必修1函数单调性说课稿

合集下载

高中数学高一数学《函数单调性》说课稿说课稿

高中数学高一数学《函数单调性》说课稿说课稿

高中数学高一数学《函数单调性》说课稿说课稿《函数的单调性》说课稿尊敬的各位评委、各位老师大家好!我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计.一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的.因此,本节课的学习难点是函数单调性的概念形成.二、教法学法为了实现本节课的教学目标,在教法上我采取了:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.在学法上我重视了:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.三、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区____年元旦这一天24小时内的气温变化图,观察这张气温变化图:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)=4”这一情形进行描述.引导学生回答:对于自变量8_lt;10,对应的函数值有1_lt;4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1_lt;t2时,是否都有f[学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:f(_)=-2_+2,f(_)=_2+2_-3,f(_)=1/_,并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明在区间(0,+∞)上是单调减函数.[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(_1)与f(_2)的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念[教师活动]给出一组题:1、定义在R上的单调函数f(_)满足f(2)_gt;f(1),那么函数f(_)是R上的单调增函数还是单调减函数?2、若定义在R上的单调减函数f(_)满足f(1+a)_lt;f(3-a),你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法. [设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化. [教师活动]作业布置:(1)阅读课本P34-35例2(2)书面作业:必做:教材P431、7、11选做:二次函数y=_2+b_+c在[0,+∞)是增函数,满足条件的实数的值唯一吗?探究:函数y=_在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论.[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.四、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流陆萍。

函数单调性说课

函数单调性说课

《函数的单调性》说课稿尊敬的各位专家、评委大家好!我说课的题目是《函数的单调性》激发学生的学习兴趣,培养创新思维是新教材所倡导的理念之一。

我设计本节课的关键是让学生参与知识的形成过程,成为学习的主人。

下面我将从教材分析、教法学法分析,教学过程分析,以及教学评价四个方面对本节课的设计加以说明。

一、教材分析本节课是人教版必修1第一章第三节第一课时的内容。

是在学习了函数的概念及表示方法的基础上,对函数进一步的探索和研究。

函数的单调性是函数的重要性质.从函数单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.鉴于函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:1、知识与技能: 使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;2、过程与方法: 引导学生通过观察、归纳、概括,自主建构单调增函数、单调减函数的概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的思想方法,培养学生发现问题、分析问题、解决问题的能力.3、情感态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,体验探究的乐趣,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.根据学生的认知水平及教学目标,我将本节课的教学重点确定为函数单调性的概念形成和初步运用。

难点为函数单调性概念的形成.二、教法学法分析本节课是函数性质的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法.教学过程中,充分利用多媒体辅助教学,根据教材提供的线索,通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.从学生原有的知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题,最终形成概念,获得方法,培养能力.三、教学过程设计为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为三个阶段:创设情境,引入课题;归纳探索,形成概念;掌握证法,适当延展(一)创设情境,引入课题为了激发学生的学习兴趣和主动探究的精神.我从有关奥运会天气的例子出发.让学生观察2006年8月8日的北京市气温变化曲线图,引导学生体会在某些时段温度升高,某些时段温度降低. 随后进一步引导学生归纳:所有这些数据的变化,用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.(二)归纳探索,形成概念为使学生充分感受数学概念形成过程和数形结合的数学思想,我从学生熟悉的函数的图象出发,直观感知函数的单调性。

北师大版必修一《函数的单调性》说课稿

北师大版必修一《函数的单调性》说课稿

高一数学函数的单调性说课稿一、教材分析1、教材内容本节课是北师大版第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.2、教材所处地位、作用函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.3、教学目标(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性的方法;(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.4、重点与难点教学重点(1)函数单调性的概念;(2)运用函数单调性的定义判断一些函数的单调性.教学难点(1)函数单调性的知识形成;(2)利用函数图象、单调性的定义判断和证明函数的单调性.二、教法分析与学法指导本节课是一节较为抽象的数学概念课,因此,教法上要注意:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.在学法上:1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.问题1 怎样描述气温随时间增大的变化情况?问题 2 怎样用数学语言来刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?教学设计说明本节课是一节概念课.函数单调性的本质是利用解析的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一.另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达.围绕以上两个难点,在本节课的处理上,我着重注意了以下几个问题:1、重视学生的亲身体验.具体体现在两个方面:①将新知识与学生的已有知识建立了联系.如:学生对一次函数、二次函数和反比例函数的认识,学生对“y 随x 的增大而增大”的理解;②运用新知识尝试解决新问题.如:对函数1)(+=x xx f 在定义域上的单调性的讨论.2、重视学生发现的过程.如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程.3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题.。

