2.3变量的相关性

合集下载

2.3.1(2.3.2)变量之间的相关关系和线性关系

2.3.1(2.3.2)变量之间的相关关系和线性关系

2.3 变量间的相关关系2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关整体设计教学分析变量之间的关系是人们感兴趣的问题.教科书通过思考栏目“物理成绩与数学成绩之间的关系”,引导学生考察变量之间的关系.在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.随后,通过探究人体脂肪百分比和年龄之间的关系,引入描述两个变量之间关系的线性回归方程(模型).教科书在探索用多种方法确定线性回归直线的过程中,向学生展示创造性思维的过程,帮助学生理解最小二乘法的思想.通过气温与饮料销售量的例子及随后的思考,使学生了解利用线性回归方程解决实际问题的全过程,体会线性回归方程作出的预测结果的随机性,并且可能犯的错误.进一步,教师可以利用计算机模拟和多媒体技术,直观形象地展示预测结果的随机性和规律性.三维目标1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系.2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.重点难点教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程.教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关;理解最小二乘法的思想.课时安排2课时教学过程第1课时导入新课思路1在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?的,物理也好;数学差的,物理也差,但又不全对.)物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法.数学成绩的高低对物理成绩的高低是有一定影响的.但决非唯一因素,还有其他因素,如是否喜欢物理,用在物理学习上的时间等等.(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少.但这两个变量是有一定关系的,它们之间是一种不确定性的关系.如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义.)为很好地说明上述问题,我们开始学习变量之间的相关关系和两个变量的线性相关.(教师板书课题)思路2某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?推进新课新知探究提出问题(1)粮食产量与施肥量有关系吗?“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗?(2)两个变量间的相关关系是什么?有几种?(3)两个变量间的相关关系的判断.讨论结果:(1)粮食产量与施肥量有关系,一般是在标准范围内,施肥越多,粮食产量越高;教师的水平与学生的水平是相关的,如水滴石穿,三人行必有我师等.我们还可以举出现实生活中存在的许多相关关系的问题.例如:商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关.粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素.因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响.人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关.应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、学习经验作出相应的判断,因为“经验当中有规律”.但是,不管你的经验多么丰富,如果只凭经验办事,还是很容易出错的.因此,在分析两个变量之间的相关关系时,我们需要一些有说服力的方法.在寻找变量之间相关关系的过程中,统计同样发挥着非常重要的作用.因为上面提到的这种关系,并不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.这就需要通过收集大量的数据(有时通过调查,有时通过实验),在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.(2)相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;②带有随机性的变量间的相关关系,例如“身高者,体重也重”,我们就说身高与体重这两个变量具有相关关系.相关关系是一种非确定性关系.如商品销售收入与广告支出经费之间的关系.(还与商品质量、居民收入、生活环境等有关)(3)两个变量间的相关关系的判断:①散点图.②根据散点图中变量的对应点的离散程度,可以准确地判断两个变量是否具有相关关系.③正相关、负相关的概念.①教学散点图出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:图来进一步分析.②散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,如下图.从散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)③正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)应用示例思路1例1 下列关系中,带有随机性相关关系的是_____________.①正方形的边长与面积之间的关系②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系解析:两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系,因此填②④.答案:②④例2 有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?分析:学生思考,然后讨论交流,教师及时评价.解:从已经掌握的知识来看,吸烟会损害身体的健康,但是除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果.我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题.但吸烟引起健康问题的可能性大.因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.点评:在探究研究的过程中,如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.本题的意义在于引导学生重视对统计结果的解释,从中发现进一步研究的问题.思路2例1 有时候,一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同类型的某种食品的数据.第二列表示此种食品所含热量的百分比,第三列数据表示由一些美食家以百分制给出的对此种食品口味的评价:(2)关于两个变量之间的关系,你能得出什么结论?解:(1)散点图如下:(2)基本成正相关关系,即食品所含热量越高,口味越好.例2 案例分析:一般说来,一个人的身高越高,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系.为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表.(1)根据上表中的数据,制成散点图.你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系.(3)如果一个学生的身高是188 cm,你能估计他的一拃大概有多长吗?解:根据上表中的数据,制成的散点图如下.从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的.那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)两点确定一条直线.同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.同学3:多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.同学4:从左端点开始,取两条直线,如下图.再取这两条直线的“中间位置”作一条直线.同学5:先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多.同学6:先将所有的点分成两部分,一部分是身高在170 cm以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线.同学7:先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3).求出这三个点的“平均点”为(170.3,19.9).我再用直尺连接最大点与最小点,然后平行地推,画出过点(170.3,19.9)的直线.同学8:取一条直线,使得在它附近的点比较多.在这里需要强调的是,身高和右手一拃长之间没有函数关系.我们得到的直线方程,只是对其变化趋势的一个近似描述.对一个给定身高的人,人们可以用这个方程来估计这个人的右手一拃长,这是十分有意义的.知能训练一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:关于加工零件的个数与加工时间,你能得出什么结论?答案:(1)散点图如下:(2)加工零件的个数与所花费的时间呈正线性相关关系.拓展提升以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:(2)指出是正相关还是负相关;(3)关于销售价格y和房屋的面积x,你能得出什么结论?解:(1)数据对应的散点图如下图所示:(2)散点图中的点散分布在从左下角到右上角的区域内,所以是正相关.(3)关于销售价格y和房屋的面积x,房屋的面积越大,价格越高,它们呈正线性相关的关系. 课堂小结通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.作业习题2.3A组3、4(1).设计感想本节课学习了变量之间的相关关系和两个变量的线性相关的部分内容,通过身边的具体实例说明了两个变量的相关关系,并学会了利用散点图及其分布来说明两个变量的相关关系的种类,为下一节课作了铺垫,思路1和思路2的例题对知识进行了巩固和加强,另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育和增强学生的自信心,养成良好的学习态度和学习方法,树立时间观,培养勤奋、刻苦耐劳的精神.备课资料数学家关肇直关肇直(1919.2.13—1982.11.12),中国科学院院士,是中国数学家,生于北京.原籍广东省南海县.父亲关葆麟早年留学德国,回国后任铁道工程师多年,于1932年故世;母亲陆绍馨,是北平女子师范大学的毕业生,曾从教于北京师范大学.关葆麟去世后,母亲以微薄的收入艰难地抚育关肇直及其弟妹多人.全国解放后,关肇直尽心亲侍慈母,直至1967年去世.关肇直于1959年1月与刘翠娥结婚,他们有两个女儿.刘翠娥系中国科学院工程物理研究所研究人员.关肇直于1927年进入北京培华中学附属小学学习.1931年入英国人办的崇德中学学习.学校对英文要求十分严格,加上关肇直自小就由父母习以英文、德文,为日后掌握英文、德文、法文、西班牙文和俄文奠定了良好基础.1936年高中毕业后考入清华大学土木工程系,后于1938年转入燕京大学数学系学习.毕业后在燕京大学(后迁成都)任教.参加成都教授联谊会,担任学生进步组织的导师,积极支持抗日救国学生运动.1946年春从成都返回北平(北京),不久从燕京大学转到北京大学数学系任教.1947年通过考试成为国民政府派遣的中法交换生赴法国留学.名义上去瑞士学哲学,实际上去了巴黎大学庞加莱研究所研究数学,导师是著名数学家、一般拓朴与泛函分析的创始人弗雷歇(M.R.F rechetl),1948年参加革命团体“中国科学工作者协会”,是该会旅法分会的创办人之一.1949年10月,新中国诞生,他毅然决定放弃获得博士学位的机会.于12月回到祖国,满腔热情地参加了新中国的建设.他立即参加了组建中国科学院的工作.他和其他同志一起,协助郭沫若院长筹划建院事宜,确定科学院的方向、任务、体制等,组建科学院图书馆,担任图书管理处处长,编译局处长.1952年参加筹建中国科学院数学研究所的工作,并在数学研究所从事数学研究,历任副研究员、研究员、研究室主任、副所长、学术委员会副主任.他还是中国科学院声学研究所学术委员会委员及原子能研究所学术委员会委员.从1952年起,兼任北京师范大学、北京大学、中国人民大学和中国科技大学等校教授以及华南工学院名誉教授;并兼任过中国科学院成都分院学术顾问、该院数理科学研究室主任、中国科学院武汉数学物理研究所顾问、研究员.他还是国家科委数学学科组副组长、自动化学科组成员;曾担任北京数学会理事长,中国数学会秘书长,国际自动控制联合会理论委员会成员及《中国科学》《科学通报》《数学学报》和《系统科学与数学》等杂志的编委或主编等职.1980年,他与其他科学家一起创建中国科学院系统科学研究所,担任研究所所长.他还担任中国自动化学会副理事长、中国系统工程学会理事长.1980年当选为中国科学院数理学部委员.关肇直长期从事泛函分析、数学物理、现代控制理论等领域的研究,成绩卓著,为我国的社会主义现代化建设作出了重大贡献,1978年获全国科学大会奖,1980年获国防科委、国工办科研奖十几项,1982年获国家自然科学二等奖;关肇直参与主持的项目《尖兵一号返回型卫星和东方红一号》获1985年国家科技进步特等奖,他本人获“科技进步”奖章.关肇直从事泛函分析、数学物理和现代控制理论研究方面,取得水平很高的成果.主要成果有以下几个方面.(一)最速下降法与单调算子思想关肇直于《数学学报》第6卷第4期(1956)发表了学术论文“解非线性函数方程的最速下降法”,第一次把梯度法(又称最速下降法)由有限维空间推广到无限维空间,而且和线性问题相仿,其收敛速度是依照等比级数的.这种方法可以用来解某些非线性积分方程以及某些非线性微分方程边值问题.并在文中首先提出了单调算子的思想,比外国学者早四五年.国外关于单调算子的概念,最早见于1960年扎朗顿尼罗和闵梯(E.H.Z afantonello,G.J.M inty)的工作.单调算子是非线性泛函分析中很基本的概念之一,单调算子理论已成为泛函分析中的一个重要分支,在处理力学、物理学中的许多非线性问题中被广泛地应用.(二)激光问题的数学理论在数学物理方面,关肇直也进行了深入的研究.他在《中国科学》第14卷第7期(1956)上用法文发表了学术论文“关于…激光理论‟中积分方程的非零本征值的存在性”在论文中他利用泛函分析工具,在很弱的假设下,用极为简短的方式证明了激光理论中一般形式的具有非对称核的线性积分方程非零本征值的存在.这一结果受到国际上的重视.被国外书刊广泛引用,如M agraw H ill图书公司1972年出版的柯克朗(J.A.C ochran)著的《线性积分方程分析》一书就曾详细地引用过.(三)中子迁移理论关肇直在数学物理方面的另一个创造,就是关于中子迁移理论的研究.1963年他用希尔伯特空间与不定规度空间的算子谱理论解决了平板几何情形的中子迁移的本征函数问题,著有“关于一类本征值问题”(当时未发表).这比国外罕日布鲁克(H angelbrook)1973年的同类工作早10年.卡帕(H.G.K aper)和兹维贝尔(P.F.Z weibel)在1975年举行的国际迁移理论第四次会议上的报告(载于期刊《T ranspost T heory and S tatistical P hysiss》V ol.4,N o.3,第105—123页,1975)中,在“迁移理论中有什么创新”标题下,把罕日布鲁克的方法称为求解方程的新方法;但是,罕氏著作中所解决的问题,在关肇直的文章中是早已解决了的.关肇直于1963年完成的这篇论文直到他去世后于1984年发表在《数学物理学报》上,国外同行当得知他在60年代就作出了如此高水平的工作时都深表惊异.(四)飞行器弹性控制理论关肇直在《中国科学》1974年第4期上发表了“弹性振动的镇定问题”,首先提出了用线性算子紧扰动理论解决飞行器弹性振动的镇定问题.在这之前,美国的著名控制论专家鲁塞尔(D.L.R ussell)曾用别的方法讨论过此类问题,但他自己认为他所得的结果“当然并非完全满意”,“增益系数的增大应能改进系统的稳定性,但这样整体性结果没有得到……”他甚至认为:显然他所用的方法“带来必须小的缺陷,……,但很怀疑这里定理所表述的结果的确切化用任何别的技术来实现.”可是,与鲁塞尔的怀疑相反,关肇直用了算子紧扰动方法技巧,此方法与鲁塞方法有本质的区别,它确实摆脱了放大系数很小的限制,得出了工程意义更合理的结果.这项成果已经应用到我国的国防尖端技术设计上,成为导弹运载火箭所必不可少的一个设计理论.(五)几本主要著作1.《泛函分析讲义》1958年高等教育出版社出版了关肇直的《泛函分析讲义》.该书吸取了当时国际上几部有名的介绍泛函分析概要的书的长处,内容适中,很具特色,便于自学.这是国内第一部包括当时泛函分析各分支的较全面的专著,国内当时这类书很少;国内除此之外,迄今也仍只有一些教科书性质的出版物,还没有别的书代替它.关肇直曾使用这部著作在1956年和1957年分别为中国科学院数学研究所一批青年同志和北京大学第一届泛函分析专门化学生讲授过《泛函分析》课程,培养了一批从事泛函分析等方面的中青年骨干教师和科研人员.此书至今仍有重大参考价值.2.《拓扑空间榻论》科学出版社于1958年出版了关肇直教授的这本书.本书是为了数学分析方面的青年数学工作者的需要而写的.目的是使读者获得关于拓扑空间理论的基础知识.本书在当时是这方面较系统的也是较早的一部专著.作者是按照自己的观点来写的,书中许多定理的证明都是作者给出的,他尽可能地遵循一般实变函数论中的叙述问题的方式,因而有自己的特色.这是为了使读者感到新知识与原有知识有联系,对新的抽象概念不至感到突然,同时又帮助读者直达科学研究的前沿.根据研究概率论方面的读者反映,对他们研究极限定理一类工作颇有帮助.3.《高等数学教程》人民教育出版社于1959年出版.本书是关肇直在中国科技大学开办应用数学专业讲授高等数学课程而编写的教材,特点是:材料比较丰富,注意理论联系实际.4.《线性泛函分析入门》上海科技出版社于1979年出版.关肇直同他的学生张恭庆、冯德兴合著.著书的目的是为了满足多方面科学研究工作者的需要,因为当时线性泛函分析已成为许多从事科学技术研究的人所渴望了解和应用的一门数学学科.此书的特点是:尽可能从一些问题提炼出泛函分析中的基本概念,让读者透过叙述方法了解到研究的过程.5.《现代控制系统理论小丛书》这是由关肇直主编的,包括线性系统理论、非线性系统理论、极值控制理论、系统辨识、最优控制与随机控制理论、分布参数系统理论及其他有关内容,共分十几分册,由科学出版社从1975年开始陆续出版.这套丛书介绍了现代控制系统理论的各个部分,并着重说明这种理论怎样由工程实践的需要而产生,又怎样用来解决工程设计中的实际问题.此丛书主要是为从事控制理论研究的科学工作者和工程技术人员而撰写的.此丛书的出版,对于促进我国的控制理论和控制技术的发展起到了很好的作用.。

