 的直线折叠,该直线与直线AC 交于点N,使点A 落在直线BC 上的点D 处,且BD:DC=1 :4,折痕为MN,则AN 的长为_____.【答案】21或65【解析】①当点A落在如图1所示的位置时,∵BD:DC=1:4,BC=30,∴DB=6,CD=24,设AN=x,则CN=30-x,∴=,∴DM=,BM=,∵BM+DM=30,∴+=30,解得x=21,∴AN=21;②当A在CB的延长线上时,如图2,与①同理可得△BMD∽△CDN,∴得,∵BD:DC=1:4,BC=10,∴DB=10,CD=40,设AN=x,则CN=x-10,∴=,∴DM=,BM=,∵BM+DM=30,∴+=10,解得:x=65,∴AN=65.故答案为:21或65.19.如图:已知在中,是斜边上的高.在这个图形中,与相似的三角形是________(只写一个即可).【答案】20.如图,在梯形中,,点、、、是两腰上的点,,,且四边形的面积为,则梯形的面积为________.【答案】18【解析】∵在梯形ABCD中,AD∥BC,点E、F、G、H是两腰上的点,AE=EF=FB,CG=GH=HD,∴2EH=AD+FG,2FG=EH+BC,∴EH=,FG=,∵四边形EFGH的面积为6cm2,∴(EH+FG)h=6,∴四边形ADEH的面积和四边形FBCG的面积和为:(EH+AD)h+(BC+FG)h=12,则梯形ABCD的面积为:18.故答案为:18.三、解答题(共60分)21.(本题7分)如图,D是△AB C外一点,E是BC边上一点,∠1=∠2,∠3=∠4.(1)写出图中两对相似三角形(不得添加字母和线);(2)请分别说明两对三角形相似的理由.【答案】(1)、△ABD∽△AEC;△ABE∽△ADC;(2)、证明见解析22.(本题7分)如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).(1)、若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1;(2)、求△ABC中AC边上的高;(3)、若△ABC外接圆的圆心为P,则点P的坐标为【答案】(1)图形见解析;(2)、105;(3)、(2,6).【解析】(1)、如图所示;(2)、高105(3)、(2,6);23.(本题7分) 如图,梯形ABCD 中,AB//CD ,且AB=2CD ,E ,F 分别是AB ,BC 的中点.EF 与BD 相交于点M .(1)求证:△EDM ∽△FBM ; (2)若DB=9,求BM .【答案】(1)、证明见解析;(2)、BM=3.24.(本题6分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM 上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM 上的对应位置为点C ,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D 时,看到“望月阁”顶端点A 在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方O yxAB CDEF法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【答案】99m25.(本题8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.【答案】(1)、证明见解析;(2)、12 7【解析】(1)∵AD平分∠BAC,∴∠BAD=∠DA,∵∠EAD=∠ADE,∴∠BAD=∠ADE,∴AB∥DE,∴△DCE∽△BCA;(2)、∵∠EAD=∠ADE,∴AE=DE,设DE=x,∴CE=AC﹣AE=AC﹣DE=4﹣x,∵△DCE∽△BCA,∴DE:AB=CE:AC,即x:3=(4﹣x):4,解得:x=127,∴DE的长是127.26.(本题8分)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC 的费马点.(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.①求证:△ABP∽△BCP;②若PA=3,PC=4,则PB= .(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.【答案】(1)证明见解析(2)证明见解析在△ACE和△ABD中,AC ADEAC BADEA AB=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②∵△ADF∽△CFP,∴AF•PF=DF•CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P点为△ABC的费马点.27.(本题8分)如图1,已知在矩形ABCD 中,AB=2,BC=3,P 是线段AD 边上的一动点(不与端点A 、D 重合),连结PC ,过点P 作PE ⊥PC 交AB 于点E ,在P 点运动过程中,图中各角和线段之间是否存在的某种关系和规律? 特例求解当E 为AB 的中点,且AP >AE 时,求证:PE=PC . 深入探究当点P 在AD 上运动时,对应的点E 也随之在AB 上运动,求整个运动过程中BE 的取值范围.【答案】(1)证明见解析;(2)87≤BE <2. (2)深入探究,设AP=x ,AE=y ,∵△AP E ∽△DCP ,∴AP AE DC DP ,即x (3﹣x )=2y ,∴y=12x 3﹣x )=﹣12x +32x=﹣12(x ﹣32)2+98,∴当x=32时,y 的最大值为98,∵AE=y 取最大值时,BE 取最小值为2﹣98=78BE的取值范围为78≤BE <2.28.(本题9分)如图,AB 是⊙O 的直径,直线l 与⊙O 相切于点C ,AE ⊥l 交直线l 于点E 、交⊙O 于点F ,BD ⊥l 交直线l 于点D .(1)求证:△AEC∽△CDB;(2)求证:AE+EF=AB;(3)若AC=8cm,BC=6cm,点P从点A出发沿线段AB向点B以2/cm s的速度运动,点Q从点B出发沿线段BC向点C以1/cm s的速度运动,两点同时出发,当点P运动到点B时,两点都停止运动.设运动时间为t秒,求当t为何值时,△BPQ为等腰三角形?【答案】(1)证明见解析;(2)证明见解析;(3)t=103或t=6017或t=258时又∵AE⊥DE,BD⊥DE,∴OC∥BD∥AE,又∵O是AB的中点,∴OC//AE//BD∴OC=1()2BD AE+,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BFE=90°,又∵∠AED=∠BDE=90°,∴四边形BDEF是矩形,∴BD=FE ,∴AE+EF=AE+BD,∴1(AE)2EF+。

(完整word)人教版九年级数学下册第二十七章相似单元测试试题(含答案),推荐文档

(完整word)人教版九年级数学下册第二十七章相似单元测试试题(含答案),推荐文档
12 12.[答案] 7 或 2 13.解:(1)△A1B1C1 如图所示. (2)△A2B2C2 如图所示,点 A2 的坐标为(-1,-4).
14.解:(1)当 CD2=AC·DB 时,△ACP∽△PDB. ∵△PCD 是等边三角形, ∴∠PCD=∠PDC=60°, ∴∠ACP=∠PDB=120°.
3 /7
人教版九年级数学下册第二十七章 相似 单元测试试题(含答案)
图 10
14.(12 分)如图 11 所示,点 C,D 在线段 AB 上,△PCD 是等边三角形. (1)当 AC,CD,DB 满足怎样的关系时,△ACP∽△PDB? (2)当△ACP∽△PDB 时,求∠APB 的度数.
图 11
4 /7
图8 12.将三角形纸片(△ABC)按图 9 所示的方式折叠,使点 B 落在边 AC 上,记为点 B′, 折痕为 EF.已知 AB=AC=3,BC=4.若以点 B′,F,C 为顶点的三角形与△ABC 相似,则 BF 的长是__________.
图9 三、解答题(本大题共 4 小题,共 47 分) 13.(11 分)如图 10,方格纸中的每个小方格都是边长为 1 个单位长度的正方形,△ABC 的顶点都在格点上,建立如图所示的平面直角坐标系. (1)将△ABC 向左平移 7 个单位长度后再向下平移 3 个单位长度,请画出经过两次平移 后得到的△A1B1C1; (2)以原点 O 为位似中心,将△ABC 缩小,使变换后得到的△A2B2C2 与△ABC 对应边的比 为 1∶2.请在网格内画出在第三象限内的△A2B2C2,并写出点 A2 的坐标.
图6
A.1 个
B.2 个
C.3 个
D.4 个
二、填空题(本大题共 5 小题,每小题 5 分,共 25 分)