必修一函数的单调性讲义

必修一函数的单调性讲义
x 1
变式练习 2:判断函数 f(x)= x 4 在(0,+∞)上的单调性。 x
2
注意:定义法证明单调性的等价形式,设 x1、x2∈[ a , b ],x1≠x2,则
(1)(x1-x2)×[f(x1)-f(x2)]>0
f (x1 ) f (x2 ) >0 f(x)在[ a , b ]是增函数; x1 x2
意两个自变量的值 x1、x2 ,当. x.1.<.x.2. 时.,.都.有.f.(.x.1.).>.f.(.x.2.).,.那么就说 f(x)
在区间 D 上是减函数。
y y f (x)
f (x1 )
图 f (x2 ) 象
上 升
O x1
x2 x
y

f (x1)y f (x) f (x2 )
象 下
(2a 1)x 7a 1, x
f(x)=
a
x
,
x

1
1
在(-∞,+∞)上单调递减,则实
数 a 的取值范围是____________。
【解析】:

1 4
,
1 2

变式练习 3:函数 f (x) ax 1 在区间(-2,+∞)上是增函数,那么 a 的取值范围是( ) x2

O x1
xx 2
如果 y=f(x)(在某个区间上是增函数或减函数,那么就说函数 y=f(x)在这一区间具有(严格 的)单调性,这个区间叫做 y=f(x)的单调区间。
注意:(1)区间 D,必须在定义域 I 内,即 D I,一个函数在不同区间上的单
调性可以不同。 (2)自变量的大小关系与函数的大小关系有直接联系,如:f(x)是增函数,则 x1<x2 f(x1)<f(x2)。 (3)函数在其单调区间上的图象特征:f(x)在 D 上是增函数,则图象在 D 上从 左到右呈上升趋势;f(x)在 D 上是减函数,则图象在 D 上从左到右呈下降趋势。 (4)函数单调性受区间限制。如函数 f(x)= 1 分别在(-∞,0),(0,+∞)上是

函数的单调性说课稿

函数的单调性说课稿

函数的单调性(1) 说课稿一.说教材1.地位及重要性函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。

函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。

通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。

也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

2.教学目标(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;(2)了解能用图形语言正确表述具有单调性的函数的图象特征;(3)明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。

3.教学重难点重点是对函数单调性的有关概念的本质理解。

难点是利用函数单调性的概念证明或判断具体函数的单调性。

二.说教法根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。

力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

三.说学法在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。

然后通过对函数单调性的概念的学习理解,最终把问题解决。

整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

四.说过程通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

3.2.1函数的性质单调性说课课件高一上学期数学人教A版

3.2.1函数的性质单调性说课课件高一上学期数学人教A版
……
只要x1 x2,就有f (x1) f (x2 )
六、 教学过程
情境创设
思考: 这里对x1, x2有什么要求?只取 0, 上的某些数是否可以? 请举例说明
六、 教学过程 画出函数f(x)=x2的图象,观察其变化规律:
情境创设
当x≥0时,y随x的增大而增大
y
x
… 1 2 3 4…
f (x) = x2 … 1 4 9 16 …
学情分析 教学目标 教学重难点 教学方法 教学过程 板书设计 教学反思
四、教学重难点
重点:函数单调性定义的符号语言刻画。
难点:归纳函数单调性的定义及用定义 证明函数的单调性。
学情分析 教学目标 教学重难点 教学方法 教学过程 板书设计 教学反思
五、教学方法
教师为主导
启发 引导 点拨
通过活动 创设情境
y
y x 1
y x2 y
O
x
O
x
增函数、减函数是针对的是函数的整个定义域,是函数的整体性质, 而函数的单调 性是对定义域下的某个区间,是函数的局部性质. 一个函数在定义域下的某个区间具有单调性,但在整个定义域上不一定具有单调性.
六、 教学过程
概念剖析
六、 教学过程
例题解析
例题探究---证明函数的单调性 例1. 根据定义,研究函数f(x)=kx+b(k≠0)的单调性.
当x从1增到2, f (x)则从1增大到4;
O
x
当x从2增到3, f (x)则从4增大到9; 当x从3增到4, f (x)则从9增大到16;
……
思考: 你觉得更严格的表达应该是怎样的?
六、 教学过程 画出函数f(x)=x2的图象,观察其变化规律:

