传感器技术课后题答案 贾伯年 第3版

合集下载

传感器技术答案(贾伯年)第三版

传感器技术答案(贾伯年)第三版

1-1 衡量传感器静态特性的主要指标。

说明含义。

1、 线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

2、 灵敏度——传感器输出量增量与被测输入量增量之比。

3、 分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

1-2 计算传感器线性度的方法,差别。

1、 理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。

2、 端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

3、 “最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。

这种方法的拟合精度最高。

4、 最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。

2-1 金属应变计与半导体工作机理的异同?比较应变计各种灵敏系数概念的不同意义。

(1)相同点:它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化所;不同点:金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。

(2)对于金属材料,灵敏系数Ko=Km=(1+2μ)+C(1-2μ)。

前部分为受力后金属几何尺寸变化,一般μ≈0.3,因此(1+2μ)=1.6;后部分为电阻率随应变而变的部分。

金属丝材的应变电阻效应以结构尺寸变化为主。

对于半导体材料,灵敏系数Ko=Ks=(1+2μ)+ πE 。

前部分同样为尺寸变化,后部分为半导体材料的压阻效应所致,而πE 》(1+2μ),因此Ko=Ks=πE 。

半导体材料的应变电阻效应主要基于压阻效应。

2-3 简述电阻应变计产生热输出(温度误差)的原因及其补偿办法。

电阻应变计的温度效应及其热输出由两部分组成:前部分为热阻效应所造成;后部分为敏感栅与试件热膨胀失配所引起。

在工作温度变化较大时,会产生温度误差。

补偿办法:1、温度自补偿法 (1)单丝自补偿应变计(2) 双丝自补偿应变计2、桥路补偿法 (1)双丝半桥式(2)补偿块法2-4 试述应变电桥产生非线性的原因及消减非线性误差的措施。

传感器原理与应用习题第8章光电式传感器

传感器原理与应用习题第8章光电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第8章光电式传感器8-1 简述光电式传感器的特点和应用场合,用方框图表示光电式传感器的组成。

8-2 何谓外光电效应、光电导效应和光生伏特效应?答:外光电效应:在光线的作用下,物体内的电子逸出物体表面向外发射的现象。

光电导效应:在光线作用下,电子吸收光子能量从键合状态过渡到自由状态,而引起材料电导率的变化的现象。

光生伏特效应:在光线作用下能够使物体产生一定方向的电动势的现象。

8-3 试比较光电池、光敏晶体管、光敏电阻及光电倍增管在使用性能上的差别。

答:光电池:光电池是利用光生伏特效应把光直接转变成电能的器件。

它有较大面积的PN结,当光照射在PN结上时,在结的两端出现电动势。

当光照到PN结区时,如果光子能量足够大,将在结区附近激发出电子-空穴对,在N区聚积负电荷,P区聚积正电荷,这样N区和P区之间出现电位差。

8-4 通常用哪些主要特性来表征光电器件的性能?它们对正确选用器件有什么作用?8-5 怎样根据光照特性和光谱特性来选择光敏元件?试举例说明。

答:不同类型光敏电阻光照特性不同,但光照特性曲线均呈非线性。

因此它不宜作定量检测元件,一般在自动控制系统中用作光电开关。

光谱特性与光敏电阻的材料有关,在选用光敏电阻时,应把光敏电阻的材料和光源的种类结合起来考虑,才能获得满意的效果。

8-6 简述CCD图像传感器的工作原理及应用。

8-7 何谓PSD?简述其工作原理及应用。

8-8 说明半导体色敏传感器的工作原理及其待深入研究的问题。

8-9 试指出光电转换电路中减小温度、光源亮度及背景光等因素变动引起输出信号漂移应采取的措施。

8-10 简述光电传感器的主要形式及其应用。

答:模拟式(透射式、反射式、遮光式、辐射式)、开关式。

应用:光电式数字转速表、光电式物位传感器、视觉传感器、细丝类物件的在线检测。

8-11 举出你熟悉的光电传感器应用实例,画出原理结构图并简单说明原理。

传感器技术与应用第3版习题答案

传感器技术与应用第3版习题答案

传感器技术与应用第3版习题答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII《传感器技术与应用第3版》习题参考答案习题11.什么叫传感器它由哪几部分组成2.答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