2021年人教版九年级下册数学第27章测试卷及答案

2021年人教版九年级下册数学第27章测试卷及答案

人教版九年级数学《图形的相似》单元测试(附答案)(时间:120分钟 满分:120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( )A.34B.43C.916D.169 2.已知b a =513,则a -b a +b的值是( )A.23B.32C.94D.493.如图,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O.若AD =1,BC =3,则AOCO的值为( ) A.12 B.13 C.14 D.194.如图,在△ABC 中,DE ∥BC ,DE 分别与AB ,AC 相交于点D ,E.若AD =12,DB =4,则DE ∶BC 的值为( )A.23B.12C.34D.355.如图,不能判定△AOB和△DOC相似的条件是( )A.AO·CO=BO·DO B.AODO=ABCDC.∠A=∠D D.∠B=∠C6.如图,矩形ABCD∽矩形ADFE,AE=1,AB=4,则AD=( )A.2 B.2.4 C.2.5 D.37.已知如图①,②中各有两个三角形,其边长和角的度数如图上标注,则对图①,②中的两个三角形,下列说法正确的是( )A.只有①相似B.只有②相似C.都不相似D.都相似8.如图,在8×4的矩形网格中,每个小正方形的边长都是1.若△ABC的三个顶点在图中相应的格点上,图中点D,E,F也都在格点上,则下列与△ABC相似的三角形是( ) A.△ACD B.△ADF C.△BDF D.△CDE9.如图,点M 在BC 上,点N 在AM 上,CM =CN ,AM AN =BMCM,下列结论正确的是( )A .△ABM ∽△ACB B .△ANC ∽△AMB C .△ANC ∽△ACM D .△CMN ∽△BCA10.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,EG ∥AB ,且AE ∶EC =3∶2.若BC =10,则FG 的长为( )A .1B .2C .3D .411.阳光通过窗口AB 照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC =8.7米,窗口高AB =1.8米,则窗口底边离地面的高BC 为( )A .4米B .3.8米C .3.6米D .3.4米12.在Rt △ABC 和Rt △DEF 中,已知∠C =∠F =90°,在下列条件中:①∠A =30°,∠E =60°;②AC =5,BC =4,DF =15,EF =12;③AB =5,AC =3,DE =10,DF =6;④AC ∶AB =1∶3,DF =a ,DE =3a.能够判断Rt △ABC ∽Rt △DEF 的有( )A .1个B .2个C .3个D .4个13.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合.若AB =2,BC =3,则△FCB ′与△DGB ′的面积之比为( )A .9∶4B .16∶9C .4∶3D .3∶214.如图,将△ABC的高AD四等分,过每一个分点作底边的平行线,把三角形的面积分成四部分S1,S2,S3,S4,则S1∶S2∶S3∶S4等于( )A.1∶2∶3∶4 B.2∶3∶4∶5 C.1∶3∶5∶7 D.3∶5∶7∶915.如图,在△ABC中,AC=BC,CD是边AB上的高线,且有2CD=3AB=6,CE=EF =DF,则下列判断中不正确的是( )A.∠AFB=90°B.BE= 5C.△EFB∽△BFC D.∠ACB+∠AEB=45°16.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1 cm的速度从点A出发,沿折线AC—CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图像如图2所示.当点P运动5秒时,PD的长是( ) A.1.5 cm B.1.2 cm C.1.8 cm D.2 cm二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.如图,已知AD∥BE∥CF,且AB=4,BC=5 ,EF=4,则DE=.18.如图,已知△OAB与△OA′B′是位似比为1∶2的位似图形,点O为位似中心.若△OAB 内一点P(x,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标是.19.如图,在△ABC中,AB=AC=10,BC=16,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E.则当BD=4时,CE=;当∠AED=90°时,BD=.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)如图,矩形ABCD中,AB=3,BC=6,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,求CFCD的值.21.(本小题满分9分)如图,△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且位似比为2;(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为.22.(本小题满分9分)已知:如图,在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F,点D为BC上一点,连接DE,DF,△DEF的面积为4,求点E到BC的距离.23.(本小题满分9分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于点E,交AC延长线于点F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.24.(本小题满分10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m,CE=0.8 m,CA=30 m(点A,E,C在同一直线上).已知小明的身高EF是1.7 m,请你帮小明求出楼高AB.(结果精确到0.1 m)25.(本小题满分10分)如图,在△ABC 中,BC =8 cm ,AC =6 cm ,点P 从B 出发,沿BC 方向以2 cm/s 的速度移动,点Q 从C 出发,沿CA 方向以1 cm/s 的速度移动,若P ,Q 分别从B ,C 同时出发,设运动的时间为t s ,则△CPQ 能否与△CBA 相似?若能,求出t 的值;若不能,请说明理由.26.(本小题满分11分)如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:AC 2=AB ·AD ; (2)求证:CE ∥AD ;(3)若AD =4,AB =6,求ACAF的值.答案一、选择题二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上) 17.165.18.(-2x ,-2y).19.CE =4.8;当∠AED =90°时,BD =8. 三、解答题20.解:∵四边形ABCD 是矩形,∴∠BAD =90°. 又∵AB =3,AD =BC =6,∴BD =AB 2+AD 2=3.∵BE =1.8,∴DE =3-1.8=1.2.∵AB ∥CD ,∴DFAB =DE BE ,即DF 3=1.21.8.解得DF =233.∴CF=CD-DF=33.∴CFCD=333=13.21.点M′的坐标为(2a,2b)或(-2a,-2b).解:如图,△DEF和△D′E′F′为所作.22.解:设点E到BC的距离为x.∵EF∥BC,∴△AEF∽△ABC. ∴EFBC=5-x5.∴EF=10-2x.∴S△DEF=12(10-2x)·x=4.解得x1=4,x2=1.∴点E到BC的距离为4或1.23.证明:(1)在Rt△ABC中,∠B+∠A=90°.∵DF⊥AB,∴∠BDE=∠ADF=90°.∴∠A+∠F=90°.∴∠B=∠F.∴△ADF ∽△EDB.(2)由(1)可知∠B =∠F ,∵CD 是Rt △ABC 斜边AB 上的中线,∴CD =AD =DB. ∴∠DCE =∠B.∴∠DCE =∠F.又∵∠CDE =∠FDC ,∴△CDE ∽△FDC. ∴CD DF =DE CD,即CD 2=DE ·DF. 24.解:过点D 作DG ⊥AB ,分别交AB ,EF 于点G ,H ,则EH =AG =CD =1.2 m ,DH =CE =0.8 m ,DG =CA =30 m.∵EF ∥AB ,∴FHBG =DH DG . 由题意,知FH =EF -EH =1.7-1.2=0.5(m).∴0.5BG =0.830,解得BG =18.75. ∴AB =BG +AG =18.75+1.2=19.95(m)≈20.0 m.答:楼高AB 约为20.0 m.25.解:设经过t s 时△CPQ 与△CBA 相似,此时BP =2t ,CQ =t ,CP =8-2t ,①当△CPQ ∽△CBA 时,CP CB =CQ CA ,即8-2t 8=t 6,解得t =2.4;②当△CPQ ∽△CAB 时,CP CA =CQ CB ,即8-2t 6=t 8,解得t =3211. 综上可知,经过2.4 s 或3211s 时,△CPQ 与△CBA 相似.26.解:(1)证明:∵AC 平分∠DAB ,∴∠DAC =∠CAB.又∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB.∴AD AC =AC AB,即AC 2=AB ·AD. (2)证明:∵E 为AB 的中点,∴CE =12AB =AE.∴∠EAC =∠ECA. 由(1)知∠DAC =∠CAB.∴∠DAC =∠ECA.∴CE ∥AD.(3)∵CE ∥AD ,∴△AFD ∽△CFE.∴AD CE =AF CF. ∵CE =12AB ,∴CE =12×6=3. ∴43=AF CF. ∴AF AC =47,即AC AF =74.。

人教版九年级数学下册《第27章相似》单元检测试卷(有答案)

人教版九年级数学下册《第27章相似》单元检测试卷(有答案)

2017-2018学年度第二学期人教版九年级数学下册第27章图形的相似单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.四条线段a,b,c,d成比例,其中a=3cm,d=4cm,c=6cm,则b等于()A.8 cmB.92cm C.29cm D.2cm2.若两个相似三角形的面积比为25:16,则它的周长之比为()A.4:5B.5:4C.√5:2D.12.5:83.若P是线段AB的黄金分割点(PA>PB),设AB=1,则PA的长约为()A.0.191B.0.382C.0.5D.0.6184.如图所示,不能判定△ABC∽△DAC的条件是()A.∠B=∠DACB.∠BAC=∠ADCC.AD2=BD⋅BCD.AC2=DC⋅BC5.在小孔成像问题中,根据如图所示,若O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.3倍B.12C.13D.2倍6.如图,已知DE // BC,EF // AB,则下列比例式中错误的是()A.CE CF =EAFBB.DEBC=ADBDC.AD AB =AEACD.BDAB=CFCB7.如图,DE // BC,若S△ADE:S△ABC=4:25,AD=4,则BD的值为()A.5B.6C.7D.88.如图,直线l1 // l2 // l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC= 5,则DEEF的值为()A.1 2B.2C.25D.359.利用复印机的缩放功能,将原图中边长为5cm的一个等边三角形放大成边长为20cm的等边三角形,则放大前后的两个三角形的面积比为()A.1:2B.1:4C.1:8D.1:1610.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(−1, 0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是−3,则点B的对应点B′的横坐标是()A.6B.4C.3D.5二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如果整张报纸与半张报纸相似,则此报纸的长与宽的比是________.12.如图,△AED∽△ACB,△AED的面积为△ACB面积的13,则AD:AB=________.13.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为________.14.如图,AB⊥BD,CD⊥BD,AB=6,CD=16,BD=20,一动点P从点B向点D运动,当BP的值是________时,△PAB与△PCD是相似三角形.15.在△ABC中,DE // BC交AB于D,交AC于E,AD=3,BD=4,EC=2,那么AE=________.16.如图,要使△AEF和△ACB相似,已具备条件________,还需补充的条件是________,或________,或________.17.两个相似三角形一组对应中线的长分别为10cm和4cm,周长之和为140cm,则这两个三角形的周长分别为________cm.18.如图:Rt△ABC中,∠C=90∘,BC=1,AC=2,把边长分为x1,x2,x3,…x n的n个正方形依次放在△ABC中,则x n=________.19.小明利用太阳光下的影子来测量学校旗杆的高度,他测得旗杆的影长为9米,同时测得2米长的标杆的影长为1.5米,则旗杆的高度为________米.20.如图,正方形CDEF的顶点D,E在半圆O的直径上,顶点C,F在半圆上,连=________.接AC,BC,则BCAC三、解答题(共 6 小题,每小题 10 分,共 60 分)21.画出△ABC以点P为位似中心的位似图形且△ABC与△A′B′C′的位似比是2.22.已知在△ABC中,AB=AC=2√10,BC=4.(1)如图,M是AB的中点,在AC边上取一点N,使得△AMN与△ABC相似,求线段MN的长.(2)图②和图③分别是由20个边长为1的正方形组成的5×4的网格,请在图②和图③中各画一个△A′B′C′,使得它们同时满足以下条件:①△A′B′C′的三个顶点都是网格内正方形的顶点;②△A′B′C′∽△ABC;③所画的两个三角形与△AMN和△ABC都互不全等.23.为了测量一条河的高度,测量人员发现,该河两岸有一段是平行的,在河的一岸每隔4m有一棵树,在河的另一岸每隔40m有一根电线杆,你能想办法,测出河的宽度吗?测量人员是这样做的:他们发现,站在离有数的河岸30m处看对岸,看到对岸相邻的两根电线杆恰好被两棵树遮住,并且在这两棵树之间还有一棵树,利用相似三角形的知识计算河宽,请你帮助测量人员计算一下河宽.24.如图所示,在△ABC中,已知DE // BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.25.如图,在等腰三角形ABC中,AB=AC,D是AB边上一点,以CD为一边,向上作等腰△DCE,使△EDC∽△ABC,连AE,求证:(1)∠BCD=∠ACE;(2)AE // BC.26.已知在Rt△ABC中,∠ABC=90∘,∠A=30∘,点P在BC上,且∠MPN=90∘.(1)当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1).过点P作PE⊥AB于点E,请探索PN与PM之间的数量关系,并说明理由;(2)当PC=√2PA,①点M、N分别在线段AB、BC上,如图2时,请写出线段PN、PM之间的数量关系,并给予证明.②当点M、K分别在线段AB、BC的延长线上,如图3时,请判断①中线段PN、PM之间的数量关系是否还存在.(直接写出答案,不用证明)答案1.D2.B3.D4.C5.C6.B7.B8.D9.D10.C11.√2:112.√3:313.514.6011或8或12 15.1.516.∠EAF=∠CAB∠AEF=∠C∠AFE=∠B AEAC =AFAB17.100,4018.(23)n19.1220.√5+1221.解:如图(说明:正向或反向位似都可以)22.解:(1)∵在△ABC中,AB=AC=2√10,M是AB的中点,在AC边上取一点N,使得△AMN与△ABC相似,∴只有当MN // BC时,△AMN∽△ABC,故AMAB =ANAC=MNBC,则12=MN4,解得:MN=2;(2)如图所示:.23.河宽为120m.24.解:(1)△ADE与△ABC相似.∵DE // BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.25.证明(1)∵△EDC∽△ABC,∴∠ECD=∠ACB,∴∠BCD=∠ACE;(2)由(1)知∠BCD=∠ACE,∵△ABC∽△EDC,∴BC CD =ACCE,∴△BCD∽△ACE∴∠CAE=∠B,∴∠CAE=∠ACB,∴AE // BC.26.解:(1)PN=√3PM,理由:如图1,作PF⊥BC,∵∠ABC=90∘,PE⊥AB,∴PE // BC,PF // AB,∴四边形PFBE是矩形,∴∠EPF=90∘∴P是AC的中点,∴PE=12BC,PF=12AB,∵∠MPN=90∘,∠EPF=90∘,∴∠MPE=∠NPF,∴△MPE∽△NPF,∴PN PM =PFPE=ABBC,∵∠A=30∘,在RT△ABC中,cot30∘=ABBc=√3,∴PNPM=√3,即PN=√3PM.(2)解;①PN=√6PM,如图2在Rt△ABC中,过点P作PE⊥AB于E,PF⊥BC于点F ∴四边形BFPE是矩形,∴△PFN∽△PEM∴PF PE =PNPM,又∵Rt△AEP和Rt△PFC中,∠A=30∘,∠C=60∘∴PF=√32PC,PE=12PA∴PN PM =PFPE=√3PCPA∵PC=√2PA∴PNPM=√6,即:PN=√6PM②如图3,成立.。

