MEMS陀螺仪的简要介绍(性能参数和使用)

合集下载

MEMS陀螺仪精讲

MEMS陀螺仪精讲

MEMS陀螺仪的分类
1.振动式微机械陀螺仪 振动式微机械陀螺仪利用单晶硅或多晶硅制成的振动质 量,在被基带动旋转时的哥氏效应感测角速度。
2.转子式微机械陀螺仪 转子式微机械陀螺仪的转子由多晶硅制成,采用静电悬 浮,并通过力短再平衡回路测出角速度。从功能看,转 子式微机械陀螺仪属于双轴速率陀螺仪或双轴角速率传 感器。 3.微机械加速度计陀螺仪 微机械加速度计陀螺仪是由参数匹配的两个微机械加速 度计做反向高频抖动 而构成的多功能惯性传感器,兼 有测量加速度和角速度的双重功能。
2、日前,意法半导体(ST)新推出13款单轴和双轴陀螺 仪。这种陀螺仪有以下值得关注的地方: ①这种全新高性能角运动传感器 可运用于手势控制的游戏机和遥 控指向产品、数字摄像机或数码 相机的图像稳定功能,以及GPS 导航辅助系统。 ②意法半导体的陀螺仪包括关断模式 (当整个器件完全关断时)和睡眠模式, 部分电路在睡眠模式下被关断,不但 大幅降低功耗,并可快速唤醒,使电 源开关更加智能化。 ③意法半导体的高性能MEMS陀螺仪 拥有抗机械应力,并改进了内部自 检功能,使客户在组装后可以验证 传感器功能,无需在测试过程中移 动电路板。
MEMS陀螺仪的应用发展史
1.MEMS陀螺仪的第一波应用是1990年代的汽车安 全系统
2.MEMS陀螺仪第二波应用是始于2000年的消费电 子产品 3.MEMS陀螺仪的第三波应用将开始出现在医疗、工 业器械等领域
MEMS陀螺仪的军事应用优势
在现今的世界格局中,战争以 信息化战争的对抗为主,重点 是发展精确制导武器,MEMS陀 螺仪在其中发挥了重要作用。
整合MEMS加速计和陀螺仪地磁的模块 正在进入廉价的电子玩具市场,传感 器模块提供的动作感应功能可实现互 动的游戏体验,还能让更小的儿童上 网分享快乐:孩子们很快就能够用自 然的动作玩这些玩具,不再使用按钮 或键盘一类的东西。

MEMS陀螺仪概况介绍

MEMS陀螺仪概况介绍

1、微机械陀螺仪的工作原理MEMS陀螺仪利用科里奥利力(Coriolis force,又称为科氏力)现象。

科氏力是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。

科里奥利力来自于物体运动所具有的惯性,在旋转体系中进行直线运动的质点,由于惯性的作用,有沿着原有运动方向继续运动的趋势,但是由于体系本身是旋转的,在经历了一段时间的运动之后,体系中质点的位置会有所变化,而它原有的运动趋势的方向,如果以旋转体系的视角去观察,就会发生一定程度的偏离。

2、微机械陀螺仪的性能参数MEMS陀螺仪的重要参数包括:分辨率(Resolution)、零角速度输出(零位输出)、灵敏度(Sensitivity)和测量范围。

这些参数是评判MEMS陀螺仪性能好坏的重要标志,同时也决定陀螺仪的应用环境。

分辨率是指陀螺仪能检测的最小角速度,该参数与零角速度输出其实是由陀螺仪的白噪声决定。

这三个参数主要说明了该陀螺仪的内部性能和抗干扰能力。

对使用者而言,灵敏度更具有实际的选择意义。

测量范围是指陀螺仪能够测量的最大角速度。

不同的应用场合对陀螺仪的各种性能指标有不同的要求。

3、微机械陀螺仪的结构MEMS陀螺仪的设计和工作原理可能各种各样,但是主要都采用振动部件传感角速度的概念。

绝大多数的MEMS陀螺仪依赖于相互正交的振动和转动引起的交变科里奥利力。

图3所示为振动陀螺的动力学系统的简单结构示意图。

该系统为2-D的振动系统,有两个正交的振动模态。

其中一个振动模态为质量块在x 方向振动,振动频率为。

另一个振动模态为质量块在y方向振动,振动频率为。

与的值比较接近。

工作时,驱动质量块使之在x轴上以接近于的频率(驱动频率)振动,如果振动系统以角速度绕Z轴转动,则会产生一个沿Y轴方向的科里奥利力,从而使得质量块在Y轴方向上产生频率为的振动响应,通过测试Y轴方向的运动就能完成角速度的检测。

一般的MEMS陀螺仪由梳齿结构的驱动部分(图4)和电容板形状的传感部分(图5)组成,基本结构如图6所示。

MEMS陀螺仪的原理与应用优势分析

MEMS陀螺仪的原理与应用优势分析

MEMS陀螺仪的原理与应用优势分析MEMS陀螺仪(Micro-Electro-Mechanical Systems gyroscope)是一种利用微机电系统技术制造的陀螺仪。

