大学物理课后习题答案第六章

合集下载

大学物理第6章习题参考答案

大学物理第6章习题参考答案

第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。

将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。

大学物理 第六章(中国农业出版社 张社奇主编)答案

大学物理 第六章(中国农业出版社 张社奇主编)答案

6.2
y(x,t) 0.2cos[200 (t 1 x) ]
40 2
6.3.有一平面简谐波在介质中传播,波速u=100m/s,波 线上右侧距坐标原点为75.0m处的一点P的运动方程为 yp=0.30cos[2πt+π/2]m,求:
(1)波向x轴正方向传播时的波动方程;
(2)波向x轴负方向传播时的波动方程。
yD
(t
)

0.03
cos[4
(t

9 20
)


]

0.03
cos[4
t

14
5
]m
(2) uT u 2 20 2 10m

4
O点振动比A点振动在相位上提前
2 x 2 5

10
则 O 0
若取 x 轴方向向右,则此时波向x 轴正向传播,波动方程为
20 0.75


0.25
2
所求振动方程 y 0.1cos[500 t 0.25 ](m)
t=0 时该点的振动速度为:
v ( dy / dt)t0
50 sin0.25
6.7 (1)
y(x,t) 0.05cos(10t 4 x) 0.05cos[10 (t 2 x)]m
φ0
y
0 0.05 0.1
y 0.1cos[500 (t x / 5000) / 3](m)
(2) 波源
t=0
y(0) 0m
v(0)<0

波源的初相位=
2
y
0
距波源7.5m处质点的相位比波源落后
2 x 2 7.5 0.75

关于大学物理课后习题答案第六章

关于大学物理课后习题答案第六章

关于大学物理课后习题答案第六章文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

一试验电荷置于x 轴上何处,它受到的合力等于零解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 故 q q 33-=' (2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。

求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε 根据电荷分布的对称性知,0==z y E E式中:θ为dq 到场点的连线与x 轴负向的夹角。

下面求直线段受到的电场力。

在直线段上取dx dq 2λ=,dq 受到的电场力大小为 方向沿x 轴正方向。

直线段受到的电场力大小为 方向沿x 轴正方向。

4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。

求: (1)圆心处O 点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。

解:(1)在半圆环上取ϕλλRd l dq ==d ,它在O 点产生场强大小为20π4R dq dE ε=ϕελd R0π4= ,方向沿半径向外根据电荷分布的对称性知,0=y E 故 RE E x 0π2ελ==,方向沿x 轴正向。

大学物理习题答案第六章

大学物理习题答案第六章

[习题解答]6-2 一个运动质点的位移与时间的关系为m ,其中x的单位是m,t的单位是s。

试求:(1)周期、角频率、频率、振幅和初相位;(2) t = 2 s时质点的位移、速度和加速度。

解(1)将位移与时间的关系与简谐振动的一般形式相比较,可以得到角频率s 1, 频率, 周期, 振幅, 初相位.(2) t = 2 s时质点的位移.t = 2 s时质点的速度.t = 2 s时质点的加速度.6-3 一个质量为2.5 kg的物体系于水平放置的轻弹簧的一端,弹簧的另一端被固定。

若弹簧受10 N的拉力,其伸长量为5.0 cm,求物体的振动周期。

解根据已知条件可以求得弹簧的劲度系数,于是,振动系统的角频率为.所以,物体的振动周期为.6-4求图6-5所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。

解以平衡位置O为坐标原点,建立如图6-5所示的坐标系。

若物体向右移动了x,则它所受的力为.根据牛顿第二定律,应有图6-5,改写为.所以,.6-5 求图6-6所示振动装置的振动频率,已知物体的质量为m,两个轻弹簧的劲度系数分别为k1 和k2。

解以平衡位置O为坐标原点,建立如图6-6所示的图6-6坐标系。

当物体由原点O向右移动x时,弹簧1伸长了x1 ,弹簧2伸长了x2 ,并有.物体所受的力为,式中k是两个弹簧串联后的劲度系数。

由上式可得, .于是,物体所受的力可另写为,由上式可得,所以.装置的振动角频率为,装置的振动频率为.6-6仿照式(6-15)的推导过程,导出在单摆系统中物体的速度与角位移的关系式。

解由教材中的例题6-3,单摆的角位移θ与时间t的关系可以写为θ = θ0 cos (ω t+ϕ) ,单摆系统的机械能包括两部分, 一部分是小物体运动的动能,另一部分是系统的势能,即单摆与地球所组成的系统的重力势能.单摆系统的总能量等于其动能和势能之和,即,因为, 所以上式可以化为.于是就得到,由此可以求得单摆系统中物体的速度为.这就是题目所要求推导的单摆系统中物体的速度与角位移的关系式。

大学物理(肖剑荣主编)-习题答案-第6章

大学物理(肖剑荣主编)-习题答案-第6章

面,且端点 MN 的连线与长直导线垂直.半圆环的半径为 b ,环心 O 与导线相距
a .设半圆环以速度 v 平行导线平移.求半圆环内感应电动势的大小和方向及
MN 两端的电压 U M - U N .
解: 作辅助线 MN ,则在 MeNM 回路中,沿 v! 方向运动时 dFm = 0

e MeNM = 0
ò F12 =
2a
3 a
3
µ 0 Ia 2π r
dr
=
µ0Ia ln 2 2π
∴ M = F12 = µ0a ln 2 I 2π
6-16 一矩形线圈长为 a =20cm,宽为 b =10cm,由 100 匝表面绝缘的导线绕成,
放在一无限长导线的旁边且与线圈共面.求:题 10-16 图中(a)和(b)两种情况下,
第六章 课后习题解答
桂林理工大学 理学院 胡光辉
(《大学物理·上册》主编:肖剑荣 梁业广 陈鼎汉 李明)
6-1 一半径 r =10cm
的圆形回路放在 B =0.8T
的均匀磁场中.回路平面与
! B