九年级数学下册第27章相似测试题(含答案新人教版)

九年级数学下册第27章相似测试题(含答案新人教版)

九年级数学下册第27章相似测试题(含答案新人教版)实用精品文献资料分享知识点3 相似多边形 6.两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为(A) A.23 B.32 C.49 D.94 7.(2021?重庆A卷)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5 cm,6 cm和9 cm,另一个三角形的最短边长为2.5 cm,则它的最长边为(C) A.3 cm B.4 cm C.4.5 cm D.5 cm 8.下列四组图形中,一定相似的是(D) A.正方形与矩形 B.正方形与菱形 C.菱形与菱形 D.正五边形与正五边形 9.如图是两个相似四边形,已知数据如图所示,则x=325,α=80°. 10.如图,四边形ABCD的对角线相交于点O,A′,B′,C′,D′分别是OA,OB,OC,OD的中点,判断四边形ABCD与四边形A′B′C′D′是否相似,并说明理由.解:四边形ABCD与四边形A′B′C′D′相似.理由:∵A′,B′分别是OA,OB的中点,∴A′B′∥AB,A′B′=12AB. ∴∠OA′B′=∠OAB,A′B′AB=12. 同理,∠OA′D′=∠OAD,A′D′AD=12. ∴∠B′A′D′=∠BAD,A′B′A B=A′D′AD. 同理,∠A′D′C′=∠ADC,∠D′C′B′=∠DCB,∠C′B′A′=∠CBA,A′B′AB=A′D′AD=D′C′DC=B′C′BC,∴四边形ABCD与四边形A′B′C′D′相似.易错点没有分情况讨论导致漏解 11.已知三条线段的长分别为1实用精品文献资料分享cm、2 cm、2 cm,如果另外一条线段与它们是成比例线段,那么另外一条线段的长为2__cm,22__cm或22__cm.02 中档题 12.用一个10倍的放大镜看一个15°的角,看到的角的度数为(C) A.150° B.105° C.15° D.无法确定大小 13.已知四条线段的长度分别为2,x-1,x+1,4,且它们是成比例线段,则x的值为(B) A.2 B.3 C.-3 D.3或-3 14.如图,正五边形FGHMN与正五边形ABCDE相似,若AB∶FG=2∶3,则下列结论正确的是(B)A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F 15.(教材P28习题T5变式)如图,DE∥BC,DE=3,BC=9,AD=1.5,AB=4.5,AE=1.8,AC=5.4. (1)求ADAB,AEAC,DEBC的值; (2)求证:△ADE与△ABC相似. 解:(1)ADAB=1.54.5=13, AEAC=1.85.4=13, DEBC=39=13. (2)证明:∵DE∥BC, ∴∠D=∠B,∠E=∠C. 又∵∠DAE=∠BAC,ADAB=AEAC=DEBC,∴△ADE与△ABC相似.16.如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E,F.求证:四边形AFGE与四边形ABCD相似.证明:∵四边形ABCD是正方形,AC是对角线,∴∠DAC=∠BAC=45°. 又∵GE⊥AD,GF⊥AB,∴EG=FG,且AE=EG,AF=FG. ∴AE=EG=FG=AF. 又∵∠EAF=90°,∴四边形AFGE为正方形.∴AFAB=FGBC=GECD=AEAD,且∠EAF=∠DAB,∠AFG=∠ABC,∠FGE=∠BCD,∠AEG=∠ADC. ∴四边形AFGE与四边形ABCD相似.03 综合题 17.(教材P28习题T8变式)如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4. (1)求AD的长; (2)求矩形DMNC与矩形ABCD的相似比.解:(1)若设AD=x(x>0),则DM=x2. ∵矩形DMNC与矩形ABCD相似,∴ADAB=DCDM,即x4=4x2.解得x=42(舍负).∴AD的长为42. (2)矩形DMNC与矩形ABCD的相似比为 DCAD=442=22. 27.2 相似三角形 27.2.1 相似三角形的判定第1课时平行线分线段成比例 01 基础题知识点1 相似三角形的有关概念 1.如图所示,△ADE∽△ACB,∠AED=∠B,那么下列比例式成立的是(A) A.ADAC=AEAB=DEBC B.ADAB=AEAC C.ADAE=ACAB=DEBC D.AEEC=DEBC 2.已知△ABC和△A′B′C′相实用精品文献资料分享似,且△ABC与△A′B′C′的相似比为R1,△A′B′C′与△ABC的相似比为R2,则R1与R2的关系是(D) A.R1=R2 B.R1R2=-1 C.R1+R2=0 D.R1R2=1知识点2 平行线分线段成比例定理及推论 3.如图,AB∥CD∥EF,则下列结论不正确的是(C) A.ACCE=BDDF B.ACAE=BDBF C.BDCE=ACDF D.AECE=BFDF 4.(教材P31练习T2变式)如图,在△ABC中,DE∥BC.若ADDB=23,则AEEC=(C) A.13 B.25 C.23 D.35 5.(2021?临沂)如图,已知AB∥CD,AD与BC相交于点O.若BOOC=23,AD=10,则AO=4. 6.(2021?嘉兴)如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F.已知ABAC=13,则EFDE=2. 7.如图,EG∥B C,GF∥CD,AE=3,EB=2,AF=6,求AD的值.解:∵EG∥BC,∴AEEB=AGGC. ∵GF∥CD,∴AGGC=AFFD. ∴AEEB=AFFD,即32=6FD. ∴FD=4. ∴AD=AF+FD=10. 知识点3 相似三角形判定的预备定理 8.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC.若BD=2AD,则(B) A.ADAB=12 B.AEEC=12 C.ADEC=12 D.DEBC=12 9.(2021?自贡)如图,在△ABC中,MN∥BC 分别交AB,AC于点M,N.若AM=1,MB=2,BC=3,则MN的长为1. 10.如图,在△ABC中,点D在BC上,EF∥BC,分别交AB,AC,AD于点E,F,G,图中共有几对相似三角形?分别是哪几对?解:共有3对相似三角形,分别是:△AEG∽△ABD,△AGF∽△ADC,△AEF∽△ABC.易错点图形的不唯一导致漏解 11.在△ABC中,AB=6,AC=9,点P是直线AB上一点,且AP=2,过点P作BC边的平行线,交直线AC于点M,则MC的长为6或12.02 中档题 12.如图,在△ABC中,AB=AC=12,AD⊥BC于点D,点E在AD上,且DE=2AE,连接BE并延长交AC于点F,则线段AF长为(C) A.4 B.3 C.2.4 D.213.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上.若线段AB=4 cm,则线段BC=12cm. 14.小明正在攀登一个如图所示的攀登架,DE和BC是两根互相平行的固定架,DE=10米,BC=18米,小明从底部固定点B开始攀登,攀行8米,实用精品文献资料分享遇上第二个固定点D,小明再攀行多少米可到达这个攀登架的顶部A? 解:∵DE∥BC,∴△ABC∽△ADE. ∴ADAB=DEBC,即ADAD+8=1018.∴AD=10. 答:小明再攀行10米可到达这个攀登架的顶部A. 15.如图,已知:AB=AD,AC=AE,FG∥DE.求证:△ABC∽△AFG. 证明:∵AB=AD,AC=AE,∠BAC=∠DAE,∴△ABC≌△ADE. ∴BC=DE,∠B=∠ADE,∠C=∠AED. ∵FG∥DE,∴△AFG∽△ADE. ∴AFAD=AGAE=FGDE. ∴AFAB=AGAC=FGBC. 又∵∠C=∠AED=∠G,∠B=∠ADE=∠F,∠BAC=∠FAG,∴△ABC∽△AFG.03 综合题 16.如图,AD∥EG∥BC,EG分别交AB,DB,AC于点E,F,G,已知AD=6,BC=10,AE=3,AB=5,求EG,FG的长.解:∵在△ABC中,EG∥BC,∴△AEG∽△ABC. ∴EGBC=AEAB,即EG10=35.∴EG=6. ∵在△BAD中,EF∥AD,∴△BEF∽△BAD.∴EFAD=BEBA,即EF6=5-35.∴EF=125. ∴FG=EG-EF=185. 第2课时相似三角形的判定定理1,2 01 基础题知识点1 三边成比例的两个三角形相似1.有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,2,5,乙三角形木框的三边长分别为5,5,10,则甲、乙两个三角形(A) A.一定相似 B.一定不相似 C.不一定相似 D.无法判断 2.(教材P34练习T3变式)已知△ABC的三边长分别为6 cm,7.5 cm,9 cm,△DEF的一边长为4 cm,当△DEF的另两边长是下列哪一组数据时,这两个三角形相似(C) A.2 cm,3 cm B.4 cm,5 cm C.5 cm,6 cm D.6 cm,7 cm 3.下列四个三角形中,与图甲中的三角形相似的是(B) 4.如图,在△ABC中,AB=25,BC=40,AC=20.在△ADE中,AE=12,AD=15,DE=24,试判断这两个三角形是否相似,并说明理由.解:相似.理由:∵ACAE=2021=53,ABAD=2515=53, BCDE=4024=53,∴ACAE=ABAD=BCDE. ∴△ABC∽△ADE.知识点2 两边成比例且夹角相等的两个三角形相似 5.如图,已知△ABC,则下列4个三角形中,与△ABC相似的是(C) 6.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的(C) A.ACAD=ABAE B.ACAD=BCDE C.ACAD=ABDE D.ACAD=BCAE 7.在△ABC和△A′B′C′中,若∠B=∠B′,AB=6,实用精品文献资料分享BC=8,B′C′=4,则当A′B′=3时,△ABC∽△A′B′C′. 8.如图,已知AB?AD =AC?AE,∠B=30°,则∠E=30°. 9.如图,已知在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,求证:△ADQ∽△QCP. 证明:设正方形的边长为4a,则AD=CD=BC=4a. ∵Q是CD的中点,BP=3PC,∴DQ=CQ=2a,PC=a. ∴DQPC=ADCQ=21. 又∵∠D=∠C=90°,∴△ADQ∽△QCP.易错点对应边没有确定时容易漏解 10. (2021?随州)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=125或53时,以A,D,E为顶点的三角形与△ABC相似. 02 中档题 11.如图,在正方形网格上,若使△ABC∽△PBD,则点P应在________处(C) A.P1 B.P2 C.P3 D.P4 12.如图,在等边△ABC中,D,E分别在AC,AB上,且AD∶AC=1∶3,AE=BE,则有(B) A.△AED∽△BED B.△AED∽△CBDC.△AED∽△ABD D.△BAD∽△BCD 13.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且ADAC=DFCG. (1)求证:△ADF∽△ACG; (2)若ADAC=12,求AFFG的值.解:(1)证明:∵∠AED=∠B,∠DAE=∠BAC,∴∠ADF=∠C. 又∵ADAC=DFCG,∴△ADF∽△ACG. (2)∵△ADF∽△ACG.∴ADAC=AFAG=12. ∴AFFG=1.14.如图,在Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.若以B,P,Q为顶点的三角形与△ABC相似,求t的值.解:由题意,得BP=5t,QC=4t,AB=10 cm,BC=8 cm. ①∵∠PBQ=∠ABC,∴若△BPQ∽△BAC,则还需BPBA=BQBC,即5t10=8-4t8.解得t=1. ②∵∠PBQ=∠CBA,∴若△BPQ∽△BCA,则还需BPBC=BQBA,即5t8=8-4t10.解得t=3241. 综上所述,当t=1或3241时,以B,P,Q为顶点的三角形与△ABC相似.03 综合题 15.如图,在△ABC中,AB=AC=1,BC=5-12,在AC边上截取AD=BC,连接BD. (1)通过计算,判断AD2与AC?CD 的实用精品文献资料分享大小关系; (2)求∠ABD 的度数.解:(1)∵AD=BC=5-12,∴AD2=(5-12)2=3-52. ∵AC=1,∴CD=1-5-12=3-52. ∴AD2=AC?CD. (2)∵AD2=AC?CD,∴BC2=AC?CD,即BCCD=ACBC. 又∵∠C=∠C,∴△ABC∽△BDC.∴ABBD=ACBC. 又∵AB=AC,∴BD=BC=AD. ∴∠A=∠ABD,∠ABC=感谢您的阅读,祝您生活愉快。