高中数学第二章统计2.3变量的相关性2.3.1-2.3.2变量间的相关关系两个变量的线性相关教学案新人教B版必修3

高中数学第二章统计2.3变量的相关性2.3.1-2.3.2变量间的相关关系两个变量的线性相关教学案新人教B版必修3

2.3.1 & 2.3.2 变量间的相关关系 两个变量的线性相关习课本P73~78,思考并完成以下问题预(1)相关关系是函数关系吗?(2)什么是正相关、负相关?与散点图有什么关系?(3)回归直线方程是什么?如何求回归系数?(4)如何判断两个变量之间是否具备相关关系?[新知初探]1.两个变量的关系分类函数关系相关关系 特征两变量关系确定两变量关系带有随机性2.散点图将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形. 3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.4.最小二乘法设x ,Y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +bx ,当x 取值x i (i =1,2,…,n )时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n )刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即Q =i =1n(y i -a-bx i)2作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.5.回归直线方程的系数计算公式回归直线方程回归系数系数a^的计算公式方程或公式y^=a^+b^x b^=∑i=1nxiyi-n x-y-∑i=1nx2i-n x2a^=y-b^x-上方加记号“^ ”的意义区分y的估计值y^与实际值ya,b上方加“^ ”表示由观察值按最小二乘法求得的估计值[小试身手]1.下列命题正确的是( )①任何两个变量都具有相关关系;②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系;④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.A.①③④B.②③④C.③④⑤D.②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.v,u;对变量1,得散点图图10),…,1,2=i)(iy,ix(有观测数据y,x.对变量2)(由这两个散点图可以判断2.,得散点图图10),…,1,2=i)(iv,iu(有观测数据A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关.80,当施肥量为250+x 5=y ^归方程为的线性回(kg)y 与水稻产量(kg)x .若施肥量3kg 时,预计水稻产量约为________kg..650(kg)=250+5×80=y ^代入回归方程可得其预测值80=x 解析:把 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8y 30 40 60 50 70若已求得它们的回直线的方程为______________________.,5=2+4+5+6+85=x 解析:由题意可知 y50.=30+40+60+50+705=即样本中心为(5,50).,a ^+x 6.5=y ^设回归直线方程为 ,)y ,x (回归直线过样本中心∵ ,7.51=a ^,即a ^+6.5×5=50∴ 17.5+x 6.5=y ^回归直线方程为∴ 17.5+x 6.5=y ^答案:相关关系的判断[典例] (1) ①正方形的边长与面积之间的关系; ②农作物的产量与施肥量之间的关系; ③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系. (2)某个男孩的年龄与身高的统计数据如下表所示.年龄x (岁)123456身高y (cm)78 87 98 108 115 120①画出散点图;②判断y 与x 是否具有线性相关关系.[解析] (1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;在③中,人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具有相关关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y 与x 具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.答案:①④求回归方程[典例] (1)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3B.y ^=2x -2.4C.y ^=-2x +9.5 D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985①画出散点图;②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系; ③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:秒/转14,所以机器的运转速度应控制在≤14.9x ,解得≤1067-x 5170得≤10y 由③内.求回归直线方程的步骤.)数据一般由题目给出)(n ,…,1,2=i )(i y ,i x (收集样本数据,设为(1) (2)作出散点图,确定x ,y 具有线性相关关系..i y i x ,2i x ,i y ,i x 把数据制成表格(3).iy i ∑i =1nx ,2i ∑i =1n x ,y ,x 计算(4) ⎩⎪⎨⎪⎧b ^=∑i =1nxiyi -n x y ∑i =1n x2i -n x 2,a ^=y -b ^ x .,公式为a ^,b ^代入公式计算(5).a ^+x b ^=y ^写出回归直线方程(6) [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.,52=1+2+3+44=x (2) y ,134=1+3+4+54=∑i=14x 39.=20+12+6+1=i y i ∑i =14x 2i ,30=16+9+4+1= b^,1310=39-4×52×13430-4×⎝ ⎛⎭⎪⎫522=a^,0=52×1310-134= .为所求的回归直线方程x 1310=y ^所以 利用线性回归方程对总体进行估计[典例x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:,3.5=2.5+3+4+4.54=y ,4.5=3+4+5+64=x (2) ∑i=14x ,66.5=6×4.5+5×4+4×3+3×2.5=i y i ∑i=14x 2i ,86=26+25+24+23= ∑i =14xiyi -4xy∑i =14x2i -4x 2=b ^所以 ,0.7=66.5-4×4.5×3.586-4×4.52=a ^0.35.=0.7×4.5-3.5=x b ^-y = 0.35.+x 0.7=y ^所以所求的线性回归方程为 ,)吨标准煤70.35(=0.35+0.7×100=y ^时,100=x 当(3) 90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:it iy it 2it i y i1 1 5 1 52 2 6 4 123 3 7 9 214 4 8 16 325 5 10 25 50 ∑153655120这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1n y i =365=7.2.又∑i =1nt2i -n t -2=55-5×32=10,i =1n t i y i -n t-y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( )A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C.2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为2+x 1.5=y ^A. 2+x 1.5=-y ^B. 2-x 1.5=y ^C. 2-x 1.5=-y ^D. 之间负相关,回归直线y ,x ,由散点图可知变量a ^+x b ^=y ^设回归方程为 B 解析:选 2.+x 1.5=-y ^,因此方程可能为>0a ^,<0b ^轴上的截距为正数,所以y 在 个样本点,n 的y 和x 是变量)n y ,n x (,…,)2y ,2x (,)1y ,1x (设3.直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( ))y ,x (过点l .直线A B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误. 4.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的,x 0.006 2+9.5=y ^的回归方程为x 关于吨位y 人,船员人数32~5人数 (1)若两艘船的吨位相差1 000,求船员平均相差的人数;(2)估计吨位最大的船和最小的船的船员人数.,则2x ,1x 设两艘船的吨位分别为(1)解: y^)2x 6 20.00+(9.5-1x 0.006 2+9.5=2y ^-1 =0.006 2×1 000≈6, 即船员平均相差6人.,0.006 2×192≈11+9.5=y ^时,192=x 当(2) 0.006 2×3 246≈30.+9.5=y ^时,3 246=x 当 即估计吨位最大和最小的船的船员数分别为30人和11人.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( ) A .确定性关系 B .相关关系 C .函数关系D .无任何关系 解析:选 B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.,下x 80+50=y ^变化的回归直线方程为)千元(x 依劳动生产率)元(y .农民工月工资2列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元的单x ,但要注意80增加y ,1每增加x 知,x 80+50=y ^由回归直线方程 B 解析:选位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:则y 对x 的线性回归方程为( )A .y =x -1B .y =x +1x 12+88=y .C176=y .D =y ,176=174+176+176+176+1785=x 计算得, C 解析:选符合.C 检验知,)y ,x (,根据回归直线经过样本中心176=175+175+176+177+17754.已知x 与y 之间的几组数据如下表:,若某同学根据上表中的前两组a ^+x b ^=y ^假设根据上表数据所得线性回归直线方程为数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )′a <a ^,′b >y ^′ B.a >a ^,′b >b ^A. ′a <a ^,′b <y ^′ D.a >a ^,′b <b ^C. 解析:选C 由(1,0),(2,2)求b ′,a ′.2.=-2×1-0=′a ,2=2-02-1=′b ,58=24+15+12+3+4+0=i y i ∑i =16x 时,a ^,b ^求 x ,136=y ,3.5= ∑i=16x 2i ,91=36+25+16+9+4+1= ,57=58-6×3.5×13691-6×3.52=b ^∴ a^,13=-52-136=×3.557-136= ′.a >a ^,′b <b ^∴ =y ^的回归方程为(cm)x 对身高(kg)y 岁的人,体重38岁到18.正常情况下,年龄在50.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右. =y ^时,178=x 的人的体重进行预测,当178 cm 解析:用回归方程对身高为0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:________.=a ,则a +x 4=-y 由表中数据,求得线性回归方程为 ,132=4+5+6+7+8+96=x 解析: y,80=92+82+80+80+78+686=)y ,x (由回归方程过样本中心点 .a ^+1324×=-80得 106.=1324×+80=a ^即 答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y ,估计该台机器最为划算的使用年限为x 1.3-10.47=y ^具备线性相关关系,回归方程为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:;y ,x 求(1) (2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件?3 487)=i y i ∑i =17x ,45 309=2i ∑i =17y ,280=2i ∑i =17x 提示:( ,6=3+4+5+6+7+8+97=x (1)解: y≈79.86.66+69+73+81+89+90+917= ,≈4.753 487-7×6×79.86280-7×62=b ^∵(2) a^,51.36=4.75×6-79.86= .x 4.75+51.36=y ^之间的回归直线方程为x 纯利与每天销售件数∴ ≈31.29.x ,所以651.3+x 4.75=200时,200=y ^当(3) 因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.9.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:年收入x (万元)2 4 4 6 6 6 7 7 8 10年饮食 支出y(万元)0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3(2)若某家庭年收入为9万元,预测其年饮食支出.406)=2i ∑i =110x ,117.7=i y i ∑i =110x 参考数据:( 解:依题意可计算得:x,10.98=y x ,36=2x ,1.83=y ,6= ,406=2i ∑i =110x ,117.7=i y i ∑i =110x ∵又,≈0.17∑i=110xiyi -10x y ∑i =110x2i -10x 2=b ^∴ a^0.81.+x 0.17=y ^∴,0.81=x b ^-y = 1.0.8+x 0.17=y ^所求的回归方程为∴ .)万元2.34(=0.81+0.17×9=y ^时,9=x 当(2) 可估计年收入为9万元的家庭每年饮食支出约为2.34万元.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选 C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20 解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190 192.=n ,求得80=n200+1 200+1 0001 000× B 解析:选 4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )200+x 10=y ^200 B.+x 10=-y ^A. 200-x 10=y ^200 D.-x 10=-y ^C. 解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.,则y 和x ,它们的平均数分别是n y ,…,2y ,1y 与n x ,…,2x ,1x .设有两组数据5)(的平均数是1+n y 3-n x 2,…,1+2y 3-2x 1,2+1y 3-1x 2新的一组数据 y 3-x 2.A 1+y 3-x 2.By 9-x 4.C1+y 9-x 4.D ,)n ,…,1,2=i 1(+i y 3-i x 2=i z 设 B 解析:选 =⎝ ⎛⎭⎪⎫1+1+…+1n +)n y +…+2y +1y (3n -)n x +…+2x +1x (2n =)n z +…+2z +1z (1n =z 则 1.+y 3-x 2 6.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12[35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( )211A.13B. 12C.23D. 解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7.13=2266的数据约占31.5,故总体中大于或等于22=3+ 7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90 解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,87.=75)+80+85×4+90×2+95+(100110平均数为 8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3 1.8.=5×0+20×1+10×2+10×3+5×450B 解析:选 9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4用水量y 4.5 4 3 2.5的a ,则a +x 0.7=-y 之间具有线性相关关系,其线性回归方程为x 与月份y 用水量值为( )A .5.25B .5C .2.5D .3.5 解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4 +5+6+3+(515+80,平均数为77,去掉一个最低分95去掉一个最高分 C 解析:选,因此1.2=]286)-(85+285)-(85+286)-(85+283)-(85+285)-[(8515,方差为85=6)选C.,…,2+2x 2,3+1x 3,则2s ,方差是x 的平均数是n x ,…,3x ,2x ,1x .如果数据11)(的平均数和方差分别是2+n x 32s 和x A.2s 9和x 3.B2s 9和2+x 3.C4+2s 12和2+x 3.D nx …,2x ,1x ,由于数据2+x 3的平均数是2+n x 3,…,2+2x 2,3+1x 3 C 解析:选.2s 9的方差为2+n x 3,…,2+2x 2,3+1x 3,所以2s 的方差为 12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是( ) A .x =9 B .y =8C .乙的成绩的中位数为26D .乙的成绩的方差小于甲的成绩的方差解析:选B 因为甲的成绩的极差为31,所以其最高成绩为39,所以x =9;因为乙的成绩的平均值为24,所以y =24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小. 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.∴,2;又方差为20=y +x ,则10=159)×+11+10+y +x (,得10解析:由平均数为=xy 208,2=2y +2x ,得2=15]×210)-(9+210)-(11+210)-(10+210)-y (+210)-x [( 4.=x2+y2-2xy =x -y 2=|y -x |∴,192 答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.12.=×482148+36解析:抽取的男运动员的人数为 答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)59408 66368 36016 26247 25965 49487 26968 86021 77681 83458 21540 62651 69424 78197 20643 67297 76413 66306 51671 54964 87683 30372 39469 97434解析:以3开始向右读,每次读取三位,重复和不在范围内的不读,依次为368,360,162,494,021.答案:368,360,162,494,02116.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1,∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,10.=z ,20=y 同理,30.=x ,解得0.030×10=x100则3.=×181030+20+10的学生中选取的人数为[140,150]故从 答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) ,应如何110名学生中抽取50为调查某班学生的平均身高,从)分10本小题满分(.17抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样? 抽签法或随机数(人,采用简单随机抽样法5,即抽取110名学生中抽取50解:从法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示. (1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?22.=1326=17+19+20+21+25+306样本均值为1)(解: 4=1312×名工人中有12,故推断该车间13=26知样本中优秀工人所占比例为(1)由(2)名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人);四川籍的有15+10+5+5+5=40(人).2,即四川籍的应抽取2=x ,解得x40=5100人,依题意得x 设四川籍的驾驶人员应抽取人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定?解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样.,100=99)+98+103+98+99+101+(10217=甲x (2) x,100=110)+115+75+85+90+115+(11017=乙 ,1)≈3.43+4+9+4+1+1+(417=2甲s ,228.57=100)+225+625+225+100+225+(10017=2乙s ,故甲车间产品比较稳定.2乙s <2甲s ∴ 21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数 频率[10,15) 10 0.25[15,20) 25n [20,25) mp[25,30] 20.05 合计M1(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 40.=M ,所以0.25=10M知,0.25频率是 因为频数之和为40,所以10+25+m +2=40,解得m =3.0.075.=340=p 故 因为a 是对应分组[15,20)的频率与组距的商,125.0.=2540×5=a 所以 (2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入iy i ∑i =110x ,20=i ∑i =110y ,80=i ∑i =110x 的数据资料,算得)单位:千元(i y 与月储蓄)单位:千元(i x 720.=2i ∑i =110x ,184= ;a ^+xb ^=y ^的线性回归方程x 对月收入y 求家庭的月储蓄(1) (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.,8=8010=i ∑i =1n x 1n =x ,10=n 由题意知(1)解: y ,2=2010=i ∑i =1n y 1n = ,80=210×8-720=2x 10-2i ∑i =110x 又 ∑i=110x ,24=10×8×2-184=y x 10-i y i ,0.3=2480=∑i =110xiyi -10x y∑i =110x2i -10x 2=b ^由此得 a^,0.4=-0.3×8-2=x b ^-y = 0.4.-x 0.3=y ^故所求回归方程为 (2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。

