信息安全实验报告DES加密算法

合集下载

DES加密算法的简单实现实验报告

DES加密算法的简单实现实验报告

DES加密算法的简单实现实验报告一、实验目的本实验的主要目的是对DES加密算法进行简单的实现,并通过实际运行案例来验证算法的正确性和可靠性。

通过该实验可以让学生进一步了解DES算法的工作原理和加密过程,并培养学生对算法实现和数据处理的能力。

二、实验原理DES(Data Encryption Standard,数据加密标准)是一种对称密钥加密算法,它是美国联邦政府采用的一种加密标准。

DES算法使用了一个共享的对称密钥(也称为密钥),用于加密和解密数据。

它采用了分组密码的方式,在进行加密和解密操作时,需要将数据分成固定长度的数据块,并使用密钥对数据进行加密和解密。

DES算法主要由四个步骤组成:初始置换(Initial Permutation),轮函数(Round Function),轮置换(Round Permutation)和最终置换(Final Permutation)。

其中初始置换和最终置换是固定的置换过程,用于改变数据的顺序和排列方式。

轮函数是DES算法的核心部分,它使用了密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。

轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。

通过多轮的迭代运算,DES算法可以通过一个给定的密钥对数据进行高强度的加密和解密操作。

三、实验步骤2.初始置换:将输入数据按照一定的规则重新排列,生成一个新的数据块。

初始置换的规则通过查表的方式给出,我们可以根据规则生成初始置换的代码。

3.轮函数:轮函数是DES算法的核心部分,它使用轮密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。

在实际的算法设计和实现中,可以使用混合逻辑电路等方式来实现轮函数。

4.轮置换:轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。

轮置换的规则也可以通过查表的方式给出。

5.最终置换:最终置换与初始置换类似,将最后一轮的结果重新排列,生成最终的加密结果。

des算法实验报告

des算法实验报告

des算法实验报告DES算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司于1975年研发并被美国国家标准局(NBS)采纳为联邦信息处理标准(FIPS)。

二、算法原理DES算法采用了分组密码的方式,将明文数据划分为固定长度的数据块(64位),并通过密钥进行加密和解密操作。

其核心是Feistel结构,每轮加密操作包括置换和替代两个步骤。

1. 置换步骤DES算法的初始置换(IP)和逆初始置换(IP-1)通过一系列的位重排操作,将输入的64位明文数据打乱,以增加加密的强度。

2. 替代步骤DES算法中使用了8个S盒(Substitution Box),每个S盒接受6位输入,并输出4位结果。

S盒的作用是将输入的6位数据映射为4位输出,通过这种非线性的映射关系,增加了算法的安全性。

3. 轮函数DES算法的加密过程包含16轮迭代,每轮迭代中都会对数据进行一系列的位重排和替代操作。

其中,轮函数是DES算法的核心部分,它通过使用子密钥对数据进行异或操作,并通过S盒替代和P盒置换操作,产生新的数据块。

三、实验步骤为了更好地理解DES算法的加密过程,我们进行了以下实验步骤:1. 输入明文和密钥我们选择了一个64位的明文数据块和一个56位的密钥作为输入。

明文数据块经过初始置换(IP)后,得到L0和R0两个32位的数据块。

2. 生成子密钥通过对密钥进行置换和循环左移操作,生成16个48位的子密钥。

3. 迭代加密对明文数据块进行16轮的迭代加密,每轮加密包括以下步骤:a. 将R(i-1)作为输入,经过扩展置换(E-box),得到48位的扩展数据。

b. 将扩展数据和子密钥Ki进行异或操作,得到48位的异或结果。

c. 将异或结果分为8个6位的数据块,分别经过8个S盒替代操作,得到32位的S盒替代结果。

d. 将S盒替代结果经过P盒置换,得到32位的轮函数输出。

密码学案例实验报告书

密码学案例实验报告书

一、实验背景随着信息技术的飞速发展,信息安全问题日益突出。

密码学作为保障信息安全的核心技术,在数据加密、身份认证、数字签名等领域发挥着重要作用。

为了加深对密码学原理的理解,提高实际应用能力,我们开展了本次密码学案例实验。

二、实验目的1. 掌握DES加密算法的基本原理和操作步骤。

2. 熟悉RSA加密算法的原理和应用。

3. 学习数字签名技术的应用。

4. 培养动手实践能力,提高解决实际问题的能力。

三、实验内容1. DES加密算法(1)实验目的:了解DES加密算法的基本原理,掌握DES加密和解密过程。

(2)实验内容:① 设计一个简单的DES加密程序,实现明文到密文的转换。

② 设计一个简单的DES解密程序,实现密文到明文的转换。

(3)实验步骤:① 编写DES加密程序,输入明文和密钥,输出密文。

② 编写DES解密程序,输入密文和密钥,输出明文。

2. RSA加密算法(1)实验目的:了解RSA加密算法的基本原理,掌握RSA加密和解密过程。

(2)实验内容:① 设计一个简单的RSA加密程序,实现明文到密文的转换。

② 设计一个简单的RSA解密程序,实现密文到明文的转换。

(3)实验步骤:① 编写RSA加密程序,输入明文和密钥对,输出密文。

② 编写RSA解密程序,输入密文和私钥,输出明文。

3. 数字签名技术(1)实验目的:了解数字签名技术的基本原理,掌握数字签名的生成和验证过程。

(2)实验内容:① 设计一个简单的数字签名程序,实现签名生成和验证。

(3)实验步骤:① 编写数字签名程序,输入明文、私钥和签名算法,输出签名。

② 编写数字签名验证程序,输入明文、公钥和签名,验证签名是否正确。

四、实验结果与分析1. DES加密算法实验结果通过编写DES加密和解密程序,成功实现了明文到密文和密文到明文的转换。

实验结果表明,DES加密算法在保证数据安全的同时,具有较高的效率。

2. RSA加密算法实验结果通过编写RSA加密和解密程序,成功实现了明文到密文和密文到明文的转换。

des加密算法实验报告

des加密算法实验报告

DES加密算法实验报告1. 引言DES(Data Encryption Standard)是一种对称密码算法,于1977年被美国联邦信息处理标准(FIPS)确定为联邦标准。