直.当回路半径以恒定速率 dr =80cm·s-1 收缩时,求回路中感应电动势的大小. dt
解: 回路磁通
=
µ0Iv p
ln
a a
+ -
b b
6-12 磁感应强度为 B! 的均匀磁场充满一半径为 R 的圆柱形空间,一金属杆放在
dB 图中位置,杆长为 2 R ,其中一半位于磁场内、另一半在磁场外.当 >0 时,
dt
求:杆两端的感应电动势的大小和方向.
解: ∵ e ac = e ab + e bc
e ab
= - dF1 dt

大学物理课后习题详解(第六章)中国石油大学

大学物理课后习题详解(第六章)中国石油大学

习 题 六6-1 一轻弹簧在60N 的拉力下伸长30cm .现把质量为4kg 物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm ,然后释放并开始计时.求:(1)物体的振动方程;(2)物体在平衡位置上方5cm 时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm 处所需要的最短时间.[解] (1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系N/m 2001030602=⨯=-k设振动方程为 ()ϕω+=t A x cosrad/s 07.74200===m k ω m 1.0=A 0=t 时 m 1.0=x ϕc o s1.01.0= 0=ϕ 故振动方程为 ()m 07.7cos 1.0t x = (2)设此时弹簧对物体作用力为F ,则()()x x k x k F +=∆=0其中 m 196.02008.940=⨯==k mg x 因而有 ()N 2.2905.0196.0200=-⨯=F (3)设第一次越过平衡位置时刻为1t ,且速度小于零,则()107.7cos 1.00t = 07.75.01π=t第一次运动到上方5cm 处时刻为2t ,且速度小于零,则()207.7cos 1.005.0t =- )07.7322⨯=πt故所需最短时间为:s 074.012=-=∆t t t6-2 一质点在x 轴上作谐振动,选取该质点向右运动通过点 A 时作为计时起点(t =0),经过2s 后质点第一次经过点B ,再经 2s 后,质点第二次经过点B ,若已知该质点在A 、B 两点具有相同的速率,且10cm =AB ,求:(1)质点的振动方程;(2)质点在A 点处的速率.[解] 由旋转矢量图和||||b a v v =可知421=T s 由于42s 81,s 81ππνων====-T(1)以AB 的中点为坐标原点,x 轴指向右方.0=t 时, ϕcos 5A x =-=2s =t 时, ()ϕϕωs i n 2c o s 5A A x -=+== 由以上二式得 1tan =ϕ因为在A 点质点的速度大于零,所以43πϕ-= cm 25cos /==ϕx A所以,运动方程为:()m 4/34/cos 10252ππ-⨯=-t x(2)速度为: ⎪⎭⎫ ⎝⎛-⨯-==-434sin 41025d d 2πππt t x v 当2s =t 时 m/s 1093.3432sin 4102522--⨯=⎪⎭⎫ ⎝⎛-⨯-=πππv6-3 一质量为M 的物体在光滑水平面上作谐振动,振幅为 12cm ,在距平衡位置6cm 处,速度为24s cm ,求:(1)周期T ;(2)速度为12s cm 时的位移.[解](1)设振动方程为()cm cos ϕω+=t A x 以cm 12=A 、cm 6=x 、1s cm 24-⋅=v 代入,得:()ϕω+=t c o s 126 (1)()ϕωω+-=t sin 1224 (2)由(1)、(2)得1122412622=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛ω 解得 334=ω s 72.2232===πωπT (2) 以1s cm 12-⋅=v 代入,得:()()ϕωϕωω+-=+-=t t sin 316sin 1212解得: ()43sin -=+ϕωt 所以 ()413cos ±=+ϕωt故 ()cm 8.1041312cos 12±=⎪⎪⎭⎫ ⎝⎛±⨯=+=ϕωt x6-4 一谐振动的振动曲线如图所示,求振动方程.[解] 设振动方程为: ()ϕω+=t A x cos 根据振动曲线可画出旋转矢量图由图可得: 32πϕ=125223πππϕω=⎪⎭⎫ ⎝⎛+=∆∆=t故振动方程为 cm 32125cos 10⎪⎭⎫⎝⎛+=ππt x6-5 一质点沿x 轴作简谐振动,其角频率s rad 10=ω,试分别写出以下两种初始状态的振动方程:(1)其初始位移0x =7.5 cm ,初始速度s cm 0.750=v ;(2)其初始位移0x =7.5 cm ,初速度s cm 0.750-=v .[解] 设振动方程为 ()ϕ+=t A x 10cos (1) 由题意得: ϕcos 5.7A = ϕsin 1075A -= 解得: 4πφ-= cm 6.10=A 故振动方程为:()cm 410cos 6.10π-=t x(2) 同法可得: ()cm 410cos 6.10π+=t x6-6 一轻弹簧在60 N 的拉力作用下可伸长30cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4k 。

大学物理第六章静电场习题答案

大学物理第六章静电场习题答案

第六章 静电场习题6-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F =++=合 y 轴方向有()()21322002032cos 242433304q qQ F F F a a q q Q aθπεπεπε=+=+=+=合得 33Q q =-(2)这种平衡与三角形的边长无关。

6-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。

设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。

解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 6-3 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。

(1)由对称性可知 F 1= 0(2)291222200 1.9210N 43q q e F r aπεπε-===⨯ 方向如图所示6-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷。

试求:(1)在导线的延长线上与导线B 端相距1 5.0cm a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强。

解:(1)如图所示,在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l QxE 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x 2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。