2.3.2两个变量的线性相关

2.3.2两个变量的线性相关

3
4
73
69
5
6
5
68
返回导航
第二章 统 计
[解析] 散点图如下:
数 学 必 修 ③ · 人 教 B 版
返回导航
第二章 统 计
将数据列表如下:
序号 xi 1 2 3 4 5 6 2 3 4 3 4 5
yi 73 72 71 73 69 68
x2 i 4 9 16 9 16 25
x iy i 146 216 284 219 276 340
数 学 必 修 ③ · 人 教 B 版
合计 21 426 79 1 481
返回导航
第二章 统 计
21 由表中数据得 x = , y =71. 6 21 1481-6× ×71 -10 6 ^ ∴b= = ≈-1.82, 21 2 5.5 79-6× 6 21 ^ a=71-(-1.82)× =77.37. 6
数 学 必 修 ③ · 人 教 B 版
2 ( y - a - bx ) i i 平方和 Q=__________________ ,取得最小值的那一条直线与所给数据最贴近, = i 1
n
最小二乘法 把这一条直线作为回归直线,这种求回归直线的方法叫做________________.
返回导航
第二章 统 计
第二章 统 计
互动探究学案
数 学 必 修 ③ · 人 教 B 版
返回导航
第二章 统 计
命题方向1 ⇨求线性回归方程
某 地 10 户家庭 的年收入 和年饮食 支出的统 计资料如 下表 : 导学号 95064511
年收入x (万元)
数 学 必 修 ③ · 人 教 B 版
2
4
4

高中数学必修3第二章:统计2.3变量间的相关关系

高中数学必修3第二章:统计2.3变量间的相关关系
答案 (3,2.5)
Y 研考点·知规律
探究悟道 点拨技法
题型一 相关关系的判断 【例 1】 河北国欣农研会的科研人员在 7 块并排、形状大小 相同的试验田上对某棉花新品种进行施化肥量 x 对产量 y 影响的 试验,得到如下表所示的一组数据(单位:kg): 施化肥量 x 15 20 25 30 35 40 45 棉花产量 y 330 345 365 405 445 450 455
D 读教材·抓基础
回扣教材 扫除盲点
课本导读
1.两个变量的线性相关 (1)在散点图中,点散布在从 左下角 到 右上角的区域,对于 两个变量的这种相关关系,我们将它称为正相关. (2)在散点图中,点散布在从 左上角 到 右下角的区域,两个 变量的这种相关关系称为负相关. (3)如果散点图中点的分布在整体上看大致在一条直线附近 , 就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.
() (A)她儿子10岁时的身高一定是145.83 cm (B)她儿子10岁时的身高在145.83 cm以上 (C)她儿子10岁时的身高在145.83 cm左右 (D)她儿子10岁时的身高在145.83 cm以下
2.经调查知,某品牌汽车的销售量y(辆)与广告费用x(万元)之 间的回归直线方程为 yˆ =250+4x,当广告费用为50万元时,预计 汽车销售量约为 ______辆.
2.回归方程 (1)最小二乘法:使得样本数据的点到回归直线的 距离的平方
和最小的方法叫最小二乘法.
(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,
^^ ^
y1)、(x2,y2),…,(xn,yn).其回归方程为y=bx+a,则
n
n
xi- x yi- y xiyi-n x y

2017学年数学必修三:2.3.1-变量之间的相关关系~2.3.2 两个变量的线性相关2

2017学年数学必修三:2.3.1-变量之间的相关关系~2.3.2 两个变量的线性相关2
取值范围应该有意义).
(2)问题2中,从表里数据能得出小麦的产量y与施肥量x之间的 函数关系式吗? 提示:从表格里我们很容易发现施肥量越大 ,小麦的产量就越高. 但是,施肥量并不是影响小麦产量的唯一因素 ,小麦的产量还受 土壤的质量、降雨量、田间管理等诸多因素影响 ,这时两个变
量之间就不是确定性的函数关系,因此不能得到y和x的函数关
1.两个变量的线性相关 左下角 到_______. 右上角 (1)正相关:点散布的方向:从_______ 左上角 到_______. 右下角 (2)负相关:点散布的方向:从_______ (3)回归直线:如果散点图中点的分布从整体上看在一条直线附
线性相关 关系,这条直线叫做 近,就称这两个变量之间具有_________
【解析】(1)作出散点图如图所示,
(2)由散点图可知,各点并不在一条直线附近,所以两个变量是
非线性相关关系.
类型二
求回归方程
1.(2013·锦州高一检测)已知一组观测值具有线性相关关系,
bx a ,求得 b =0.51, x =61.75, y =38.14, 则回归方 若对于 y
【探究总结】
1.散点图的作用
(1)判断两个变量之间有无相关关系,一种常用的简便可行的方
法是绘制散点图.
(2)根据散点图很容易看出两个变量之间是否具有相关关系,是
不是线性相关关系,是正相关还是负相关,相关关系强还是弱.
2.利用散点图判断变量间的关系的方法 (1)如果所有的样本点都落在某一函数的曲线上,就用该函数来 描述变量间的关系,即变量具有函数关系. (2)如果所有的样本点都落在某一函数曲线附近,变量之间就有 相关关系. (3)如果所有的样本点都落在某一条直线附近,变量之间就有线 性相关关系.