人教版九年级下册数学第27章相似单元检测试卷含答案

人教版九年级下册数学第27章相似单元检测试卷含答案

第27章相似单元检测一、选择题1.将以下图中的箭头缩小到原先的12,取得的图形是( )A. B.C. D.2.如图,AA//AA//AA,AA、AD相交于点A,A是AD的中点,那么以下结论中错误的选项是( )A. AAAA =AAAAB. AAAA =AAAAC. AAAA =AAAAD. 2AAAA =AAAA3.以下各组数中,成比例的是( )A.−6,−8,3,4B. −7,−5,14,5C. 3,5,9,12D. 2,3,6,124.不为0的四个实数a、b,c、d知足ab=cd,改写成比例式错误的选项是( )A. ac =dbB. ca=bdC. da=bcD. ab=cd5.如图,点P在△ABC的边AC上,要判定△ABP∽△ACB,添加一个条件,不正确的选项是( )A. ABBP =ACCBB. ∠APB=∠ABCC. APAB =ABACD. ∠ABP=∠C6.已知C是线段AB的黄金分割点(AC>BC),那么AC:AB=( )A. (√5−1):2B. (√5+1):2C. (3−√5):2D. (3+√5):27.关于平面图形上的任意两点P,Q,若是通过某种变换取得新图形上的对应点P′,Q′,维持PQ=P′Q′,咱们把这种变换称为“等距变换”,以下变换中不必然是等距变换的是( )A. 平移B. 旋转C. 轴对称D. 位似8.已知两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,那么较大多边形的周长为( )A. 48 cmB. 54 cmC. 56 cmD. 64 cm9.以下各组图形不必然相似的是( )A. 两个等腰直角三角形B. 各有一个角是100∘的两个等腰三角形C. 各有一个角是50∘的两个直角三角形D. 两个矩形10.如下图,△ABC中,DE//BC,AD=5,BD=10,DE=6,那么BC的值为( )A. 6B. 12C. 18D. 24二、填空题11.若是两个相似三角形对应角平分线的比是4:9,那么它们的周长比是______ .12.如图,已知AD//BE//CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.若是AB=6,BC=10,那么DEDF的值是______ .13.若是线段a、b、c、d知足ab =cd=13,那么a+cb+d=______ .14.已知线段a=3,b=6,那么线段a、b的比例中项等于______ .15.在△ABC中,点D、E别离在边AB、AC上,若是ADAB =23,AE=4,那么当EC的长是______ 时,DE//BC.三、解答题16.已知△ABC,作△DEF,使之与△ABC相似,且S△DEFS△ABC=4.要求:17.(1)尺规作图,保留作图痕迹,不写作法.18.(2)简要表达作图依据.19.20.21.如图,在△ABC中,点D,E别离在边AB,AC上,DE//BC,已知AE=6,ADBD =34,求CE的长.22.23.24.25.如图,在平行四边形ABCD中,DE⊥AB于点E,BF⊥AD于点F.26.(1)AB,BC,BF,DE这四条线段可否成比例?如不能,请说明理由;如能,请写出比例式;27.(2)若AB=10,DE=2.5,BF=5,求BC的长.28.已知a3=b4=c5≠0,求2a−b+ca+3b的值.29.30.31.32.33.34.35.36.作图题37.用圆规、直尺作图,不写作法,但要保留作图痕迹.38.如图,在△ABC中,AB>AC,点D位于边AC上.39.求作:过点D、与边AB相交于E点的直线DE,使以A、E为极点的三角形与原三角形相似.40.41.42.43.44.45.46.【答案】1. A2. C3. A4. D5. A6. A7. D8. A9. D10. C11. 4:912. 3813. 1314. 3√215. 616. 解:(1)如下图:△DEF即为所求;(2)∵△DEF∽△ABC,且S△DEFS△ABC=4,∴DEAB =DFAC=EFBC=12,∴作AB,AC的垂直平分线,进而得出AB,AC的中点,即可得出ED,EF,DF的长.17. 解:∵DE//BC,∴AEEC =ADBD=34,∵AE=6,∴CE=8.18. 解:(1)(1)证明:∵在▱ABCD中,DE⊥AB,BF⊥AD,∴S▱ABCD=AB⋅DE=AD⋅BF,∴ADDE =ABBF;(2)∵AB⋅DE=AD⋅BF,∴10×2.5=5BC,解得:BC=5.19. 解:设a3=b4=c5=k,所以,a=3k,b=4k,c=5k,则2a−b+ca+3b =6k−4k+5k3k+12k=715.20. 解:如图1所示:△AED∽△ABC,如图2所示:△ADE∽△ABC,综上所述:直线DE即为所求.。

人教版初中数学九年级下册同步测试-第27章--相似(共21页)

人教版初中数学九年级下册同步测试-第27章--相似(共21页)