它基于微机电系统(MEMS)的原理,采用微型的加速度传感器和补偿器,用于测量和检测设备的角速度和方向变化。

下面将对MEMS陀螺仪的原理和应用优势进行详细分析。

MEMS陀螺仪的原理主要基于角动量守恒定律。

当一个物体绕一个固定点旋转时,其角动量保持不变。

因此,MEMS陀螺仪通过测量和检测旋转物体围绕固定点的角动量变化来确定其角速度和方向。

在MEMS陀螺仪中,有两个主要的工作原理:电容效应和表面波效应。

首先,电容效应原理是利用固定的电容和可移动电容之间旋转的部分引起的电容变化来测量角速度。

这种原理利用了微机电系统中的微小工作间隙和电容结构,当设备旋转时,旋转的部分会引起电容间距的变化,从而产生电容变化,进而通过电路将电容变化转换为电压变化,最终测量出角速度。

其次,表面波效应原理是利用固定的波导和通过旋转感应器引起的表面波频率变化来测量角速度。

MEMS陀螺仪将固定波导和可旋转感应器相互排列,波导的表面波频率与波导材料和尺寸相关,而旋转感应器的旋转将改变波导的尺寸,进而影响表面波频率。

因此,通过测量表面波频率的变化,可以获取设备的角速度和方向信息。

MEMS陀螺仪具有许多应用优势。

首先,它具有小型化和集成化的特点。

MEMS陀螺仪利用微机电系统技术制造,可以实现微型化和集成化,从而在体积和重量上具有明显的优势。

这使得MEMS陀螺仪可以广泛应用于移动设备、汽车电子、航空航天等领域,提高产品的性能和可靠性。

其次,MEMS陀螺仪具有高精度和高灵敏度。

由于MEMS陀螺仪基于微型加速度传感器和补偿器,可以实现高精度的角速度测量和方向检测。

这使得MEMS陀螺仪在导航系统、姿态控制和稳定系统等方面具有重要应用,可以提供精确的角度信息。

此外,MEMS陀螺仪具有低功耗和低成本的特点。

MEMS陀螺仪的简要介绍(性能参数和使用)

MEMS陀螺仪的简要介绍(性能参数和使用)

MEMS陀螺仪的简要介绍(性能参数和使用)MEMS传感器市场浪潮可以从最早的汽车电子到近些年来的消费电子,和即将来到的物联网时代。

如今单一的传感器已不能满足人们对功能、智能的需要,像包括MEMS惯性传感器、MEMS环境传感器、MEMS光学传感器、甚至生物传感器等多种传感器数据融合将成为新时代传感器应用的趋势。

工欲善其事,必先利其器,这里就先以MEMS陀螺仪开始,简要介绍一下MEMS陀螺仪、主要性能参数和使用。

传统机械陀螺仪主要利用角动量守恒原理,即:对旋转的物体,它的转轴指向不会随着承载它的支架的旋转而变化。

MEMS陀螺仪主要利用科里奥利力(旋转物体在有径向运动时所受到的切向力)原理,公开的微机械陀螺仪均采用振动物体传感角速度的概念,利用振动来诱导和探测科里奥利力。

MEMS陀螺仪的核心是一个微加工机械单元,在设计上按照一个音叉机制共振运动,通过科里奥利力原理把角速率转换成一个特定感测结构的位移。

以一个单轴偏移(偏航,YAW)陀螺仪为例,通过图利探讨最简单的工作原理。

两个相同的质量块以方向相反的做水平震荡,如水平方向箭头所示。

当外部施加一个角速率,就会出现一个科氏力,力的方向垂直于质量运动方向,如垂直方向箭头所示。

产生的科氏力使感测质量发生位移,位移大小与所施加的角速率大小成正比。

因为感测器感测部分的动电极(转子)位于固定电极(定子)的侧边,上面的位移将会在定子和转子之间引起电容变化,因此,在陀螺仪输入部分施加的角速率被转化成一个专用电路可以检测的电子参数---电容量。