人教版高中数学必修1《函数单调性》说

人教版高中数学必修1《函数单调性》说
(紧扣定义,此例 通过演示讲解突破此节课的难点运用 定义法证明单调性的步骤)
例3
证明函数f(x)=
1 x
在(0,+ )上是减函数.
证明:设x1,x2,是(0,+ )上的任意两个实数,且x1<x2,
1
则f(x1)-f(x2)= x 1
1
-x 2
x2 x1
= x1x2
由x1,x2∈(0,+ ),得 x 1 x 2 >0,
y
f (x) x2
f (x)
xO
x
x (-∞,0]上 f ( x )随 的增大而减小 x [0,+∞)上 f ( x )随 的增大而增大
单调递增:
任意x1,x2在区间I上, 且x1< x2
都有f(x1)<f(x2)
单调递减:
任意x1,x2在区间I上, 且x1< x2
都有f(x1) > f(x2)
问题2:怎样用数学语言刻画上述时段内 “随着时间的增大气温逐渐升高”这一 特征?
y
f (x) x2
f (x)
xO
x
y
f (x) x2
f (x)
xO
x
x
y
f (x) x2
f (x)
xO
x
y
f (x) x2
f (x)
xO
x
y
f (x) x2
f (x)
Ox
x
y
f (x) x2
f (x)
f(x)在I上单调递增, I为增区间(图像:上升)
f(x)在I上单调递减, I为减区间(图像:下降)
例1 如图6是定义在闭区间[-5,5]上的函数

高中数学《单调性与最大(小)值》说课稿

高中数学《单调性与最大(小)值》说课稿

高中数学《单调性与最大(小)值》说课稿高中数学《单调性与最大(小)值》说课稿以下是小编整理的高中数学《单调性与最大(小)值》(数学必修一)》说课稿,希望对大家有帮助!一、教材分析1.教学内容本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性,。

2. 教材的地位和作用函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。

掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。

3.教材的重点﹑难点﹑关键教学重点:函数单调性的概念和判断某些函数单调性的方法。

明确单调性是一个局部概念.教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。

教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程.4.学情分析高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。

从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强.二、目标分析(一)知识目标:1.知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。

2.能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。

3.情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望。

函数的单调性

函数的单调性

《函数的单调性》说课稿麻城实验高中阮晓锋各位老师,你们好!我今天说课的内容是——函数的单调性。

以下从六个方面来汇报我是如何研究教材、备课和设计教学过程的。

一、教材分析1、教材内容本节课是人教A版普通高中课程标准实验教科书必修1第一章第三节《函数的基本性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。

2、教材所处地位、作用函数的单调性是对函数概念的延续和拓展,也是后续研究几类具体函数的单调性的基础;此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用。

在方法上,教学过程中还渗透了数形结合、类比化归等数学思想方法。

它是高中数学中的核心知识之一,在函数教学中起着承上启下的作用。

二、学情分析1、知识基础高一学生已学习了函数的概念等知识,并且接触了一些特殊的单调函数。

2、认知水平与能力高一学生已初步具有数形结合思维能力,能在教师的引导下解决问题。

3、任教班级学生特点学生基础较扎实、思维较活跃,能较好地应用数形结合解决问题,但归纳转化的能力还有待进一步提高,观察讨论能力有待加强。

三、目标分析(一)知识技能1.让学生理解增函数和减函数的定义;2.根据定义证明函数的单调性;3.了解函数的单调区间的概念,并能根据图象说出函数的单调区间。

(二)过程与方法1.通过证明函数的单调性的学习,培养学生的逻辑思维能力;2.通过运用公式的过程,提高学生类比化归、数形结合的能力。

(三)情感态度与价值观让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲。

领会从特殊到一般,再从一般到特殊观察分析事物的方法。

由教学目标和学生的实际水平,我确定本节课的重、难点如下:教学重点:函数单调性的概念与判断。

教学难点:利用函数单调性定义或者函数图象判断简单函数的单调性。

解决策略:本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。

利用数形结合、类比化归的思想,层层深入,通过学生自主观察、讨论、探究得到单调性概念;同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破难点。