传感器通常由敏感元件和转换元件组成。

其中敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。

2. 传感器在自动测控系统中起什么作用?答:自动检测和自动控制技术是人们对事物的规律定性了解、定量分析预期效果所从事的一系列技术措施。

自动测控系统是完成这一系列技术措施之一的装置。

一个完整的自动测控系统,一般由传感器、测量电路、显示记录装置或调节执行装置、电源四部分组成。

传感器的作用是对通常是非电量的原始信息进行精确可靠的捕获和转换为电量,提供给测量电路处理。

3. 传感器分类有哪几种各有什么优、缺点答:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。

还有按能量的关系分类,即将传感器分为有源传感器和无源传感器;按输出信号的性质分类,即将传感器分为模拟式传感器和数字式传感器。

按被测输入量分类的优点是比较明确地表达了传感器的用途,便于使用者根据其用途选用;缺点是没有区分每种传感器在转换机理上有何共性和差异,不便使用者掌握其基本原理及分析方法。

按工作原理分类的优点是对传感器的工作原理比较清楚,有利于专业人员对传感器的深入研究分析;缺点是不便于使用者根据用途选用。

4. 什么是传感器的静态特性?它由哪些技术指标描述?答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性。

《传感器与自动检测技术》第3版 课后习题解答

《传感器与自动检测技术》第3版 课后习题解答
2. 传感器的分类有哪几种?各有什么优缺点? 答:传感器常用的分类方法有两种,一种是按被测输入量来分,另一种是按传感器的工作原理来分。 按被测输入量来分:这种分类方法的优点是比较明确地表达了传感器的用途,便于使用者根据其用途
选用。其缺点是没有区分每种传感器在转换机理上有何共性和差异,不便于使用者掌握其基本原理及分析 方法。
较大的载荷,便于加工,实心圆柱形可测量大于 10kN 的力,空心圆柱形可测量 1~10kN 的力,应力变化 均匀。
(2) 圆环式弹性敏感元件比圆柱式输出的位移量大,因而具有较高的灵敏度,适用于测量较小的力。 但它的工艺性较差,加工时不易得到较高的精度。
2
传感器的分辩力是在规定测量范围内所能检测的输入量的最小变化量 ∆min 。有时也用该值相对满量程
输入值的百分数表示,称为分辨率。阈值通常又称为死区、失灵区、灵敏限、灵敏阈、钝感区,是输入量 由零变化到使输出量开始发生可观变化的输入量的值。
稳定性有短期稳定性和长期稳定性之分。传感器常用长期稳定性表示,它是指在室温条件下,经过相 当长的时间间隔,如一天、一月或一年,传感器的输出与起始标定时的输出之间的差异。通常又用其不稳 定度来表征其输出的稳定度。
1
例 4: ±20g 压电式加速度传感器。 在侧重传感器科学研究的文献、报告及有关教材中,为方便对传感器进行原理及其分类 的研究,允许只采用第 2 级修饰语,省略其他各级修饰语。 传感器代号的标记方法:一般规定用大写汉字拼音字母和阿拉伯数字构成传感器完整代号。传感器完 整代号应包括以下 4 个部分:(1)主称(传感器);(2)被测量;(3)转换原理;(4)序号。4 部分 代号格式为:
(4)序号 (3)转换原理 (2)被测量 (1)主称
在被测量、转换原理、序号 3 部分代号之间有连字符“-”连接。 例 5:应变式位移传感器,代号为:CWY-YB-10; 例 6:光纤压力传感器,代号为:CY-GQ-1; 例 7:温度传感器,代号为:CW-01A; 例 8:电容式加速度传感器,代号为:CA-DR-2。 有少数代号用其英文的第一个字母表示,如加速度用“A”表示。 4. 传感器的静态性能指标有哪些?其含义是什么? 答:传感器的静态特性主要由线性度、灵敏度、重复性、迟滞、分辨力和阈值、稳定性、漂移及量程 范围等几种性能指标来描述。 含义:线性度是传感器输出量与输入量之间的实际关系曲线偏离理论拟合直线的程度,又称非线性误 差。通常用相对误差表示其大小; 灵敏度是指传感器在稳态下,输出增量与输入增量的比值。对于线性传感器,其灵敏度就是它的静态 特性曲线的斜率,对于非线性传感器,其灵敏度是一个随工作点而变的变量,它是特性曲线上某一点切线 的斜率。 重复性是传感器在输入量按同一方向作全量程多次测试时,所得特性曲线不一致性的程度。 迟滞是传感器在正向行程(输入量增大)和反向行程(输入量减小)期间,输出—输入特性曲线不一致的 程度。

传感器原理与应用习题第4章电容式传感器 (1)

传感器原理与应用习题第4章电容式传感器 (1)

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书第4章 电容式传感器4-1 电容式传感器可分为哪几类?各自的主要用途是什么?答:(1)变极距型电容传感器:在微位移检测中应用最广。