2.3 变量的相关性

2.3 变量的相关性

张喜林制2.3 变量的相关性教材知识检索考点知识 清单1.变量与变量之间的关系常见的有两类:一类是 的函数关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的 ,它们的关系是带有____的.2.如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为 ;如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为 .3.在平面直角坐标系中,用 的方法得到具有相关关系的两个变量的图形叫散点图. 14.bx a y+=ˆ叫做y 对x 的 ,其中____. 5.由于平方又叫二乘方,所以这种使____的方法,叫做6.用最小二乘法求回归直线方程中的系数,a 、b 的公式是=bˆ =a ˆ, . 要点核心解读1.变量与变量之间存在着的两种关系 (1)函数关系.函数关系是一种确定性的关系,例如圆的面积,2r S π=面积S 与半径长r 之间就是一种确定性关系,对于自变量半径的每一个确定的值,都有唯一确定的面积的值与之对应. (2)相关关系.自变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的关系叫做相关关系.与函数关系不同,相关关系是一种非确定性关系,例如,人的身高并不能确定体重,但一般说来“身高者,体也重”.我们说身高与体重这两个变量具有相关关系.当一个变量的值由小变大时,另一个变量的值也在由小变大,这种相关称为正相关;反之如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.2.散点图(1)将两个变量的各对数据在直角坐标系中描点而得到的图形叫做散点图.散点图形象地反映了各对数据的密切程度,而且利用散点图可以判断变量之间有无相关关系.(2)散点图的制作:对于两条轴的长度单位可以取得不一致,点既可用实心点,也可用空心点,画回归直线时,一定要画在多数点经过的区域,实际画线时,先观察有哪两点在直线上即可. 3.相关关系的理解如学生数学成绩与物理成绩间的关系、吸烟和健康之间的关系、父母身高与子女身高的关系、产品的广告费支出与销售额之间的关系等都是相关关系,而学生的身高与学习成绩之间没有相关关系,角与它的正弦值之间的关系也不是相关关系,而是函数关系.函数关系是一种确定性关系,而相关关系是一种非确定性关系,即当自变量取值一定时,因变量的取值是带有一定的随机性的两个变量间的关系.在现实生活中,相关关系是大量存在的.从某种意义上看,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况,因此研究相关关系,不仅可以使我们处理更为广泛的数学应用问题,还可使我们对函数关系的认识上升到一个新的高度. 4.回归直线方程一般地,设x 与y 是具有相关关系的两个变量,且相应于n 组观测值的n 个点),,,2,1)(,(n i y x i i = 大致分布在一条直线的附近,求在整体上与这n 个点最接近的一条直线,记此直线方程为①.ˆbx a y+= 这里在y 的上方加记号“^’,是为了区分Y 的实际值 y ,表示当x 取值),,2,1(n i x i =时,y 相应的观察值为,i y 而直线上对应于i x 的纵坐标是①.ˆi i bx a y+=式叫做y 对x 的回归直线方 程,b 叫做回归系数.5.最小二乘法设x ,Y 的一组观察值为),(i i y x ),,2,1(n i =⋅且回归直线方程为=y ˆ.bx a +当x 取值 ),,2,1(n i x i =时,y 的观察值为,i y 对应回归直线上的,ˆy取~ˆt bx a y +=离差),,2,1(ˆn i y y i i =-刻画了实际观察值i y 与回归直线上相应点的纵坐标之间的偏离程度.我们希望i y 与yˆ的n 个离差构成的总离差越小越好,这才说明所求的直线是最贴近已知点的.—个自然的想法是把各个离差加起来作为总离差,可是,由于离差有正有负,直接相加会相互抵消,这样就无法反映这些数据点的贴近程度,即这个总离差不能用n 个离差之和)ˆ(1yyini -∑=来表示,通常是离差的平方和,即21)(i i ni bx a y Q --=∑=作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q 取最小值的那一条,由于平方又叫二乘方,所以这种使“离差平方和为最小”的方法,叫做最小二乘法. 6. 回归系数的公式及推导用最小二乘法求回归直线方程中的a ,b 有下面的公式:,ˆˆ,ˆ2211x b y axn x yx n yx bi n i ii ni -=--=∑∑== 其中a ,b 的上方加“^’,表示是由观察值按最小二乘法求得的估计值,bˆ也叫回归系数,b a ˆ,ˆ求出后,回归直线方程就建立起来了.如何使离差平方和为“最小”呢?我们将离差平方和式展开,同时为了书写方便,一律省去“∑”号的上、下标,这样得2])[(i i bx a y Q --∑=2222222i i i R l i x b x ab y b na y a y ∑+∑+∑-+∑-∑= .2)y (22222i i i i i i y y x b x b x b a na ∑+∑-∑+∑-∑+=把上式看成a 的二次函数,2a 的系数n>0,因此,当x b y n x b y n y x b a ii i i -=∑-∑=∑-∑-=2)(2时,取最小值. 其中i i x nx y n y ∑=∑=1,1是样本平均数. 同理,把Q 的展开式重新按6的降幂排列,看成b 的二次函数,当2i ii i x x a y x b ∑∑-∑=时,取最小值,于是:⎪⎩⎪⎨⎧∑∑-∑=∑-∑=,,2i ii i i i x x a y x b nx b y a 从而解得回归系数:22ˆxn x y x n y x b i i i -∑-∑=和.ˆˆx b y a -=7.回归直线方程的求法根据最小二乘法,利用计算机或计算器,可以方便地求出回归方程.(1)分别计算,,,,,12121ii ni in i in i y x y x y x ∑∑∑===(2)分别计算 ,ˆˆ,ˆ2211x b y axn x yx n yx bi n i ii ni -=--=∑∑== (3)代入bx a y+=ˆ可得回归方程, 利用回归直线,我们可以对总体进行估计.如回归直线方程为,ˆbx a y+=当0x x =时的估计值为: ⋅+=0ˆbx a y8.回归直线方程的另外两种求法回归直线方程的求法课本上是利用最小二乘法得到的,除了这种方法外,还有选点法、平均值法. (1)选点法:作出散点图,用一条透明的直尺边缘在这些点间移动,选出直线上的两点或最靠近直线的两点(选点不当,精确度就比较低). (2)平均值法:首先设出方程,b kx y +=把观测值代入得几个关于k ,b 的一次方程,将其平均分为两组,分别相加得到k ,b 的两个方程,联立解出k ,b .三种方法比较:最小二乘法精确度最高,一般采用这种方法,典例分类剖析考点1 变量间相关关系的理解[例1] 下面两个变量间的关系不是函数关系的是( ). A .正方体的棱长与体积 B .角的度数与它的正弦值C .单产为常数时,土地面积与粮食总产量D .日照时间与水稻亩产量[试解]____.(做后再看答案,发挥母题功能)[解析] 函数关系与相关关系都是指两个变量之间的关系,但是这两种关系是不同的,函数关系是指当自变量一定时,函数值是确定的,是一种确定性的关系.选D 项.因为A 项,3a V =B 项;sin α=yC 项,ax y =D 项是相关关系.[答案] D[点拨] 相关关系是一种非确定性关系,因变量(非随机变量)的取值常有一定的随机性,不能由自变量唯一地确定,如D ,再如:人的身高与年龄、家庭的收入与支出、试验田的施肥与水稻的产量等都是相关关系.[例2] 下列四个关系中为相关关系的是①正方形边长与其面积的关系;②某人的身高与年龄的关系;③圆柱体积与其底面半径的关系;④Rt △ABC 中,锐角A 的大小与斜边长度的关系.[解析] 由相关关系的定义不难作出判断,符合相关关系的是②③. [答案]②③1.在下列各变量之间的关系中:①汽车的重量和百公里的耗油量;②正n 边形的边数与内角度数之和;③一块农田的小麦产量与施肥量;④家庭的经济条件与学生的学习成绩, 以上是相关关系的有().A .①② B.①③ C.②③ D.③④ 考点2散点图的作用与作法[例3] 某农场经过观测得到水稻产量和施化肥量的统计数据如下:画出散点图,判断它们是否有相关关系,并考虑水稻的产量会不会随着化肥施用量的增加而一直增长. [答案] 画出散点图如图2 -3 -2所示.水稻产量和施化肥量之间有相关关系.由图可以看出,随着施化肥量的增大,水稻产量也在增大,但增大的速度在放缓,因此,水稻的产量不会随着化肥施用量的增加而一直增长.[点拨] 对于两条轴的长度单位可以取得不一致,点既可用空心点,也可用实心点. [例4]在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:根据上述数据,判断人体的脂肪含量与年龄之间有怎样的关系?[答案] 绘出数据{(i i y x ,)}的散点图如图2-3 -3.从散点图可以看出,年龄越大,体内脂肪含量越高,且两个变量之间存在一定的相关关系.[点拨]判断有无相关关系,一种行之有效的方法就是散点图,两个变量是否具有相关关系,主要依据散点图中,变量对应的点是否分布在一条直线附近,若是,则具有相关关系,否则,不具有相关关系, 2.(1)如图2 -3 -4是两个变量统计数据 的散点图,判断两个变量之间是否具有相关关系?(2)有个男孩的年龄与身高的统计数据如下.画出散点图,并判断它们是否有相关关系.考点3散点图与回归直线[例5] 已知10只狗的血球体积及红血球数的测量值如下表: ( mm) (百万) x :血球体积 y :红血球数45 6.53 42 6.30 46 9.52 48 7.50 42 6.99 35 5.90 58 9.49 40 6.20 39 6.55 50 8.72(1)画出上表的散点图;(2)求出回归直线并画出图形.[解析] 用散点图及回归直线的定义解题. [答案] (1)如图2-3 -5所示.=+++++++++⨯=)50394058354248464245(101)2(x ,50.44 +++++++<⨯=49.990.599.650.752.930.653.6101y .37.7)72.855.620.6=++设回归直线的方程为,ˆa bx y+=则,42.0ˆˆ,175.0ˆ2211-≈-=≈--=∑∑==x b y axn x yx n yx bi n i ii ni 所以所求的回归直线为.42.0175.0ˆ-=x y如图2 -3 -6所示.[点拨] 求回归直线的步骤: (1)分别计算: ,,,,,12121ii ni ini ini y x y x y x ∑∑∑===(2)分别计算;ˆ,ˆa b(3)代入,ˆbx a y+=可得回归方程. 3.每立方米混凝土的水泥用量x(单位:kg)与28天后混凝土的抗压强度y (单位:)/2cm kg 之间的关系有如下数据.(1)画出散点图;(2)如果散点图中的各点大致分布在一条直线的附近,求y 与x 之间的回归直线方程,考点4利用回归直线对总体进行估计[例6] 假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:若由资料知y 对x 呈线性相关关系.试求:(1)线性回归方程a bx y+=ˆ的回归系数; (2)估计使用年限为10年时,维修费用是多少?[解析] 因为y 对x 呈线性相关关系,所以可以用线性相关的方法解决问题.(1)利用公式 2211ˆxn x yx n yx b i n i ii ni --=∑∑==来计算回归系数.有时为了方便常制表对应求出,2i iN i x y x 以利于求和.(2)获得线性回归方程后,取,10=x 即得所求. [答案] (1)制表于是有 ,23.1103.1245905453.112ˆ2==⨯-⨯⨯-=b.08.0423.15ˆˆ=⨯-=-=x b y a(2)回归直线方程是,08.023.1ˆ+=x y 当10=x (年)时,=y 38.1208.01023.1=+⨯(万元),即估计使用10年时维修费用是12.38万元.4.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系,如果已测得炉料熔化完:(1)作出散点图,你能从散点图中发现含碳量与冶炼时间的一般规律吗? (2)求回归直线方程;(3)预测当钢水含碳量为160时,应冶炼多少分钟?优化分层测训学业水平测试1.下列有关线性回归的说法中,正确的是( ).A .自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B .在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图C .线性回归直线方程最能代表观测值x 、y 之间的关系D .任何一组观测值都能得到具有代表意义的回归直线方程 2.下列变量之间的关系是函数关系的是( ).A .二次函数c bx ax y ++=2中,a 、c 是已知常数,取b 为自变量,因变量是判别式ac b 42-=∆B .光照时间和果树的亩产量C .降雪量和交通事故的发生率D .每亩施用肥料量和粮食亩产量3.两个变量之间的相关关系是一种( ).A .确定性关系B .线性关系C .非确定关系D .以上说法都不对4.为了判断两个变量x ,y 之间是否具有相关关系,描出每一组观测值(x ,y )表示的点,得到的图形称为 .5.根据你的生活经验及掌握的知识,将下列所有你认为正确的结论填入题后的空中.①一般地,学生的数学成绩与物理成绩之间是正相关的;②一般地,学生的数学成绩与英语成绩是负相关的;③一块农田的水稻产量与施肥量之间是相关关系;④对于在校儿童,年龄的大小与阅读能力有很强的相关关系. 以上正确的结论是____.求两变量间的回归方程.高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.对于给定的两个变量的统计数据,下列说法正确的是( ). A .都可以分析出两个变量的关系B .都可以用一条直线近似地表示两者的关系C .都可以作出散点图D .都可以用确定的表达式表示两者的关系 2.下列各关系不属于相关关系的是( ).A .产品的样本与生产数量B .球的表面积与体积C .家庭的支出与收入D .人的年龄与体重 3.(2011年江西高考题)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对并的线性回归方程为( ).1-=⋅x y A 1+=⋅x y B x y C 2188+=⋅ 176=⋅y D x 与销售额y 的统计数据如下表:根据上表可得回归方程a x b y ˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为( ).A .63.6万元B .65.5万元C .67.7万元D .72.0万元5.设有一个回归方程为,53ˆx y-=变量x 增加一个单位时 ( ). A.y 平均增加3个单位 B.y 平均减少5个单位C .y 平均增加5个单位D .y 平均减少3个单位 6.如图2 -3 -10所示,有5组(石,,,)数据,去掉 组数据后,剩下的4组数据线性相关关系数最大( ).A .AB .BC .CD .D 7.(2007年山东高考模拟题)为了考查两个变量x 和y 之间的线性关系,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为,.21l l 已知两人得的试验数据中,变量x 和y 的数据的平均值都相等,且分别都是s 、t ,那么下列说法正确的是( ). A .直线21l l 和一定有公共点(s ,t) B .直线21l l 和相交,但交点不一定是(s ,t) C .必有直线21//l l 21.l l D 和必定重合8.(2009年宁夏、海南高考题)对变量x ,y 观测数据=i y x i i )(,(),10,,2,1 得散点图2 -3 -11;对变量u ,v 有观测数据,i u (),10,,2,1)( =i v i 得散点图2 -3 -12.由这两个散点图可以判断( ).A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关,C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题后的相应位置)9.某城市近10年居民的年收入x 和支出y 之间的关系大致符合y=0.8x +0.1(单位:亿元),预计今年该城市居民的年收人为15亿元,则年支出估计是 亿元.10.根据两个变量x ,y 之间的关系,观察数据画成散点图如图2 -3 -13,这两个变量是否具有线性相关关系 (填“是”或“否”).11.若施化肥量x 与小麦产量y 之间的回归直线方程为=yˆ,4250x +当施化肥量为50kg 时,预计小麦的产量为12.在研究硝酸钠的可溶性程度时,观察它在不同温度的水中的溶解度,得观测结果如下表:则由此得到回归直线的斜率为____三、解答题(本大题共4小题,每小题10分,共40分,解答须写出文字说明、证明过程和演算步骤) 13.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应关系:(1)假定y 与x 之间有线性相关关系,求其回归直线方程;(2)若实际的销售额不少于60百万元,则广告费支出应不少于多少?14.以下资料是一位销售经理收集来的每年的销售额和销售经验年数的关系:(1)依据这些数据画出散点图并作直线,2.478ˆx y+=计算;)ˆ(2101i yyii -∑= (2)依据这些数据 由最小二乘法求线性回归方程,并据此计算2101)ˆ(i ii yy-∑=的大小. 15.(2011年安徽高考题)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程;ˆa bx y+= (2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.16.(2007年广东高考题)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;ˆbx a y+= (3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:)5.665.4645345.23=⨯+⨯+⨯+⨯。

变量间的相互关系

变量间的相互关系




ˆ b
( x x)( y y) x y n x y
i 1 i i
n
n
( x x)
i 1 i
n

2
i 1 n
i
i
x
i 1
2 i
nx
2
,
ˆx ˆ y b a
例1:观察两相关变量得如下表:
x y
解:
-1 -9
-2 -7
-3 -5
-4 -3
-5 -1
(2)当x=5时, y=30.3676≈30.37。
小结
1、现实生活中存在许多相关关系:商品销售与 广告、粮食生产与施肥量、人体的脂肪量与年 龄等等的相关关系. 2、通过收集大量的数据,进行统计,对数据 分析,找出其中的规律,对其相关关系作出 一定判断. 3、由于变量之间相关关系的广泛性和不确定 性,所以样本数据应较大,才有代表性.才能对 它们之间的关系作出正确的判断.
25 脂肪含量
如图:
20 15 10 5 年龄
O
20 25 30 35 40
45 50 55 60 65
我们再观察它的图像发现这些点大致分布在一条 直线附近,像这样,如果散点图中点的分布从整体上看 大致在一条直线附近,我们就称这两个变量之间具有 线性相关关系,这条直线叫做回归直线,该直线叫回归 直线方程。 脂肪含量
Ù
= bx + a
7.回归方程被样本数据惟一确定,各样本点 大致分布在回归直线附近.对同一个总体, 不同的样本数据对应不同的回归直线,所以 回归直线也具有随机性.
8.对于任意一组样本数据,利用上述公式都 可以求得“回归方程”,如果这组数据不具 有线性相关关系,即不存在回归直线,那么 所得的“回归方程”是没有实际意义的.因此, 对一组样本数据,应先作散点图,在具有线 性相关关系的前提下再求回归方程.