第二十七章 相似测试1 图形的相似学习要求1.理解相似图形、相似多边形和相似比的概念. 2.掌握相似多边形的两个基本性质.3.理解四条线段是“成比例线段”的概念,掌握比例的基本性质.课堂学习检测一、填空题1.________________________是相似图形.2.对于四条线段a ,b ,c ,d ,如果____________与____________(如dcb a =),那么称这四条线段是成比例线段,简称__________________.3.如果两个多边形满足____________,____________那么这两个多边形叫做相似多边形.4.相似多边形____________称为相似比.当相似比为1时,相似的两个图形____________.若甲多边形与乙多边形的相似比为k ,则乙多边形与甲多边形的相似比为____________.5.相似多边形的两个基本性质是____________,____________.6.比例的基本性质是如果不等于零的四个数成比例,那么___________.反之亦真.即⇔=dcb a ______(a ,b ,c ,d 不为零). 7.已知2a -3b =0,b ≠0,则a ∶b =______. 8.若,571=+x x 则x =______. 9.若,532z y x ==则=-+x z y x 2______.10.在一张比例尺为1∶20000的地图上,量得A 与B 两地的距离是5cm ,则A ,B 两地实际距离为______m .二、选择题11.在下面的图形中,形状相似的一组是( )12.下列图形一定是相似图形的是( )A .任意两个菱形B .任意两个正三角形C .两个等腰三角形D .两个矩形13.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,那么,符合条件的三角形框架乙共有( ) A .1种 B .2种 C .3种 D .4种三、解答题14.已知:如图,梯形ABCD 与梯形A ′B ′C ′D ′相似,AD ∥BC ,A ′D ′∥B ′C ′,∠A=∠A′.AD=4,A′D′=6,AB=6,B′C′=12.求:(1)梯形ABCD与梯形A′B′C′D′的相似比k;(2)A′B′和BC的长;(3)D′C′∶DC.综合、运用、诊断15.已知:如图,△ABC中,AB=20,BC=14,AC=12.△ADE与△ACB相似,∠AED=∠B,DE=5.求AD,AE的长.16.已知:如图,四边形ABCD的对角线相交于点O,A′,B′,C′,D′分别是OA,OB,OC,OD的中点,试判断四边形ABCD与四边形A′B′C'D′是否相似,并说明理由.拓展、探究、思考17.如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF 上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN ∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?测试2 相似三角形学习要求1.理解相似三角形的有关概念,能正确找到对应角、对应边. 2.掌握相似三角形判定的基本定理.课堂学习检测一、填空题1.△DEF ∽△ABC 表示△DEF 与△ABC ______,其中D 点与______对应,E 点与 ______对应,F 点与______对应;∠E =______;DE ∶AB =______∶BC ,AC ∶DF =AB ∶______.2.△DEF ∽△ABC ,若相似比k =1,则△DEF ______△ABC ;若相似比k =2,则=AC DF ______,=EFBC______. 3.若△ABC ∽△A 1B 1C 1,且相似比为k 1;△A 1B 1C 1∽△A 2B 2C 2,且相似比为k 2,则△ABC ______△A 2B 2C 2,且相似比为______. 4.相似三角形判定的基本定理是平行于三角形____________和其他两边相交,所_____ ____________与原三角形______. 5.已知:如图,△ADE 中,BC ∥DE ,则①△ADE ∽______; ②;)(,)(BC AB AD AE AB AD == ③⋅==CABA BD AE DB AD )(,)( 二、解答题6.已知:如图所示,试分别依下列条件写出对应边的比例式.(1)若△ADC ∽△CDB ;(2)若△ACD ∽△ABC ;(3)若△BCD ∽△BAC .综合、运用、诊断7.已知:如图,△ABC 中,AB =20cm ,BC =15cm ,AD =12.5cm ,DE ∥BC .求DE 的长.8.已知:如图,AD ∥BE ∥CF .(1)求证:;DFDEAC AB (2)若AB =4,BC =6,DE =5,求EF .9.如图所示,在△APM 的边AP 上任取两点B ,C ,过B 作AM 的平行线交PM 于N ,过N 作MC 的平行线交AP 于D .求证:P A ∶PB =PC ∶PD .拓展、探究、思考10.已知:如图,E 是□ABCD 的边AD 上的一点,且23=DE AE ,CE 交BD 于点F ,BF =15cm ,求DF 的长.11.已知:如图,AD 是△ABC 的中线.(1)若E 为AD 的中点,射线CE 交AB 于F ,求BFAF; (2)若E 为AD 上的一点,且kED AE 1=,射线CE 交AB 于F ,求⋅BF AF测试3 相似三角形的判定学习要求1.掌握相似三角形的判定定理.2.能通过证三角形相似,证明成比例线段或进行计算.课堂学习检测一、填空题1.______三角形一边的______和其他两边______,所构成的三角形与原三角形相似.2.如果两个三角形的______对应边的______,那么这两个三角形相似.3.如果两个三角形的______对应边的比相等,并且______相等,那么这两个三角形相似.4.如果一个三角形的______角与另一个三角形的______,那么这两个三角形相似.5.在△ABC和△A′B′C′中,如果∠A=56°,∠B=28°,∠A′=56°,∠C′=28°,那么这两个三角形能否相似的结论是______.理由是________________.6.在△ABC和△A'B′C′中,如果∠A=48°,∠C=102°,∠A′=48°,∠B′=30°,那么这两个三角形能否相似的结论是______.理由是________________.7.在△ABC和△A'B′C′中,如果∠A=34°,AC=5cm,AB=4cm,∠A′=34°,A'C′=2cm,A′B′=1.6cm,那么这两个三角形能否相似的结论是______,理由是____________________.8.在△ABC和△DEF中,如果AB=4,BC=3,AC=6;DE=2.4,EF=1.2,FD=1.6,那么这两个三角形能否相似的结论是____________,理由是__________________.9.如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对.9题图10.如图所示,□ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有______对.10题图二、选择题11.如图所示,不能判定△ABC∽△DAC的条件是( )A.∠B=∠DACB.∠BAC=∠ADCC.AC2=DC·BCD.AD2=BD·BC12.如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( )A.5 B.8.2C.6.4 D.1.813.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是( )三、解答题14.已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,(1)图中有哪两个三角形相似?(2)求证:AC2=AD·AB;BC2=BD·BA;(3)若AD=2,DB=8,求AC,BC,CD;(4)若AC=6,DB=9,求AD,CD,BC;(5)求证:AC·BC=AB·CD.15.如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.求证:(1)OD∶OA=OE∶OB;(2)△ODE∽△OAB;(3)△ABC∽△DEF.综合、运用、诊断16.如图所示,已知AB∥CD,AD,BC交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.17.已知:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC 相切于E点.求证:AB·CD=BE·EC.18.如图所示,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD·BC=OB·BD.19.如图所示,在⊙O中,CD过圆心O,且CD⊥AB于D,弦CF交AB于E.求证:CB2=CF·CE.拓展、探究、思考20.已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.21.已知:如图,在△ABC中,∠BAC=90°,AH⊥BC于H,以AB和AC为边在Rt△ABC外作等边△ABD和△ACE,试判断△BDH与△AEH是否相似,并说明理由.22.已知:如图,在△ABC中,∠C=90°,P是AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC于E,点E不与点C重合,若AB=10,AC=8,设AP=x,四边形PECB的周长为y,求y与x的函数关系式.测试4 相似三角形应用举例学习要求能运用相似三角形的知识,解决简单的实际问题.课堂学习检测一、选择题1.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是( )A .15mB .60mC .20mD .m 3102.一斜坡长70m ,它的高为5m ,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( ) A .m 711 B .m 710 C .m 79 D .m 23 3.如图所示阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE =1.8m ,窗户下檐距地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )第3题图A .1.5mB .1.6mC .1.86mD .2.16m 4.如图所示,AB 是斜靠在墙壁上的长梯,梯脚B 距离墙角1.6m ,梯上点D 距离墙1.4m ,BD 长0.55m ,则梯子长为( )第4题图A .3.85mB .4.00mC .4.40mD .4.50m 二、填空题5.如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2m 的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一条直线上,如果测得BD =20m ,FD =4m ,EF =1.8m ,则树AB 的高度为______m .第5题图6.如图所示,有点光源S 在平面镜上面,若在P 点看到点光源的反射光线,并测得AB=10m,BC=20cm,PC⊥AC,且PC=24cm,则点光源S到平面镜的距离即SA的长度为______cm.第6题图三、解答题7.已知:如图所示,要在高AD=80mm,底边BC=120mm的三角形余料中截出一个正方形板材PQMN.求它的边长.8.如果课本上正文字的大小为4mm×3.5mm(高×宽),一学生座位到黑板的距离是5m,教师在黑板上写多大的字,才能使该学生望去时,同他看书桌上相距30cm垂直放置的课本上的字感觉相同?综合、运用、诊断9.