(2)变面积型电容传感器:适合测量较大的直线位移和角位移。

(3)变介质型电容传感器:可用于非导电散材物料的物位测量。

4-2 试述变极距型电容传感器产生非线性误差的原因及在设计中如何减小这一误差?答:原因:灵敏度S 与初始极距0δ的平方成反比,用减少0δ的办法来提高灵敏度,但0δ的减小会导致非线性误差增大。

采用差动式,可比单极式灵敏度提高一倍,且非线性误差大为减小。

由于结构上的对称性,它还能有效地补偿温度变化所造成的误差。

4-3 为什么电容式传感器的绝缘、屏蔽和电缆问题特别重要?设计和应用中如何解决这些问题?答:电容式传感器由于受结构与尺寸的限制,其电容量都很小,属于小功率、高阻抗器,因此极易受外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重影响传感器的输出特性,甚至会淹没没有用信号而不能使用。

解决:驱动电缆法、整体屏蔽法、采用组合式与集成技术。

4-4 电容式传感器的测量电路主要有哪几种?各自的目的及特点是什么?使用这些测量电路时应注意哪些问题?4-5 为什么高频工作的电容式传感器连接电缆的长度不能任意变动?答:因为连接电缆的变化会导致传感器的分布电容、等效电感都会发生变化,会使等效电容等参数会发生改变,最终导致了传感器的使用条件与标定条件发生了改变,从而改变了传感器的输入输出特性。

4-6 简述电容测厚仪的工作原理及测试步骤。

4-7 试计算图P4-1所示各电容传感元件的总电容表达式。

4-8如图P4-2所示,在压力比指示系统中采用差动式变极距电容传感器,已知原始极距1δ=2δ=0.25mm ,极板直径D =38.2mm ,采用电桥电路作为其转换电路,电容传感器的两个电容分别接R =5.1k Ω的电阻后作为电桥的两个桥臂,并接有效值为U1=60V 的电源电压,其频率为f =400Hz ,电桥的另两桥臂为相同的固定电容C =0.001μF 。

传感器原理与应用习题-第7章热电式传感器

传感器原理与应用习题-第7章热电式传感器

传感器原理与应用习题-第7章热电式传感器《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第7章热电式传感器7-1 热电式传感器有哪几类?它们各有什么特点?答:热电式传感器是一种将温度变化转换为电量变化的装置。

它可分为两大类:热电阻传感器和热电偶传感器。

热电阻传感器的特点:(1)高温度系数、高电阻率。

(2)化学、物理性能稳定。

(3)良好的输出特性。

(4).良好的工艺性,以便于批量生产、降低成本。

热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传7-2 常用的热电阻有哪几种?适用范围如何?答:铂、铜为应用最广的热电阻材料。

铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。

铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。

当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。

7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题?7-4 利用热电偶测温必须具备哪两个条件?答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义?答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。

利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。

连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。

连接导体定律是工业上运用补偿导线进行温度测量的理论基础。

7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义?答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0)这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。

传感器技术课后习题答案贾伯年主编第3版

传感器技术课后习题答案贾伯年主编第3版

衡量传感器静态特性的主要指标。

说明含义。

线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。

重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。

各条特性曲线越靠近,重复性越好。

灵敏度——传感器输出量增量与被测输入量增量之比。

分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。

稳定性——即传感器在相当长时间内仍保持其性能的能力。

漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。

静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。

计算传感器线性度的方法,差别。

理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。

端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。

这种方法的拟合精度最高。

最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。

什么是传感器的静态特性和动态特性?为什么要分静和动?(1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。

动态特性:反映传感器对于随时间变化的输入量的响应特性。

(2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。

Z-1 分析改善传感器性能的技术途径和措施。

(1)结构、材料与参数的合理选择(2)差动技术(3)平均技术(4)稳定性处理(5)屏蔽、隔离与干扰抑制(6)零示法、微差法与闭环技术(7)补偿、校正与“有源化”(8)集成化、智能化与信息融合2-1 金属应变计与半导体工作机理的异同?比较应变计各种灵敏系数概念的不同意义。

传感器原理与应用习题第1章

传感器原理与应用习题第1章

《传感器原理与应用》习题集与部分参考答案——第1章教材:传感器技术(第3版)贾伯年主编,及其他参考书绪论0-1 综述你所理解的传感器概念。

0-2 何谓结构型传感器?何谓物性型传感器?试述两者的应用特点。

0-3 一个可供实用的传感器由哪几部分构成?各部分的功用是什么?试用框图示出你所理解的传感器系统。

答:传感器一般由敏感元件、转换元件和转换电路(或其它辅助器件)三部分组成。

组成框图如下:(1)敏感元件:是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件,如波纹膜盒、光敏电阻等。