人教版高中数学必修1《函数的单调性》说课稿

人教版高中数学必修1《函数的单调性》说课稿

说课教案课题:函数的单调性一、教材分析本课题选自,人民教育出版社,全日制普通高级中学教科书(必修1)第一章第三节,共一课时。

从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础。

《必修一》函数的单调性是函数的重要性质.作为学生学习函数概念后学习的第一个函数性质,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,本节课教学应实现如下教学目标:(一)知识与技能1、理解增函数、减函数的概念及函数单调性的定义。

2、会根据函数的图像判断函数的单调性。

3、能根据单调性的定义证明函数在某一区间上是增函数还是减函数。

(二)过程与方法1、培养学生利用数学语言对概念进行概括的能力2、通过利用定义证明单调性,进一步加强逻辑推理能力及判断推理能力的培养(三)情感与态度1、通过本节课的教学,启发学生养成细心观察,分析归纳,严谨论证的良好习惯2、通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心。

三、教学重、难点根据以上的教学目标,本节课的重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性。

四、学法在学法上我重视:让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃;让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

函数单调性说课稿PPT(共25张PPT)

函数单调性说课稿PPT(共25张PPT)
19
教材分 析
3.例题讲解,巩固新知
学情分 析
例2
教法学法 分析
河教南学跨过程境 E设贸计易
设计意图:使学生掌握利用定义证明函数的单调性,并进一步加深学生对函 数单调性的理解。
板书设 计
20
教材分 析
4.课堂练习,升华新知
学情分 析
教法学法 分析
课堂练习
教河学南过跨境程 E设贸计易
板书设 计
设计意图
13
2.探索新知,讲授新课
教材分 析
学情分 析
问题2
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计

-4
-3
-2
-1
0
1
2
3
4


16
9
4
1
0
1
4
9
16

设计意图
实现学生用“数字语言”表述函数的单调性,实现“形”到“数” 的转换。使学生体会到用数量大小关系表述函数单调性。
14
2.探索新知,讲授新课
启发学生利用图象和单调性概念解决相 关实际的问题。目的是加深学生对定义的理 解,巩固定义法证明函数单调性的步骤。同 时为导数的教学作准备。
21
5.归纳总结,布置作业
教材分 析
学情分 析
教法学法 分析
河教南学跨过境程 E设贸计易
板书设 计
1学会了……的知识
2掌握了……的方

回顾探 究过程 形成自 主反思
掌握判别函数单调性的方法。
(1)函数单调性概念的形成;
设(计3)意探图究教:过引学程起中过学用生程到的的认思知想冲方突法,和把思学维生方的法注,意如力数从形图结表合上,转等到价解转析换式,上类,比让等学。生体会从解析式上研(究2)函判数断单函数调单性调的性必的要方性法。(图象、

高中数学必修一《函数的单调性》说

高中数学必修一《函数的单调性》说

函数的单调性说课稿各位评委:大家好,我是来,今天我说课的题目是函数的单调性,本节课选自江苏教育出版社高中课程标准实验教科书(必修1)第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时。

下面我将从以下几个方面进行阐述:首先,我对本节教材进行简要分析。

一、说教材1、教材的地位和作用:从单调性知识本身来讲。

学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图像的基础上对增减性有一个初步的感性认识;第二阶段是本节学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数工具研究函数的单调性。

本节内容既是初中学习的延续和深化,又为高三的学习奠定基础,有着承上启下的作用.从函数角度来讲。

在单调性的学习中,学生要经历直观感受图像、用文字描述定义和用数学符号语言严格定义的过程,这些为学生进一步学习函数的其它性质提供了方法参考。

从学科角度来讲。

函数的单调性是理解导数的几何意义、解决优化问题等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材,所以本节内容的重要性是不言而喻的。

2、说教学的重点和难点我认为对于函数的单调性,学生的认知困难主要有:概念要求用准确的数学符号语言去刻画图像的“上升”与“下降”,这种由形到数、从直观到抽象的过渡对高一学生来说比较困难。

此外,单调性的证明是学生在函数学习中首次接触到代数论证内容,而且学生在代数方面的推理论证能力是比较薄弱的。

根据以上的分析和教学大纲要求,我认为本节课的教学重点是函数单调性的概念、判断和证明;而如何引导学生归纳并抽象出函数单调性的定义以及如何根据定义证明函数的单调性是本节课的难点。