大学物理第六章练习答案

大学物理第六章练习答案

第六章 热力学基础练 习 一一. 选择题1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后 A (A) 温度不变,熵增加; B 温度升高,熵增加;C 温度降低,熵增加;D 温度不变,熵不变; 2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值; C A 等容降压过程; B 等温膨胀过程; C 等压压缩过程; D 绝热膨胀过程; 3. 一定量的理想气体,分别经历如图11所示的abc 过程图中虚线ac 为等温线和图12所示的def 过程图中虚线df 为绝热线 ; 判断这两过程是吸热还是放热: A A abc 过程吸热,def 过程放热; B abc 过程放热,def 过程吸热; C abc 过程def 过程都吸热; D abc 过程def 过程都放热;4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B A p =B p ,则无论经过的是什么过程,系统必然 B(A) 对外做正功; B 内能增加; C 从外界吸热; D 向外界放热; 二.填空题1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量; 2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J,则该过程中需吸热__-200__ ___J;3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J,气体向外界放热620J,则气体的内能 减少,填增加或减少,21E E = -380 J;4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B,将从外界吸热416 J,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C,将从外界吸热582 J,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J ;图.2图1图3三.计算题1. 一定量氢气在保持压强为×510Pa 不变的情况下,温度由0 ℃ 升高到50.0℃时,吸收了×104J 的热量;1 求氢气的摩尔数2 氢气内能变化多少3 氢气对外做了多少功4 如果这氢气的体积保持不变而温度发生同样变化、它该吸收多少热量解: 1由,22p m i Q vC T vR T +=∆=∆ 得 422 6.01041.3(2)(52)8.3150Q v mol i R T ⨯⨯===+∆+⨯⨯ 24,541.38.3150 4.291022V m i E vC T v R T J ∆=∆=⨯∆=⨯⨯⨯=⨯ 344(6.0 4.29)10 1.7110A Q E J =-∆=-⨯=⨯ 444.2910Q E J =∆=⨯2. 一定量的理想气体,其体积和压强依照V =aP 的规律变化,其中a 为常数,试求:1 气体从体积1V 膨胀到2V 所做的功;2体积为1V 时的温度1T 与体积为2V 时的温度2T 之比;1:⎰⎰⎪⎪⎭⎫⎝⎛-===21212122211V V V V V V a dV Va PdV W 2: 111nRT V P =1221V V T T = 3. 一热力学系统由如图3所示的状态a 沿acb 过程到达状态b 时,吸收了560J 的热量,对外做了356J 的功;1 如果它沿adb 过程到达状态b 时,对外做了220J 的功,它吸收了多少热量2 当它由状态b 沿曲线ba 返回状态a 时,外界对它做了282J 的功,它将吸收多少热量 是真吸了热,还是放了热解: 根据热力学第一定律 Q E W =+1∵a 沿acb 过程达到状态b,系统的内能变化是:560356204ab acb acb E Q W J J J =-=-=由于内能是状态系数,与系统所经过的过程无关 ∴系统由a 沿acb 过程到达状态b 时204ab E J =系统吸收的热量是:204220424ab acb Q E W J J J =+=+=2系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化:204ba ab E E J =-=-[]204(282)486ba ba Q W J J ∴+=-+-=-即系统放出热量486J第六章 热力学基础练 习 二一. 选择题1. 如图1所示,一定量的理想气体从体积1V 膨胀到体积2V 分别经历的过程是:A →B 等压过程, A →C 等温过程,A →D 绝热过程;其中吸热最多的过程 AA 是A →B ; B 是A →C ; C 是A →D ; D 既是A →B,也是A → C,两者一样多;2. 用公式V E C T ∆=μ∆ 式中V C 为定容摩尔热容量,μ为气体摩尔数,计算理想气体内能增量时,此式 D(A) 只适用于准静态的等容过程; B 只适用于一切等容过程; C 只适用于一切准静态过程; D 适用于一切始末态为平衡态的过程;3. 用下列两种方法: 1 使高温热源的温度1T 升高T ∆, 2 使低温热源的温度2T 降低同样的T ∆值,分别可使卡诺循环的效率升高1∆η和2∆η,两者相比: BA 1∆η> 2∆η;B 2∆η>1∆η;C 1∆η= 2∆η;D 无法确定哪个大; 二. 填空题1. 同一种理想气体的定压摩尔热容P C 大于定容摩尔热容V C , 其原因是 除了增加内能还需对外做功 ;1 2图1图32. 常温常压下,一定量的某种理想气体视为刚性分子,自由度为i ,在等压过程中吸热为Q,对外做功为A ,内能增加为E ∆, 则A/Q =i +22, ∆E/Q = ii +2; 3.一卡诺热机可逆的,低温热源的温度为27℃,热机效率40%,其高温热源温度为C 127T 1=;今欲将热机效率提高为50%,若低温热源保持不变,则高温热源的温度增加C 200T =∆;4.如图2所示,一定量的理想气体经历a →b →c 过程, 在此过程中气体从外界吸收热Q ,系统内能变化∆E , 请在以下空格内填上>0或<0或=0; Q >0 , ∆E >0 ; 三. 计算题1. 如图3所示两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为0V ,其中装有温度相同、压强均为0P 的同种理想气体,现保持气体温度不变,用外力缓慢移动活塞忽略摩擦,使左室气体的体积膨胀为右室的2倍,问外力必须做多少功 解:x V P S V V P S P F 0010011===, xl VP F -=002 ()()[]89ln ln 003221003221322121V P x l x V P dx F F Fdx W l l l l l l =-=-==⎰⎰2. 比热容比γ = 的理想气体,进行如图4所示的ABCA 循环,状态A 的温度为300K; 1求状态B 、C 的温度;2计算各过程中气体吸收的热量、气体所做的功和气体内能的增量;RT MmPV =得:KT C K T B R mMA CB 75:225:3002400:==⨯=⨯A C →等体过程,EJ T i R m M Q W ∆-==∆==15002图2图4图5JE W Q J T R i m M E J PdV W BA 50050021000=∆+=-=∆=∆==→⎰C B →等压过程JE W Q J T R i m M E J PdV W 140010002400-=∆+=-=∆=∆-==⎰3. 如图5为一循环过程的T —V 图线;该循环的工质是一定质量的理想气体;其,V m C 和γ均已知且为常量;已知a 点的温度为1T ,体积为1V ,b 点的体积为2V ,ca 为绝热过程;求:1 c 点的温度;2 循环的效率;解: 1c a 为绝热过程,11112r r a c a c V V T T T V V --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭2a b 等温过程,工质吸热211lnV Q vRT V = bc 为等容过程,工质放热为11..1.12()11r c V m b c V m V m T V Q vC T T vC T vC T T V -⎡⎤⎛⎫⎛⎫⎢⎥=-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦循环过程的效率112.2211111ln r V mV V C Q V Q RV η-⎛⎫- ⎪⎝⎭=-=-第六章 热力学基础练 习 三一. 选择题1. 理想气体卡诺循环过程的两条绝热线下的面积大小图1中阴影部分分别为S 1和S 2 ,则二者的大小关系是 BA S 1 > S 2 ;B S 1 = S 2 ;C S 1 < S 2 ;D 无法确定; 2. 在下列说法中,哪些是正确的 C1 可逆过程一定是平衡过程;2 平衡过程一定是可逆的;3 不可逆过程一定是非平衡过程;4 非平衡过程一定是不可逆的;A 1、4 ;B 2、3 ;C 1、2、3、4 ;D 1、3 ; 3. 根据热力学第二定律可知 DA 功可以全部转换为热,但热不能全部转换为功;B 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;C 不可逆过程就是不能向相反方向进行的过程;D 一切自发过程都是不可逆的;4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功”;对此说法,有以下几种评论,哪种是正确的 CA 不违反热力学第一定律,但违反热力学第二定律; (B) 不违反热力学第二定律,但违反热力学第一定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律; 二. 填空题1. 如图2的卡诺循环:1abcda,2dcefd,3abefa ,其效率分别为:1η= 1/3 , 2η= 1/2 ,3η= 2/3 ;2. 卡诺致冷机,其低温热源温度为T 2=300K ,高温热源温度为T 1=450K ,每一循环从低温热源吸热Q 2=400J ,已知该致冷机的致冷系数ω=Q 2/A=T 2/T 1-T 2 式中A 为外界对系统做的功,则每一循环中外界必须做功A= 200J ;3. 1 mol 理想气体设γ = C p / C V 为已知的循环过程如图3的T —V 图所示,其中CA 为绝热过程,A 点状态参量T 1,V 1和B 点的状态参量T 1,V 2为已知,试求C 点的状态量:V c =2V ,T c =1121T VV r -⎪⎪⎭⎫ ⎝⎛,P c =r r V V RT 2111-;三. 计算题1. 一热机在1000K 和300K 的两热源之间工作,如果 1 高温热源提高为1100K ;2 低温热源降低为200K,从理论上说,热机效率各可增加多少为了提高热机效率哪一种方案为好 热机在1000K 和300K 的两热源之间工作,121T T T -=η,%7010003001000=-=η 解: 高温热源提高为1100K :%73.72110030011001=-=η,效率提高:%73.2=η∆低温热源降低为200K : %80100020010002=-=η,效率提高:%10=η∆提高热机效率降低低温热源的温度的方案为好;2. 1 mol 单原子分子理想气体的循环过程如图4的T —V 图所示, 其中c 点的温度为T c =600K,试求: 1ab 、bc 、ca 各个过程系统吸收的热量;2经一循环系统所做的净功;3循环的效率;注: 循环效率η=A/Q 1,A 为循环过程系统对外做的净功,Q 1为循环过程系统从外界吸收的热量,1n2=解: 由b b b a a a T VP T V P =,得K T b 300=J V V RT Q baca 0.34562ln 60031.8ln=⨯⨯== 等温过程 ()()J T T C Q b c v bc 5.373930060031.823=-⨯=-= 等容过程 ()()J T T C Q a b b ab 5.623260030031.825-=-⨯=-= 等压过程图2图3图4()6232.524932ab ab b a iW Q E R T T J=-∆=---=-J Q W ca ca 0.3456==%38.132********=+-==bcca Q Q Q A η。