2.3 变量间的相关关系

2.3 变量间的相关关系

配人教版 数学 必修3
【示例】PM2.5是指空气中直径小于或等于2.5微米的颗粒 物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否 相关,现采集到某城市周一至周五某一时间段车流量与PM2.5 的数据如表:
时间
周一 周二 周三 周四 周五
车流量x/万辆
50 51 54 57 58
PM2.5的浓度y/ (微克·立方米-1) 69 70 74 78 79
配人教版 数学 必修3
2.3 变量间的相关关系
配人教版 数学 必修3
目标定位
重点难点
1.理解两个变量的相 重点:通过收集现实问题中两个有关联 关关系的概念. 变 量 的 数 据 直 观 认 识 变 量 间 的 相 关 关
2.会作散点图,并 系;利用散点图直观认识两个变量之间 利用散点图判断两 的线性关系;根据给出的线性回归方程
配人教版 数学 必修3
【分析】(1)利用描点法可得数据的散点图; (2)根据公式求出b^,a^,可写出线性回归方程; (3)根据(2)的线性回归方程,将 x=25 代入,求出 PM2.5 的浓度.
配人教版 数学 必修3 【解析】(1)散点图如图所示.
配人教版 数学 必修3
(2) x =50+51+554+57+58=54, -y =69+70+754+78+79=74,
A.①②
B.②③
C.③④
D.①④
配人教版 数学 必修3
【答案】D 【解析】y^=b^x+a^表示y^与 x 之间的函数关系,而不是 y 与 x 之间的函数关系.但它所反映的关系最接近 y 与 x 之间的真 实关系.故选 D.
配人教版 数学 必修3
4.如果在一次试验中,测得(x,y)的四组数值分别是 x 16 17 18 19 y 50 34 41 31

2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关

2.3.1 变量之间的相关关系   2.3.2   两个变量的线性相关

2.3 变量间的相关关系 2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关考点 学习目标核心素养 相关关系的概念理解两个变量的相关关系的概念 数学抽象 散点图 会作散点图,并利用散点图判断两个变量之间是否具有相关关系逻辑推理、数学建模回归直线方程会求回归直线方程数学运算问题导学(1)相关关系分为哪两种? (2)什么叫散点图?(3)什么叫回归直线?求回归直线的方法及步骤是什么?1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关①正相关:散点图中的点散布在从左下角到右上角的区域; ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线对应的方程叫回归直线的方程,简称回归方程. (3)最小二乘法求回归直线方程y ^=b ^x +a ^时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.其中b ^是回归方程的斜率,a ^是回归方程在y 轴上的截距. ■名师点拨 (1)散点图的作用散点图形象地反映了各对数据的密切程度.根据散点图中点的分布趋势分析两个变量之间的关系,可直观地判断并得出结论.(2)回归直线的性质由a ^=y --b ^x -可知回归直线一定经过点(x -,y -),因此点(x -,y -)通常称为样本点的中心,其中,x -,y -分别是变量x 1,x 2,…,x n 和y 1,y 2,…,y n 的平均数.(3)线性相关关系强弱的定性分析线性相关关系的强弱体现在散点图中就是样本点越集中在某条直线附近,两变量的线性相关关系越强;样本点在某条直线附近越分散,两变量的线性相关关系越弱.判断正误(对的打“√”,错的打“×”) (1)线性回归方程必经过点(x -,y -).( )(2)对于方程y ^=b ^x +a ^,x 增加一个单位时,y 平均增加b ^个单位.( ) (3)样本数据中x =0时,可能有y =a ^.( ) (4)样本数据中x =0时,一定有y =a ^.( )解析:根据回归直线方程的意义知,(1)(2)都正确,而(3)(4)中,样本数据x =0时,y 的值可能为a ^,也可能不是a ^,故(3)正确.答案:(1)√ (2)√ (3)√ (4)×下列各图中所示的两个变量具有相关关系的是( )A .(1)(2)B .(1)(3)C .(2)(4)D .(2)(3)解析:选D.(1)为函数关系;(2)(3)为相关关系;(4)中,因为点分布得比较分散,两者之间无相关关系.5位学生的数学成绩和物理成绩如下表: 学科 A B C D E 数学 80 75 70 65 60 物理7066686462A .是函数关系B .是相关关系,但相关性很弱C .具有较好的相关关系,且是正相关D .具有较好的相关关系,且是负相关解析:选C.数学成绩x 和物理成绩y 的散点图如图所示.从图上可以看出数学成绩和物理成绩具有较好的相关关系,且成正相关. 设有一个回归方程为y ^=2-1.5x ,则变量x 每增加1个单位时,y 平均减少____________个单位.,解析:因为y ^=2-1.5x ,所以变量x 每增加1个单位时,y 1-y 2=[2-1.5(x +1)]-(2-1.5x )=-1.5,所以y 平均减少1.5个单位.答案:1.5相关关系的判断以下是在某地搜集到的不同楼盘新房屋的销售价格y(单位:万元)和房屋面积x(单位:m2)的数据:房屋面积x(m2)11511080135105销售价格y(万元)24.821.619.429.222(2)判断新房屋的销售价格和房屋面积之间是否具有相关关系?如果有相关关系,是正相关还是负相关?【解】(1)数据对应的散点图如图所示:(2)通过以上数据对应的散点图可以判断,新房屋的销售价格和房屋的面积之间具有相关关系,且是正相关.相关关系的判断方法(1)两个变量x和y具有相关关系的判断方法①散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断;②表格、关系式法:结合表格或关系式进行判断;③经验法:借助积累的经验进行分析判断.(2)判断两个变量x和y之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.[易错警示]在解答本题过程中,易出现如下错误:虽然五点中有四点大致分布在一条直线附近,但第二个点离这条直线太远,所以两个变量不相关,导致错误的原因是没有看主流点,而过分关注了不影响大局的个别点.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图如图所示.由这个散点图可以判断()A.变量x与y正相关B.变量x与y不相关C.变量x与y负相关D.变量x与y是函数关系解析:选C.由这个散点图可以判断,变量x与y负相关,故选C.线性回归方程的求法下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 345 6y 2.534 4.5 (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a^. 【解】(1)散点图如图.(2)x-=3+4+5+64=4.5,y-=2.5+3+4+4.54=3.5,∑i=14x i y i=3×2.5+4×3+5×4+6×4.5=66.5,∑i=14x2i=32+42+52+62=86,所以b ^=∑4i =1x i y i -4x -y-∑4i =1x 2i -4x-2=66.5-4×4.5×3.586-4×4.52=0.7, a ^=y --b ^x -=3.5-0.7×4.5=0.35. 所以所求的线性回归方程为y ^=0.7x +0.35.如果把例题中的y 的值2.5及4.5分别改为2和5,如何求回归直线方程? 解:散点坐标分别为(3,2),(4,3),(5,4),(6,5). 可验证这四点共线, 斜率k =3-24-3=1,所以直线方程为y -2=x -3, 即回归直线方程为y ^=x -1.求线性回归方程的步骤(1)计算平均数x -,y -.(5)用a ^=y --b ^x -,求a ^. (6)写出回归方程.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成分含量x之间的相关关系,现取了8对观测值,计算得:则y 关于x 的回归直线方程是( )A.y ^=11.47+2.62x B.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x解析:选A.利用题目中的已知条件可以求出x -=6.5,y -=28.5,然后利用回归直线方程的计算公式得b ^=∑8i =1x i y i -8x -y-∑8i =1x 2i -8x-2=1 849-8×6.5×28.5478-8×6.52≈2.62, a ^=y --b ^x -=11.47,因此回归直线方程为y ^=11.47+2.62x .线性回归方程的应用(2020·黑龙江省大庆铁人中学期末考试)某班主任为了对本班学生的月考成绩进行分析,从全班40名同学中随机抽取一个容量为6的样本进行分析.随机抽取6位同学的数学、物理分数对应如表:学生编号 1 2 3 4 5 6 数学分数x 60 70 80 85 90 95 物理分数y728088908595(1) (2)如果具有线性相关性,求出线性回归方程(系数精确到0.1);如果不具有线性相关性,请说明理由;(3)如果班里的某位同学数学成绩为50,请预测这位同学的物理成绩.【解】 (1)画出散点图:通过图象可以看出物理成绩y 与数学成绩x 之间具有线性相关性. (2)x -=16×(60+70+80+85+90+95)=80,y -=16×(72+80+88+90+85+95)=85,故b ^=0.6,a ^=37.故回归方程是y =0.6x +37. (3)当x =50时,解得y =67.故数学成绩为50,预测这位同学的物理成绩是67.利用线性回归方程解题的常见思路及注意点(1)利用回归直线过样本点的中心,可以求参数问题,参数可涉及回归方程或样本点数据.(2)利用回归方程中系数b ^的意义,分析实际问题.(3)利用回归直线进行预测,此时需关注两点:①所得的值只是一个估计值,不是精确值;②变量x 与y 成线性相关关系时,线性回归方程才有意义,否则即使求出线性回归方程也是毫无意义的,用其估计和预测的量也是不可信的.(2020·江西省临川第一中学期末考试)我国西部某贫困地区2011年至2017年农村居民家庭人均年收入y (千元)的数据如下表:年份 2011 2012 2013 2014 2015 2016 2017 年份代号x 1 2 3 4 5 6 7 人均年收入y2.93.33.64.44.85.25.9(2)利用(1)中的回归方程,预测该地区2019年农村居民家庭人均年收入将达到多少千元.解:(1)依题意x -=4,y -=4.3,从而b ^=0.5,a ^=y --b ^x -=4.3-0.5×4=2.3, 故所求线性回归方程为y ^=0.5x +2.3. (2)令x =9,得y ^=0.5×9+2.3=6.8.预测该地区在2019年农村居民家庭人均年收入为6.8千元.1.我们常说“吸烟有害健康”,吸烟与健康之间的关系是( ) A .正相关 B .负相关 C .无相关D .不确定解析:选B.烟吸得越多,则健康程度越差.2.关于回归直线方程y ^=a ^+b ^x 的叙述正确的是( ) ①反映y ^与x 之间的函数关系; ②反映y 与x 之间的函数关系; ③表示y ^与x 之间的不确定关系;④表示最接近y 与x 之间真实关系的一条直线. A .①② B .②③ C .③④ D .①④解析:选D.y ^=a ^+b ^x 表示y ^与x 之间的函数关系,而不是y 与x 之间的函数关系,它反映的关系最接近y 与x 之间的真实关系.故①④正确.3.在最小二乘法中,用来刻画各个样本点到直线y =a ^+b ^x 的“距离”的量是( ) A .|y i -y -| B .(y i -y -)2 C .|y i -(a ^+b ^x i )|D .[y i -(a ^+b ^x i )]2解析:选D.最小二乘法的定义明确给出,用[y i -(a ^+b ^x i )]2来刻画各个样本点与这条直线之间的“距离”(即二者之间的接近程度),用它们的和表示所有样本点与这条直线的接近程度.4.已知工厂加工零件的个数x 与花费时间y (h)之间的线性回归方程为y ^=0.01x +0.5,则加工200个零件大约需要________小时.解析:将200代入线性回归方程y ^=0.01x +0.5, 得y ^=2.5. 答案:2.5[A 基础达标]1.如图所示是具有相关关系的两个变量的一组数据的散点图,去掉哪个点后,两个变量的相关关系更明显( )A .DB .EC .FD .A解析:选C.A 、B 、C 、D 、E 五点分布在一条直线附近且贴近该直线,而F 点离得远,故去掉点F .2.(2020·江西省上饶市期末统考)某车间为了规定工时定额,需要确定加工零件所花费用的时间,为此进行了5次实验,根据收集到的数据(如下表),由最小二乘法求得回归直线方程为y ^=7.8x +40.2.零件数x (个) 1 23 4 5 加工时间y (min)50677179A .55B .55.8C .59D .51解析:选 D.设表中模糊的数据为m .由表中的数据可得x -=1+2+3+4+55=3,y -=50+m +67+71+795=267+m5,又由回归直线的方程为y ^=7.8x +40.2,所以267+m 5=7.8×3+40.2,解得m =51.即表中模糊的数据为51.故选D.3.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( ) A .x 与y 正相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 负相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关解析:选C.因为y =-0.1x +1的斜率小于0,故x 与y 负相关.因为y 与z 正相关,可设z =b ^y +a ^,b ^>0,则z =b ^y +a ^=-0.1b ^x +b ^+a ^,故x 与z 负相关.4.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归方程为y =b x +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′ B.b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D.b ^<b ′,a ^<a ′解析:选C.由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,从而b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑6i =1x i y i -6x -·y-∑6i =1x 2i -6x-2=58-6×72×13691-6×⎝⎛⎭⎫722=57,a ^=y --b ^x -=136-57×72=-13,所以b ^<b ′,a ^>a ′. 5.(2020·广西钦州市期末考试)若回归直线y ^=b ^x +a ^的斜率估值为1.23,样本中心点为(4,5),当x =2时,估计y 的值为____________.解析:因为回归直线y ^=b ^x +a ^的斜率估值为1.23,所以b ^=1.23,y ^=1.23x +a ^. 因为样本中心点为(4,5),所以5=1.23×4+a ^,a ^=0.08,y ^=1.23x +0.08, 代入x =2,y =1.23×2+0.08=2.54. 答案:2.546.(2020·湖北省宜昌市葛洲坝中学期末考试)某公司借助手机微信平台推广自己的产品,对今年前5个月的微信推广费用x 与利润额y (单位:百万元)进行了初步统计,得到下列表格中的数据:x 2 4 5 6 8 y304060p70经计算,月微信推广费用x 与月利润额y 满足线性回归方程y ^=6.5x +17.5,则p 的值为____________.解析:由题中数据可得x -=2+4+5+6+85=5,y -=30+40+60+p +705=200+p5.由线性回归方程y ^=6.5x +17.5经过样本中心(x -,y -), 有200+p 5=6.5×5+17.5,解得p =50.答案:507.对某台机器购置后的运营年限x (x =1,2,3,…)与当年利润y 的统计分析知具备线性相关关系,线性回归方程为y ^=10.47-1.3x ,估计该台机器使用________年最合算.解析:只要预计利润不为负数,使用该机器就算合算,即y ^≥0,所以10.47-1.3x ≥0,解得x ≤8.05,所以该台机器使用8年最合算.答案:88.(2020·湖南省张家界市期末联考)为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如表:x 1 2 3 4 5 y86542(1)求x -,y -;(2)求y 关于x 的线性回归方程y ^=b ^x +a ^; (3)若年产量为4.5吨,试预测该农产品的价格.解:(1)计算可得x -=1+2+3+4+55=3,y -=8+6+5+4+25=5.(2)b ^=∑5i =1x i y i -5x -y-∑5i =1x 2i -5x-2=61-5×3×555-5×32=-1.4, 因为线性回归直线过(x -,y -),则a ^=y --b ^x -=5-(-1.4×3)=9.2, 故y 关于x 的线性回归方程是y ^=-1.4x +9.2. (3)当x =4.5时,y ^=-1.4×4.5+9.2=2.9(千元/吨).9.(2020·河北省石家庄市期末考试)在一段时间内,分5次测得某种商品的价格x (万元)和需求量y (吨)之间的一组数据为(1)根据上表数据,求出回归直线方程y =b x +a ;(2)试根据(1)中求出的回归方程预估当价格为1.9万元时,需求量大约是多少吨?(参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=∑ni =1x i y i -n x -y -∑n i =1x 2i -n (x )-2,a ^=y --b ^x -)解:(1)因为x -=15×9=1.8,y -=15×37=7.4,∑i =15 x i y i =62,∑i =15x 2i =16.6,所以 b ^=∑5i =1x i y i -5x -y-∑5i =1x 2i -5(x )-2=62-5×1.8×7.416.6-5×1.82=-11.5, a ^=y --b ^x -=7.4+11.5×1.8=28.1, 故y 对x 的线性回归方程为y ^=28.1-11.5x . (2)y =28.1-11.5×1.9=6.25(吨).所以如果价格为1.9万元,则需求量大约是6.25吨.[B 能力提升]10.对两个变量的四组数据进行统计,获得以下散点图,关于两个变量相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3解析:选A.由相关系数的定义以及散点图的含义,可知r 2<r 4<0<r 3<r 1.11.期中考试后,某校高三(9)班班主任对全班65名学生的成绩(单位:分)进行分析,得到数学成绩y 关于总成绩x 的回归直线方程为y ^=6+0.4x .由此可以估计:若2名同学的总成绩相差50分,则他们的数学成绩大约相差________分.解析:设两名同学的总成绩分别为x 1,x 2,则对应的数学成绩估计为y ^1=6+0.4x 1,y ^2=6+0.4x 2,所以|y ^1-y ^2|=|0.4(x 1-x 2)|=0.4×50=20.答案:2012.(2020·湖北省宜昌县域高中协同发展共同体期末考试)为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了5组昼夜温差与100颗种子发芽数,得到如下资料:组号 1 2 3 4 5 温差x (℃) 10 11 13 12 8 发芽数y (颗)2325302616组数据中选取3组数据求出线性回归方程,再用没选取的2组数据进行检验.(1)若选取的是第2,3,4组的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^; (2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -n x -y -∑n i =1x 2i -n x-2,a ^=y --b ^x -)解:(1)由题意:x -=11+13+123=12,y -=25+30+263=27,b ^=∑3i =1 (x i -x -)(y i -y -)∑3i =1 (x i -x -)2=(x 1-x -)(y 1-y -)+(x 2-x -)(y 2-y -)+(x 3-x -)(y 3-y -)(x 1-x -)2+(x 2-x -)2+(x 3-x -)2=(11-12)×(25-27)+(13-12)×(30-27)+(12-12)×(26-27)(11-12)2+(13-12)2+(12-12)2=52, a ^=y --b ^x -=27-52×12=-3,故回归直线方程为y ^=52x -3.(2)当x =10时,y =52×10-3=22,|22-23|=1<2,当x =8时,y =52×8-3=17,|17-16|=1<2,所以(1)中所得的回归直线方程是可靠的.13.(选做题)(2019·黑龙江省牡丹江市第一高级中学期末考试)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i=xi,w-=18i=18w i.(1)根据散点图判断,y=a+bx与y=c+d x哪一个适宜作为年销售量y关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(2)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为解:(1)由散点图可以判断,y=c+d x适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=x,先建立y关于w的线性回归方程.由于d=108.81.6=68,c^=y--d^w-=563-68×6.8=100.6,所以y关于w的线性回归方程为y^=100.6+68w,因此y关于x的回归方程为y^=100.6+68x.(3)(ⅰ)由(2)知,当x=49时,年销售量y的预报值y^=100.6+6849=576.6,年利润z的预报值z^=576.6×0.2-49=66.32.(ⅱ)根据(2)的结果知,年利润z的预报值z^=0.2(100.6+68x)-x=-x+13.6x+20.12.所以当x=13.62=6.8,即x=46.24时,z^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。