(2)转换元件:敏感元件的输出就是它的输入,其把输入转换成电路参数量。

(3)转换电路:上述电路参数接入转换电路,便可转换成电量输出。

0-4 就传感器技术在未来社会中的地位、作用及其发展方向,综述你的见解。

答:(1)社会对传感器需求的新动向:社会需求是传感器技术发展的强大动力,随着现代化科学技术,特别是大规模集成电路技术的飞速发展和电脑的普及,传感器在新的技术革命中的地位和作用将更为突出。

(2)传感器技术的发展趋势:当前,人们在充分利用先进的电子技术条件,研究和采用合适的外部电路以及最大限度地提高现有传感器的性能价格比的同时,正在寻求传感器技术发展的新途径。

如:1)开发新型传感器,从原有的工作机理启发人们进一步探索具有新效应的敏感功能材料,并以此研制出具有新原理的新型物性型传感器件,这是发展高性能、多功能、低成本和小型化传感器的重要途径;2)传感器的集成化和多功能化,固态功能材料——半导体、电介质、强磁体的进一步开发和集成技术的不断发展,为传感器集成化开辟了广阔的前景;3)传感器的智能化,“电五官”与“电脑”的结合,就是传感器的智能化;4)研究生物感官,开发仿生传感器。

0-5 简述自动检测系统组成。

答:自动检测系统由被检测量、敏感元件(测检元件)、电子测量(转换)电路、输出单元组成。

0-6 什么是传感器、自动检测技术?答:传感器是信息采集系统的首要部件,是实现现代化测量和自动控制的主要环节,是现代信息产业的源头,其广义定义为:能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成;其狭义定义为:一种以一定的精确度将被测量(非电信号)转换为与之有确定对应关系、便于应用的电量的测量装置,通常由敏感元件、转换元件和转换电路组成。

[整理版]传感器原理与应用习题_第6章压电式传感器

[整理版]传感器原理与应用习题_第6章压电式传感器

[整理版]传感器原理与应用习题_第6章压电式传感器《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章压电式传感器6-1 何谓压电效应,何谓纵向压电效应和横向压电效应,答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。

且其电位移D(在MKS单位制中即电荷密度σ)与外应力张量T成正比: D = dT 式中 d—压电常数矩阵。

当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。

这种现象称为正压电效应,或简称压电效应。

若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S与外电场强度E成正比: S=dE 式中 d——逆压电常数矩阵。

这种现象称为逆压电tt效应,或称电致伸缩。

6-2 压电材料的主要特性参数有哪些,试比较三类压电材料的应用特点。

答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。

压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。

此外,还在光电、微声和激光等器件方面都有重要应用。

不足之处是质地脆、抗机械和热冲击性差。

压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。

新型压电材料:既具有压电特性又具有半导体特性。

因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。

6-3 试述石英晶片切型()的含意。

yxlt,50:/45:6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。

答:(1)并联:C′,2C,q′=2q,U′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。

传感器原理与应用习题第6章压电式传感器

传感器原理与应用习题第6章压电式传感器

《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章 压电式传感器6-1 何谓压电效应?何谓纵向压电效应和横向压电效应?答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。

且其电位移D(在MKS 单位制中即电荷密度σ)与外应力张量T 成正比: D = dT 式中 d —压电常数矩阵。

当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。

这种现象称为正压电效应,或简称压电效应。

若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S 与外电场强度E 成正比: S=d t E 式中 d t ——逆压电常数矩阵。

这种现象称为逆压电效应,或称电致伸缩。

6-2 压电材料的主要特性参数有哪些?试比较三类压电材料的应用特点。

答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。

压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。

此外,还在光电、微声和激光等器件方面都有重要应用。

不足之处是质地脆、抗机械和热冲击性差。

压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。

新型压电材料:既具有压电特性又具有半导体特性。

因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。

6-3 试述石英晶片切型(︒︒+45/50yxlt )的含意。

6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。

答:(1)并联:C ′=2C ,q ′=2q,U ′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。

传感器原理与应用习题第4章电容式传感器

传感器原理与应用习题第4章电容式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第4章 电容式传感器4-1 电容式传感器可分为哪几类?各自的主要用途是什么? 答:(1)变极距型电容传感器:在微位移检测中应用最广。

(2)变面积型电容传感器:适合测量较大的直线位移和角位移。

(3)变介质型电容传感器:可用于非导电散材物料的物位测量。

4-2 试述变极距型电容传感器产生非线性误差的原因及在设计中如何减小这一误差?答:原因:灵敏度S 与初始极距0δ的平方成反比,用减少0δ的办法来提高灵敏度,但0δ的减小会导致非线性误差增大。