大学物理课后习题答案(高教版 共三册)

大学物理课后习题答案(高教版 共三册)

第六章 真空中的静电场1、电量为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,求该点的电场强度大小和方向。

解:由q E F = 得C N q F E /4105/1020/99-=⨯-⨯==--方向向上2、一个带负电荷的质点,在电场力作用下从A 点 经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,试定性画出电场E的方向。

解:速率是递减→τa 为负→切向力与v相反做曲线运动→有n a →受合力方向如图→即电场E-的方向3、一均匀静电场,电场强度()j i E 600400+=V ·m -1,求点a (3,2)和点b (1,0)之间的电势差U ab .(点的坐标x ,y 以米计) 解:⎰⋅=baab l d E U)()600400(⎰+⋅+=baj dy i dx j i +=⎰13400dx ⎰2400dy=-2×103 V4、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强: ()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L xL q E 02)(d 4-ε()d L d q +π=04ε 3分方向沿x 轴,即杆的延长线方向.-qEO5、A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.求A 、B 两平面上的电荷面密度σA , σB . 解:设电荷面密度为σA , σB由场强迭加原理,平面内、外侧电场强度由σA , σB 共同贡献: 外侧:32200E BA=+-εσεσ内侧:0022E BA=+εσεσ联立解得:3/200E Aεσ-= 3/400E Bεσ=6、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.求通过该半球面的电场强度通量。

大学物理课后习题答案第六章

大学物理课后习题答案第六章

第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q a q '=︒εε故 q q 33-=' (2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。

求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε根据电荷分布的对称性知,0==z y E E23220)(41cos R x xdqdE dE x +==πεθz式中:θ为dq 到场点的连线与x 轴负向的夹角。

⎰+=23220)(4dq R x xE x πε232210)(24R x Rx+⋅=πλπε232201)(2R x xR +=ελ下面求直线段受到的电场力。

在直线段上取dx dq 2λ=,dq 受到的电场力大小为dq E dF x =dx R x xR 2322021)(2+=ελλ方向沿x 轴正方向。

直线段受到的电场力大小为⎰=dF F dx R x xR l ⎰+=02322021)(ελλ2 ()⎥⎦⎤⎢⎣⎡+-=2/12202111R l R R ελλ2 方向沿x 轴正方向。

大学物理第六章课后习题答案(马文蔚第五版)汇总

大学物理第六章课后习题答案(马文蔚第五版)汇总

第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。

因而正确答案为(A )。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。

设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )Rεq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A )。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