下图是一种MEMS陀螺仪的系统架构,,陀螺仪的讯号调节电路可以分为马达驱动和加速度计感测电路两个部分。

其中,马达驱动部分是透过静电引动方法,使驱动电路前后振动,为机械元件提供激励;而感测部分透过测量电容变化来测量科氏力在感测质量上产生的位移。

当然,MEMS陀螺仪还具有其它功能模块,比如自检功能电路,低功耗以及运动唤醒电路等等。

下面主要介绍MEMS陀螺仪的主要性能参数。

MEMS陀螺仪

MEMS陀螺仪

谢谢观看!
结束
大幅降低功耗,并可快速唤醒,使电
源开关更加智能化。
③意法半导体的高性能MEMS陀螺仪 拥有抗机械应力,并改进了内部自 检功能,使客户在组装后可以验证 传感器功能,无需在测试过程中移 动电路板。
MEMS最新国内成果
1、最新的MEMS陀螺仪--HTG系列陀螺仪:最新 的MEMS陀螺仪--HTG系列陀螺仪是用来测量角速 率的固态传感器, 采用MEMS芯片,制造采用 BIMOS生产工艺和载流焊工艺技术。HTG系列 MEMS陀螺仪具有高可靠性和高封装坚固性;可用 于惯性测量元件、高可靠性的汽车电子、导弹 制导和控制、飞行器稳定控制、天线稳定、摄 像、数码摄影、机器人等系统。
3.微机械加速度计陀螺仪 微机械加速度计陀螺仪是由参数匹配的两个微机械加速 度计做反向高频抖动 而构成的多功能惯性传感器,兼 有测量加速度和角速度的双重功能。
MEMS陀螺仪的特点
优点: • 陀螺仪能够测量沿一个轴或几个轴动作的角速
度,是补充加速度计功能的理想技术。结合加 速度计和陀螺仪这两种感测器,可以跟踪并捕 捉3D空间的完整动作,提供更真实的用户体验、 精确的导航系统及其他功能。 • 与传统陀螺仪相比,MEMS陀螺仪具有体积小、 重量轻、成本低、功耗低、可靠性好、测量范 围大、易于数字化和智能化等突出的优点。
3.MEMS陀螺仪的第三波应用将开始出现在医疗、工 业器械等领域
MEMS陀螺仪的军事应用优势
在现今的世界格局中,战争以 MEMS陀螺仪能够提供准确的方位, 信息化战争的对抗为主,重点 位置,速度,加速度等信息,并可 是发展精确制导武器,MEMS陀 应用在战术导弹,间飞行器,自主式潜艇
低成本批量生产
• 将MEMS陀螺仪与其辅助电路整合在同一个封装内, 运用创新的MEMS制程技术,简化传感器与线路之 间的焊接过程,并缩小它们的封装尺寸(多轴陀 螺仪的系统封装面积仅为3×5平方毫米),用一 块硅片可一次性快速生产大量产品,实现低成本 量产。

MEMS陀螺仪概况介绍

MEMS陀螺仪概况介绍

MEMS陀螺仪概况介绍MEMS陀螺仪是一种运用微机电系统(Micro-Electro-Mechanical System,MEMS)技术制造的陀螺仪。

MEMS陀螺仪的发展与传统机械陀螺仪相比,具有体积小、重量轻、功耗低、精度高、成本低等优势,因此在无线通信、导航定位、智能手机、游戏机、航空航天等领域得到了广泛的应用。