高中数学精品课件 2.3.1 变量之间的相关关系--2.3.2 两个变量的线性相关

高中数学精品课件 2.3.1 变量之间的相关关系--2.3.2 两个变量的线性相关
房屋面积x/m2 115 110 80 135 105 销售价格y/万元 49.6 43.2 38.8 58.4 44
①画出数据对应的散点图; ②判断房屋的销售价格和房屋面积之间是否具有相关关系,如果 有相关关系,是正相关还是负相关?
解 ①数据对应的散点图如图所示.
②通过以上数据对应的散点图可以判断,房屋的销售价格和房屋 面积之间具有相关关系,并且是正相关.
x0123 y1357 则 y 与 x 的线性回归方程为y^=b^ x+a^ 必过点( )
A.(2,2)
B.(1,2)
C.(1.5,0)
D.(1.5,4)
解析 易得-x=1.5,-y=4,由于回归直线过样本点的中心(-x,
-y),故选 D. 答案 D
4.小学生身高 y 与年龄 x 之间的线性回归直线方程为y^=8.8x+65, 预测一名 10 岁的小学生的身高为________. 解析 当 x=10 时,y^=8.8×10+65=153. 答案 153
题型三 利用回归方程对总体进行估计 【例3】 某地最近十年粮食需求量逐年上升,下表是部分统计数
据:
年份
2008 2010 2012 2014 2016
需求量/万吨 236 246 257 276 286
(1)利用所给数据求年需求量与年份之间的回归直线方程y^=b^ x+ a^ ; (2)利用(1)中所求出的直线方程预测该地 2018 年的粮食需求量.
函数关系
变量之间的关系可以用函数表示
相关关系 变量之间有一定的联系,但不能完全用函数表示
2.相关关系与函数关系的区别与联系
类别
区别
联系
函 ①函数关系中两个变量间是一种确定性 ①在一定的条件下可以相

高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)

高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)

高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)普通高中数学必修3(A版)学案 2.3. 变量间的相关关系2.3.1变量之间的相关关系授课时间:年月日【学习目标】通过收集现实问题中两个有关联变量的数据认识变量间的相关关系。

【重点难点】1. 通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系。

2. 变量之间相关关系的理解。

【学习过程】一、学习引导在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?二、合作交流(教师可做点拨)相关关系的概念:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。

当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。

相关关系是一种非确定性关系。

(分析:两个变量→自变量取值一定→因变量带有随机性→相关关系)三、随堂练习思考1:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:商品销售收入与广告支出经费之间的关系。

(还与商品质量,居民收入,生活环境等有关)四、能力提升1. 上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?2. 对于一个变量,可以控制其数量大小的变量称为可控变量,否则称为随机变量,那么相关关系中的两个变量有哪种类型?3. 相关关系与函数关系的异同点?【小结反思】1. 变量具有不确定性,需要通过收集大量的数据(通过调查或试验)在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系做出正确的判断。

高中数学 第二章 统计 2.3.1-2.3.2 变量之间的相关关系 两个变量的线性相关课件 新人教

高中数学 第二章 统计 2.3.1-2.3.2 变量之间的相关关系 两个变量的线性相关课件 新人教

A .1 B .1 C .1 D .1 1 6 8 4 2
35
【思路导引】利用回归直线方程必过样本点的中心求解.
【解析】选B.依题意可知样本点的中心为 ( 3 , ,3 )
48
则3
8
= 1×
3
+3
4
,a 解得
=a .
1 8Βιβλιοθήκη 36【拓展延伸】相关关系的强弱
(1)若相应于变量x的取值xi,变量y的观测值为yi(1≤i≤n),称r=
6
(2)你能举例说明你对正相关与负相关的理解吗? 提示:随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性 的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少 变多. 随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关 关系,我们称为负相关.例如,汽车越重,每消耗1 L汽油所行驶的平均路程就 越短.
n
n
x i2,
xi y,i
i1
i1
30
(5)代入公式计算
b ,a,公式为
n
x iyi n x y
b
i1
n
x
2 i
n
x
2
i1

a y b x .
(6)写出回归直线方程 = x+ .
yb a
31
【跟踪训练】 已知变量x,y有如下对应数据:
x1234 y1345
(1)作出散点图. (2)用最小二乘法求关于x,y的回归直线方程.
42
【思路导引】(1)以产量为横坐标,以生产能耗对应的测量值为纵坐标, 在平面直角坐标系内画散点图. (2)应用计算公式求得线性相关系数 bˆ , aˆ 的值. (3)实际上就是求当x=100时,对应的 yˆ 的值.