二、说目标基于以上对教材的认识,根据新课程标准的基本理念,考虑到学生已有的认知结构和心理特征。

制定如下教学目标:⑴知识与技能:让学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图像和单调性定义判断、证明函数单调性的方法.。

函数的单调性说课课件一等奖

函数的单调性说课课件一等奖
(2)请说出展开式中第2项的二项式系数和系数 (3)请说出展开式中
学以致用 概括整合
例1:展开下列各式
( 1 ) (1 x)
n
(特殊形式)
6
(2)(x 2 y)(二项式系数与系数)
1 4 (3) (1 ) (数据处理) x
教学过程
创设情境 引发思考 合作探究 得出结论 问题引导 深度分析
学以致用 概括整合
2 4 例2:展开 ( x ),并回答下列问题: x (1)请说出展开式中的倒数第二项
拓展提升
练习 设f ( x)是定义在R上的函数: (1)若存在x1 , x2 R且x1 x2,使得f ( x1) f ( x2)成立, 则函数f ( x)在R上是单调递增的; (2)若存在x1 , x2 R且x1 x2,使得f ( x1) f ( x2)成立, 则函数f ( x)在R上不可能单调递减的; (3)若存在x2 >0,对于任意的x1 R,使得f ( x1) f ( x1 +x2)成立, 则函数f ( x)在R上是单调递增的; (2)若任意的x1 , x2 R且x1 x2,使得f ( x1) f ( x2)成立, 则函数f ( x)在R上是单调递减的; 以上命题正确的选项是( A.(1)(3) B.(2)(3) ) C.(2)(4) D.(2)
知识目标
理解并掌握 函数单调性 的概念,并 会判断并证 明简单函数 单调性。
德育目标
培养学生勇于 探索,勇于创 新的个性品质, 激发学生学习 数学的兴趣。
二、教材处理
2 教学重点、难点
教学重点
函数单调性的 概念,掌握用 定义判断和证 明一些简单函 数单调性的方 法。
教学难点
关于函数单调 性概念的符号 语言的认知, 应用定义证明 单调性的代数 推理论证。

高中高一数学说课稿(精选5篇)

高中高一数学说课稿(精选5篇)

高中高一数学说课稿(精选5篇)高中高一数学说课稿(精选5篇)说课稿是为进行说课预备的文稿,它不同于教案,教案只说“怎样教”,说课稿则重点说清“为什么要这样教”。

老师在吃透教材、简析教材内容、教学目的、教学重点、难点的基础上,下面是我为大家整理的关于高中高一数学说课稿模板,欢迎大家阅读参考学习!高中高一数学说课稿(篇1)教法设计由于《指数函数》这节课的特别地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使同学初步理解并能简洁应用指数函数的学问,更期望能引领同学把握讨论初等函数图象性质的一般思路和方法,为今后讨论其它的函数做好预备,从而达到培育同学学习力量的目的,我依据自己对“诱思探究”教学模式和“情景式”教学模式的熟悉,将二者结合起来,主要突出了几个方面:1、创设问题情景、根据指数函数的在生活中的实际背景给出两个实例,充分调动同学的学习爱好,激发同学的探究心理,顺当引入课题,而这两个例子又恰好为讨论指数函数中底数大于1和底数大于0小于1的图象做好了预备。

2、强化“指数函数”概念、引导同学结合指数的有关概念来归纳出指数函数的定义,并向同学指出指数函数的形式特点,请同学思索对于底数a是否需要限制,如不限制会有什么问题消失,这样避开了同学对于底数a范围分类的不清晰,也为讨论指数函数的图象做了“分类争论”的铺垫。

3、突出图象的作用、在数学学习过程中,图形始终使我们需要借助的重要帮助手段。

一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在讨论指数函数的性质时,更是直接由图象观看得出性质,因此图象发挥了主要的作用。

4、留意数学与生活和实践的联系、数学的本质是来源于生活,服务于实践。

在课堂教学的引入、例题的讲解和课外学问的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使同学了解到数学的基础学科作用,培育同学的数学应用意识。