从原理上来说,MEMS陀螺仪是利用陀螺效应进行测量的。

根据陀螺效应,当陀螺体受到力矩作用时,会产生旋转运动,并随着陀螺体的旋转方向发生改变。

MEMS陀螺仪利用微加工技术制造出微小的陀螺体结构,通过测量陀螺体旋转的角速度来反映外界的力矩。

MEMS陀螺仪的核心部件是微机电系统传感器芯片。

该芯片由陀螺体、补偿机构和信号处理器组成。

陀螺体采用微机电技术制造,通常由微小的旋转结构和驱动电极组成。

补偿机构可以校正陀螺仪在使用过程中的误差,如温度漂移、震动干扰等。

信号处理器对传感器采集到的信号进行放大、滤波和数字化处理,最终输出测量结果。

MEMS陀螺仪主要应用于姿态控制、导航定位和惯性测量等领域。

在无人机、无线通信基站和汽车电子中,MEMS陀螺仪可以感知设备的姿态变化,并通过控制其他执行器实现稳定的定位和姿态控制。

在导航定位系统中,MEMS陀螺仪结合其他传感器如加速度计和磁力计,可以提供高精度的导航定位信息。

在惯性测量领域,MEMS陀螺仪可以用于测量物体的转动角速度,如飞行器的姿态角速度、旋转仪的角速度等。

然而,MEMS陀螺仪也存在一些挑战与局限性。

首先,由于微加工技术的限制,MEMS陀螺仪的测量范围和分辨率相对较小。

其次,由于设备内部结构的微小化,MEMS陀螺仪对温度变化和震动的敏感度较高,容易产生误差。

此外,MEMS陀螺仪在长时间运行过程中,由于不可避免的温度漂移和机械疲劳等因素,测量精度也会逐渐下降。

为了克服这些局限性,研究人员提出了一系列改进措施。

例如,通过增加补偿机构和算法优化,可以有效降低温度漂移和震动干扰对MEMS陀螺仪测量精度的影响。

MEMS陀螺仪简介分析

MEMS陀螺仪简介分析
隧道效应检测
按检测方式
闭环模式
速率陀螺 按工作模式
速率积数
MEMS陀螺仪的重要参数包括:分辨率(Resolution) 、零角速度输出(零位输出)、灵敏度(Sensitivity)和测 量范围。这些参数是评判MEMS陀螺仪性能好坏的重要标 志,同时也决定陀螺仪的应用环境。 分辨率是指陀螺仪能检测的最小角速度,该参数与 零角速度输出其实是由陀螺仪的白噪声决定。这几个参 数主要说明了该陀螺仪的内部性能和抗干扰能力。对使 用者而言,灵敏度更具有实际的选择意义。测量范围是 指陀螺仪能够测量的最大角速度。不同的应用场合对陀 螺仪的各种性能指标有不同的要求。
MEMS 陀螺仪使用的输出噪声这个指标。并且一定要选定合适的带 宽,在能满足使用要求的前提下,尽量选择带宽较低的陀螺仪,因为带 宽越大,输出噪声越大。
2.5 MEMS陀螺仪的选用
⑵ 测量范围 选择陀螺仪的量程时,应注意:最大输入角速率——陀 螺仪正、反方向输入角速率的最大值,在此输入角速率范围内,陀螺仪 标度因数非线性满足规定要求。 ⑶ 阈值——陀螺仪能敏感的最小输入角速率。由该输入角速率产生的输 出至少应等于按标度因数所期望输出值的50%。 ⑷ 分辨率——陀螺仪在规定的输入角速率下,能敏感的最小输入角速 率增量,至少应等于按标度因数所期望输出增量的50%。选择陀螺仪的 测量范围时,最大的角速率是陀螺仪的量程的2/3,最小的角速率应该 高于阈值、分辨率。 ⑸ 标度因数——陀螺仪输出量与输入角速率的比值。 它是用某一特定 直线的斜率表示的,该直线是根据整个输入角速率范围内测得的输入、 输出数据,用最小二乘法拟合求得。 ⑹ 标度因数非线性度——在输入角速率范围内,陀螺仪输出量相对于最 小二乘法拟合直线的最大的偏差与最大输出量之比。

mems陀螺仪指标

mems陀螺仪指标

mems陀螺仪指标陀螺仪是一种用于测量和报告物体的角速度的仪器,它在现代科技中扮演着重要的角色。

在大多数情况下,它被用于航空航天、导航和航海领域,但近年来也在智能手机、游戏控制器和运动跟踪设备等消费级产品中得到了广泛的应用。

本文将介绍陀螺仪的基本原理、其在不同领域中的应用以及与之相关的一些重要指标。

陀螺仪的基本原理是基于角动量守恒定律。

当物体绕着一个轴旋转时,它的角动量保持不变。

陀螺仪利用这个原理来测量旋转的角速度。

一般来说,陀螺仪有三个轴(x、y、z轴),分别对应着物体绕着这些轴旋转的角速度。

陀螺仪的工作原理可以通过陀螺效应来解释。

陀螺效应是指当旋转体的自转速度发生变化时,它会产生一个与转轴垂直的力矩。

这种力矩会使旋转体发生偏转,从而产生一个与原始转轴垂直的新转轴。

利用这个原理,陀螺仪可以测量物体的角速度。

陀螺仪的应用领域非常广泛。

在航空航天领域,陀螺仪被用于飞行器的导航和姿态控制。

它可以测量飞行器的角速度,从而帮助飞行员或自动驾驶系统控制飞行器的姿态。

在导航领域,陀螺仪也被用于惯性导航系统,可以测量车辆或船只的角速度,从而帮助确定它们的位置和方向。

此外,在消费级产品中,陀螺仪也发挥着重要的作用。

例如,在智能手机中,陀螺仪可以用于屏幕自动旋转和游戏控制。

它可以检测手机的旋转角度和速度,从而根据用户的操作来调整屏幕的方向或实现游戏的交互效果。

在运动跟踪设备中,陀螺仪可以用于测量人体的运动姿态,从而帮助健身爱好者或专业运动员进行训练和分析。

与陀螺仪相关的一些重要指标包括精度、灵敏度和响应时间。

精度是指陀螺仪测量结果与实际角速度之间的偏差,通常用度/秒表示。

较高的精度意味着陀螺仪测量结果更准确。

灵敏度则是指陀螺仪对角速度变化的敏感程度,通常以度/秒为单位。

较高的灵敏度意味着陀螺仪可以更好地检测细微的角速度变化。

响应时间是指陀螺仪从检测到角速度变化到输出结果的时间延迟。

较低的响应时间意味着陀螺仪可以更快地响应并输出测量结果。

MEMS陀螺仪的简要介绍

MEMS陀螺仪的简要介绍

MEMS陀螺仪的简要介绍MEMS陀螺仪(Micro-Electro-Mechanical System gyroscope)是一种基于微机电系统技术的陀螺仪,具有小尺寸、低功耗、高灵敏度等特点。