DES加密算法采用分组密码的思想,将明文按照64位分为一组,经过一系列的置换、替代和迭代操作,最终输出加密后的密文。

本实验旨在通过对DES加密算法的实际操作,深入理解DES的工作原理和加密过程。

2. 实验步骤2.1. 密钥生成DES加密算法的核心在于密钥的生成。

密钥生成过程如下:1.将64位的初始密钥根据置换表进行置换,生成56位密钥。

2.将56位密钥分为两个28位的子密钥。

3.对两个子密钥进行循环左移操作,得到循环左移后的子密钥。

4.将两个循环左移后的子密钥合并,并根据压缩置换表生成48位的轮密钥。

2.2. 加密过程加密过程如下:1.将64位的明文按照初始置换表进行置换,得到置换后的明文。

2.将置换后的明文分为左右两部分L0和R0,每部分32位。

3.进行16轮迭代操作,每轮操作包括以下步骤:–将R(i-1)作为输入,经过扩展置换表扩展为48位。

–将扩展后的48位数据与轮密钥Ki进行异或操作。

–将异或结果按照S盒进行替代操作,得到替代后的32位数据。

–对替代后的32位数据进行置换,得到置换后的32位数据。

–将置换后的32位数据与L(i-1)进行异或操作,得到Ri。

–将R(i-1)赋值给L(i)。

4.将最后一轮迭代后得到的数据合并为64位数据。

5.对合并后的64位数据进行逆置换,得到加密后的64位密文。

3. 实验结果对于给定的明文和密钥,进行DES加密实验,得到加密后的密文如下:明文:0x0123456789ABCDEF 密钥:0x133457799BBCDFF1密文:0x85E813540F0AB4054. 结论本实验通过对DES加密算法的实际操作,深入理解了DES加密算法的工作原理和加密过程。

DES加密算法通过对明文的置换、替代和迭代操作,混淆了明文的结构,使得密文的产生与密钥相关。

【精品】DES算法实验报告

【精品】DES算法实验报告

【精品】DES算法实验报告一、理论部分DES算法是一种对称加密算法,也是目前广泛应用的加密算法之一。

DES算法使用的是分组加密的思想,将明文数据分成一定长度的数据块,按照一定的算法进行加密,得到密文数据。

DES算法中的关键是密钥,只有持有正确密钥的人才能解密。

DES算法的密钥长度为64位,但由于存在弱密钥的问题,使用时需要特别注意。

DES算法的加密过程包括以下几个步骤:1、密钥的生成和处理:DES算法的密钥长度为64位,但由于存在弱密钥的问题,使用时需要使用程序进行特殊处理,以确保生成的密钥不为弱密钥。

2、初始置换(IP):将明文数据按照一定的规则进行置换,得到置换后的数据。

3、分组:将置换后的明文数据分成左半部分和右半部分。

4、轮函数(f函数):将右半部分进行扩展置换、异或运算、S盒代替、置换等操作,得到一个新的右半部分。

5、轮秘钥生成:生成本轮加密所需要的秘钥。

6、异或运算:将左半部分和右半部分进行异或运算,得到一个新的左半部分。

7、左右交换:将左右部分进行交换。

以上步骤循环执行16次,直到得到最终的密文数据。

二、实验部分本次实验使用C语言实现了DES算法的加密和解密过程。

具体实现过程包括以下几个部分:1、密钥的生成:使用DES算法生成64位密钥,其中包括了对弱密钥的处理。

2、置换:使用DES算法中的IP置换和IP逆置换进行数据置换。

3、轮函数:使用DES算法中的f函数进行一轮加密操作。

5、加密:循环执行16轮加密操作,得到密文数据。

以上实现过程全部基于DES算法的规范。

三、结果分析1、速度慢:由于DES算法采用的是分组加密的思想,需要执行多次操作才能得到最终结果。

因此本次实验的加密和解密速度相对较慢。

2、代码简单:本次实验的代码相对简单,只需要用到一些基本数据结构和算法即可实现DES算法的加密和解密过程。

但需要注意的是,由于DES算法本身的复杂性,代码实现中需要注意细节和边界问题。

四、总结本次实验使用C语言实现了DES算法的加密和解密过程,通过实验得到了一些结果。

des 加密算法实验报告

des 加密算法实验报告

des 加密算法实验报告DES加密算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称加密算法,由IBM公司于1975年研发并被美国联邦政府采用为标准加密算法。

DES算法具有高效、可靠、安全等特点,被广泛应用于信息安全领域。

本实验旨在通过对DES算法的实验研究,深入了解其原理、性能和应用。

二、DES算法原理DES算法采用对称密钥加密,即加密和解密使用相同的密钥。

其核心是Feistel结构,将明文分成左右两部分,经过16轮迭代加密后得到密文。

每一轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和密钥进行变换。

DES算法中使用了置换、代换和异或等运算,以保证加密的安全性。

三、DES算法实验过程1. 密钥生成在DES算法中,密钥长度为64位,但实际上只有56位用于加密,8位用于奇偶校验。

实验中,我们随机生成一个64位的二进制密钥,并通过奇偶校验生成最终的56位密钥。

2. 初始置换明文经过初始置换IP,将明文的每一位按照特定规则重新排列,得到初始置换后的明文。

3. 迭代加密经过初始置换后的明文分为左右两部分,每轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和子密钥进行变换。

函数f包括扩展置换、S盒代换、P盒置换和异或运算等步骤,最后与右半部分进行异或运算得到新的右半部分。

4. 逆初始置换经过16轮迭代加密后,得到的密文再经过逆初始置换,将密文的每一位按照特定规则重新排列,得到最终的加密结果。

四、DES算法性能评估1. 安全性DES算法的密钥长度较短,易受到暴力破解等攻击手段的威胁。

为了提高安全性,可以采用Triple-DES等加强版算法。

2. 效率DES算法的加密速度较快,适用于对大量数据进行加密。

但随着计算机计算能力的提高,DES算法的加密强度逐渐降低,需要采用更加安全的加密算法。

3. 应用领域DES算法在金融、电子商务、网络通信等领域得到广泛应用。

des算法 实验报告

des算法 实验报告

des算法实验报告DES算法实验报告引言:数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司在20世纪70年代初开发。

DES算法通过将明文分块加密,使用相同的密钥进行加密和解密操作,以保护数据的机密性和完整性。

本实验旨在深入了解DES算法的原理和应用,并通过实验验证其加密和解密的过程。

一、DES算法原理DES算法采用分组密码的方式,将明文分为64位的数据块,并使用56位的密钥进行加密。

其加密过程主要包括初始置换、16轮迭代和逆初始置换三个步骤。

1. 初始置换(Initial Permutation,IP):初始置换通过将明文按照特定的置换表进行重排,得到一个新的数据块。

这一步骤主要是为了增加密文的随机性和混淆性。

2. 16轮迭代(16 Rounds):DES算法通过16轮迭代的运算,对数据块进行加密操作。

每一轮迭代都包括四个步骤:扩展置换(Expansion Permutation,EP)、密钥混合(Key Mixing)、S盒替换(Substitution Boxes,S-Boxes)和P盒置换(Permutation,P)。

其中,S盒替换是DES算法的核心步骤,通过将输入的6位数据映射为4位输出,增加了加密的复杂性。

3. 逆初始置换(Inverse Initial Permutation,IP-1):逆初始置换是初始置换的逆运算,将经过16轮迭代加密的数据块按照逆置换表进行重排,得到最终的密文。