大学物理第六章 习题答案

大学物理第六章 习题答案

第六章 热力学基础 习题答案一、单选题1-5 DAACD 6-10 ADCDA二、填空题1. 500J; 700J2. 3/2 P 1V 1;03. 1/2; 24.33.3% ; 8.31⨯103J5. 320K ; 4三、计算题1.解:由题意可知:气体经历等压变化,且对外做功为:(1)若气体为单原子分子,即: i=3(2)若气体为双原子分子,即: i=52.解:(1)因为气体为卡诺循环,且高温T 1 = 1000 K ,低温T 2 = 300 K 该循环的效率满足:(2)若低温热源不变,设高温热源温度为T 1,则有:解得: T 1 = 1500 K 即高温热源温度需提高500K(3)若高温热源不变,设低温热源温度为T 2,则有:JT R MV p A 200=∆=∆=μJ A T R i M Q p 50025221==∆+=μJ A T R i M Q p 70027222==∆+=μ%7010003001000112=-=-=T T η%8030011112=-=-=T T T T η%80100010001212=-=-=T T T η解得: T 2 = 200 K 即低温热源温度需降低100K3.解:氦气(1)定容过程,V =常量,W =0 由Q E W =∆+ 知21()623 J V M Q E C T T μ=∆=-=(2)定压过程,P =常量 321() 1.0410 J P M Q C T T μ=-=⨯与(1)相同(3)与(1)相同 (外界对系统做功)4.解:(1)等容过程等温过程(2)等温过程等容过程3=i E ∆J 417=∆-=E Q W 0=Q E ∆J 623-=∆-=E W 0W 1=()()J 5.1246208031.82511211=-⨯⨯⨯=-=∆=∴T T C Mm E Q V 02=∆E ()J 3.20332ln 8027331.812ln d W 2222=⨯+⨯⨯====∴⎰VV RT M m V p Q V V J 3.203321=+=∴W W W J 5.1246=∆E J 8.93273.20335.124621=+=+=∴Q Q Q 03=∆E ()J 7.16872ln 2027331.812ln 133=⨯+⨯⨯===∴VV RT M m W Q 04=W()()J 5.1246208031.82511244=-⨯⨯⨯=-=∆=∴T T C Mm E Q V J 7.168743=+=∴W W W J2.29345.12467.168743=+=+=∴Q Q Q J 5.124643=∆+∆=∆E E E。

《大学物理》 第二版 课后习题答案 第六章

《大学物理》 第二版 课后习题答案 第六章

习题解析6-1在坐标原点及0)点分别放置电量61 2.010Q C -=-⨯及62 1.010Q C -=⨯的点电荷,求1)P -点处的场强。

解 如图6.4所示,点电荷1Q 和2Q 在P 产生的场强分别为 1122122201102211,44Q r Q r E E r r r r πεπε== 而12123,,2,1r i j r j r r =-=-==,所以()()11111222011011662203111441 2.010 1.010422113.9 6.810Q r Q r E E E r r r r j j i j N C πεπεπε--=+=+⎛⎫-⨯-⨯-=+ ⎪ ⎪⎝⎭≈-+⨯∙总 6-2 长为15l cm =的直导线AB 上,设想均匀地分布着线密度为915.0010C m λ--=⨯⋅,的正电荷,如图6.5所示,求:(1)在导线的延长线上与B 端相距1 5.0d cm =处的P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处的Q 点的场强。

解 (1)如图6.5(a )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴的正方向。

在导线AB 上坐标为x处,取一线元dx ,其上电荷为 dq dx λ= 它在P 点产生的场强大小为 2200111442dq dxdE r l d x λπεπε==⎛⎫+- ⎪⎝⎭方向沿x 轴正方向。

导线AB 上所有线元在P 点产生的电场的方向相同,因此P 点的场强大小为()1212122000112112992122111114442115.0010910 6.75105102010dq dx E r d l d l d x V m λπεπεπε------⎛⎫===- ⎪-⎛⎫⎝⎭+- ⎪⎝⎭⎛⎫=⨯⨯⨯⨯-=⨯∙ ⎪⨯⨯⎝⎭⎰方向沿x 轴正方向。

(2)如图6.5(b )所示,以AB 中点为坐标原点,从A 到B 的方向为x 轴正方向,垂直于AB 的轴为y 轴,在导线AB 上坐标为x 处,取一线元dx ,其上的电荷为 dq dx λ= 它在Q 点产生的电场的场强大小为 22220021144dq dx dE r d x λπεπε==+ 方向如图6.5(b )所示。

大学物理习题答案解析第六章

大学物理习题答案解析第六章

第二篇第六章静电场中的导体与电介质6 - 1将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B相对无穷远处为零电势。

由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。

6 —2将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则()(A)N上的负电荷入地(B)N上的正电荷入地(C)N上的所有电荷入地(D)N上所有的感应电荷入地^6-2 图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关。

因而正确答案为(A)。

6 —3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d, 参见附图。

设无穷远处为零电势,则在导体球球心0点有()(A) E 0,V(B) E J,V J4 n%d 4 n(C) E 0,V 0(D) E J,V —4 n 电d 4 n R体球表面感应等量异号的感应电荷土 q',导体球表面的感应电荷土 q 在球心0点激发的电势为零, 0点的电势等于点电荷q 在该处激发的电势。