它广泛应用于无人机、手机、平衡车等设备中,用于测量角速度和方向。

首先,我们来看一下MEMS陀螺仪的性能参数。

主要包括灵敏度、测量范围、精确度和稳定性。

1.灵敏度:指陀螺仪对角速度变化的感知程度,通常以每秒多少度/秒来表示。

灵敏度越高,陀螺仪对角速度变化的检测越精准。

2.测量范围:指陀螺仪能够测量的角速度的最大值和最小值。

通常以度/秒为单位,在不同应用场景下需根据需求选择合适的测量范围。

3.精确度:指陀螺仪测量结果与真实值之间的偏差。

精确度越高,陀螺仪的测量结果越接近真实值。

4.稳定性:指陀螺仪在长时间使用过程中保持测量精度的能力。

稳定性包括零漂、温漂等参数,可通过校准等方法来提高。

1.姿态控制:MEMS陀螺仪被广泛应用于飞行器、导航设备等需要进行姿态控制的设备中。

通过测量角速度变化,可以帮助设备实时检测自身的姿态,从而进行调整和控制。

2.稳定平台:MEMS陀螺仪可以用于制作稳定平台,如相机防抖系统。

通过补偿相机的晃动,可以提高拍摄的稳定性和图像质量。

3.导航定位:MEMS陀螺仪可以与其他传感器(如加速度计、磁力计)结合使用,用于导航和定位应用。

通过测量角速度和加速度,可以估计设备的位置和方向。

4.虚拟现实和增强现实:MEMS陀螺仪可以用于虚拟现实和增强现实设备中,如头戴式显示器和手持设备。

通过检测用户头部的旋转动作,可以实现对虚拟场景的观察和交互。

5.运动追踪:MEMS陀螺仪可以用于运动追踪设备中,如运动手柄和运动传感器。

通过测量角速度和加速度,可以捕捉用户的运动,实现与设备的交互。

综上所述,MEMS陀螺仪是一种小尺寸、低功耗、高灵敏度的陀螺仪,广泛应用于姿态控制、稳定平台、导航定位、虚拟现实和运动追踪等领域。

mems陀螺仪方案

mems陀螺仪方案

MEMS陀螺仪方案概述MEMS陀螺仪是一种基于微机电系统(MEMS)技术的传感器,用于测量物体的角速度。

这种陀螺仪具有小巧、低功耗、高精度等优势,因此在航空航天、汽车电子、智能手机等领域得到了广泛应用。

本文将介绍MEMS陀螺仪的工作原理、应用领域和一种常见的方案。

工作原理MEMS陀螺仪基于Coriolis效应来测量物体的角速度。

当物体发生旋转时,由于惯性的作用,物体上沿着旋转轴方向会产生纵向的加速度。

而当物体同时发生线性加速度时,也会产生横向的加速度。

MEMS陀螺仪利用这种物体的相对加速度差异来测量角速度。

MEMS陀螺仪通常由一个微小的感应器和一些支持电子组件组成。

感应器由一个或多个微小的震荡结构组成,当物体发生旋转时,震荡结构在旋转轴方向发生微小位移。

这种位移被转化为电信号,并通过支持电子组件进行放大和处理,得到物体的角速度信息。

应用领域MEMS陀螺仪在多个领域中发挥着重要作用,下面列举了其中的一些应用领域:1.航空航天:MEMS陀螺仪用于航空航天器的导航、姿态控制和稳定系统中。

由于其小巧轻便的特点,可以在空间有限的环境中灵活安装和集成。

2.汽车电子:MEMS陀螺仪可用于汽车的电子稳定控制系统(ESC)和车载惯性导航系统。

它可以帮助车辆保持稳定并提供精确的导航信息。

3.智能手机:智能手机中的陀螺仪可以检测设备的旋转和倾斜,从而实现屏幕的自动旋转和游戏控制等功能。

4.工业机器人:MEMS陀螺仪可以用于工业机器人的运动控制和姿态监测,帮助机器人实现精确的位置和姿态调整。

常见方案以下是一种常见的MEMS陀螺仪方案的示意图:______| |---| |---| | | |---|______|---|旋转轴方向在这种方案中,MEMS陀螺仪通常由三个陀螺仪组件构成,分别置于X、Y、Z 三个轴上。