二、实验步骤本实验使用Python编程语言实现了DES算法的加密和解密过程,并通过实验验证了算法的正确性。

1. 密钥生成:首先,根据用户输入的密钥,通过置换表将64位密钥压缩为56位,并生成16个子密钥。

每个子密钥都是48位的,用于16轮迭代中的密钥混合操作。

2. 加密过程:用户输入明文数据块,将明文按照初始置换表进行重排,得到初始数据块。

DES加密实验报告

DES加密实验报告

DES加密实验报告实验目的:1.了解DES加密算法的原理和流程;2.掌握DES加密算法的编程实现方法;3.探究不同密钥长度对DES加密效果的影响。

实验设备和材料:1.计算机;2. Python编程环境。

实验步骤:1.DES加密算法原理和流程:DES(Data Encryption Standard)是一种对称加密算法,采用分组密码体制,密钥长度为56位,数据块长度为64位。

DES加密算法的流程如下:a)初始置换(IP置换):将明文分为左右两个32位的子块,并经过初始置换表IP进行置换;b)迭代加密:将初始置换结果分为左右两个子块,进行16轮迭代操作;c)轮函数:每轮迭代中,右子块与扩展置换表进行扩展置换,并与轮密钥进行异或运算,然后经过S盒替换、P置换和异或运算得到新的右子块;d)逆初始置换(IP逆置换):将最后一轮的结果进行逆初始置换,得到密文。

2.DES加密算法编程实现:首先,导入`pycrypto`库并生成合适长度的密钥;其次,定义初始置换表IP,扩展置换表E,S盒置换表S1-S8,P置换表P,以及逆初始置换表IP_inverse;然后,定义`des_encrypt`函数实现DES加密算法的逻辑:a)根据IP置换表对输入明文进行初始置换;b)将初始置换结果分为左右两个子块;c)进行16轮迭代操作,每轮迭代中更新左右子块的值;d)对最后一轮迭代结果进行逆初始置换;e)返回加密后的密文。

3.探究不同密钥长度对DES加密效果的影响:初始化明文和密钥,调用`des_encrypt`函数进行加密,并输出加密结果;分别改变密钥长度为56位、64位、128位,再次进行加密操作,并输出加密结果;比较不同密钥长度下的加密结果,进行效果分析。

实验结果:使用DES加密算法对明文进行加密,得到相应的密文。

实验结论:1.DES加密算法可以对密文进行可靠保护,提高数据的安全性;2.较长的密钥长度有助于增强DES加密算法的安全性,但同时也会增加加密和解密的运算成本;3.在实际应用中,根据需求和实际情况,选择合适的密钥长度,平衡安全性和性能的需求。

DES实验报告范文

DES实验报告范文

DES实验报告范文实验目的:了解DES算法的基本原理和加密过程;掌握DES算法的加密过程;了解DES算法的弱点并掌握略解决方法。

实验原理:DES(Data Encryption Standard)即数据加密标准,是一种对称加密算法。

它的基本原理是,通过将明文分组(64位)进行多次迭代,每次都经过相同的置换和替代操作,最终得到密文。

加密和解密都使用相同的过程和密钥。

实验步骤:1.密钥生成首先,用户需要选择一个64位的密钥,但该密钥只有56位是有效的,剩余8位用作奇偶校验位。

用户可以任意选择一个64位的二进制串,然后将满足奇偶校验的8位奇偶位加到末尾。

2.初始置换将64位的明文分成两个32位的部分,左边为L0,右边为R0。

进行一个固定的初始置换,将L0右边的32位和R0左边的32位合并,得到一个64位的二进制串。

3.子密钥生成通过对初始密钥进行置换等操作,生成16个子密钥(每个48位)。

每个子密钥与初始密钥无关。

4.迭代加密(16轮)迭代加密过程中,每次都涉及到对L和R的操作。

具体步骤如下:-对R进行扩展置换,扩展为48位,并将扩展后的结果与子密钥进行异或;-将异或结果分成8个6位的块,每个块对应一个S盒;-将S盒输出的结果经过置换P后与L异或,得到新的R;-将新的R赋值给R(R=R');-将旧的R赋值给L(L=R');-重复以上操作16轮。

5.逆初始置换将L16和R16按照逆初始置换的方式进行合并,得到一个64位的二进制串,即密文。

实验结果分析:经过实验,我们成功完成了DES算法的加密过程,并获得了加密后的密文。

通过解密过程,可以将密文重新转换为原始的明文。

实验总结:DES算法是一种较为经典的对称加密算法,由于其密钥长度较短,容易受到暴力破解的攻击。

为了提升安全性,可以对DES算法进行改进,如使用更长的密钥长度、增加迭代次数等。

此外,还可以使用其他更加先进的加密算法来替代DES算法,如AES算法等。

DES算法实验报告

DES算法实验报告

DES算法实验报告DES (Data Encryption Standard)算法是一种对称密钥加密算法,由IBM于1970s年代开发。

它是加密领域的经典算法之一,被广泛应用于安全通信和数据保护领域。

本实验报告将介绍DES算法的原理、实现和安全性分析。

一、DES算法原理1.初始置换(IP置换):将输入的64位明文进行初始置换,得到一个新的64位数据块。

2.加密轮函数:DES算法共有16轮加密,每轮加密包括3个步骤:扩展置换、密钥混合、S盒置换。

扩展置换:将32位数据扩展为48位,并与轮密钥进行异或运算。

密钥混合:将异或运算结果分为8组,每组6位,并根据S盒表进行置换。

S盒置换:将6位数据分为两部分,分别代表行和列,通过查表得到一个4位结果,并合并为32位数据。

3. Feistel网络:DES算法采用了Feistel网络结构,将32位数据块分为左右两部分,并对右半部分进行加密处理。

4.置换:将加密后的左右两部分置换位置。

5.逆初始置换:将置换后的数据进行逆初始置换,得到加密后的64位密文。

二、DES算法实现本实验使用Python编程语言实现了DES算法的加密和解密功能。

以下是加密和解密的具体实现过程:加密过程:1.初始化密钥:使用一个64位的密钥,通过PC-1表进行置换,生成56位的初始密钥。

2.生成子密钥:根据初始密钥,通过16次的循环左移和PC-2表进行置换,生成16个48位的子密钥。

3.初始置换:对输入的明文进行初始置换,生成64位的数据块。

4.加密轮函数:对初始置换的数据块进行16轮的加密操作,包括扩展置换、密钥混合和S盒置换。

5.逆初始置换:对加密后的数据块进行逆初始置换,生成加密后的64位密文。

解密过程:1.初始化密钥:使用相同的密钥,通过PC-1表进行置换,生成56位的初始密钥。

2.生成子密钥:根据初始密钥,通过16次的循环左移和PC-2表进行置换,生成16个48位的子密钥。

3.初始置换:对输入的密文进行初始置换,生成64位的数据块。

DES算法代码及实验报告

DES算法代码及实验报告

DES算法代码及实验报告DES算法(Data Encryption Standard,数据加密标准)是一种对称密钥加密算法,是密码学中最为经典的算法之一、DES算法的核心是Feistel结构,通过将明文分成多个块,然后对每个块进行一系列的置换和替换操作,最后得到密文。