三、学法指导本节课是在学习完“指数”的概念和运算后编排的,针对同学实际状况,我主要在以下几个方面做了尝试:1、再现原有认知结构。

函数单调性教案

函数单调性教案

变量的值x1, x2当x1 < x2时,都有f(x1 )>f(x2 ), 那么就说f(x)在这个区间D上是减函数。
图形判断单调性: 从左到右图象上升,函数在此区间为增函数 从左到右图象下降,函数在此区间为减函数
函数单调性的定义:
如果y=f(x)在某个区间是增函数或减函数,那么 就说函数y=f(x)在这一区间具有(严格的)单调性, 这一区间叫做y=f(x)的单调区间.
3、证明函数单调性步骤为:
(1)任取 (2)作差(3)变形 (4)定号 (5)下结论
课后作业
教材39页习题1.3 A组第1~4题
六、教学反思:
通过函数的单调性教学,我从以下方面对自己 的教学作一个反思,以便更好的发现不足之处, 及时调整,让学生更好学习。
这部分知识需要学生有严谨的论证思维和相应 的论述能力,因此学生在归纳总结函数单调性的 概念时,叙述不准确,这需要老师的提点。从作 业上看,反映出学生在证明函数单调性和函数单 调区间的表示上出现了问题,这需要在以后的习 题训练课中进行相关的加强和强调。
f (x1) f (x2 ) 0 ,即 f (x1) f (x2 ) .

f
(x)

1 x
在(0,
)上是减函数
.
想一想:如果
x
(,0),函数f
(x)

1 x
是增函数还是减函数? 并证明你的结论 .
解:任取x1,x2 ( ,0),且 x1 x2 ,则
f
(x1)
右是上升的
f(x2)
f(x1)
x1
x2
如果对属于定义域I内某个区间D上的任意两个自
变量的值x1, x2当x1 < x2时,都有f(x1 )< f(x2 ), 那么就说f(x)在这个区间D上是增函数。

函数的单调性说课稿

函数的单调性说课稿

函数的单调性说课稿我将为大家介绍《普通高中课程标准实验教科书必修1》第二章第三节——函数的单调性。

本节课的教学设计将根据新课标的理念和高一学生的认知特点进行。

我将从下面三个方面阐述我对这节课的理解和教学设计。

一、教材分析1、教材内容本节课主要研究函数的单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

2、教材的地位和作用函数是本章的核心概念,也是中学数学中的基本概念,贯穿整个高中数学课程。

函数的单调性是函数的基本性质之一,是用代数方法研究函数图象局部变化趋势的。

它是函数概念的延续和拓展,对进一步探索、研究函数的其他性质有着示范性的作用,对解决各种数学问题有着广泛作用。

此外在比较数的大小、极限、导数以及相关的数学综合问题中也有广泛的应用,是整个高中数学中起着承上启下作用的核心知识之一。

通过对本节课的研究,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。

此外,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法,对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。

根据函数单调性在整个教材内容中的地位和作用,并结合学生的认知水平,本节课教学应实现如下教学目标。

3、教学目标知识与技能:理解函数单调性和单调函数的意义;会判断和证明简单函数的单调性。

过程与方法:培养从概念出发,进一步研究其性质的意识及能力;体会感悟数形结合、分类讨论的数学思想。

本节课的重点是函数单调性,我们先来了解一下函数单调性的概念。

函数单调性是指函数在定义域内的取值随着自变量的增加或减少而单调递增或单调递减。

接下来,我们将通过多个例子来帮助学生理解函数单调性的概念,并探究如何判断和证明函数的单调性。

改写意图]:在引入概念前,先给出函数单调性的定义,让学生明确目标。

通过例子的引导,让学生感性理解概念,为后续的理性认识打下基础。

三)巩固提高,深化概念接下来,我们将通过多个例子来巩固和深化学生对函数单调性的理解。

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。

《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。

把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。

从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。

【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修1《1.3.1 函数的单调性》说课稿酒泉中学马长青一. 教学内容分析1.本课定位与内容本节课选自《普通高中课程标准实验教科书数学必修1》A版第一章第三节函数的基本性质第一小节函数的单调性与最大(小)值,本节课内容教材主要学习函数的单调性的概念,判断函数的单调性和应用定义证明函数的单调性,共2课时,本节课为第一课时。