一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,请算一下这棵树的高是多少?10.(针孔成像问题)根据图中尺寸(如图,AB∥A′B′),可以知道物像A′B′的长与物AB的长之间有什么关系?你能说出其中的道理吗?11.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为1.65m的黄丽同学BC的影长BA为1.1m,与此同时,测得教学楼DE的影长DF为12.1m,如图所示,请你根据已测得的数据,测出教学楼DE的高度.(精确到0.1m)12.(1)已知:如图所示,矩形ABCD中,AC,BD相交于O点,OE⊥BC于E点,连结ED交OC于F点,作FG⊥BC于G点,求证点G是线段BC的一个三等分点.(2)请你仿照上面的画法,在原图上画出BC的一个四等分点.(要求:写出作法,保留画图痕迹,不要求证明)测试5 相似三角形的性质学习要求掌握相似三角形的性质,解决有关的计算或证明问题.课堂学习检测一、填空题1.相似三角形的对应角______,对应边的比等于______.2.相似三角形对应边上的中线之比等于______,对应边上的高之比等于______,对应角的角平分线之比等于______.3.相似三角形的周长比等于______.4.相似三角形的面积比等于______.5.相似多边形的周长比等于______,相似多边形的面积比等于______. 6.若两个相似多边形的面积比是16∶25,则它们的周长比等于______.7.若两个相似多边形的对应边之比为5∶2,则它们的周长比是______,面积比是______.8.同一个圆的内接正三角形与其外切正三角形的周长比是______,面积比是______. 9.同一个圆的内接正方形与其外切正方形的周长比是______,面积比是______.10.同一个圆的内接正六边形与其外切正六边形的周长比是______,面积比是______. 11.正六边形的内切圆与它的外接圆的周长比是______,面积比是______. 12.在比例尺1∶1000的地图上,1cm 2所表示的实际面积是______. 二、选择题13.已知相似三角形面积的比为9∶4,那么这两个三角形的周长之比为( )A .9∶4B .4∶9C .3∶2D .81∶1614.如图所示,在平行四边形ABCD 中,E 为DC 边的中点,AE 交BD 于点Q ,若△DQE 的面积为9,则△AQB 的面积为( )A .18B .27C .36D .4515.如图所示,把△ABC 沿AB 平移到△A ′B ′C ′的位置,它们的重叠部分的面积是△ABC 面积的一半,若2=AB ,则此三角形移动的距离AA '是( )A .12-B .22 C .1 D .21 三、解答题16.已知:如图,E 、M 是AB 边的三等分点,EF ∥MN ∥BC .求:△AEF 的面积∶四边形EMNF 的面积∶四边形MBCN 的面积.综合、运用、诊断17.已知:如图,△ABC 中,∠A =36°,AB =AC ,BD 是角平分线.(1)求证:AD 2=CD ·AC ; (2)若AC =a ,求AD .18.已知:如图,□ABCD 中,E 是BC 边上一点,且AE BD EC BE ,,21相交于F 点.(1)求△BEF 的周长与△AFD 的周长之比;(2)若△BEF 的面积S △BEF =6cm 2,求△AFD 的面积S △AFD .19.已知:如图,Rt △ABC 中,AC =4,BC =3,DE ∥AB .(1)当△CDE 的面积与四边形DABE 的面积相等时,求CD 的长; (2)当△CDE 的周长与四边形DABE 的周长相等时,求CD 的长.拓展、探究、思考20.已知:如图所示,以线段AB 上的两点C ,D 为顶点,作等边△PCD .(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB.(2)当△ACP∽△PDB时,求∠APB.21.如图所示,梯形ABCD中,AB∥CD,对角线AC,BD交于O点,若S△AOD∶S△DOC =2∶3,求S△AOB∶S△COD.22.已知:如图,梯形ABCD中,AB∥DC,∠B=90°,AB=3,BC=11,DC=6.请问:在BC上若存在点P,使得△ABP与△PCD相似,求BP的长及它们的面积比.测试6 位似学习要求1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小.2.能用坐标表示位似变形下图形的位置.课堂学习检测1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.(1) (2)(3) (4)2.如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为( )A.(0,0),21B.(2,2),2C.(2,2),2D.(2,2),3综合、运用、诊断3.已知:如图,四边形ABCD的顶点坐标分别为A(-4,2),B(-2,-4),C(6,-2),D(2,4).试以O点为位似中心作四边形A'B'C'D′,使四边形ABCD与四边形A′B′C′D′的相似比为1∶2,并写出各对应顶点的坐标.4.已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D 点的坐标分别为(1,2),(1,1),(3,1).(1)求E点和A点的坐标;(2)试以点P(0,2)为位似中心,作出相似比为3的位似图形A1B1C1D1E1,并写出各对应点的坐标;(3)将图形A1B1C1D1E1向右平移4个单位长度后,再作关于x轴的对称图形,得到图形A2B2C2D2E2,这时它的各顶点坐标分别是多少?拓展、探究、思考5.在已知三角形内求作内接正方形.6.在已知半圆内求作内接正方形.答案与提示第二十七章 相 似测试11.形状相同的图形.2.其中两条线段的比,另两条线段的比相等,比例线段. 3.对应角相等,对应边的比相等. 4.对应边的比,全等,⋅k1 5.对应角相等,对应边的比相等.6.两个内项之积等于两个外项之积,ad =bc . 7.3∶2. 8.⋅259.1. 10.1 000.11.C . 12.B . 13.C .14.(1)k =2∶3;(2)A 'B '=9,BC =8;(3)3∶2. 15.⋅==750,730AE AD 16.相似. 17.25=x 时,S 的最大值为⋅225 测试21.相似,A 点,B 点,C 点,∠B ,EF ,DE . 2.≌,2,⋅213.∽;k 1k 2.4.一边的直线,构成的三角形,相似. 5.①△ABC ;②AC ,DE ;③EC ,CE . 6.(1);BC CA BD CD CD AD == (2);BC CD AC AD AB AC == (3)⋅==ACCDBC BD BA BC 7.9.375cm .8.(1)提示:过A 点作直线AF '∥DF ,交直线BE 于E ',交直线CF 于F '. (2)7.5.9.提示:P A ∶PB =PM ∶PN ,PC ∶PO =PM ∶PN . 10.OF =6cm .提示:△DEF ∽△BCF . 11.(1);21=BF AF (2)1∶2k . 测试31.平行于,直线,相交. 2.三组,比相等. 3.两组,相应的夹角. 4.两个,两个角对应相等. 5.△ABC ∽△A 'C 'B ',因为这两个三角形中有两对角对应相等. 6.△ABC ∽△A 'B 'C '.因为这两个三角形中有两对角对应相等. 7.△ABC ∽△A 'B 'C ',因为这两个三角形中,有两组对应边的比相等,且相应的夹角相等.8.△ABC ∽△DFE .因为这两个三角形中,三组对应边的比相等. 9.6对. 10.6对.11.D . 12.D . 13.A .14.(1)△ADC ∽△CDB ,△ADC ∽△ACB ,△ACB ∽△CDB ;(2)略;(3);4,54,52===CD BC AC (4);36,33,3===BC CD AD(5)提示:AC ·BC =2S △ABC =AB ·CD .15.提示:(1)OD ∶OA =OF ∶OC ,OE ∶OB =OF ∶OC ;(2)OD ∶OA =OE ∶OB ,∠DOE =∠AOB ,得△ODE ∽△OAB ; (3)证DF ∶AC =EF ∶BC =DE ∶AB . 16.略.17.提示:连结AE 、ED ,证△ABE ∽△ECD . 18.提示:关键是证明△OBC ∽△ADB .∵AB 是⊙O 的直径,∴∠D =90°. ∵BC 是⊙O 的切线,∴OB ⊥BC . ∴∠OBC =90°.∴∠D =∠OBC .∵AD ∥OC ,∴∠A =∠BOC .∴△ADB ∽△OBC .⋅=∴CBBDOB AD ∴AD ·BC =OB ·BD . 19.提示:连接BF 、AC ,证∠CFB =∠CBE20.⋅=21FB AF 提示:过C 作CM ∥BA ,交ED 于M . 21.相似.提示:由△BHA ∽△AHC 得,ACBAAH BH =再有BA =BD ,AC =AE . 则:,AE BDAH BH =再有∠HBD =∠HAE ,得△BDH ∽△AEH . 22..2423+-=x y 提示:可证△APE ∽△ACB ,则⋅=ACAPBC PE 则).10(6)458(43,45,43x x x y x AE x PE -++-+===测试41.A . 2.B . 3.A . 4.C .5.3. 6.12. 7.48mm .8.教师在黑板上写的字的大小约为7cm ×6cm(高×宽). 9.树高7.45m . 10..31AB B A ='' 11.∵EF ∥AC ,∴∠CAB =∠EFD .又∠CBA =∠EDF =90°,∴△ABC ∽△FDE .)m (2.181.11.1265.1≈⨯=⋅=∴⋅=∴BA DF BC DE DF BA DE BC 故教学楼的高度约为18.2m .12.(1)提示:先证EF ∶ED =1∶3.(2)略.测试51.相等,相似比. 2.相似比、相似比、相似比. 3.相似比. 4.相似比的平方.5.相似比.相似比的平方. 6.4∶5. 7.5∶2,25∶4. 8.1∶2,1∶4. 9..2:1,2:1 10..4:3,2:3 11..4:3,2:3 12.100m 2.13.C. 14.C . 15.A . 16.1∶3∶5. 17.(1)提示:证△ABC ∽△BCD ;(2).215a - 18.(1);31 (2)54cm 2. 19.(1);22 (2)⋅724 20.(1)CD 2=AC ·DB ;(2)∠APB =120°. 21.4∶922.BP =2,或,311或9. 当BP =2时,S △ABP ∶S △PCD =1∶9; 当311=BP 时,S △ABP ∶S △DCP =1∶4; 当BP =9时,S △ABP :S △PCD =9∶4.测试61.略. 2.C .3.图略.A '(-2,1),B '(-1,-2),C '(3,-1),D '(1,2). 4.(1));32,2(),2,3(+A E(2)).332,6(1+A B 1(3,2),C 1(3,-1),D 1(9,-1),E 1(9,2); (3)),332,10(2--A B 2(7,-2),C 2(7,1),D 2(13,1),E 2(13,-2). 5.方法1:利用位似形的性质作图法(图16)图16作法:(1)在AB 上任取一点G ',作G 'D '⊥BC ;(2)以G 'D '为边,在△ABC 内作一正方形D 'E 'F 'G ';21 (3)连结BF ',延长交AC 于F ;(4)作FG ∥CB ,交AB 于G ,从F ,G 各作BC 的垂线FE ,GD ,那么DEFG 就是所求作的内接正方形.方法2:利用代数解析法作图(图17)图17(1)作AH (h )⊥BC (a );(2)求h +a ,a ,h 的比例第四项x ;(3)在AH 上取KH =x ;(4)过K 作GF ∥BC ,交两边于G ,F ,从G ,F 各作BC 的垂线GD ,FE ,那么DEFG 就是所求的内接正方形.6.提示:正方形EFGH 即为所求.。