本文将给出DES算法的代码实现,并进行实验报告。

一、DES算法的代码实现:以下是使用Python语言实现的DES算法代码:```pythondef str_to_bitlist(text):bits = []for char in text:binval = binvalue(char, 8)bits.extend([int(x) for x in list(binval)])return bitsdef bitlist_to_str(bits):chars = []for b in range(len(bits) // 8):byte = bits[b * 8:(b + 1) * 8]chars.append(chr(int(''.join([str(bit) for bit in byte]), 2)))return ''.join(chars)def binvalue(val, bitsize):binary = bin(val)[2:] if isinstance(val, int) elsebin(ord(val))[2:]if len(binary) > bitsize:raise Exception("Binary value larger than the expected size.")while len(binary) < bitsize:binary = "0" + binaryreturn binarydef permute(sbox, text):return [text[pos - 1] for pos in sbox]def generate_round_keys(key):key = str_to_bitlist(key)key = permute(self.permuted_choice_1, key)left, right = key[:28], key[28:]round_keys = []for i in range(16):left, right = shift(left, self.shift_table[i]), shift(right, self.shift_table[i])round_key = left + rightround_key = permute(self.permuted_choice_2, round_key)round_keys.append(round_key)return round_keysdef shift(bits, shift_val):return bits[shift_val:] + bits[:shift_val]def xor(bits1, bits2):return [int(bit1) ^ int(bit2) for bit1, bit2 in zip(bits1, bits2)]def encrypt(text, key):text_bits = str_to_bitlist(text)round_keys = generate_round_keys(key)text_bits = permute(self.initial_permutation, text_bits)left, right = text_bits[:32], text_bits[32:]for i in range(16):expansion = permute(self.expansion_table, right)xor_val = xor(round_keys[i], expansion)substitution = substitute(xor_val)permut = permute(self.permutation_table, substitution)temp = rightright = xor(left, permut)left = tempreturn bitlist_to_str(permute(self.final_permutation, right + left))```二、DES算法的实验报告:1.实验目的通过实现DES算法,加深对DES算法原理的理解,验证算法的正确性和加密效果。

des实验报告

des实验报告

des实验报告DES实验报告一、引言数据加密标准(Data Encryption Standard,DES)是一种对称密钥加密算法,由IBM公司于1975年研发并在1977年被美国政府采纳为联邦信息处理标准(FIPS)。

DES以其高度的安全性和可靠性成为当时最广泛使用的加密算法之一。

本实验旨在通过实际操作DES算法,深入了解其工作原理和加密过程。

二、实验目的1. 了解DES算法的基本原理和加密过程;2. 掌握使用Python编程语言实现DES算法的方法;3. 分析DES算法的优缺点及应用场景。

三、实验步骤1. 密钥生成在DES算法中,密钥长度为64位,但实际上只有56位用于加密,其余8位用于奇偶校验。

首先,我们需要生成一个有效的密钥。

通过随机数生成器生成一个64位的二进制串,然后去除奇偶校验位,得到56位的密钥。

2. 初始置换将明文分为左右两部分,每部分各32位。

然后,对每部分进行初始置换。

初始置换表IP将明文的每个比特位按照特定规则重新排列,得到一个新的64位二进制串。

3. 轮函数DES算法中的主要操作是轮函数,该函数包括扩展置换、密钥加密、S盒替换和P盒置换等步骤。

- 扩展置换:将32位的输入扩展为48位,扩展置换表E将输入的每个比特位按照特定规则重新排列。

- 密钥加密:使用子密钥对扩展置换的结果进行异或运算。

- S盒替换:将48位输入分为8个6位的块,经过8个不同的S盒进行替换,得到32位输出。

- P盒置换:对S盒替换的结果进行P盒置换,即将32位的输入按照特定规则重新排列。

4. 轮数迭代DES算法共有16轮迭代,每轮迭代包括轮函数和交换左右两部分的操作。

迭代过程中使用不同的子密钥对轮函数的输入进行加密。

5. 逆初始置换最后一轮迭代结束后,将左右两部分进行交换,并进行逆初始置换。

逆初始置换表IP-1将交换后的结果按照特定规则重新排列,得到最终的密文。

四、实验结果我们使用Python编程语言实现了DES算法,并对一组明文进行加密。

des加密算法实验报告

des加密算法实验报告

des加密算法实验报告实现DES加解密算法实验报告实现DES加解密算法实验报告一、DES加解密算法问题简介DES算法全称为Data Encryption Standard,即数据加密算法,它是IBM公司于1975年研究成功并公开发表的。

DES算法的入口参数有三个:Key、Data、Mode。

其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据:Mode为DES的工作方式,有两种:加密或解密。

二、DES加解密算法设计方法简介DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,其功能是把输入的64位数据块按位重新组合,并把输出分为L0 、R0两部分,每部分各长32位,其置换规则见下表:58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,即将输入的第58位换到第一位,第50位换到第2位,……,依此类推,最后一位是原来的第7位。

L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3……D64,则经过初始置换后的结果为:L0=D550......D8;R0=D57D49 (7)经过26次迭代运算后,得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。

逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,放大换位表32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,单纯换位表16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把6bit数据变为4bit数据。

des算法实验报告

des算法实验报告

《计算机安全技术》实验报告一、实验内容:des加密解密算法实现二、实验环境:1、操作系统:Windows XP及以上2、编程工具:Visual C++ 6.0三、实验原理:DES算法为密码体制中的对称密码体制,又被成为美国数据加密标准,是1972年美国IBM公司研制的对称密码体制加密算法。

明文按64位进行分组, 密钥长64位,密钥事实上是56位参与DES运算(第8、16、24、32、40、48、56、64位是校验位,使得每个密钥都有奇数个1)分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。