每个陀螺仪组件中的震荡结构负责测量相应轴向的角速度。

通过并联或串联连接这三个组件,可以同时测量物体在三个轴上的角速度。

mems陀螺仪用途

mems陀螺仪用途

mems陀螺仪用途一、引言mems陀螺仪是指利用微机电系统技术制作的小型化陀螺仪,具有体积小、功耗低、精度高等优点。

它被广泛应用于航空航天、导航定位、智能手机、虚拟现实等领域。

本文将探讨mems陀螺仪的几个主要用途,并对其技术特点进行介绍。

二、航空航天领域1. 飞行器导航:mems陀螺仪可以根据飞行器的姿态变化来实时测量飞行器的转动角速度和角度,从而实现飞行器的导航和定位。

通过将多个mems陀螺仪组合使用,可以提高导航的精度和可靠性。

2. 姿态控制:在航天器的姿态控制系统中,mems陀螺仪可以测量航天器的姿态变化,并通过反馈控制算法对航天器进行精确的姿态控制。

这对于航天器的稳定运行和任务的完成至关重要。

三、导航定位领域1. 惯性导航:mems陀螺仪可以用于惯性导航系统中,通过测量移动物体的加速度和角速度,结合导航算法,实现对物体位置和方向的估计。

这种方式适用于室内导航、无线定位和车辆导航等场景,可以提供高精度的定位服务。

2. 自动驾驶:mems陀螺仪是自动驾驶系统中的重要组成部分,可以实时测量车辆的角速度和姿态,为车辆的精确控制提供数据支持。

通过与其他传感器(如加速度计、磁力计)的组合使用,可以实现车辆的智能导航和行驶。

四、智能手机领域1. 图像稳定:mems陀螺仪可以用于智能手机的图像稳定功能,通过实时测量手机的旋转角速度和角度,对图像进行实时校正,提高拍摄照片和录制视频的稳定性。

这对于提升用户体验和拍摄质量非常重要。

2. 屏幕旋转:mems陀螺仪还可以用于智能手机屏幕的自动旋转功能。

通过实时测量手机的姿态变化,可以自动调整屏幕的显示方向,提供更加便捷的使用体验。

五、虚拟现实领域1. 姿态跟踪:mems陀螺仪可以用于虚拟现实设备的姿态跟踪,通过实时测量用户头部的旋转角速度和角度,实现对虚拟现实场景的实时响应,提高虚拟现实体验的沉浸感。

2. 手柄控制:mems陀螺仪还可以应用于虚拟现实手柄的运动控制。

MEMS陀螺仪介绍

MEMS陀螺仪介绍

二、原理
MEMS 陀螺仪通常有两个方向的可移动电容板(也有其他的结构).径
向的电容板加震荡电压迫使物体作径向 运动,横向的电容板测量由于横 向科里奥利运动带来的 电容变化 . 因为科里奥利力正比于角速度,所以由电容的变化 可以计算出角速度.
二、原理
用来产生参考振动的驱动方式有静的附加振动的检 测方式有电容检测、压电检测、压阻检测等。光学检 测也可用,但由于成本太高,因而没有太大的适用价 值。微机械陀螺仪根据驱动与检测方式主要分为四种 ① 静电驱动,电容检测;② 电磁驱动,电容检测; ③ 电磁驱动,压阻检测;④ 压电驱动,电容检测。
三、构成
七、特点及发展趋势
质量、体积和能耗小 成本低廉,适合大批量生产; 动态范围大,稳定性高,可靠性高,可用于恶劣力学
环境; 准备时间短,适合快速响应武器; 中低精度,适合短时应用或与其他信息系统组合应用;
七、特点及发展趋势
体积越来越小,精度越来越高 工艺和封装技术日趋成熟 工程应用领域不断拓展,成功案例越来越多
六、应用
1、惯性平台 惯性稳定平台由于能够隔离载体( 导弹、飞机、战车及舰船)的运动干 扰,不断调整平台的姿态和位置的变化,精确保持动态姿态基准。 2、姿态平衡 由于陀螺仪在工作状态下,保持绝对姿态,所以可以指示飞机飞行时 姿态,以保证飞行员掌握以及控制飞机的飞行姿态,保证飞机安全, 正常飞行。 3、电子设备 陀螺仪应用于数码相机、数码摄像机中,则可以实现防抖功能,使拍 摄的照片、录像更加清晰、真实。也用于手机定位和手机游戏操控。
王宝
一、概述
mems陀螺仪即微机电陀螺仪,绝大多数的MEMS陀螺
仪依赖于相互正交的振动和转动引起的交变科里奥利 力。MEMS (Micro-Electro-Mechanical Systems)是指 集机械元素、微型传感器、微型执行器以及信号处理 和控制电路、接口电路、通信和电源于一体的完整微 型机电系统。

MEMS激光陀螺仪综述

MEMS激光陀螺仪综述

MEMS激光陀螺仪综述MEMS激光陀螺仪综述姓名:赵琬婷学号:220133051.陀螺仪的发展简史陀螺仪器最早是用于航海导航,但随着科学技术的发展,它在航空和航天事业中也得到广泛的应用。

自1910年首次用于船载指北陀螺罗经以来,陀螺已有近100年的发展史,发展过程大致分为4个阶段:第一阶段是滚珠轴承支承陀螺马达和框架的陀螺;第二阶段是20世纪40年代末到50年代初发展起来的液浮和气浮陀螺;第三阶段是20世纪60年代以后发展起来的干式动力挠性支承的转子陀螺;目前陀螺的发展已进入第四个阶段,即静电陀螺、激光陀螺、光纤陀螺和振动陀螺。

2、激光陀螺仪概述现代陀螺仪是一种能够精确的定位运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。

传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了许多方面的制约。

3、激光陀螺仪的原理及分类3.1激光陀螺仪的原理激光陀螺仪的原理是利用光程差来测量旋转角速度( Sagnac 效应)。

在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉,利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。