采用差动式,可比单极式灵敏度提高一倍,且非线性误差大为减小。

由于结构上的对称性,它还能有效地补偿温度变化所造成的误差。

4-3 为什么电容式传感器的绝缘、屏蔽和电缆问题特别重要?设计和应用中如何解决这些问题? 答:电容式传感器由于受结构与尺寸的限制,其电容量都很小,属于小功率、高阻抗器,因此极易受外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重影响传感器的输出特性,甚至会淹没没有用信号而不能使用。

解决:驱动电缆法、整体屏蔽法、采用组合式与集成技术。

4-4 电容式传感器的测量电路主要有哪几种?各自的目的及特点是什么?使用这些测量电路时应注意哪些问题?4-5 为什么高频工作的电容式传感器连接电缆的长度不能任意变动?答:因为连接电缆的变化会导致传感器的分布电容、等效电感都会发生变化,会使等效电容等参数会发生改变,最终导致了传感器的使用条件与标定条件发生了改变,从而改变了传感器的输入输出特性。

4-6 简述电容测厚仪的工作原理及测试步骤。

4-7 试计算图P4-1所示各电容传感元件的总电容表达式。

4-8如图P4-2所示,在压力比指示系统中采用差动式变极距电容传感器,已知原始极距1δ=2δ=0.25mm ,极板直径D =38.2mm ,采用电桥电路作为其转换电路,电容传感器的两个电容分别接R =5.1k Ω的电阻后作为电桥的两个桥臂,并接有效值为U1=60V 的电源电压,其频率为f =400Hz ,电桥的另两桥臂为相同的固定电容C =0.001μF 。

传感器技术答案(贾伯年)第三版

传感器技术答案(贾伯年)第三版

1-1衡量传感器静态特性的主要指标。

说明含义。

1、线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

2、回差――反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。

3、重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。

各条特性曲线越靠近,重复性越好。

4、灵敏度——传感器输出量增量与被测输入量增量之比。

5、分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

6、阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。

7、稳定性——即传感器在相当长时间内仍保持其性能的能力。

8、漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。

9、静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。

1-2计算传感器线性度的方法,差别。

理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。

端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。

这种方法的拟合精度最高。

最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。

1-3什么是传感器的静态特性和动态特性?为什么要分静和动?静态特性表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。

主要考虑其非线性与随机变化等因素。

动态特性是反映传感器对于随时间变化的输入量的响应特性,研究其频率响应特性与阶跃响应特性,分析其动态误差。

区分是为了在数学上分析方便。

1-4分析改善传感器性能的技术途径和措施。

1、结构、材料与参数的合理选择;2、差动技术;3、平均技术;4、稳定性处理;5、屏蔽、隔离与干扰抑制;6、零示法、微差法与闭环技术;7、补偿、校正与“有源化”;8、集成化、智能化与信息融合。

传感器原理与应用习题_第7章热电式传感器

传感器原理与应用习题_第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第7章热电式传感器7-1 热电式传感器有哪几类?它们各有什么特点?答:热电式传感器是一种将温度变化转换为电量变化的装置。

它可分为两大类:热电阻传感器和热电偶传感器。

热电阻传感器的特点:(1)高温度系数、高电阻率。

(2)化学、物理性能稳定。

(3)良好的输出特性。

(4).良好的工艺性,以便于批量生产、降低成本。

热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传7-2 常用的热电阻有哪几种?适用范围如何?答:铂、铜为应用最广的热电阻材料。

铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。

铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。

当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。

7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题?7-4 利用热电偶测温必须具备哪两个条件?答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义?答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。

利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。

连接导体定律:回路的总电势等于热电偶电势EAB(T,T0)与连接导线电势EA’B’(Tn,T0)的代数和。

连接导体定律是工业上运用补偿导线进行温度测量的理论基础。

7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义?答:EAB(T,Tn,T0)=EAB(T,Tn)+EAB(Tn,T0)这是中间温度定律表达式,即回路的总热电势等于EAB(T,Tn)与EAB(Tn,T0)的代数和。

传感器原理与应用习题-第7章热电式传感器

传感器原理与应用习题-第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第7章热电式传感器7-1 热电式传感器有哪几类?它们各有什么特点?答:热电式传感器是一种将温度变化转换为电量变化的装置。

它可分为两大类:热电阻传感器和热电偶传感器。

热电阻传感器的特点:(1)高温度系数、高电阻率。

(2)化学、物理性能稳定。

(3)良好的输出特性。

(4).良好的工艺性,以便于批量生产、降低成本。

热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传7-2 常用的热电阻有哪几种?适用范围如何?答:铂、铜为应用最广的热电阻材料。

铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。

铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。

当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。

7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题?7-4 利用热电偶测温必须具备哪两个条件?答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义?答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。