基本原理:其入口参数有三个:key、data、mode。

key为加密解密使用的密钥,data为加密解密的数据,mode为其工作模式。

当模式为加密模式时,明文按照64位进行分组,形成明文组,key用于对数据加密,当模式为解密模式时,key用于对数据解密。

实际运用中,密钥只用到了64位中的56位,这样才具有高的安全性。

算法特点:分组比较短、密钥太短、密码生命周期短、运算速度较慢。

四、算法流程设计:1、DES算法整体结构:2、16轮迭代:3、子密钥产生:4、f函数:五、算法实现:1、部分函数定义:static void F_func(bool In[], const bool Ki[]);// F 函数static void S_func(bool Out[], const bool In[]);// S 盒代替static void Transform(bool *Out, bool *In, const char *Table, int len);// 变换static void Xor(bool *InA, const bool *InB, int len);// 异或static void RotateL(bool *In, int len, int loop);// 循环左移static void ByteToBit(bool *Out, const char *In, int bits);// 字节组转换成位组static void BitToByte(char *Out, const bool *In, int bits);// 位组转换成字节组static void BitToHex(char *Out,const bool *In, int bits);// 将二进制转换为十六进制2、主要功能模块:void Des_SetKey(const char Key[]){ //生成子密钥static bool K[64], *KL = &K[0], *KR = &K[28];ByteToBit(K, Key, 64);for(int i=0; i<16; i++){RotateL(KL, 28, LOOP_Table[i]); //循环左移RotateL(KR, 28, LOOP_Table[i]);Transform(SubKey[i], K, PC2_Table, 48); //PC2变换}}void Des_Run(char Out1[],char Out2[], char In[], bool Type){ //des加密解密过程static bool M[64], Tmp[32], *Li = &M[0], *Ri = &M[32];ByteToBit(M, In, 64);Transform(M, M, IP_Table, 64); //IP置换if( Type == ENCRYPT ){ //加密for(int i=0; i<16; i++) {memcpy(Tmp, Ri, 32);F_func(Ri, SubKey[i]); //F函数Xor(Ri, Li, 32); //异或memcpy(Li, Tmp, 32);}}else{ //解密for(int i=15; i>=0; i--) {memcpy(Tmp, Li, 32);F_func(Li, SubKey[i]); //F函数Xor(Li, Ri, 32); //异或memcpy(Ri, Tmp, 32);}}Transform(M, M, IPR_Table, 64); //IP-1置换BitToByte(Out1, M, 64); //Out1为字符形式密文 BitToHex(Out2, M, 64); //Out2为十六进制数形式密文}void F_func(bool In[], const bool Ki[]){ //F函数static bool MR[48];Transform(MR, In, E_Table, 48); //E扩展Xor(MR, Ki, 48); //异或密钥S_func(In, MR); //S盒代换Transform(In, In, P_Table, 32); //P置换}3、调试中遇到的问题及解决办法问题:通过BitToByte()函数转换只能看到字符形式的密文,为乱码。