2.3变量的相关性 (马清芹2014.2.27)

2.3变量的相关性 (马清芹2014.2.27)

整体上最“贴近”一条直线,这条直线称之为 ^ 回归直线,其方程记为 y = bx + a ,叫做回 归直线方程; (b叫做回归系数)
思考3:根据有关数学原理分n
i
x )( yi y )
2 ( x x ) i i 1

n
x y
i 1 n i i 1
,则下列判断正确的是(

A.劳动生产率为1000元时,工资为130元。
B.劳动生产率提高1000元时,工资平均提高80元。 C.劳动生产率提高1000元时,工资提高130元。 D.当月工资为120元时,劳动生产率为2000元。
几点说明: (1)回归直线中b叫做回归系数,它的实际意义 是:变量x每增加一个单位,函数值y平均增加b个 单位。 (2)对于任意一组样本数据,利用上述公式都可 以求得“回归方程”,但只有这两个变量之间存 在的是线性相关关系时,才能求其回归直线方程, 才能用其估计和预测,否则,如果两个变量之间 不存在线性相关关系,即使求出其回归直线方程, 也是毫无意义的,用其估计和预测的量也是不可 信的。因此,对一组样本数据,应先作散点图, 在具有线性相关关系的前提下再求回归方程. (3)以平均数为坐标的点一定在回归直线上。
小结:求线性回归直线方程的步骤: 第一步:列表 x , y , x y ;
i i i i
第二步:计算
x, y, xi , xi y
2 i 1 i 1
n
n
i

第三步:代入公式计算b,a的值;
第四步:写出直线方程。
跟踪练习:
(1)工人月工资y(元)以劳动生产率x(千元)的回归 方程为
ˆ 50 80 x y
y y
.
o x x

2017-2018学年高中数学人教A版必修3教学案:第二章 2.3 变量间的相关关系

2017-2018学年高中数学人教A版必修3教学案:第二章 2.3 变量间的相关关系

变量间的相关关系(1)函数关系与相关关系的区别与联系是什么?(2)如何判断两个变量之间是否具备相关关系?(3)什么是正相关、负相关?与散点图有什么关系?[新知初探]1.相关关系如果两个变量中一个变量的取值一定时,另一个变量的取值带有一定的随机性,那么这两个变量之间的关系叫做相关关系.2.散点图将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,利用散点图,可以判断两个变量是否相关,相关时是正相关还是负相关.3.正相关和负相关(1)正相关:散点图中的点散布在从左下角到右上角的区域.(2)负相关:散点图中的点散布在从左上角到右下角的区域.[点睛]对正相关和负相关的理解(1)正相关随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少变多.(2)负相关随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关关系,我们称为负相关.例如,汽车越重,每消耗1 L 汽油所行驶的平均路程就越短.4.回归直线方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线的方程,简称回归方程. (3)回归方程的推导过程:①假设已经得到两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ).②设所求回归方程为y ^=b ^x +a ^,其中a ^,b ^是待定参数. ③由最小二乘法得⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n (x i-x )2=∑i =1nx i y i-n x y ∑i =1n x 2i-n x 2a ^=y -b ^x其中:b ^是回归方程的斜率,a ^是截距.[小试身手]1.下列命题正确的是( ) ①任何两个变量都具有相关关系; ②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系; ④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.A .①③④B .②③④C .③④⑤D .②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.2.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关. 3.若施肥量x (kg)与水稻产量y (kg)的线性回归方程为y ^=5x +250,当施肥量为80 kg 时,预计水稻产量约为________kg.解析:把x =80代入回归方程可得其预测值y ^=5×80+250=650(kg). 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8 y3040605070若已求得它们回归直线的方程为______________________.解析:由题意可知x =2+4+5+6+85=5,y =30+40+60+50+705=50.即样本中心为(5,50).设回归直线方程为y ^=6.5x +a ^, ∵回归直线过样本中心(x ,y ), ∴50=6.5×5+a ^,即a ^=17.5, ∴回归直线方程为y ^=6.5x +17.5 答案:y ^=6.5x +17.5相关关系的判断①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的关系;③出租车费与行驶的里程;④降雪量与交通事故的发生率之间的关系.(2)某个男孩的年龄与身高的统计数据如下表所示.年龄x(岁)12345 6身高y(cm)788798108115120①画出散点图;②判断y与x是否具有线性相关关系.[解析](1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;③为确定的函数关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y与x具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.答案:①④[典例] (1)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系; ③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:③由y ≤10得5170x -67≤10,解得x ≤14.9,所以机器的运转速度应控制在14转/秒内.求回归直线方程的步骤(1)收集样本数据,设为(x i ,y i )(i =1,2,…,n )(数据一般由题目给出). (2)作出散点图,确定x ,y 具有线性相关关系. (3)把数据制成表格x i ,y i ,x 2i ,x i y i . (4)计算x ,y,∑i =1nx 2i ,∑i =1nx i y i . (5)代入公式计算b ^,a ^,公式为⎩⎪⎨⎪⎧b ^=∑i =1n x i y i -n x y∑i =1n x 2i-n x2,a ^=y -b ^x .(6)写出回归直线方程y ^=b ^x +a ^. [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.(2)x =1+2+3+44=52,y =1+3+4+54=134, ∑i =14x i y i =1+6+12+20=39.∑i =14x 2i =1+4+9+16=30,b ^=39-4×52×13430-4×⎝⎛⎭⎫522=1310,a ^=134-1310×52=0,所以y ^=1310x 为所求的回归直线方程.利用线性回归方程对总体进行估计[典例] 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,∑i =14x 2i =32+42+52+62=86, 所以b ^=∑i =14x i y i -4x y ∑i =14x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35. 所以所求的线性回归方程为y ^=0.7x +0.35.(3)当x =100时,y ^=0.7×100+0.35=70.35(吨标准煤),90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:i t i y i t 2i t i y i 1 2 3 4 51 2 3 4 55 6 7 8 101 4 9 16 255 12 21 32 50这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1ny i =365=7.2.∑i =1nt 2i -n t -2=55-5×32=10,∑i =1nt i y i -n t -y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( ) A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C. 2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为A.y ^=1.5x +2 B.y ^=-1.5x +2 C.y ^=1.5x -2 D.y ^=-1.5x -2解析:选B 设回归方程为y ^=b ^x +a ^,由散点图可知变量x ,y 之间负相关,回归直线在y 轴上的截距为正数,所以b ^<0,a ^>0,因此方程可能为y ^=-1.5x +2.3.设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( )A .直线l 过点(x ,y )B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误.4.对有线性相关关系的两个变量建立的回归直线方程y ^=a ^+b ^x 中,回归系数b ^( ) A .不能小于0 B .不能大于0 C .不能等于0D .只能小于0解析:选C 当b ^=0时,r =0,这时不具有线性相关关系,但b ^能大于0,也能小于0. 5.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:(2)若某家庭年收入为9万元,预测其年饮食支出. (参考数据:∑i =110x i y i =117.7,∑i =110x 2i =406)解:依题意可计算得:x =6,y =1.83,x 2=36,x y =10.98, 又∵∑i =110x i y i =117.7,∑i =110x 2i =406,∴b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.17,a ^=y -b ^x =0.81,∴y ^=0.17x +0.81. ∴所求的回归方程为y ^=0.17x +0.81.(2)当x =9时,y ^=0.17×9+0.81=2.34(万元).可估计年收入为9万元的家庭每年饮食支出约为2.34万元.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( )A .确定性关系B .相关关系C .函数关系D .无任何关系解析:选B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.2.农民工月工资y (元)依劳动生产率x (千元)变化的回归直线方程为y ^=50+80x ,下列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元解析:选B 由回归直线方程y ^=50+80x 知,x 每增加1,y 增加80,但要注意x 的单位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177则y 对x 的线性回归方程为( ) A .y =x -1 B .y =x +1 C .y =88+12xD .y =176解析:选C 计算得,x =174+176+176+176+1785=176,y =175+175+176+177+1775=176,根据回归直线经过样本中心(x ,y )检验知,C 符合.4.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y ^=b ^x +a ^,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′B.y ^>b ′,a ^<a ′C.b ^<b ′,a ^>a ′D.y ^<b ′,a ^<a ′解析:选C 由(1,0),(2,2)求b ′,a ′. b ′=2-02-1=2,a ′=0-2×1=-2.求b ^,a ^时,∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136, ∑i =16x 2i =1+4+9+16+25+36=91,∴b ^=58-6×3.5×13691-6×3.52=57, a ^=136-57×3.5=136-52=-13,∴b ^<b ′,a ^>a ′.5.正常情况下,年龄在18岁到38岁的人,体重y (kg)对身高x (cm)的回归方程为y ^=0.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右.解析:用回归方程对身高为178 cm 的人的体重进行预测,当x =178时,y ^=0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为y =-4x +a ,则a =________. 解析:x =4+5+6+7+8+96=132,y =92+82+80+80+78+686=80,由回归方程过样本中心点(x ,y ) 得80=-4×132+a ^.即a ^=80+4×132=106.答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y 具备线性相关关系,回归方程为y ^=10.47-1.3x ,估计该台机器最为划算的使用年限为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的人数5~32人,船员人数y 关于吨位x 的回归方程为y ^=9.5+0.006 2x ,(1)若两艘船的吨位相差1 000,求船员平均相差的人数; (2)估计吨位最大的船和最小的船的船员人数. 解:(1)设两艘船的吨位分别为x 1,x 2,则 y ^1-y ^2=9.5+0.006 2x 1-(9.5+0.006 2x 2) =0.006 2×1 000≈6, 即船员平均相差6人.(2)当x =192时,y ^=9.5+0.006 2×192≈11, 当x =3 246时,y ^=9.5+0.006 2×3 246≈30.即估计吨位最大和最小的船的船员数分别为30人和11人.9.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:(1)求x ,y ;(2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件? (提示:∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487)解:(1)x =3+4+5+6+7+8+97=6,y =66+69+73+81+89+90+917≈79.86.(2)∵b ^=3 487-7×6×79.86280-7×62≈4.75,a ^=79.86-4.75×6=51.36,∴纯利与每天销售件数x 之间的回归直线方程为y ^=51.36+4.75x . (3)当y ^=200时,200=4.75x +51.36,所以x ≈31.29.因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝⎛⎭⎫1+1+…+1n =2x -3y +1.6.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( ) A.211 B.13 C.12D.23解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7+3=22,故总体中大于或等于31.5的数据约占2266=13.7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人, ∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4 用水量y4.5432.5用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y ^=-0.7x +a ,则a 的值为( )A .5.25B .5C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4解析:选C 去掉一个最高分95,去掉一个最低分77,平均数为80+15(5+3+6+5+6)=85,方差为15[(85-85)2+(85-83)2+(85-86)2+(85-85)2+(85-86)2]=1.2,因此选C.11.如果数据x 1,x 2,x 3,…,x n 的平均数是x ,方差是s 2,则3x 1+2,3x 2+2,…,3x n +2的平均数和方差分别是( )A.x 和s 2 B .3x 和9s 2 C .3x +2和9s 2D .3x +2和12s 2+4解析:选C 3x 1+2,3x 2+2,…,3x n +2的平均数是3x +2,由于数据x 1,x 2,…x n的方差为s2,所以3x1+2,3x2+2,…,3x n+2的方差为9s2.12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是()A.x=9B.y=8C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差解析:选B因为甲的成绩的极差为31,所以其最高成绩为39,所以x=9;因为乙的成绩的平均值为24,所以y=24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.二、填空题(本大题共4小题,每小题5分,共20分)13.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为________.解析:由平均数为10,得(x+y+10+11+9)×15=10,则x+y=20;又方差为2,∴[(x-10)2+(y-10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x2+y2=208,2xy=192,∴|x-y|=(x-y)2=x2+y2-2xy=4.答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:抽取的男运动员的人数为2148+36×48=12.答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44716.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人, 则x100=0.030×10,解得x =30.同理,y =20,z =10. 故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)为调查某班学生的平均身高,从50名学生中抽取110,应如何抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样?解:从50名学生中抽取110,即抽取5人,采用简单随机抽样法(抽签法或随机数法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?解:(1)样本均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人所占比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人); 四川籍的有15+10+5+5+5=40(人).设四川籍的驾驶人员应抽取x 人,依题意得5100=x 40,解得x =2,即四川籍的应抽取2人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样. (2)x 甲=17(102+101+99+98+103+98+99)=100,x 乙=17(110+115+90+85+75+115+110)=100,s 2甲=17(4+1+1+4+9+4+1)≈3.43,s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定.21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 频率是0.25知, 10M =0.25,所以M =40. 因为频数之和为40,所以10+25+m +2=40,解得m =3. 故p =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x =1n ∑i =1n x i =8010=8, y =1n ∑i =1n y i =2010=2, 又∑i =110x 2i -10x 2=720-10×82=80,∑i =110x i y i -10x y =184-10×8×2=24,由此得b ^=∑i =110x i y i -10x y∑i =110x 2i -10x 2=2480=0.3, a ^=y -b ^x =2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。