利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。

连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。

连接导体定律是工业上运用补偿导线进行温度测量的理论基础。

7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义?答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0)这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。

传感器原理与应用习题-第7章热电式传感器

传感器原理与应用习题-第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术〔第3版〕贾伯年主编,及其他参考书第7章热电式传感器7-1 热电式传感器有哪几类?它们各有什么特点?答:热电式传感器是一种将温度变化转换为电量变化的装置。

它可分为两大类:热电阻传感器和热电偶传感器。

热电阻传感器的特点:〔1)高温度系数、高电阻率。

(2)化学、物理性能稳定。

(3)良好的输出特性。

(4).良好的工艺性,以便于批量生产、降低成本。

热电偶传感器的特点:〔1〕结构简单〔2〕制造方便〔3〕测温范围宽〔4〕热惯性小〔5〕准确度高〔6〕输出信号便于远传7-2 常用的热电阻有哪几种?适用范围如何?答:铂、铜为应用最广的热电阻材料。

铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。

铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。

当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。

7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题?7-4 利用热电偶测温必须具备哪两个条件?答:〔1〕用两种不同材料作热电极〔2〕热电偶两端的温度不能相同7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义?答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。

利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。

连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。

连接导体定律是工业上运用补偿导线进行温度测量的理论基础。

7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义?答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0)这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。

传感器原理与应用习题_第7章热电式传感器

传感器原理与应用习题_第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第7章热电式传感器7-1 热电式传感器有哪几类?它们各有什么特点?答:热电式传感器是一种将温度变化转换为电量变化的装置。

它可分为两大类:热电阻传感器和热电偶传感器。

热电阻传感器的特点:(1)高温度系数、高电阻率。

(2)化学、物理性能稳定。

(3)良好的输出特性。

(4).良好的工艺性,以便于批量生产、降低成本。

热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传7-2 常用的热电阻有哪几种?适用范围如何?答:铂、铜为应用最广的热电阻材料。

铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。

铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。

当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。

7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题?7-4 利用热电偶测温必须具备哪两个条件?答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义?答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。

利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。

连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。

连接导体定律是工业上运用补偿导线进行温度测量的理论基础。

7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义?答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0)这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。

传感器技术 贾伯年(第三版)习题答案

传感器技术 贾伯年(第三版)习题答案

仅供参考习题11-1衡量传感器静态特性的主要指标有哪些?说说它们的含义。

答:1、线性度:表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

2、灵敏度:传感器输出量增量与被测输入量增量之比。

3、分辨力:传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

4、回差:反映传感器在正(输入量增大)反(输入量减小)行程过程中对应于同一输入量,输出量曲线的不重合程度指标。

5、重复性:衡量传感器在同一工作条件下,输入量按同一方向作全程连续多次变动时,所得特性曲线间一致程度的指标。

6、阈值:是能使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。

7、稳定性:传感器在相当长时间内仍保持其性能的能力。

8、漂移:指在一定时间间隔内,传感器输出量存在着与被测输人量无关的、不需要的变化。

9、静态误差(精度):指传感器在满量程内任一点输出值相对其理论值的可能偏离(逼近)程度。

它表示采用该传感器进行静态测量时所得数值的不确定度。

1-2 计算传感器线性度的方法有哪几种?差别何在?答:1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。

2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

两端误差为零,中间大。

3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。

这种方法的拟合精度最高,但只可用图解法或计算法得。

4、最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小但拟合出的直线与标定曲线的最大偏差绝对值不一定最小,最大正负偏差的绝对值也不一定相等。

1-4怎样评价传感器的综合静态特性和动态特性??!答:传感器的综合静态特性和动态特性的评价主要从它的线性度、回差、重复性、灵敏度、分辨力,频率响应特性和阶跃响应特性指标进行。

1-5为什么要对传感器进行标定和校准?举例说明传感器静态标定和动态标定的方法(能说出一般标定的基本方法则更好!)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

衡量传感器静态特性的主要指标。

说明含义。

回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。

重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。

各条特性曲线越靠近,重复性越好。

灵敏度——传感器输出量增量与被测输入量增量之比。

分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。

稳定性——即传感器在相当长时间内仍保持其性能的能力。

漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。

静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。

计算传感器线性度的方法,差别。

理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。

端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。

这种方法的拟合精度最高。

最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。

什么是传感器的静态特性和动态特性?为什么要分静和动?(1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。

动态特性:反映传感器对于随时间变化的输入量的响应特性。

(2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。

Z-1 分析改善传感器性能的技术途径和措施。

(1)结构、材料与参数的合理选择(2)差动技术(3)平均技术(4)稳定性处理(5)屏蔽、隔离与干扰抑制(6)零示法、微差法与闭环技术(7)补偿、校正与“有源化”(8)集成化、智能化与信息融合2-1 金属应变计与半导体工作机理的异同?比较应变计各种灵敏系数概念的不同意义。