des算法的实验报告

des算法的实验报告

des算法的实验报告DES算法实验报告DES(Data Encryption Standard)算法是一种对称密钥加密算法,广泛应用于信息安全领域。

本实验旨在通过实验DES算法的加密和解密过程,以及密钥长度对加密效果的影响,来深入了解DES算法的原理和应用。

实验一:加密和解密过程首先,我们使用一个明文进行加密实验。

选择一个64位的明文作为输入,同时使用一个64位的密钥进行加密。

经过DES算法加密后,得到的密文长度也为64位。

然后,我们使用相同的密钥对密文进行解密,得到原始的明文。

实验结果表明,DES算法能够对明文进行有效的加密,并且使用相同的密钥能够对密文进行解密,得到原始的明文。

这说明DES算法是一种可靠的加密算法,能够保护数据的安全性。

实验二:密钥长度对加密效果的影响在第二个实验中,我们对不同长度的密钥进行加密实验,观察加密效果的变化。

我们分别使用56位、64位和128位的密钥进行加密,然后比较不同长度密钥的加密效果。

实验结果显示,密钥长度对加密效果有显著影响。

使用128位的密钥进行加密,能够得到更加安全的密文,而使用56位的密钥进行加密,则容易受到攻击。

这表明密钥长度是影响DES算法加密效果的重要因素。

结论通过本实验,我们深入了解了DES算法的加密和解密过程,以及密钥长度对加密效果的影响。

DES算法是一种可靠的加密算法,能够有效保护数据的安全性。

同时,密钥长度对加密效果有显著影响,因此在实际应用中需要选择足够长度的密钥来保障数据的安全。

总之,DES算法在信息安全领域有着重要的应用价值,通过本实验的学习,我们对DES算法有了更深入的了解,为进一步研究和应用提供了重要的参考。

DES加密算法实验报告

DES加密算法实验报告

DES加密算法实验报告DES( Data Encryption Standard)算法是一种对称加密算法,是现代密码学的基础。

DES算法将64位明文数据分为两个32位的部分,将两部分通过一系列复杂的运算和替换操作,最终输出64位的密文。

DES算法的加密过程主要包括初始置换、16轮Feistel网络、逆初始置换等步骤。

首先是初始置换,将明文数据进行位重排列,使得加密的效果更加均匀。

然后是16轮Feistel网络的操作,每一轮都包括密钥的生成和密钥的运算。

密钥的生成过程是将64位的密钥进行重排列和选择运算,生成每一轮所需要的子密钥。

密钥的运算过程是将子密钥与32位明文数据进行异或操作,然后再通过一系列的替换和置换运算,得到新的32位数据。

最后是逆初始置换,将加密后的数据进行反向重排列,得到最终的64位密文数据。

实验中,对于给定的明文和密钥,我们首先需要将明文和密钥转换成二进制形式。

然后根据初始置换表和选择运算表,将明文和密钥进行重排列。

接下来进入16轮Feistel网络的循环中,每一轮都按照密钥的生成和运算过程进行操作。

最后通过逆初始置换表,将加密后的数据进行反向重排列,得到最终的密文。

DES算法的优点是运算速度较快,加密强度较高,安全可靠,广泛应用于网络通信和数据保密领域。

但DES算法也存在一些缺点,主要是密钥长度较短,为56位,容易受到暴力破解攻击;DES算法的设计和实现已经有一定历史了,现在已经有更安全和更高效的算法可供选择。

在实验中,我使用Python语言编写了DES算法的加密程序,在给定的明文和密钥下进行了测试。

实验结果表明,DES算法可以成功加密数据,并且在解密过程中能够准确还原原始数据。

总结来说,DES加密算法是一种经典的对称加密算法,通过初始置换、Feistel网络和逆初始置换等步骤,可以将明文数据加密成密文数据。

DES算法在保证加密强度和运算速度的同时,也有一些缺点需要注意。

因此,在实际应用中需要根据具体的需求和安全要求选择合适的加密算法。

信息安全技术实验报告

信息安全技术实验报告

一、实验背景随着信息技术的飞速发展,信息安全已经成为当今社会的重要议题。

为了提高学生对信息安全技术的理解和实践能力,我们开展了信息安全技术实验课程。

本实验旨在让学生通过实际操作,加深对密码学、网络安全、恶意代码防范等知识点的理解,并掌握相应的安全防护技能。

二、实验目的1. 理解密码学的基本原理,掌握常用加密算法的使用方法。

2. 了解网络安全的基本概念,掌握防火墙、入侵检测等安全防护技术。

3. 熟悉恶意代码的防范方法,提高计算机安全意识。

4. 培养学生的实践动手能力和团队协作精神。

三、实验内容1. 密码学实验(1)实验名称:DES加密算法实验(2)实验目的:掌握DES加密算法的原理和使用方法。

(3)实验内容:使用Python编写程序,实现DES加密和解密功能。

2. 网络安全实验(1)实验名称:防火墙配置实验(2)实验目的:掌握防火墙的基本配置方法。

(3)实验内容:使用防火墙软件(如NAT防火墙)配置防火墙规则,实现对内外网络的访问控制。

(4)实验名称:入侵检测实验(5)实验目的:掌握入侵检测系统的原理和使用方法。

(6)实验内容:使用入侵检测软件(如Snort)进行网络流量分析,识别潜在入侵行为。

3. 恶意代码防范实验(1)实验名称:病毒分析实验(2)实验目的:掌握恶意代码的识别和分析方法。

(3)实验内容:使用杀毒软件(如瑞星杀毒)对恶意代码进行分析,了解其传播途径和危害。

四、实验步骤1. 密码学实验(1)安装Python开发环境。

(2)编写Python程序,实现DES加密和解密功能。

(3)测试程序,验证加密和解密效果。

2. 网络安全实验(1)安装防火墙软件。

(2)配置防火墙规则,实现对内外网络的访问控制。

(3)使用Snort进行网络流量分析,识别潜在入侵行为。

3. 恶意代码防范实验(1)下载恶意代码样本。

(2)使用杀毒软件对恶意代码进行分析。

(3)总结恶意代码的传播途径和危害。

五、实验结果与分析1. 密码学实验通过实验,掌握了DES加密算法的原理和使用方法,能够使用Python程序实现DES加密和解密功能。

des加密算法实验报告

des加密算法实验报告

des加密算法实验报告《des加密算法实验报告》摘要:本实验旨在研究和分析数据加密标准(Data Encryption Standard,DES)算法的原理和应用。

通过对DES算法的实验操作和结果分析,验证其在数据加密和解密过程中的可靠性和安全性。

一、实验目的1. 了解DES算法的基本原理和加密过程;2. 掌握DES算法的密钥生成和加密解密操作;3. 分析DES算法在数据加密中的应用和安全性。

二、实验原理DES算法是一种对称密钥加密算法,采用64位的明文和56位的密钥进行加密操作。

其基本加密过程包括初始置换、16轮的Feistel网络运算和最终置换。

在解密过程中,使用相同的密钥和逆向的Feistel网络运算来实现明文的恢复。

三、实验步骤1. 生成64位的明文和56位的密钥;2. 进行初始置换和16轮的Feistel网络运算;3. 进行最终置换并得到密文;4. 使用相同的密钥进行解密操作,恢复明文。

四、实验结果分析1. 经过实验操作,得到了正确的密文,并成功进行了解密操作;2. 分析了DES算法在数据加密中的安全性和可靠性,验证了其在信息安全领域的重要性和应用价值。

五、结论DES算法作为一种经典的对称密钥加密算法,具有较高的安全性和可靠性,在信息安全领域有着广泛的应用。

本实验通过对DES算法的实验操作和结果分析,验证了其在数据加密和解密过程中的有效性和实用性,为信息安全技术的研究和应用提供了重要的参考和借鉴。

综上所述,本实验对DES加密算法进行了深入研究和分析,得出了相应的实验结果和结论,为信息安全领域的相关研究和应用提供了有益的参考和借鉴。

密码学案例实验报告

密码学案例实验报告

一、实验背景随着信息技术的飞速发展,网络安全问题日益突出,加密技术作为保障信息安全的重要手段,在各个领域都得到了广泛应用。

本实验报告旨在通过实际操作,加深对密码学原理和算法的理解,提高加密和解密的能力。

二、实验目的1. 了解密码学的基本概念和分类;2. 掌握DES、AES等常用加密算法的原理和流程;3. 能够运用密码学工具进行加密和解密操作;4. 分析密码破解技术,提高安全意识。

三、实验内容1. 实验一:DES加密算法(1)实验原理DES(Data Encryption Standard)是一种经典的对称加密算法,它采用64位密钥和64位明文,经过16轮加密操作,生成64位密文。

(2)实验步骤① 编写程序实现DES加密算法的加解密功能;② 使用密钥对一段英文文本进行加密和解密;③ 分析加密和解密结果,验证算法的正确性。

2. 实验二:AES加密算法(1)实验原理AES(Advanced Encryption Standard)是一种广泛使用的对称加密算法,它支持128位、192位和256位密钥长度,具有速度快、安全性高等优点。

(2)实验步骤① 编写程序实现AES加密算法的加解密功能;② 使用不同长度的密钥对一段英文文本进行加密和解密;③ 分析加密和解密结果,验证算法的正确性。

3. 实验三:密码破解技术(1)实验原理密码破解技术是指通过尝试各种可能的密钥,来破解加密信息的技术。

常见的密码破解方法有穷举攻击、字典攻击、暴力破解等。

(2)实验步骤① 使用密码破解工具对加密文本进行破解;② 分析破解结果,了解不同破解方法的特点和适用场景;③ 提高安全意识,防范密码破解攻击。

四、实验结果与分析1. 实验一和实验二的结果表明,DES和AES加密算法能够正确地对文本进行加密和解密,验证了算法的正确性。

2. 通过实验三,我们了解到密码破解技术的种类和特点,提高了安全意识。

在实际应用中,应选择合适的加密算法和密钥长度,以提高安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.中北大学大学软件学院《网络攻击与防御》实验报告计算机科学与技术学院计算机系网络教研室制一、实验目的通过用DES算法对实际数据进行加密和解密来深刻了解DES的运行原理,进而加深对对称加密算法的理解与认识。

预备知识:1)数据加密标准(DES,Data Encryption Standard)是一种使用密钥加密的块密码,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。

它基于使用56位密钥的对称算法。

这个算法因为包含一些机密设计元素,相对短的密钥长度以及怀疑内含美国国家安全局(NSA)的后门而在开始时有争议,因此DES因此受到了强烈的学院派式的审查,并以此推动了现代的块密码及其密码分析的发展。

2) DES算法的入口参数有三个:Key、Data、Mode。

其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。

3)DES算法的安全性,DES现在已经不是一种安全的加密方法,主要因为它使用的56位密钥过短。

1999年1月,与电子前哨基金会合作,在22小时15分钟内即公开破解了一个DES密钥。

也有一些分析报告提出了该算法的理论上的弱点,虽然在实际中难以应用。

为了提供实用所需的安全性,可以使用DES的派生算法3DES来进行加密,虽然3DES也存在理论上的攻击方法。

在2001年,DES作为一个标准已经被高级加密标准(AES)所取代。

4)对称密码算法(Symmetric cipher):加密密钥和解密密钥相同,或实质上等同,即从一个易于推出另一个。

又称传统密码算法(Conventional cipher)、秘密密钥算法或单密钥算法。

5)分组密码(Block cipher):将明文分成固定长度的组,用同一密钥和算法对每一块加密,输出也是固定长度的密文。

——DES、IDEA、RC2、RC4、RC5 分组密码是将明文消息编码表示后的数字(简称明文数字)序列,划分成长度为n的组(可看成长度为n的矢量),每组分别在密钥的控制下变换成等长的输出数字(简称密文数字)序列。