激光陀螺仪的基本元件是环形激光器,环形激光器由三角形或正方形的石英制成的闭合光路组成,内有一个或几个装有混合气体(氦氖气体)的管子,两个不透明的反射和一个半透明镜。

用高频电源或直流电源激发混合气体,产生单色激光。

为维持路谐振,回路的周长应为光波波长的整数倍。

用半透明镜将激光导出回路,经反射镜使两束相反传输的激光干涉,通过光电探测器和电路输入与输出角度成比例的数字信号。

3.2激光陀螺仪的分类激光陀螺原理上根本不同于普通的机电式陀螺。

常规机电转子陀螺依据普通的刚体力学原理按照机械储能方式工作,而激光陀螺是以双向行波的环形激光器为核心的量子光学仪表,其依据基于广义相对论的Sagnac效应。

MEMS陀螺仪介绍

MEMS陀螺仪介绍

MEMS陀螺仪介绍MEMS陀螺仪(Micro-electromechanical system gyroscope)是一种利用微机电系统技术制造的陀螺仪。

它是一种测量角速度或角位移的传感器。

MEMS陀螺仪在航空航天、导航、惯性导航、虚拟现实、机器人和消费电子等领域中发挥着重要的作用。

本文将介绍MEMS陀螺仪的工作原理、分类、应用领域以及未来发展方向。

一、工作原理MEMS陀螺仪的关键部分是MEMS振动结构,它包括一个振动质量块和与之相连的弹性支撑结构。

当旋转速度发生变化时,质量块会感受到科氏力产生的偏移力,从而引起振动结构的振动变化。

通过测量振动结构的变化,可以得到旋转速度的信息。

二、分类根据工作原理的不同,MEMS陀螺仪可以分为容积扩散器陀螺仪、震动陀螺仪和光纤陀螺仪。

容积扩散器陀螺仪基于压电效应,通过测量振动微结构的容积变化来测量旋转速度。

震动陀螺仪则通过测量加速度和角位移之间的关系来得到旋转速度。

光纤陀螺仪则利用光的干涉效应来测量角速度。

容积扩散器陀螺仪是目前应用较广泛的MEMS陀螺仪,其精度和灵敏度较高。

震动陀螺仪是一种新兴的技术,具有体积小、功耗低等优势,逐渐被广泛应用。

三、应用领域1.导航和惯性测量单元:MEMS陀螺仪可以用于航空航天、导航和惯性测量单元中,用于测量飞行器的姿态和角速度,为导航和控制提供准确的数据。

2.虚拟现实和游戏:MEMS陀螺仪可以用于虚拟现实头盔和游戏手柄中,用于感知用户的头部运动和手柄的姿态变化,实现交互的沉浸式体验。

3.移动设备:MEMS陀螺仪也被广泛应用于手机、平板电脑和智能手表等移动设备中,用于实现屏幕旋转、手势控制和陀螺仪导航等功能。

4.机器人和自动驾驶:MEMS陀螺仪可以用于机器人和自动驾驶车辆中,用于感知和控制机器人或车辆的姿态和运动状态,实现精确的导航和控制。

四、未来发展方向随着技术的不断进步,MEMS陀螺仪仍然具有很大的发展潜力。

未来的发展方向主要包括以下几个方面:1.提高精度和稳定性:MEMS陀螺仪目前的精度和稳定性还有改进的空间。

MEMS陀螺仪简介

MEMS陀螺仪简介

MEMS陀螺仪的应用
● MEMS陀螺仪能够测量角速率。数码相机使用陀 螺仪检测人手的旋转运动,能够对图像起到稳定 的作用。在汽车上,偏航陀螺仪可以开启电子稳 定控制(ESC)制动系统,防止汽车急转弯时发生 意外事故。当汽车出现翻滚状况时,滚转陀螺仪 可以引爆安全气囊。 ● 当汽车导航系统无法接收GPS卫星信号时,偏 航陀螺仪能够测量汽车的方位,使汽车始终沿电 子地图的规划路线行驶,这个功能被称之为航位 推测系统。
● 偏航陀螺仪还能用于室内机器人控制。 ● 安装在机器人四肢上的多路惯性测量单元(IMU) 能够跟踪和监测身体运动。 ● IMU可用于空中鼠标。
● IMU还能用于运动控制式游戏平台。
● IMU配合磁力计和GPS接收器,可以在手持设备 上执行个人导航功能。
7.采用共晶键合的方法将第二组合晶圆21与带金属图形 的底部晶圆22键合在一起,同时形成第二层金属密封环 8、第二层金属导电块9与MEMS晶圆14的共晶键合面19. 在键合过程中要注意位置对准,同时控制MEMS结构17与 第一次金属下电极6之间的间距18在设计要求的厚度, 如0.1um至10um。这样,就完成了双轴MEMS陀螺仪的制 造。
当施加角速率时,每个物体上的科里奥效应 产生相反方向的力,从而引起电容变化。
电容差值与角速率成正比,如果是模拟 陀螺仪,电容差值转换成电压输出信号;如 果是数字陀螺仪,则转换成最低有效位。如 果在两个物体上施加线性加速度,这两个物 体则向同一方向运动。因此,不会检测到电 容变化。陀螺仪将输出零速率输出值或最低 有效位,表示MEMS陀螺仪对倾斜、撞击或振 动等线性加速度不敏感。
3.在底部晶圆1的第二层氧化硅4上淀积第二层金属, 第二层金属可以为铝、金、镍、铜或者是这些金属的 合金。采用光刻和湿法腐蚀的方法刻蚀第二层金属, 形成第二层金属密封环8和第二层金属导电块9,然后 对第二层氧化硅4采用光刻和刻蚀的方法,暴露出第 一层金属下电极6,从而形成带有金属图形的底部晶 圆22。