人教课标版高中数学必修3《变量间的相关关系》参考课件

人教课标版高中数学必修3《变量间的相关关系》参考课件

2.回归直线方程问题
(1)回归直线方程^y =^b x+^a 的理解
这里在 y 的上方加记号“^ ”是为了区别实际值 y,表示当 x 取值
xi(i=1,2,…,n)时,y 相应的观察值为 yi,而直线上对应于 xi 的纵坐标是y^i=a+bxi. (2)求回归直线方程的原理——最小二乘法.
设 x、y 的一组观察值为(xi,yi)(i=1,2,…,n),且回归直线方 程为y^=^a+^bx.
方法,即使得样本数据的点到回归直线的距离的
_平__方__和__最__小__的方法叫做最小二乘法.
回归直线通过样本点的中心,对照平均数与样本数据 之间的关系,你能说说回归直线与散点图中各点之间的关 系吗? 提示 假设样本点为(x1,y1)(x2,y2),…,(xn,yn),记 x =
n1i=n1xi, y =n1i=n1yi,则( x , y )为样本点的中心,回归直线一
规律方法 (1)函数关系是一种确定性关系,如匀速直线 运动中路程s与时间t的关系;相关关系是一种非确定性关 系,如一块农田的水稻产量与施肥量之间的关系. (2)判断两个变量是否是相关关系的关键是看这两个变量 之间是否具有不确定性.
【变式1】下列关系中,带有随机性相关关系的是________. ①正方形的边长与面积之间的关系;②水稻产量与施肥量 之间的关系;③人一生的身高与年龄之间的关系;④某餐 点热饮销售的数量与气温的关系. 解析 ①正方形的边长与面积之间的关系是函数关系;② 水稻产量与施肥量之间的关系不是严格的函数关系,但是 具有相关性,因而是相关关系;③人的身高与年龄之间的 关系既不是函数关系,也不是相关关系,因为人的年龄达 到一定时期身高就不发生明显变化了,因而他们不具备相 关关系;④一般来说,气温越高,售出的热饮越少.因此 填②④. 答案 ②④

人教B版必修三2.3.1变量相关性

人教B版必修三2.3.1变量相关性
设x,Y的一组观察值为 (xi,yi) (i=1,2
ˆ bx a „,n) 且回归直线的方程为 y
当变量x取xi (i=1,2,„,n)时,可以 得到: y ˆi bxi a (i=1,2,„,n), 它与实际收集到的yi之间的偏差是:
ˆi yi (bxi a) (i=1,2,„,n), yi y
2、散点图
一个变量由小变大时另一个变量也由小变大,这种相关称为正相关 一个变量由小变大时另一个变量由大变小,这种相关叫做负相关
一、相关关系的判断
例1:5个学生的数学和物理成绩如下表:
A 数学 80 B 75 C 70 D 65 E 60 62
ห้องสมุดไป่ตู้
70 66 68 64 物理 画出散点图,并判断它们是否有相关关系。
C. 1.5是回归系数a
D. x=10时,y=0
(x, y) 5.线性回归方程^ y=bx+a过定点________. ^=4.4x+838.19,则可估 6.已知回归方程y 5 计x与y的增长速度之比约为________. 22
Q ( yi bxi a) (∑为连加符号)
2 i 1
n
上式展开后,是一个关于a,b的二次多 项式,应用配方法,可求使Q取得最小值 时a、b的值.
这样,回归直线就是所有直线中Q取最 小值的那一条。由于平方又叫做二乘方, 所以这种使“离差平方和为最小”的方法, 叫做“最小二乘法”。
用最小二乘法求回归直线方程中a,b 有下面的公式:
n n ( xi x )( yi y ) xi yi nx y i 1 ˆ i 1 b , n n 2 2 2 ( x x ) x nx i i i 1 i 1 ˆ . ˆ y bx a

2.3《变量间的相互关系》教案(新人教必修3)

2.3《变量间的相互关系》教案(新人教必修3)

2.3.1变量之间的相关关系教学目标:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

教学重点:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

教学过程:案例分析:一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。

为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表。

关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系。

(3)如果一个学生的身高是188cm ,你能估计他的一拃大概有多长吗? 解:根据上表中的数据,制成的散点图如下。

它们之间是线性相关的。

那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)二点确定一条直线。

同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同。

同学3:多取几组点对,确定几条直线方程。

再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距。

同学4:我从左端点开始,取两条直线,如下图。

再取这两条直线的“中间位置”作一条直线。

同学5:我先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多。

1015202530150155160165170175180185190195同学6:我先将所有的点分成两部分,一部分是身高在170 cm 以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线。

同学7:我先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按照同学3的方法求一个“平均点”,最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大的点为(179.2,21.3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了确定年龄和人体脂肪含量之间的更明确的 关系,我们需要对数据进行分析.
通过作图可以对两个变量之间的关系有一个直 观的印象.以x轴表示年龄,y轴表示脂肪含量,你能 在直角坐标系中描出样本数据对应的图形吗?
年龄 23 27 39 41 45 49 50 脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2 脂肪含量)
3、散点图能直观反映两个相关变量之间的大致 变化趋势,可用来判断两个变量之间的相关关系成 正相关或负相关.
布置作业:
P94练习:2(1)、 3(1)、4(1) .
2.3.2(2) 两个变量的线性相关 -回归直线
1、相关关系的概念:
当自变量取值一定时,因变量带有随机性, 这种变量之间的关系称为相关关系.相关关系是 一种非确定性关系.
脂肪含量)
40 30 20 10
0 10 20 30 40 50 60
年龄
在平面直角坐标系中,表示具有相关关系的两 个变量的一组数据图形,称为散点图.
脂肪含量)
40 30 20 10
0 10 20 30 40 50 60
年龄
脂肪含量
计算机可以帮助我们作散点图.下图就是用计 算机作出来的.
40 35 30 25 20 15 10
观察上表中的数据,大体上看,随着年龄的增 加,人体脂肪含量怎样变化?
年龄 23 27 39 41 45 49 50
脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
对于一个变量,可以控制其数量大小的变量 称为可控变量,否则称为随机变量,那么相关关 系中的两个变量有哪几种类型?
(1)一个为可控变量,另一个为随机变量;
(2)两个都是随机变量.
练习3:有关法律规定,香烟盒上必须印上 “吸烟有害健康”的警示语.吸烟是否一定会引 起健康问题?你认为“健康问题不一定是由吸烟 引起的,所以可以吸烟”的说法对吗?
练习1:在下列两个变量的关系中,哪些是相关关系? ⑴汽车行驶路程与速度之间的关系; ⑵作文水平与课外阅读量之间的关系; ⑶人的身高与年龄之间的关系; ⑷吸烟与癌症的发生率之间的关系.
练习2: 一个车间为了规定工时定额,需要确定 加工零件所花费的时间,为此做了7次试验,收集数据 如下:
零件数x(个) 10 20 30 40 50 60 70
为了确定年龄和人体脂肪含量之间的更明确的关 系,我们需要对数据进行分析.
与以前一样,我们可以通过作统计图、表,使我 们对两个变量之间的关系有一个直观的印象和判断.
年龄 23 27 39 41 45 49 50
脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
40 30 20 10
0 10 20 30 40 50 60
年龄
在上面的散点图中,这些点散布在从左下角到 右上角的区域,对于两个变量的这种相关关系,我 们将它称为正相关.
脂肪含量)
40 30 20 10
0 10 20 30 40 50 60
年龄
一般地,如果两个变量成正相关,那么这两个 变量的变化趋势如何?
探究:观察人体的脂肪含量百分比和年龄的样 本数据的散点图,这两个相关变量成正相关.我们 需要进一步考虑的问题是,当人的年龄增加时,体 内脂肪含量到底是以什么方式增加呢?
脂肪含量)
40 30 20 10
0 10 20 30 40 50 60
思考:在中学校园里,有这样一种说法:“如 果你的数学成绩好,那么你的物理学习就不会有什 么大问题.”按照这种说法,似乎学生的物理成绩与 数学成绩之间存在着某种相关关系,这种说法有没 有根据呢?
请同学们如实填写下表(在空格中打“√” )

中差
数学成绩
物理成绩
讨论数学成绩与物理成绩的关系.
我们可以发现自己的数学成绩和物理成绩存在 某种关系.(似乎就是数学好的,物理也好;数学差 的,物理也差,但又不全对.)物理成绩和数学成绩 是两个变量,从经验看,由于物理学习要用到比较 多的数学知识和数学方法.数学成绩的高低对物理成 绩的高低是有一定影响的.但决非唯一因素,还有其 它因素,如是否喜欢物理,用在物理学习上的时间 等等.
而要证实此结论是否可靠,可以通过实验来进 行.相同的环境下将居民随机地分为两组,一组居 民和天鹅一起生活(比如家中都饲养天鹅),而另 一组居民的附近不让天鹅活动,对比两组居民的出 生率是否相同.
探究:在一次对人体脂肪含量和年龄关系的研究 中,研究人员获得了一组样本数据: 年龄 23 27 39 41 45 49 50
40 30 20 10
0 10 20 30 40 50 60
年龄
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6 脂肪含量)
40 30 20 10
0 10 20 30 40 50 60
年龄
下图叫做散点图,你能描述一下散点图的含义吗?
答:从已经掌握的知识来看 ,吸烟会损害身体 的健康.但是除了吸烟之外,还有许多其它的随机因 素影响身体健康,人体健康是有很多因素共同作用的 结果.我们可以找到长寿的吸烟者,也更容易发现由 于吸烟而引发的患病者,所以吸烟不一定引起健康问 题.但吸烟引起健康问题的可能性大,因此“健康问 题不一定是由吸烟引起的,所以可以吸烟”的说法是 不对的.
(2)粮食产量与施肥量之间的关系.在一定范围内, 施肥量越大,粮食产量就越高.但是,施肥量并不是决 定粮食产量的唯一因素,因为粮食产量还要受到土壤 质量,降雨量,田间管理水平等因素的影响.
(3)人体内的脂肪含量与年龄之间的关系.在一定 年龄段内,随着年龄的增长,人体内的脂肪含量会增 加,但人体内的脂肪含量还与饮食习惯,体育锻炼等 有关,可能还与个人的先天体质有关.
当自变量取值一定时,因变量也确定,则为确定 关系;当自变量取值一定时,因变量带有随机性,这 种变量之间的关系称为相关关系.相关关系是一种非 确定性关系.
两个变量→ 自变量取值一定→
因变量带有随机性→ 相关关系
相关关系与函数关系的异同点:
相同点:均是指两个变量的关系.
不同点:函数关系是一种确定的关系;而相关关 系是一种非确定关系.
0
1
2(图
34 像)
t( 时 )
所用的时间 t(小时)
1
2
3
路程 s(千米) 80 160 240 (列 表)
s = 80t (关系式)
函数是研究两个变量之间的依存关系的一种数 量形式.对于两个变量,如果当一个变量的取值一定 时,另一个变量的取值被惟一确定,则这两个变量 之间的关系就是一个函数关系.
2.3 变量间的相关关系
2.3 变量间的相关关系
2.3.1 变量之间的相关关系 2.3.2(1) 两个变量的线性相关 2.3.2(2) 两个变量的线性相关-回归直线
2.3.1 变量之间的相关关系 2.3.2(1) 两个变量的线性相关
1、下列各情景分别可以用哪一幅图来近似的刻画
(1)汽车紧急刹车(速度与时间的关系)
脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61 脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
根据上述数据,人体的脂肪含量与年龄之间有怎 样的关系?
探究:在一次对人体脂肪含量和年龄关系的研究 中,研究人员获得了一组样本数据: 年龄 23 27 39 41 45 49 50
脂肪含量)
40 30 20 10
0 10 20 30 40 50 6化趋势如何?
一个变量随另一个变量的变大而变小.
思考2:其散点图有什么特点?
散点图中的点散布在从左上角到右下角的区域.
思考3:你能列举一些生活中的变量成正相关或 负相关的实例吗?
练习2:“名师出高徒”可以解释为教师的水平 越高,学生的水平就越高,那么学生的学业成绩与 教师的教学水平之间的关系是函数关系吗?你能举 出类似的描述生活中两个变量之间的这种关系的成 语吗?
相关关系的概念:
两个变量之间的关系可能是确定的关系(如:函 数关系),或非确定性关系.上述两个变量之间的关 系是一种非确定性关系,称之为相关关系.
这两个变量是函数关系吗?
不是函数关系,但这两个变量是有一定关系的, 当我们主要考察数学成绩对物理成绩的影响时,就 是要考察这两者之间的相关关系.
总结:不能通过一个人的数学成绩是多少就准 确地断定他的物理成绩能达到多少.但这两个变量是 有一定关系的,它们之间是一种不确定性的关系.如 何通过数学成绩的结果对物理成绩进行合理估计有 非常重要的现实意义.
5 0
20 25 30 35 40 45 50 55 60 65 年龄
观察散点图的大致趋势,人的年龄与人体脂肪含 量具有什么相关关系?
脂肪含量)
40 30 20 10
0 10 20 30 40 50 60
年龄
从散点图可以看出,年龄越大,体内脂肪含量越高. 这个图支持了我们从数据表中得出的结论. 脂肪含量)
练习1:考察下列问题中两个变量之间的关系: (1)商品销售收入与广告支出经费; (2)粮食产量与施肥量; (3)人体内的脂肪含量与年龄.
这些问题中两个变量之间的关系是函数关系吗?
(1)商品销售收入与广告支出经费之间的关系.商 品销售收入与广告支出经费有着密切的联系,但商品 销售收入不仅与广告支出多少有关,还与商品质量, 居民收入,生活环境等因素有关.
相关文档
最新文档