人教版九年级数学下册第二十七章 相似 全章测试.docx

人教版九年级数学下册第二十七章 相似 全章测试.docx

初中数学试卷马鸣风萧萧第二十七章 相似 全章测试班级_____________姓名_____________学号_____________分数_____________一、选择题1. 如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则 CD 的长为( )A .163B .8C .10D .162. 如图,∠ACB=∠ADC=90°,BC=a ,AC=b ,AB=c ,要使△ABC ∽△CAD ,只要CD 等于( )A.c b 2B.ab 2C.cab D.c a23. 在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F, 若EC =2BE ,则FDBF的值是( ) A.21 B.31 C.41 D.514. 已知:如图,DE ∥BC ,AD:DB=1:2,则下列结论不正确的是() A 、12DE BC = B 、19ADE ABC ∆=∆的面积的面积 C 、13ADE ABC ∆=∆的周长的周长 D 、18ADE ∆=的面积四边形BCED 的面积5. 如图,铁路道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m时,•长臂端点升高(杆的宽度忽略不计)( ).A .4mB .6mC .8mD .12m6. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG是以原点O 为位似中心的位似图形,且相似比为,点A ,B ,E 在x轴上,若正方形BEFG 的边长为6,则C 点坐标为( ) A .(3,2) B .(3,1) C .(2,2) D .(4,2) 7. 平面直角坐标系中,有一条“鱼”,它有六个顶点,则( )DCBAA BCDF EA.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似D.将各点横坐标乘以2,纵坐标乘以21,得到的鱼与原来的鱼位似8. 对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( ) A .平移 B .旋转 C .轴对称 D .位似9. 已知:如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1).若以C ,D ,E (E 在格点上)为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( ) A .(6,0) B .(4,2)C .(6,5) D .(6,3)10. 小明在暗室做小孔成像实验.如图1,固定光源(线段MN )发出的光经过小孔(动点K )成像(线段M'N')于足够长的固定挡板(直线l )上,其中MN// l .已知点K 匀速运动,其运动路径由AB ,BC ,CD ,DA ,AC ,BD 组成.记它的运动时间为x ,M'N'的长度为y ,若y 关于x 的函数图象大致如图2所示,则点K 的运动路径可能为( )A .A→B→C→D→AB .B→C→D→A→BC .B→C→A→D→BD .D→A→B→C→D图1 图2二、填空题11. 如果两个相似三角形的面积比是1:2,那么它们的相似比是.12. 如图,小伟在打网球时,击球点距离球网的水平距离是8米,已知网高是0.8米,要使球恰好能打过网,且落在离网4米的位置,则球拍击球的高度h 为米.13. 如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段AC 的长为. 14. 如图,点D 为△ABC 外一点,AD 与BC 边的交点为E ,AE=3,DE=5,BE =4,要使△BDE 与△ACE 相似,那么线段CE 的长等于.15. 如图,ABC △与AEF△中,A B AE B C ==∠=∠,,,交EF 于D .给出下列结论:①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠. 其中正确的结论是(填写所有正确结论的序号).三、解答题16. 如图,△ABC 在方格纸中,(1) 请在方格纸上建立平面直角坐标系,使 A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A′B′C′; (3)计算△A′B′C′的面积S .17. 如图,点H 在ABCD 的边DC 延长线上,连结AH 分别交BC 、BD 于点E 、F ,求证:BE ABAD DH=.18. 如图,花丛中有一路灯杆AB. 在灯光下, 小明在D 点处的影长DE=3米,沿BD 方向行 走到达G 点,DG=5米,这时小明的影长GH =5米. 如果小明的身高为1.7米,求路灯杆 AB 的高度(精确到0.1米).19. 如图,AB 是⊙O 的直径,C 是弧AB 的中点,⊙O 的切线BD 交AC 的延长线于点D ,E 是OB 的中点,CE 的延长线交切线DB 于点F ,AF 交⊙O 于点H ,连结BH . (1)求证:AC=CD ; (2)若OB=2,求BH 的长.A BCABCDEFH20. 阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°,BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和计算能够使问题得到解决(如图2).请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP =.图1图2图3参考答案:1-10. CABAC ACDDB 11.1:2 12. 2.4 13.42 14.151245或 15.①③④ 16.(1)(2,1)(2)略(3)16 17.分析:BE BF ABAD DF DH==18.5.95m ≈6.0m 19.(1)略(2)45520.解:PD AP 的值为23. …………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2,∴BC =2k . ∴DB =DC +BC =3k . ∵E 是AC 中点,∴AE =CE . ∵AF ∥DB ,∴∠F =∠1.又∵∠2=∠3,∴△AEF ≌△CEB . ………………………………3分 ∴AF =BC =2k .∵AF ∥DB ,∴△AFP ∽△DBP .∴DBAFPD AP =. ∴32=PD AP . …………………………………………………………………4分(2) 6. ……………………………………………………………………………5分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021九年级下册2.掌握相似多边形的两个基本性质.3.理解四条线段是“成比例线段”的概念,掌握比例的基本性质.课堂学习检测一、填空题1.________________________是相似图形.2.对于四条线段a ,b ,c ,d ,如果____________与____________(如dcb a =),那么称这四条线段是成比例线段,简称__________________.3.如果两个多边形满足____________,____________那么这两个多边形叫做相似多边形.4.相似多边形____________称为相似比.当相似比为1时,相似的两个图形____________.若甲多边形与乙多边形的相似比为k ,则乙多边形与甲多边形的相似比为____________.5.相似多边形的两个基本性质是____________,____________.6.比例的基本性质是如果不等于零的四个数成比例,那么___________.反之亦真.即⇔=dcb a ______(a ,b ,c ,d 不为零). 7.已知2a -3b =0,b ≠0,则a ∶b =______. 8.若,571=+x x 则x =______. 9.若,532z y x ==则=-+x z y x 2______.10.在一张比例尺为1∶20000的地图上,量得A 与B 两地的距离是5cm ,则A ,B 两地实际距离为______m .二、选择题11.在下面的图形中,形状相似的一组是( )12.下列图形一定是相似图形的是( )A .任意两个菱形B .任意两个正三角形C .两个等腰三角形D .两个矩形13.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,那么,符合条件的三角形框架乙共有( ) A .1种 B .2种 C .3种 D .4种三、解答题(1)梯形ABCD与梯形A′B′C′D′的相似比k;(2)A′B′和BC的长;(3)D′C′∶DC.综合、运用、诊断15.已知:如图,△ABC中,AB=20,BC=14,AC=12.△ADE与△ACB相似,∠AED=∠B,DE=5.求AD,AE的长.16.已知:如图,四边形ABCD的对角线相交于点O,A′,B′,C′,D′分别是OA,OB,OC,OD的中点,试判断四边形ABCD与四边形A′B′C'D′是否相似,并说明理由.拓展、探究、思考17.如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF 上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN ∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?2020-2021 练习题测试2 相似三角形学习要求1.理解相似三角形的有关概念,能正确找到对应角、对应边. 2.掌握相似三角形判定的基本定理.课堂学习检测一、填空题1.△DEF ∽△ABC 表示△DEF 与△ABC ______,其中D 点与______对应,E 点与 ______对应,F 点与______对应;∠E =______;DE ∶AB =______∶BC ,AC ∶DF =AB ∶______.2.△DEF ∽△ABC ,若相似比k =1,则△DEF ______△ABC ;若相似比k =2,则=AC DF ______,=EFBC______. 3.若△ABC ∽△A 1B 1C 1,且相似比为k 1;△A 1B 1C 1∽△A 2B 2C 2,且相似比为k 2,则△ABC ______△A 2B 2C 2,且相似比为______. 4.相似三角形判定的基本定理是平行于三角形____________和其他两边相交,所_____ ____________与原三角形______. 5.已知:如图,△ADE 中,BC ∥DE ,则①△ADE ∽______; ②;)(,)(BCAB AD AE AB AD == ③⋅==CABA BD AE DB AD )(,)( 二、解答题6.已知:如图所示,试分别依下列条件写出对应边的比例式.练习题(1)若△ADC ∽△CDB ;(2)若△ACD ∽△ABC ;(3)若△BCD ∽△BAC .综合、运用、诊断7.已知:如图,△ABC 中,AB =20cm ,BC =15cm ,AD =12.5cm ,DE ∥BC .求DE 的长.8.已知:如图,AD ∥BE ∥CF .(1)求证:;DFDEAC AB (2)若AB =4,BC =6,DE =5,求EF .数学九年级下册拓展、探究、思考10.已知:如图,E 是□ABCD 的边AD 上的一点,且23=DE AE ,CE 交BD 于点F ,BF =15cm ,求DF 的长.11.已知:如图,AD 是△ABC 的中线.(1)若E 为AD 的中点,射线CE 交AB 于F ,求BFAF; (2)若E 为AD 上的一点,且kED AE 1=,射线CE 交AB 于F ,求⋅BF AF测试3 相似三角形的判定学习要求1.掌握相似三角形的判定定理.2.能通过证三角形相似,证明成比例线段或进行计算.课堂学习检测4.如果一个三角形的______角与另一个三角形的______,那么这两个三角形相似.5.在△ABC和△A′B′C′中,如果∠A=56°,∠B=28°,∠A′=56°,∠C′=28°,那么这两个三角形能否相似的结论是______.理由是________________.6.在△ABC和△A'B′C′中,如果∠A=48°,∠C=102°,∠A′=48°,∠B′=30°,那么这两个三角形能否相似的结论是______.理由是________________.7.在△ABC和△A'B′C′中,如果∠A=34°,AC=5cm,AB=4cm,∠A′=34°,A'C′=2cm,A′B′=1.6cm,那么这两个三角形能否相似的结论是______,理由是____________________.8.在△ABC和△DEF中,如果AB=4,BC=3,AC=6;DE=2.4,EF=1.2,FD=1.6,那么这两个三角形能否相似的结论是____________,理由是__________________.9.如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对.9题图10.如图所示,□ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有______对.10题图二、选择题11.如图所示,不能判定△ABC∽△DAC的条件是( )A.∠B=∠DACB.∠BAC=∠ADCC.AC2=DC·BCD.AD2=BD·BCA.5 B.8.2C.6.4 D.1.813.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是( )三、解答题14.已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,(1)图中有哪两个三角形相似?(2)求证:AC2=AD·AB;BC2=BD·BA;(3)若AD=2,DB=8,求AC,BC,CD;(4)若AC=6,DB=9,求AD,CD,BC;(5)求证:AC·BC=AB·CD.15.如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.综合、运用、诊断16.如图所示,已知AB∥CD,AD,BC交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.17.