因而正确答案为( A )。

6 —4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电 荷的代数和。

下列推论正确的是 () (A) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电 荷的分布有关。

大学物理课后答案——第六章_管靖主编

大学物理课后答案——第六章_管靖主编

6.8 一块厚度为d 的无限大平板均匀带电,电荷密度为ρ,求板内外电场E 的分布. 解 垂直于平板表面作横截面,如题解图6.8;图中虚线为与表面平行、距离两表面等距离(均为2d )的平面AB .由于带电平板无限大,电荷分布对平面AB 对称,可知电场强度E 与平板表面垂直,在距离平面AB距离相等处电场强度的大小E 相同.作对平面AB 对称的闭合高斯面S ,高斯面S 由与平面AB 平行的两个底面1S 和2S 和与平面AB 正交的柱面3S 组成,两个底面1S 和2S 到平面AB 的距离均为l .因1S 和2S 的E 通量相等,12ES ES =;3S 的E 通量为零;当2dl ≤时,根据高斯定理 1110122E S lS ρε=即可求出1lE ρε=;当2d l >时,根据高斯定理211012E S S d ρε=可求出22dE ρε=.平板带正电,E 垂直表面向外,平板带负电,E 垂直表面向内.6.9 如题图6.9所示, 在半径分别为1R 、2R 的两个同心薄球面上均匀分布着电荷1Q 和2Q .(1)求I 、II 、III区场强E的分布;(2)求I 、II 、III区的电势分布. 题图6.9解 由于电荷分布对球心O 具有球对称性,故电场分布也对球心O 具有球对称性,可知电场线为过O 点的放射状半直线,场强E 沿半径方向,在到O 点的距离r 相同处,场强大小E 相等.(1)设研究的场点到O 点的距离为r ,以O 为圆心、r 为半径的球面为高斯面,E 与高斯面正交.根据高斯定理,在I 区,1rR <,有211d 40E S E r π⋅=⋅=⎰⎰所以10E =.在II 区,12R r R <<,则由21204Q E r πε⋅=可求出12204Q E r πε=.在III 区,2rR >,则由212304Q Q E r πε+⋅=可求出123204Q Q E r πε+=.(2)取参考点在无穷远,积分路径沿半径方向,沿电场线积分. 在III 区,2rR >,121233200()d d 44rrQ Q Q Q r E l r r rϕπεπε∞∞++=⋅==⎰⎰在II 区,12R r R <<,22212233220()d d d ()4R R rR rQ r E l E l r R r ϕϕπε∞=⋅+⋅=+⎰⎰⎰21122002d 44R rQ Q Q r rR πεπε+=+⎰12021()4Q Q r R πε=+在I 区,1rR <,12121123()d d d R R rR R r E l E l E lϕ∞=⋅+⋅+⋅⎰⎰⎰122101210()()4Q Q R R R ϕπε=+=+ 6.10 半径为R 的无限长圆柱体均匀带电,电荷密度为ρ,求场强和电势的分布(参考点选在该圆柱面上).解 由于均匀带电圆柱体无限长,电荷分布对圆柱轴线轴对称;所以电场线在垂直于圆柱轴线的平面内,为过圆柱轴线的放射状半直线.用以圆柱轴线为轴,两底面与圆柱轴线垂直的闭合圆柱面为高斯面,如题解图 6.10.高斯面的两底面半径为r ,与E 平行,E 通量为零;圆柱侧面长度为l ,与E 正交,E 通量2rlE ϕπ=.在带电圆柱体内部,rR <,由高斯定理可得2110d 2r lE S rlE πρπε⋅==⎰⎰所以12rE ρε=.在带电圆柱体外部,r R >,由高斯定理可得2220d 2R lE S rlE πρπε⋅==⎰⎰因此2202R E rρε=.圆柱带正电时,E 沿半径方向向外;圆柱带负电时,E 沿半径方向指向轴线.参考点选在带电圆柱的圆柱面上,积分路径沿半径方向,沿电场线积分.在带电圆柱体内部,r R <,电势为22100d d ()24R Rrrr E l r R r ρρϕεε=⋅==-⎰⎰在带电圆柱体内部,r R >,电势为22200d d ln 22R RrrR R RE l r r rρρϕεε=⋅==⎰⎰6.11 如题图6.11所示,三块平行放置的金属板A 、B 、C ,面积均为S .B 、C 板接地,A 板带电量Q ,其厚度可忽略不计.设A 、B 板间距为l ,B 、C 板间距为d .因d 很小,各金属板可视为无穷大平面.试求:(1)B 、C 板上的感应电荷;(2)空间的场强及电势分布. 题图6.11解 因d 很小,各金属板可视为无穷大平面,所以除边缘部分外,可认为E 沿Oz 方向,z 相同处E 的大小相同,即()z EE z k =.(1)设B 、C 表面的面电荷密度为1σ、2σ、3σ、4σ如题解图6.11所示.由于B 、C 板接地,故B 、C 板电势与无穷远相同,电势均为零.若B 、C 板外表面带有电荷,必有电场线连接板外表面与无穷远,则B 、C 板电势与无穷远不同,因此可知B 、C 板外表面不带电荷,即140σσ==.作高斯面为闭合圆柱面如题解图6.11,两底面在B 、C 板内部、与Oz 垂直,侧面与Oz 平行,由高斯定理2301d 0()QE S Sσσε⋅==++⎰⎰ 即23QSσσ+=-(1) 根据叠加原理,Ⅰ区E 为五个无穷大带电平面产生的场强的叠加,即 题解图6.1133221000000000022222222z Q S Q S E σσσσεεεεεεεε=+---=--同理,Ⅱ区电场强度322000222z Q S E σσεεε=+-因为A 、B 间的电压AB U 与A 、C 板的电压AC U 相等,12()z z E l E d l -=-3322000000()()()222222Q S Q S l d l σσσσεεεεεε---=+-- 即232Q d lS dσσ--=-(2)联立求解(1)(2)式得:2d l Q d S σ-=-,3l Qd Sσ=-.所以B 、C 板内表面分别带电22d l Q S Q d σ-=⋅=-,33lQ S Q dσ=⋅=- (2) 321000222z Q S E σσεεε=--0001()222d l l Q d d S εεε-=--+0()d l QdSε-=-111d d zzE l E l ϕ=⋅=-⋅⎰⎰0()d l Qz dSε-=322000222z Q S E σσεεε=+-0001()222d l l Qd d S εεε-=-++0lQ dSε=211d d ddzzE l E l ϕ=⋅=⋅⎰⎰0()lQd z dSε=- 6.12 点电荷q 放在电中性导体球壳的中心,壳的内外半径分别为1R 和2R ,如题图6.12所示.求场强和电势的分布.解 由于电荷q 位于球心O ,导体球壳对球心O 具有球对称性,故感应电荷和电场的分布也对球心O 具有球对称性;可知感应电荷均匀分布在导体球壳的内外表面上;电场线为过O 点的放射状半直线,场强E 沿半径方向,在到O 点的距离r 相同处,场强大小E 相等.设球壳内表面带电1Q ,外表面带电2Q .用以O 点为球心,12R r R <<为半径的球面为高斯面,根据高斯定理101d 0()E S q Q ε⋅==+⎰⎰可知1Q q =-;由于导体球壳电中性,由120Q Q +=,所以2Q q =.根据叠加原理,场强和电势分别为点电荷q 、均匀带电1Q 和2Q 的球面的场强和电势的叠加.考虑到在电荷球对称分布情况下,在电荷分布区以外的场强和电势与总电量集中在球心的点电荷的场强和电势的表达式相同.取参考点在无穷远;2rR >时,121220044q Q Q qE r r πεπε++==,1210044q Q Q qr rϕπεπε++==21R r R ≥≥时,112004q Q E r πε+== ,12100202444q Q Q qr R R ϕπεπεπε+=+=1r R <时,1204q E r πε=12100102012111()4444Q Q q qrR R r R R ϕπεπεπεπε=++=-+ 6.13 一半径为A R 的金属球A 外罩有一个同心金属球壳B ,球壳很薄,内外半径均可看成B R ,如题图6.13所示.已知A 带电量为A Q ,B 带电量为B Q .试求:(1)A 的表面1S ,B 的内外表面2S 、3S 上的电量;(2)A 、B 球的电势(设无穷远电势为零). 解 由于金属球A 和同心金属球壳B 对球心O 具有球对称性,故电荷和电场的分布也对球心O 具有球对称性;可知电荷均匀分布在导体球壳的内外表面上;电场线为过O 点的放射状半直线,场强E 沿半径方向,在到O 点的距离r 相同处,场强大小E 相等.(1)金属球A 带电A Q 分布于A 的外表面1S ;设金属球壳B 内表面带电2Q ,外表面带电3Q ,23B Q Q Q +=.用以O 点为球心、B rR =为半径、位于球壳B 金属内部的球面为高斯面,根据高斯定理A 201d 0()E S Q Q ε⋅==+⎰⎰可知2A Q Q =-;由于23B Q Q Q +=,所以3A B Q Q Q =+.(2)根据叠加原理,电势为三个均匀带电球面产生电势的叠加,即B r R ≥区域,A 23AB 10044Q Q Q Q Q r rϕπεπε+++==B r R =即为B 球的电势A B B 0B4Q Q R ϕπε+=.B A R r R >≥区域,3A 2A B 200B 0B 0B1()4444Q Q Q Q Q r R R r R ϕπεπεπεπε=++=+A r R =即为A 球的电势AB A 0AB1()4Q Q R R ϕπε=+.6.14 同轴传输线是由两个很长且彼此绝缘的同轴金属直圆柱构成,如题图6.14所示.设内圆柱体的半径为1R ,外圆柱体的内半径为2R .使内圆柱带电,单位长度上的电量为η,试求内外圆柱间的电势差. 题图6.14解 由于两个同轴金属直圆柱可视为无限长、对圆柱轴线O 轴对称;所以电荷和电场的分布也对圆柱轴线O 轴对称;电场线在垂直于圆柱轴线的平面内,为过圆柱轴线的放射状半直线;场强E 沿半径方向,在到轴线O 的距离r 相同处,场强大小E 相等.用以圆柱轴线为轴,两底面与圆柱轴线垂直的闭合圆柱面为高斯面.高斯面的两底面与圆柱轴线O 垂直,半径为r ,21R r R >>;两底面与E 平行,E 通量为零;圆柱侧面长度为l ,与E 正交,E 通量2rlE ϕπ=.由高斯定理10d 2lE S rlE ηπε⋅==⎰⎰可得02E rηπε=. 沿电场线积分,由1R 沿半径到2R ,内外圆柱间的电势差2221112001d d d ln 22R R R R R R R U E l E r r r R ηηπεπε=⋅===⎰⎰⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。