6)CAP(Cryptographic Analysis Program)是由DR. Richard Spillman专门为教学而研制的密码制作与分析工具,已经在美国的很多高校得到了广泛地使用,受到了密码学习者的普遍欢迎。

二、实验环境操作系统:运行Windows ,VS2010编译环境。

三、实验内容与实验要求对学号姓名加解密任务一:DES加解密算法的原理DES算法的加密流程图及参数:DES的参数:密钥长度:56比特输入:64比特输出:64比特运算轮数:16DES解密过程与加密过程完全相似,只不过将16次迭代的子密钥顺序倒过来,即: m = DES-1(c) = IP-1 • T1•T2•.....T15• T16 • IP(c) 可以证明 DES-1 (DES (m) )=m任务二: DES算法的实现根据对DES算法的介绍,自己创建明文信息,并选择一个密钥,编写DES 密码算法的实现程序,实现加密和解密操作,并算结果将CAP4的运进行比较。

四、实验过程与分析在虚拟机SQLServer 2008中用Microsoft Visual Studio软件新建一个项目命名为DES。

导入加解密代码,编译运行。

在该项目所在的文件夹下新建如下四个.txt文件:1.txt key.txt 2.txt 3.txt在1.txt中写入要加密的学号和密码,key.txt中写入加密的密码,点击DES.exe运行,运行结果的加密密文在2.txt,解密后的内容在3.txt中。