(1)相同点:它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化所;不同点:金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。

(2)对于金属材料,灵敏系数Ko=Km=(1+2μ)+C(1-2μ)。

前部分为受力后金属几何尺寸变化,一般μ≈0.3,因此(1+2μ)=1.6;后部分为电阻率随应变而变的部分。

金属丝材的应变电阻效应以结构尺寸变化为主。

对于半导体材料,灵敏系数Ko=Ks=(1+2μ)+ πE 。

前部分同样为尺寸变化,后部分为半导体材料的压阻效应所致,而πE 》(1+2μ),因此Ko=Ks=πE 。

半导体材料的应变电阻效应主要基于压阻效应。

2-3 简述电阻应变计产生热输出(温度误差)的原因及其补偿办法。

电阻应变计的温度效应及其热输出由两部分组成:前部分为热阻效应所造成;后部分为敏感栅与试件热膨胀失配所引起。

在工作温度变化较大时,会产生温度误差。

补偿办法:1、温度自补偿法 (1)单丝自补偿应变计(2) 双丝自补偿应变计2、桥路补偿法 (1)双丝半桥式(2)补偿块法2-4 试述应变电桥产生非线性的原因及消减非线性误差的措施。

原因:上式分母中含ΔRi/Ri ,是造成输出量的非线性因素。

无论是输出电压还是电流,实际上都与ΔRi/Ri 呈非线性关系。

措施:(1) 差动电桥补偿法差动电桥呈现相对臂“和”,相邻臂“差”的特征,通过应变计合理布片达到补偿目的。

常用的有半桥差动电路和全桥差动电路。

(2) 恒流源补偿法误差主要由于应变电阻ΔRi 的变化引起工作臂电流的变化所致。

采用恒流源,可减小误差。

2-5 如何用电阻应变计构成应变式传感器?对其各组成部分有何要求?一是作为敏感元件,直接用于被测试件的应变测量;另一是作为转换元件,通过弹性敏感元件构成传感器,用以对任何能转变成弹性元件应变的其他物理量作间接测量。

331241240123412341142R R R R R R R R U U R R R R R R R R ⎛⎫⎛⎫∆∆∆∆∆∆∆∆∆=-+-+++ ⎪ ⎪⎝⎭⎝⎭要求:非线性误差要小(<0.05%~0.1%F.S ),力学性能参数受环境温度影响小,并与弹性元件匹配。

2-9 四臂平衡差动电桥。

说明为什么采用。

全桥差动电路,R1,R3受拉,R2,R4受压,代入,得由全等桥臂,得可见输出电压Uo 与ΔRi/Ri 成严格的线性关系,没有非线性误差。

即Uo=f(ΔR/R)。

因为四臂差动工作,不仅消除了飞线性误差,而且输出比单臂工作提高了4倍,故常采用此方法。

3-1 比较差动式自感传感器和差动变压器在结构上及工作原理上的异同。

绝大多数自感式传感器都运用与电阻差动式类似的技术来改善性能,由两单一式结构对称组合,构成差动式自感传感器。

采用差动式结构,除了可以改善非线性、提高灵敏度外,对电源电压与频率的波动及温度变化等外界影响也有补偿作用,从而提高了传感器的稳定性。

互感式传感器是一种线圈互感随衔铁位移变化的变磁阻式传感器,初、次级间的互感随衔铁移动而变,且两个次级绕组按差动方式工作,因此又称为差动变压器。

3-4 变间隙式、变截面式和螺旋式三种电感式传感器各适合用于什么场合?各有什么优缺点?变气隙式灵敏度较高,但测量范围小,一般用于测量几微米到几百微米的位移。

变面积式灵敏度较低,但线性范围较大,除E 型与四极型外,还常做成八极、十六极型,一般可分辨零点几角秒以下的微小角位移,线性范围达±10°.螺管式可测量几纳米到一米的位移,但灵敏度较前两种低。