2. 教材的地位和作用从单调性本身看,学生的学习分为三个层面,首先是在初中学习了一次函数、二次函数、反比例函数图象的基础上对函数的增减性有一个初步的感性认识,其次在高一对单调性进行严格定义,最后在高三从导数的角度再次研究单调性。

本节课的学习处于对单调性学习的第二层面,通过图象归纳、抽象出单调性的准确定义,并在高中首次经历代数的严格证明,是对初中学习的一次升华。

从本节的教学看,在此学习单调性是对函数概念的延续和拓展,对进一步探索、研究函数的其他性质有着示范性的作用,从本章的教学看,本节课的学习是后续研究指数函数、对数函数内容的基础。

从函数知识网络看,单调性起着承上启下的作用,一方面,是初中学习内容的深化,使学生对函数单调性从感性认识提高到理性认识。

另一方面,函数的单调性为后面学习指数函数、对数函数、三角函数及数列这种特殊的函数打下基础,与不等式、求函数的值域、最值,导数等都有着紧密的联系。

从高中数学学习看,函数的单调性是培养学生数形结合思想的重要内容,也是研究变量的变化范围的有力工具。

3.教学目标根据本课教材特点、课程标准对本节课的教学要求以及学生的认知水平,教学目标确定为:知识与技能:(1)从形与数两方面理解单调性的概念(2)初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法(3)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力过程与方法:(1)通过对函数单调性定义的探究,渗透数形结合思想方法(2)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程。

情感态度价值观:通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯;领会用运动的观点去观察分析事物的方法4. 教学重难点根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。

虽然高一学生已经有一定的抽象思维能力,但是要用准确的符号语言去刻画图象的增减性,从感性上升到理性对高一的学生来说比较困难。

因此,本节课的教学难点是函数单调性的概念形成。

二. 学生情况分析知识结构学生已经学习过一次函数,二次函数,反比例函数,函数的概念及函数的表示,能画出一些简单函数的图象,能从图象的直观变化,学生能得到函数增减性。

能力结构通过初中对函数的学习,学生已具备了一定的观察事物能力,抽象归纳的能力和语言转换能力。

学习心理函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生渴望进一步学习,这种积极心态是学生学好本节课的情感基础。

本班学生特点本班为酒泉中学高一(4)班,学生数学素养较好。

三.教学模式《普通高中数学课程标准(实验)》指出:“高中数学课程应倡导自主探索等学习数学的方式,这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的‘再创造’过程。

”因此,根据教学内容和学生的认知、能力水平,本节课作为新授课主要采取教师启发式教学法和学生探究式教学法。

以设置情境、设问和疑问进行层层引导,激发学生积极思考,逐步将感性认识提升到理性认识,培养和发展学生的抽象思维能力。

引导学生提出疑问,进行思考,从而创造性的解决问题,最终形成概念,培养学生的创造性思维和批判精神。

五个环节:创设情境,引入新课;初步探索,概念形成;概念深化,延伸拓展;证法探究,应用定义;小结评价,作业创新四. 教学设计为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:创设情境,引入新课;初步探索,概念形成;概念深化,延伸拓展;证法探究,应用定义;小结评价,作业创新单调性的概念是本节课的重点,而形成过程则是本节课的难点,为了突破这一难点,让学生能够充分感受单调性概念的形成过程,经历观察发现、抽象概括,自主建构单调性概念的过程,本节课设置了前三个环节,后两个环节的设计,是为了使学生对函数单调性认识的再次深化。

(一)创设情境,引入新课数学课程标准中提出“通过已学过的函数特别是二次函数理解函数的单调性”,因此在本节课的开始,我作了这样的情境创设,从学生熟知的一次函数和二次函数入手,从初中对函数增减性的认识过渡到对函数单调性的直观感受。

提出问题1:分别作出函数y=x,二次函数y=2x,y=-2x和y=x2的图象,并且观察函数变化规律?首先引导学生观察两个一次函数图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小。

然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.二次函数的增减性要分段说明,进而提出问题:二次函数是增函数还是减函数?进一步讨论得出:增减性是函数的局部性质据此,学生已经对单调性有了直观认识,紧接着,我提出问题二:能否用自己的理解说说什么是增函数,什么是减函数?结合增减性是局部性质,学生会用直观描述回答:在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。