加解密代码如下:#include "stdio.h"#include "memory.h"#include "time.h"#include "stdlib.h"#define PLAIN_FILE_OPEN_ERROR -1#define KEY_FILE_OPEN_ERROR -2#define CIPHER_FILE_OPEN_ERROR -3#define OK 1typedef char ElemType;//初始置换表IPint IP_Table[64] = { 57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3,61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,56,48,40,32,24,16,8,0,58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4,62,54,46,38,30,22,14,6};//逆初始置换表IP^-1int IP_1_Table[64] = {39,7,47,15,55,23,63,31,38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,34,2,42,10,50,18,58,26,33,1,41,9,49,17,57,25,32,0,40,8,48,16,56,24};//扩充置换表Eint E_Table[48] = {31, 0, 1, 2, 3, 4,3, 4, 5, 6, 7, 8,7, 8,9,10,11,12,11,12,13,14,15,16,15,16,17,18,19,20,19,20,21,22,23,24,23,24,25,26,27,28,27,28,29,30,31, 0};//置换函数Pint P_Table[32] = {15,6,19,20,28,11,27,16,0,14,22,25,4,17,30,9,1,7,23,13,31,26,2,8,18,12,29,5,21,10,3,24};//S盒int S[8][4][16] =//S1{{{14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7},{0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8},{4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0}, {15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13}}, //S2{{15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10}, {3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5},{0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15},{13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9}}, //S3{{10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8}, {13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1},{13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7}, {1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12}}, //S4{{7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15}, {13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9},{10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4},{3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14}}, //S5{{2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9}, {14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6},{4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14},{11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3}}, //S6{{12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11},{10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8}, {9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6}, {4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13}}, //S7{{4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1}, {13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6}, {1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2}, {6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12}}, //S8{{13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7}, {1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2}, {7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8}, {2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11}}}; //置换选择1int PC_1[56] = {56,48,40,32,24,16,8,0,57,49,41,33,25,17,9,1,58,50,42,34,26,18,10,2,59,51,43,35,62,54,46,38,30,22,14,6,61,53,45,37,29,21,13,5,60,52,44,36,28,20,12,4,27,19,11,3};//置换选择2int PC_2[48] = {13,16,10,23,0,4,2,27,14,5,20,9,22,18,11,3,25,7,15,6,26,19,12,1,40,51,30,36,46,54,29,39,50,44,32,46,43,48,38,55,33,52,45,41,49,35,28,31};//对左移次数的规定int MOVE_TIMES[16] = {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1};//字节转换成二进制int ByteToBit(ElemType ch, ElemType bit[8]){int cnt;for(cnt = 0;cnt < 8; cnt++){*(bit+cnt) = (ch>>cnt)&1;}return 0;}//二进制转换成字节int BitToByte(ElemType bit[8],ElemType *ch){int cnt;for(cnt = 0;cnt < 8; cnt++){*ch |= *(bit + cnt)<<cnt;}return 0;}//将长度为8的字符串转为二进制位串int Char8ToBit64(ElemType ch[8],ElemType bit[64]){int cnt;for(cnt = 0; cnt < 8; cnt++){ByteToBit(*(ch+cnt),bit+(cnt<<3));}return 0;}//将二进制位串转为长度为8的字符串int Bit64ToChar8(ElemType bit[64],ElemType ch[8]){int cnt;memset(ch,0,8);for(cnt = 0; cnt < 8; cnt++){BitToByte(bit+(cnt<<3),ch+cnt);}return 0;}//密钥置换1int DES_PC1_Transform(ElemType key[64], ElemType tempbts[56]){ int cnt;for(cnt = 0; cnt < 56; cnt++){tempbts[cnt] = key[PC_1[cnt]];}return 0;}//密钥置换2int DES_PC2_Transform(ElemType key[56], ElemType tempbts[48]){ int cnt;for(cnt = 0; cnt < 48; cnt++){tempbts[cnt] = key[PC_2[cnt]];}return 0;}//循环左移int DES_ROL(ElemType data[56], int time){ElemType temp[56];//保存将要循环移动到右边的位memcpy(temp,data,time);memcpy(temp+time,data+28,time);//前28位移动memcpy(data,data+time,28-time);memcpy(data+28-time,temp,time);//后28位移动memcpy(data+28,data+28+time,28-time);memcpy(data+56-time,temp+time,time);return 0;}//生成子密钥int DES_MakeSubKeys(ElemType key[64],ElemType subKeys[16][48]){ ElemType temp[56];int cnt;DES_PC1_Transform(key,temp);//PC1置换for(cnt = 0; cnt < 16; cnt++){//16轮跌代,产生16个子密钥DES_ROL(temp,MOVE_TIMES[cnt]);//循环左移DES_PC2_Transform(temp,subKeys[cnt]);//PC2置换,产生子密钥 }return 0;}//IP置换int DES_IP_Transform(ElemType data[64]){int cnt;ElemType temp[64];for(cnt = 0; cnt < 64; cnt++){temp[cnt] = data[IP_Table[cnt]];}memcpy(data,temp,64);return 0;}//IP逆置换int DES_IP_1_Transform(ElemType data[64]){int cnt;ElemType temp[64];for(cnt = 0; cnt < 64; cnt++){temp[cnt] = data[IP_1_Table[cnt]];}memcpy(data,temp,64);return 0;}//扩展置换int DES_E_Transform(ElemType data[48]){int cnt;ElemType temp[48];for(cnt = 0; cnt < 48; cnt++){temp[cnt] = data[E_Table[cnt]];}memcpy(data,temp,48);return 0;}//P置换int DES_P_Transform(ElemType data[32]){int cnt;ElemType temp[32];for(cnt = 0; cnt < 32; cnt++){temp[cnt] = data[P_Table[cnt]];}memcpy(data,temp,32);return 0;}//异或int DES_XOR(ElemType R[48], ElemType L[48] ,int count){ int cnt;for(cnt = 0; cnt < count; cnt++){R[cnt] ^= L[cnt];}return 0;}//S盒置换int DES_SBOX(ElemType data[48]){int cnt;int line,row,output;int cur1,cur2;for(cnt = 0; cnt < 8; cnt++){cur1 = cnt*6;cur2 = cnt<<2;//计算在S盒中的行与列line = (data[cur1]<<1) + data[cur1+5];row = (data[cur1+1]<<3) + (data[cur1+2]<<2)+ (data[cur1+3]<<1) + data[cur1+4];output = S[cnt][line][row];//化为2进制data[cur2] = (output&0X08)>>3;data[cur2+1] = (output&0X04)>>2;data[cur2+2] = (output&0X02)>>1;data[cur2+3] = output&0x01;}return 0;}//交换int DES_Swap(ElemType left[32], ElemType right[32]){ElemType temp[32];memcpy(temp,left,32);memcpy(left,right,32);memcpy(right,temp,32);return 0;}//加密单个分组int DES_EncryptBlock(ElemType plainBlock[8], ElemType subKeys[16][48], ElemType cipherBlock[8]){ElemType plainBits[64];ElemType copyRight[48];int cnt;Char8ToBit64(plainBlock,plainBits);//初始置换(IP置换)DES_IP_Transform(plainBits);//16轮迭代for(cnt = 0; cnt < 16; cnt++){memcpy(copyRight,plainBits+32,32);//将右半部分进行扩展置换,从32位扩展到48位DES_E_Transform(copyRight);//将右半部分与子密钥进行异或操作DES_XOR(copyRight,subKeys[cnt],48);//异或结果进入S盒,输出32位结果DES_SBOX(copyRight);//P置换DES_P_Transform(copyRight);//将明文左半部分与右半部分进行异或DES_XOR(plainBits,copyRight,32);if(cnt != 15){//最终完成左右部的交换DES_Swap(plainBits,plainBits+32);}}//逆初始置换(IP^1置换)DES_IP_1_Transform(plainBits);Bit64ToChar8(plainBits,cipherBlock);return 0;}//解密单个分组int DES_DecryptBlock(ElemType cipherBlock[8], ElemType subKeys[16][48],ElemType plainBlock[8]){ElemType cipherBits[64];ElemType copyRight[48];int cnt;Char8ToBit64(cipherBlock,cipherBits);//初始置换(IP置换)DES_IP_Transform(cipherBits);//16轮迭代for(cnt = 15; cnt >= 0; cnt--){memcpy(copyRight,cipherBits+32,32);//将右半部分进行扩展置换,从32位扩展到48位DES_E_Transform(copyRight);//将右半部分与子密钥进行异或操作DES_XOR(copyRight,subKeys[cnt],48);//异或结果进入S盒,输出32位结果DES_SBOX(copyRight);//P置换DES_P_Transform(copyRight);//将明文左半部分与右半部分进行异或DES_XOR(cipherBits,copyRight,32);if(cnt != 0){//最终完成左右部的交换DES_Swap(cipherBits,cipherBits+32);}}//逆初始置换(IP^1置换)DES_IP_1_Transform(cipherBits);Bit64ToChar8(cipherBits,plainBlock);return 0;}//加密文件int DES_Encrypt(char *plainFile, char *keyStr,char *cipherFile){ FILE *plain,*cipher;int count;ElemType plainBlock[8],cipherBlock[8],keyBlock[8];ElemType bKey[64];ElemType subKeys[16][48];if((plain = fopen(plainFile,"rb")) == NULL){return PLAIN_FILE_OPEN_ERROR;}if((cipher = fopen(cipherFile,"wb")) == NULL){return CIPHER_FILE_OPEN_ERROR;}//设置密钥memcpy(keyBlock,keyStr,8);//将密钥转换为二进制流Char8ToBit64(keyBlock,bKey);//生成子密钥DES_MakeSubKeys(bKey,subKeys);while(!feof(plain)){//每次读8个字节,并返回成功读取的字节数if((count = fread(plainBlock,sizeof(char),8,plain)) == 8){ DES_EncryptBlock(plainBlock,subKeys,cipherBlock);fwrite(cipherBlock,sizeof(char),8,cipher);}}if(count){//填充memset(plainBlock + count,'\0',7 - count);//最后一个字符保存包括最后一个字符在内的所填充的字符数量plainBlock[7] = 8 - count;DES_EncryptBlock(plainBlock,subKeys,cipherBlock);fwrite(cipherBlock,sizeof(char),8,cipher);}fclose(plain);fclose(cipher);return OK;}//解密文件int DES_Decrypt(char *cipherFile, char *keyStr,char *plainFile){ FILE *plain, *cipher;int count,times = 0;long fileLen;ElemType plainBlock[8],cipherBlock[8],keyBlock[8];ElemType bKey[64];ElemType subKeys[16][48];if((cipher = fopen(cipherFile,"rb")) == NULL){return CIPHER_FILE_OPEN_ERROR;}if((plain = fopen(plainFile,"wb")) == NULL){return PLAIN_FILE_OPEN_ERROR;}//设置密钥memcpy(keyBlock,keyStr,8);//将密钥转换为二进制流Char8ToBit64(keyBlock,bKey);//生成子密钥DES_MakeSubKeys(bKey,subKeys);//取文件长度fseek(cipher,0,SEEK_END); //将文件指针置尾fileLen = ftell(cipher); //取文件指针当前位置rewind(cipher); //将文件指针重指向文件头while(1){//密文的字节数一定是8的整数倍fread(cipherBlock,sizeof(char),8,cipher);DES_DecryptBlock(cipherBlock,subKeys,plainBlock); times += 8;if(times < fileLen){fwrite(plainBlock,sizeof(char),8,plain);}else{break;}}//判断末尾是否被填充if(plainBlock[7] < 8){for(count = 8 - plainBlock[7]; count < 7; count++){if(plainBlock[count] != '\0'){break;}}}if(count == 7){//有填充fwrite(plainBlock,sizeof(char),8 - plainBlock[7],plain);}else{//无填充fwrite(plainBlock,sizeof(char),8,plain);}fclose(plain);fclose(cipher);return OK;}int main(){DES_Encrypt("1.txt","key.txt","2.txt"); //1.txt是明文源文件,2.txt是加密之后的文件 ,key.txts是密钥system("pause");DES_Decrypt("2.txt","key.txt","3.txt");getchar();return 0;}五、实验结果总结运行结果如下:心得:(1)通过本次实验我学会了用DES加密算法加密和解密。

相关文档
最新文档