MEMS激光陀螺仪综述详解

MEMS激光陀螺仪综述详解

MEMS激光陀螺仪综述姓名:赵琬婷学号:220133051.陀螺仪的发展简史陀螺仪器最早是用于航海导航,但随着科学技术的发展,它在航空和航天事业中也得到广泛的应用。

自1910年首次用于船载指北陀螺罗经以来,陀螺已有近100年的发展史,发展过程大致分为4个阶段:第一阶段是滚珠轴承支承陀螺马达和框架的陀螺;第二阶段是20世纪40年代末到50年代初发展起来的液浮和气浮陀螺;第三阶段是20世纪60年代以后发展起来的干式动力挠性支承的转子陀螺;目前陀螺的发展已进入第四个阶段,即静电陀螺、激光陀螺、光纤陀螺和振动陀螺。

2、激光陀螺仪概述现代陀螺仪是一种能够精确的定位运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。

传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了许多方面的制约。

3、激光陀螺仪的原理及分类3.1激光陀螺仪的原理激光陀螺仪的原理是利用光程差来测量旋转角速度( Sagnac 效应)。

在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉,利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。

激光陀螺仪的基本元件是环形激光器,环形激光器由三角形或正方形的石英制成的闭合光路组成,内有一个或几个装有混合气体(氦氖气体)的管子,两个不透明的反射和一个半透明镜。

用高频电源或直流电源激发混合气体,产生单色激光。

为维持路谐振,回路的周长应为光波波长的整数倍。

用半透明镜将激光导出回路,经反射镜使两束相反传输的激光干涉,通过光电探测器和电路输入与输出角度成比例的数字信号。

3.2激光陀螺仪的分类激光陀螺原理上根本不同于普通的机电式陀螺。

常规机电转子陀螺依据普通的刚体力学原理按照机械储能方式工作,而激光陀螺是以双向行波的环形激光器为核心的量子光学仪表,其依据基于广义相对论的Sagnac效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MEMS陀螺仪的简要介绍(性能参数和使用)
MEMS传感器市场浪潮可以从最早的汽车电子到近些年来的消费电子,和即将来到的物联网时代。

如今单一的传感器已不能满足人们对功能、智能的需要,像包括MEMS惯性传感器、MEMS环境传感器、MEMS光学传感器、甚至生物传感器等多种传感器数据融合将成为新时代传感器应用的趋势。

工欲善其事,必先利其器,这里就先以MEMS陀螺仪开始,简要介绍一下MEMS陀螺仪、主要性能参数和使用。

传统机械陀螺仪主要利用角动量守恒原理,即:对旋转的物体,它的转轴指向不会随着承载它的支架的旋转而变化。

MEMS陀螺仪主要利用科里奥利力(旋转物体在有径向运动时所受到的切向力)原理,公开的微机械陀螺仪均采用振动物体传感角速度的概念,利用振动来诱导和探测科里奥利力。

MEMS陀螺仪的核心是一个微加工机械单元,在设计上按照一个音叉机制共振运动,通过科里奥利力原理把角速率转换成一个特定感测结构的位移。

以一个单轴偏移(偏航,YAW)陀螺仪为例,通过图利探讨最简单的工作原理。

两个相同的质量块以方向相反的做水平震荡,如水平方向箭头所示。

当外部施加一个角速率,就会出现一个科氏力,力的方向垂直于质量运动方向,如垂直方向箭头所示。

产生的科氏力使感测质量发生位移,位移大小与所施加的角速率大小成正比。

因为感测器感测部分的动电极(转子)位于固定电极(定子)的侧边,上面的位移将会在定子和转子之间引起电容变化,因此,在陀螺仪输入部分施加的角速率被转化成一个专用电路可以检测的电子参数---电容量。

下图是一种MEMS陀螺仪的系统架构,,陀螺仪的讯号调节电路可以分为马达驱动和加速度计感测电路两个部分。

其中,马达驱动部分是透过静电引动方法,使驱动电路前后振动,为机械元件提供激励;而感测部分透过测量电容变化来测量科氏力在感测质量上产生的位移。

相关文档
最新文档