一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q a q '=︒εε故 q q 33-=' (2)与三角形边长无关。

3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。

求该直线段受到的电场力。

解:先求均匀带电圆环在其轴线上产生的场强。

在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε根据电荷分布的对称性知,0==z y E E23220)(41cos R x xdqdE dE x +==πεθR Oλ1λ2lxy z式中:θ为dq 到场点的连线与x 轴负向的夹角。

⎰+=23220)(4dq R x xE x πε232210)(24R x Rx+⋅=πλπε232201)(2R x xR +=ελ下面求直线段受到的电场力。

在直线段上取dx dq 2λ=,dq 受到的电场力大小为dq E dF x =dx R x xR 2322021)(2+=ελλ 方向沿x 轴正方向。

直线段受到的电场力大小为⎰=dF F dx R x xR l ⎰+=02322021)(ελλ2 ()⎥⎦⎤⎢⎣⎡+-=2/12202111R l R R ελλ2 方向沿x 轴正方向。

4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。

求:(1)圆心处O 点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。

解:(1)在半圆环上取ϕλλRd l dq ==d ,它在O 点产生场强大小为20π4R dq dE ε=ϕελd R0π4= ,方向沿半径向外根据电荷分布的对称性知,0=y Eϕϕελϕd RdE dE x sin π4sin 0==Rd R E x 000π2sin π4ελϕϕελπ==⎰故 RE E x 0π2ελ==,方向沿x 轴正向。

(2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。

5.如图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度。

解:建立图示坐标系。

在均匀带电细直杆上取dx Lqdx dq ==λ,dq 在P 点产生的场强大小为202044xdxx dq dE πελπε==,方向沿x 轴负方向。

故 P 点场强大小为 ⎰⎰+==L d dP x dxdE E 204πελ()L d d q+π=04ε方向沿x 轴负方向。

6. 一半径为R 的均匀带电半球面,其电荷面密度为σ,求球心处电场强度的大小。

解:建立图示坐标系。

将均匀带电半球面看成许多均匀带电细圆环,应用场强叠加原理求解。

在半球面上取宽度为dl 的细圆环,其带电量rdl dS dq πσσ2⋅=⋅=θθπσd R sin 22⋅=,dq 在O 点产生场强大小为(参见教材中均匀带电圆环轴线上的场强公式)23220)(4r x xdq dE +=πε ,方向沿x 轴负方向利用几何关系,θcos R x =,θsin R r =统一积分变量,得23220)(4r x xdqdE +=πεθθπσθπεd R R R sin 2cos 41230⋅=θθθεσd cos sin 20=因为所有的细圆环在在O 点产生的场强方向均沿为x 轴负方向,所以球心处电场强度的大小为⎰=dE E θθθεσπd cos sin 22/0⎰=4εσ=Ldq P xOORx dlr方向沿x 轴负方向。