学生用图象的感性认识初步描述了单调性,下面进一步将学生从感性向理性进行引导(二)初步探索,概念形成提出问题三:以y=x2+1在(0,+∞)上单调性为例,如何用精确的数学语言来描述函数的单调性?这是本节课的难点,因此我将概念形成设置了三个阶段1. 提问学生什么是“随着”经讨论得出,随着是由于当x取一定的值时,y有确定值与之对应,因此x变化时,y会根据法则随着x发生变化2. 如何刻画“增大”?要表示大小关系,学生会想到取点,比大小,学生也许会用特殊点说明问题,比如x取2、3,2<3,对应的函数值是5<10提出质疑:这个点的变化能否说明y随着x增大而增大,进一步引导学生从特殊到一般,进入第三阶段,对“任取”的理解。

3. 对“任取”的理解针对特殊值,学生可能会举反例证明其是不充分的,那么应该如何取值呢?学生可能会多取一些,也可能会想到将取值区间任意小,进一步讨论得出“任取”二字。

用对随着的理解再次深化函数概念,用对增大的理解得到要表示大小关系,最后再强调取值的任意性,这样就实现了从“图形语言”到“文字语言”到“符号语言”的过渡,实现“形”到“数”的转换,形成了单调性的定义。

得到定义后,再提出如何得到f(x1)<f(x2),求差法比较大小,为后面的证明和判断扫清障碍。

(三)概念深化,延伸拓展通过上面的问题,学生已经从描述性语言过渡到严谨的数学语言。

而对严谨的数学语言学生还缺乏准确理解,因此在这里通过问题深入研讨加深学生对单调性概念的理解。

提出问题四:能否说在它的定义域上是减函数?从这个例子能得到什么结论?学生思考、讨论,提出自己观点学生可能会提出反例,如x1=-1,x2=1进一步得出结论:函数在定义域内的两个区间A,B上都是增(减)函数,函数在A∪B上不一定是增(减)函数教师给出例子进行说明:进一步提问:函数在定义域内的两个区间A,B上都是增(减)函数,何时函数在A∪B上也是增(减)函数。

学生会提出将函数图象进行变形(如x<0时图象向下平移)回归定义,强调任意性在问题四的背景下解决本题,体会在运动中满足任意性。

拓展探究:已知函数是(-∞,+∞)上的增函数,求a的取值范围.这个问题有一定难度,但是学生在前面集合的学习中已经接触过在运动中求参数a 的取值范围,此处可看作是对前面学习的巩固。

(四)证法探究,应用定义在概念已经完善的基础上,提出例1例1:证明函数在(0,+)上是增函数本环节是对函数单调性概念的准确应用,本题采用前面出现过的函数,一方面希望学生体会到函数图象和数学语言从不同角度刻画概念,另一方面避免学生遇到障碍,而是把注意力都集中在单调性定义的应用上。

学生根据单调性定义进行证明,教师在黑板上书写证明步骤,再引导学生总结证明步骤。

提出例2判断函数在(0,+∞)上的单调性。

根据定义进行判断,体会判断可转化成证明。

课标中指出“形式化是数学的基本特征之一,但不能仅限于形式化的表达。

高中课程强调返璞归真”因此本题不再从证明角度,而是让学生再次从定义出发,寻求方法,并体会转化思想。

进一步提问:如果把(0,+∞)条件去掉,如何解这道题?为学生提供思考空间。

(五)小结评价,作业创新从知识、方法两个方面引导学生进行总结。

学生回顾函数单调性定义的探究过程;证明、判断函数单调性的方法步骤;数学思想方法。

小结过程使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义。

作业的设计实现了分层,既巩固了基础,又给了学生充足的思考空间。

通过本节课的学习,预计学生能理解单调性的定义,绝大多数学生能按照单调性的证明步骤进行证明,能判断函数的单调性,本节课的评价方式为课堂反馈、教师评价、学生自评相结合。

在本节课的设计中,我有一些新的尝试,在教学过程中,创设一个探索的学习环境,通过设计一系列问题,使概念得到形成和深化,学生亲身经历数学概念的产生与发展过程,从而逐步把握概念的实质内涵,深入理解概念。

在情境设置中,严格按照课标要求以二次函数y=x2+1为例,经历画图、描述图象、找单调区间、形成单调性定义、证明其单调性的过程,将学生对单调性的认识从感性上升到理性,并将定义进行应用。

五.板书设计六.课堂评价七.资源开发。

相关文档
最新文档