已知:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC 相切于E点.求证:AB·CD=BE·EC.18.如图所示,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD·BC=OB·BD.拓展、探究、思考20.已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.21.已知:如图,在△ABC中,∠BAC=90°,AH⊥BC于H,以AB和AC为边在Rt△ABC外作等边△ABD和△ACE,试判断△BDH与△AEH是否相似,并说明理由.22.已知:如图,在△ABC中,∠C=90°,P是AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC于E,点E不与点C重合,若AB=10,AC=8,设AP=x,四边形PECB的周长为y,求y与x的函数关系式.2020-2021测试4 相似三角形应用举例学习要求能运用相似三角形的知识,解决简单的实际问题.课堂学习检测一、选择题1.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是( )A .15mB .60mC .20mD .m 3102.一斜坡长70m ,它的高为5m ,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( ) A .m 711 B .m 710 C .m 79 D .m 23 3.如图所示阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE =1.8m ,窗户下檐距地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )第3题图A .1.5mB .1.6mC .1.86mD .2.16m 4.如图所示,AB 是斜靠在墙壁上的长梯,梯脚B 距离墙角1.6m ,梯上点D 距离墙1.4m ,BD 长0.55m ,则梯子长为( )第4题图A .3.85mB .4.00mC .4.40mD .4.50m 二、填空题5.如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2m 的标杆,现第5题图6.如图所示,有点光源S在平面镜上面,若在P点看到点光源的反射光线,并测得AB =10m,BC=20cm,PC⊥AC,且PC=24cm,则点光源S到平面镜的距离即SA的长度为______cm.第6题图三、解答题7.已知:如图所示,要在高AD=80mm,底边BC=120mm的三角形余料中截出一个正方形板材PQMN.求它的边长.8.如果课本上正文字的大小为4mm×3.5mm(高×宽),一学生座位到黑板的距离是5m,教师在黑板上写多大的字,才能使该学生望去时,同他看书桌上相距30cm垂直放置的课本上的字感觉相同?综合、运用、诊断9.一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,请算一下这棵树的高是多少?10.(针孔成像问题)根据图中尺寸(如图,AB∥A′B′),可以知道物像A′B′的长与物AB的长之间有什么关系?你能说出其中的道理吗?11.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为1.65m的黄丽同学BC的影长BA为1.1m,与此同时,测得教学楼DE的影长DF为12.1m,如图所示,请你根据已测得的数据,测出教学楼DE的高度.(精确到0.1m)12.(1)已知:如图所示,矩形ABCD中,AC,BD相交于O点,OE⊥BC于E点,连结ED交OC于F点,作FG⊥BC于G点,求证点G是线段BC的一个三等分点.(2)请你仿照上面的画法,在原图上画出BC的一个四等分点.(要求:写出作法,保留画图痕迹,不要求证明)练习题测试5 相似三角形的性质学习要求掌握相似三角形的性质,解决有关的计算或证明问题.课堂学习检测一、填空题1.相似三角形的对应角______,对应边的比等于______.2.相似三角形对应边上的中线之比等于______,对应边上的高之比等于______,对应角的角平分线之比等于______. 3.相似三角形的周长比等于______. 4.相似三角形的面积比等于______.5.相似多边形的周长比等于______,相似多边形的面积比等于______. 6.若两个相似多边形的面积比是16∶25,则它们的周长比等于______.7.若两个相似多边形的对应边之比为5∶2,则它们的周长比是______,面积比是______.8.同一个圆的内接正三角形与其外切正三角形的周长比是______,面积比是______. 9.同一个圆的内接正方形与其外切正方形的周长比是______,面积比是______.10.同一个圆的内接正六边形与其外切正六边形的周长比是______,面积比是______. 11.正六边形的内切圆与它的外接圆的周长比是______,面积比是______. 12.在比例尺1∶1000的地图上,1cm 2所表示的实际面积是______. 二、选择题13.已知相似三角形面积的比为9∶4,那么这两个三角形的周长之比为( )A .9∶4B .4∶9C .3∶2D .81∶1614.如图所示,在平行四边形ABCD 中,E 为DC 边的中点,AE 交BD 于点Q ,若△DQE 的面积为9,则△AQB 的面积为( )A .18B .27C .36D .4515.如图所示,把△ABC 沿AB 平移到△A ′B ′C ′的位置,它们的重叠部分的面积是△ABC 面积的一半,若2AB ,则此三角形移动的距离AA '是( )试卷A .12-B .22 C .1 D .21 三、解答题16.已知:如图,E 、M 是AB 边的三等分点,EF ∥MN ∥BC .求:△AEF 的面积∶四边形EMNF 的面积∶四边形MBCN 的面积.综合、运用、诊断17.已知:如图,△ABC 中,∠A =36°,AB =AC ,BD 是角平分线.(1)求证:AD 2=CD ·AC ; (2)若AC =a ,求AD .18.已知:如图,□ABCD 中,E 是BC 边上一点,且AE BD EC BE ,,21=相交于F 点.19.已知:如图,Rt△ABC中,AC=4,BC=3,DE∥AB.(1)当△CDE的面积与四边形DABE的面积相等时,求CD的长;(2)当△CDE的周长与四边形DABE的周长相等时,求CD的长.拓展、探究、思考20.已知:如图所示,以线段AB上的两点C,D为顶点,作等边△PCD.(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB.(2)当△ACP∽△PDB时,求∠APB.21.如图所示,梯形ABCD中,AB∥CD,对角线AC,BD交于O点,若S△AOD∶S△DOC =2∶3,求S△AOB∶S△COD.22.已知:如图,梯形ABCD中,AB∥DC,∠B=90°,AB=3,BC=11,DC=6.请问:在BC上若存在点P,使得△ABP与△PCD相似,求BP的长及它们的面积比.测试6 位似学习要求1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小.2.能用坐标表示位似变形下图形的位置.课堂学习检测1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.(1) (2)(3) (4)2.如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为( )A.(0,0),2综合、运用、诊断3.已知:如图,四边形ABCD的顶点坐标分别为A(-4,2),B(-2,-4),C(6,-2),D(2,4).试以O点为位似中心作四边形A'B'C'D′,使四边形ABCD与四边形A′B′C′D′的相似比为1∶2,并写出各对应顶点的坐标.4.已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D 点的坐标分别为(1,2),(1,1),(3,1).(1)求E点和A点的坐标;(2)试以点P(0,2)为位似中心,作出相似比为3的位似图形A1B1C1D1E1,并写出各对应点的坐标;(3)将图形A1B1C1D1E1向右平移4个单位长度后,再作关于x轴的对称图形,得到图形A2B2C2D2E2,这时它的各顶点坐标分别是多少?6.在已知半圆内求作内接正方形.2.其中两条线段的比,另两条线段的比相等,比例线段. 3.对应角相等,对应边的比相等. 4.对应边的比,全等,⋅k1 5.对应角相等,对应边的比相等.6.两个内项之积等于两个外项之积,ad =bc .7.3∶2. 8.⋅259.1. 10.1 000.11.C . 12.B . 13.C .14.(1)k =2∶3;(2)A 'B '=9,BC =8;(3)3∶2.15.⋅==750,730AE AD 16.相似. 17.25=x 时,S 的最大值为⋅225 测试21.相似,A 点,B 点,C 点,∠B ,EF ,DE . 2.≌,2,⋅213.∽;k 1k 2.4.一边的直线,构成的三角形,相似. 5.①△ABC ;②AC ,DE ;③EC ,CE .6.(1);BC CA BD CD CD AD == (2);BC CD AC AD AB AC == (3)⋅==ACCD BC BD BA BC 7.9.375cm .8.(1)提示:过A 点作直线AF '∥DF ,交直线BE 于E ',交直线CF 于F '. (2)7.5.9.提示:P A ∶PB =PM ∶PN ,PC ∶PO =PM ∶PN . 10.OF =6cm .提示:△DEF ∽△BCF . 11.(1);21=BF AF (2)1∶2k . 测试31.平行于,直线,相交. 2.三组,比相等. 3.两组,相应的夹角. 4.两个,两个角对应相等. 5.△ABC ∽△A 'C 'B ',因为这两个三角形中有两对角对应相等. 6.△ABC ∽△A 'B 'C '.因为这两个三角形中有两对角对应相等.14.(1)△ADC ∽△CDB ,△ADC ∽△ACB ,△ACB ∽△CDB ;(2)略;(3);4,54,52===CD BC AC (4);36,33,3===BC CD AD(5)提示:AC ·BC =2S △ABC =AB ·CD .15.提示:(1)OD ∶OA =OF ∶OC ,OE ∶OB =OF ∶OC ;(2)OD ∶OA =OE ∶OB ,∠DOE =∠AOB ,得△ODE ∽△OAB ; (3)证DF ∶AC =EF ∶BC =DE ∶AB . 16.略.17.提示:连结AE 、ED ,证△ABE ∽△ECD . 18.提示:关键是证明△OBC ∽△ADB .∵AB 是⊙O 的直径,∴∠D =90°. ∵BC 是⊙O 的切线,∴OB ⊥BC . ∴∠OBC =90°.∴∠D =∠OBC .∵AD ∥OC ,∴∠A =∠BOC .∴△ADB ∽△OBC .⋅=∴CBBDOB AD ∴AD ·BC =OB ·BD . 19.提示:连接BF 、AC ,证∠CFB =∠CBE20.⋅=21FB AF 提示:过C 作CM ∥BA ,交ED 于M . 21.相似.提示:由△BHA ∽△AHC 得,ACBAAH BH =再有BA =BD ,AC =AE .则:,AE BD AH BH =再有∠HBD =∠HAE ,得△BDH ∽△AEH .22..2423+-=x y 提示:可证△APE ∽△ACB ,则⋅=ACAPBC PE则).10(6)458(43,45,43x x x y x AE x PE -++-+===测试41.A . 2.B . 3.A . 4.C .5.3. 6.12. 7.48mm .8.教师在黑板上写的字的大小约为7cm ×6cm(高×宽). 9.树高7.45m .10..31AB B A ='' 11.∵EF ∥AC ,∴∠CAB =∠EFD .又∠CBA =∠EDF =90°,∴△ABC ∽△FDE .)m (2.181.11.1265.1≈⨯=⋅=∴⋅=∴BA DF BC DE DF BA DE BC 故教学楼的高度约为18.2m .12.(1)提示:先证EF ∶ED =1∶3.(2)略.测试51.相等,相似比. 2.相似比、相似比、相似比.3.相似比. 4.相似比的平方.5.相似比.相似比的平方. 6.4∶5.7.5∶2,25∶4. 8.1∶2,1∶4.9..2:1,2:1 10..4:3,2:311..4:3,2:3 12.100m 2.13.C. 14.C . 15.A . 16.1∶3∶5.17.(1)提示:证△ABC ∽△BCD ;(2).215a - 18.(1);31 (2)54cm 2. 19.(1);22 (2)⋅724 20.(1)CD 2=AC ·DB ;(2)∠APB =120°. 21.4∶9 22.BP =2,或,311或9. 当BP =2时,S △ABP ∶S △PCD =1∶9;当311=BP 时,S △ABP ∶S △DCP =1∶4; 当BP =9时,S △ABP :S △PCD =9∶4.测试61.略. 2.C .3.图略.A '(-2,1),B '(-1,-2),C '(3,-1),D '(1,2). 4.(1));32,2(),2,3(+A E (2)).332,6(1+A B 1(3,2),C 1(3,-1),D 1(9,-1),E 1(9,2); (3)),332,10(2--A B 2(7,-2),C 2(7,1),D 2(13,1),E 2(13,-2). 5.方法1:利用位似形的性质作图法(图16)图16作法:(1)在AB上任取一点G',作G'D'⊥BC;(2)以G'D'为边,在△ABC内作一正方形D'E'F'G';(3)连结BF',延长交AC于F;(4)作FG∥CB,交AB于G,从F,G各作BC的垂线FE,GD,那么DEFG就是所求作的内接正方形.方法2:利用代数解析法作图(图17)图17(1)作AH(h)⊥BC(a);(2)求h+a,a,h的比例第四项x;(3)在AH上取KH=x;(4)过K作GF∥BC,交两边于G,F,从G,F各作BC的垂线GD,FE,那么DEFG就是所求的内接正方形.6.提示:正方形EFGH即为所求.。

相关文档
最新文档