7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ,如图所示。

试求通过小孔中心O 并与平面垂直的直线上各点的场强。

解:应用补偿法和场强叠加原理求解。

若把半径为R 的圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平面等效为一个完整的“无限大”带电平面和一个电荷面密度为σσ-='的半径为R 的带电圆盘,由场强叠加原理知,P 点的场强等效于“无限大”带电平面和带电圆盘在该处产生的场强的矢量和。

“无限大”带电平面在P 点产生的场强大小为12εσ=E ,方向沿x 轴正方向 半径为R 、电荷面密度σσ-='的圆盘在P 点产生的场强大小为(参见教材中均匀带电圆盘轴线上的场强公式)022εσ=E )1(22xR x+-,方向沿x 轴负方向故P 点的场强大小为220212xR xE E E +=-=εσ方向沿x 轴正方向。

8. (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电场强度通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电场强度通量是多少?解:(1)由高斯定理0d εqS E s⎰=⋅求解。

立方体六个面,当q 在立方体中心时,每个面上电通量相等,所以通过各面电通量为6εqe =Φ (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则通过边长a 2的正方形各面的电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点,则0=Φe 。

9. 两个无限大的平行平面都均匀带电,电荷的面密度分别为σOR xP•x1σ和2σ,试求空间各处场强。

解:如图所示,电荷面密度为1σ的平面产生的场强大小为12εσ=E ,方向垂直于该平面指向外侧 电荷面密度为2σ的平面产生的场强大小为22εσ=E ,方向垂直于该平面指向外侧 由场强叠加原理得两面之间,)(2121021σσε-=-=E E E ,方向垂直于平面向右 1σ面左侧,)(2121021σσε+=+=E E E ,方向垂直于平面向左 2σ面右侧,)(2121021σσε+=+=E E E ,方向垂直于平面向右 10. 如图所示,一球壳体的内外半径分别为1R 和2R ,电荷均匀地分布在壳体内,电荷体密度为ρ(0>ρ)。

试求各区域的电场强度分布。

解:电场具有球对称分布,以r 为半径作同心球面为高斯面。

由高斯定理∑⎰=⋅iSqS d E 01ε 得i q r E ∑=⋅0214επ当1R r <时,0=∑i q ,所以 0=E 当21R r R <<时,)3434(313R r q i ππρ-=∑,所以203133)(rR r E ερ-= 当2R r >时,)3434(3132R R q i ππρ-=∑,所以2031323)(r R R E ερ-=11. 有两个均匀带电的同心带电球面,半径分别为1R 和2R (12R R >),若大球面的面电荷密度为σ,且大球面外的电场强度为零。

求:(1)小球面上的面电荷密度;(2)大球面内各点的电场强度。

解:(1)电场具有球对称分布,以r 为半径作同心球面为高斯面。

由高斯定理∑⎰=⋅iSqS d E 01ε 得i q r E ∑=⋅0214επ当2R r >时,0=E ,0442122=⋅'+⋅=∑R R q i πσπσ,所以σσ212)R R (-=' (2)当1R r <时,0=∑i q ,所以 0=E当21R r R <<时,222144R R q i πσπσ-=⋅'=∑,所以22)εσr R E (-= 负号表示场强方向沿径向指向球心。

12. 一厚度为d 的无限大的带电平板,平板内均匀带电,其体电荷密度为ρ,求板内外的场强。

解:电场分布具有面对称性,取同轴闭合圆柱面为高斯面,圆柱面与平板垂直,设两底面圆到平板中心的距离均为x ,底面圆的面积为S ∆。

由高斯定理∑⎰=⋅iSqS d E 01ε 得=⋅⎰SS d E i q S E S E ∑=+∆⋅+∆⋅010ε 当2dx <时(平板内部),S x q i ∆⋅⋅=∑2ρ,所以 0ερx E =当2dx >(平板外部),S d q i ∆⋅⋅=∑ρ,所以 02ερd E =13. 半径为R 的无限长直圆柱体均匀带电,体电荷密度为ρ,求其场强分布。

解:电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r ,应用高斯定理求解。

i Sq rl E S E ∑=⋅=⋅⎰01π2d ε (1) 当R r<时, l r q i 2πρ⋅=∑,所以2ερrE =(2) 当R r>时,l R q i 2πρ⋅=∑,所以rR E 022ερ=14.一半径为R 的均匀带电圆盘,电荷面密度为σ,设无穷远处为电势零点,求圆盘中心O 点的电势。

解:取半径为r 、dr 的细圆环rdr dS dq πσσ2⋅==,则dq 在O 点产生的电势为024εσπεdrrdq dV ==圆盘中心O 点的电势为dr dV V R⎰⎰==002εσ02εσR = 15. 真空中两个半径都为R 的共轴圆环,相距为l 。

两圆环均匀带电,电荷线密度分别是λ+和λ-。

取两环的轴线为x 轴,坐标原点O 离两环中心的距离均为2l,如图所示。

求x 轴上任一点的电势。

设无穷远处为电势零点。

解:在右边带电圆环上取dq ,它在x 轴上任一点P 产生的的电势为220)2/(4Rl x dqdV +-=πε右边带电圆环在P 产生的的电势为⎰⎰+-==+dq Rl x dV V 220)2/(41πε220)2/(2Rl x R+-=ελ同理,左边带电圆环在P 产生的电势为220)2/(2Rl x RV ++-=-ελ由电势叠加原理知,P 的电势为02ελR V V V =+=-+-+-22)2/(1(R l x ))2/(122Rl x ++16. 真空中一半径为R 的球形区域内均匀分布着体电荷密度为ρ的正电荷,该区域内a 点离球心的距离为R 31,b 点离球心的距离为R 32。

相关文档
最新文档