3-5螺管式电感传感器做成细长形有什么好处?欲扩大其线性范围可以采取哪些措施?答:好处:增加线圈的长度有利于扩大线性范围或提高线性度。

措施:适当增加线圈长度、采用阶梯形线圈。

3-6 差动式电感传感器为什么常采用相敏检波电路?分析原理。

原因:相敏检波电路,它能有效地消除基波正交分量与偶次谐波分量,减小奇次谐波分量,使传感器零位电压减至极小。

3-7 电感传感器产生零位电压的原因和减小零位电压的措施。

差动自感式传感器当衔铁位于中间位置时,电桥输出理论上应为零,但实际上总存在零位不平衡电压输出(零位电压),造成零位误差。

措施:一种常用的方法是采用补偿电路,其原理为:(1)串联电阻消除基波零位电压;2)并联电阻消除高次谐波零位电压;(3)加并联电容消除基波正交分量或高次谐波分量。

另一种有效的方法是采用外接测量电路来减小零位电压。

如前述的相敏检波电路,它能有效地消除基波正交分量与偶次谐波分量,减小奇次谐波分量,使传感器零位电压减至极小。

此外还可采用磁路调节机构(如可调端盖)保证磁路的对称性,来减小零位电压。

3-9 造成自感式传感器和差动变压器温度误差的原因及其减小措施。

(1)环境温度的变化会引起自感传感器的零点温度漂移、灵敏度温度漂移以及线性度和相位的变化,造成温度误差。

应注意线膨胀系数的大小与匹配,采用弱磁不锈钢等材料作线圈骨架,或采用脱胎线圈。

(2)当温度变化时,差动变压器初级线圈的参数尤其铜阻的变化影响较大。

应提高初级线圈的品质因数,或采用稳定激励电流的方法减小温度误差。

3-12 电涡流式传感器的原理及应用。

1.测位移电涡流式传感器的主要用途之一是可用来测量金属件的静态或动态位移,最大量程达数百毫米,分辨率为0.1%。

2.测厚度 金属板材厚度的变化相当于线圈与金属表面间距离的改变,根据输出电压的变化即可知线圈与金属表面间距离的变化,即板厚的变化。

3.测温度 若保持电涡流式传感器的机、电、磁各参数不变,使传感器的输出只随被测导体电阻率而变,就可测得温度的变化。

331241240123412341142R R R R R R R R U U R R R R R R R R ⎛⎫⎛⎫∆∆∆∆∆∆∆∆∆=-+-++++ ⎪ ⎪⎝⎭⎝⎭33124124012341234111111424U 4R R R R R R R R U U R R R R R R R R R R U R R ⎛⎫⎛⎫∆∆∆-∆-∆∆-∆-∆∆=-+-++++ ⎪ ⎪⎝⎭⎝⎭∆∆==3-14 比较定频调幅式、变频调幅式和调频式三种测量电路的优缺点,并指出它们的应用场合。

(1)定频调幅式:这种电路采用石英晶体振荡器,能获得高稳定度频率的高频激励信号,输出稳定,获得广泛应用, 但线路较复杂,装调较困难,线性范围也不够宽。

(2)变频调幅式:这种电路除结构简单、成本较低外,还具有灵敏度高、线性范围宽等优点,因此监控等场合常采用它。

(3)调频式:这种电路的关键是提高振荡器的频率稳定度。

通常可以从环境温度变化、电缆电容变化及负载影响三方面考虑。

4-1 电容式传感器可分为哪几类?各自的主要用途是什么?(1) 变极距型电容传感器:在微位移检测中应用最广。

(2) 变面积型电容传感器:适合测量较大的直线位移和角位移。

(3)变介质型电容传感器:可用于非导电散材物料的物位测量。

4-2 变极距型电容传感器产生非线性误差的原因及如何减小?原因:灵敏度S 与初始极距00的平方成反比,用减少00的办法来提高灵敏度,但00的减小会导致非线性误差增大。

采用差动式,可比单极式灵敏度提高一倍,且非线性误差大为减小。

由于结构上的对称性,它还能有效地补偿温度变化所造成的误差。

4-3 为什么电容式传感器的绝缘、屏蔽和电缆问题特别重要?如何解决?电容式传感器由于受结构与尺寸的限制,其电容量都很小,属于小功率、高阻抗器,因此极易受外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重影响传感器的输出特性,甚至会淹没没有用信号而不能使用。

解决:驱动电缆法、整体屏蔽法、采用组合式与集成技术.5-12 霍尔效应是什么?可进行哪些参数的测量?当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。

这个电势差也被叫做霍尔电势差。

利用霍尔效应可测量大电流、微气隙磁场、微位移、转速、加速度、振动、压力、流量和液位等;用以制成磁读头、磁罗盘、无刷电机、接近开关和计算元件等等。

磁敏电阻与磁敏二极管的特点?磁敏电阻:外加磁场使导体(半导体)电阻随磁场增加而增大的现象称磁阻效应。

载流导体置于磁场中除了产生霍尔效应外,导体中载流子因受洛仑兹力作用要发生偏转,载流子运动方向偏转使电流路径变化,起到了加大电阻的作用,磁场越强增大电阻的作用越强。

相关文档
最新文档