第七章 - 大连理工大学化工原理及实验精品课程

合集下载

大连工业大学化工原理第七章液体精馏(陈)

大连工业大学化工原理第七章液体精馏(陈)
24
残液W
设釜中液体量W,组成x, 经过时间dt后,液体量减少dW, 液相组成减少dx,
t 时刻 t+dt时刻 液相减少
易挥发组分
气相增加 Wx = (W dW )( x dx ) + ydW
略去高阶微分, W1 积分得 ln W2
釜内原料液量
dx yx x
1 2
x
釜内残液量
y f ( x ) 相平衡方程
o p o P pB yA A o o P p A pB
7
相平衡常数 并非常数
3、气液相平衡图
• x(y)-t图
t-x线 泡点线 混合液 平衡温 度与液 相组成 之间关 系 P=Const. A 温度t→ t-y线 露点线 混合液 平衡温 度与气 相组成 之间关 系
8
D 过热蒸汽区 D’ G F E 两相区 B’ B 液相区 C
但 不再是常数。例如:
101.3kPa 下乙醇-水物系的相对挥发度随组成的变化关系 x y α 0.02 0.175 10.4 0.10 0.43 6.79 0.20 0.525 4.42 0.35 0.595 2.73 0.50 0.657 1.92 0.65 0.725 1.42 0.75 0.785 1.20 0.894 0.894 1.00
pi i xi
19
上节重点内容回顾
7、 可作为用蒸馏方法分离混合液难易程 度的判据。
混合液中两组分挥发度之比
A y A x B y A / yB y(1 x ) AB B yB x A x A / xB (1 y ) x
8、双组分物系的相平衡方程
x y 1 ( 1) x
平衡蒸馏 (闪蒸) 按 蒸 馏 方 式 简单蒸馏 精馏 恒沸蒸馏 特殊精馏 萃取蒸馏 盐效应蒸馏 较易分离的物系或对 分离要求不高的物系

大连理工大学二一年硕士生入学考试《化工原理及实验》试题

大连理工大学二一年硕士生入学考试《化工原理及实验》试题

试题编号:586 考试日期:2001年1 月15日上午大连理工大学二○○一年硕士生入学考试《化工原理及实验》试题注:试题必须注明题号答在答题纸上,否则试卷作废一 填空(30)1 推导离心泵基本方程的两个基本假定是(1)(2)2 正位移泵有 , ;其流量调节采用3 多级压缩时,采用各级压缩比 ,原因是4 欲高效分离气体中的粉尘,当处理量很大时,常采用较小直径旋风分离器组,原因是5 液体沸腾由核状沸腾变为膜状沸腾时,壁温 ,传热性能6 某板框过滤机,恒压过滤1 小时得到滤液103m ,停止过滤用2 3m 清水横穿法洗涤(清水黏度与滤液黏度相同) 为得到最大生产能力,辅助时间应该控制在 小时(过滤介质阻力忽略不计)7 A 材料导热系数大于B 材料导热系数,且A ,B 厚度相同,对于平壁保温, 放在内层效果好,对于圆壁保温 放在内层效果好8 现设计一连续精馏塔,现在保持塔顶产品组成D x 和轻组分回收率不变,若采用较大的回流比,则理论塔板数将 而加热蒸汽的消耗量将 ;若进料中组成变轻,则进料位置应 ,使D x 和轻组分回收率不变;若将进料物流焓增大,则理论板数将 塔底再沸器热负荷将9 如果逆流气体吸收塔的填料高度可以无限增加,则当吸收因子A>1,在塔 端 相组成趋向极限组成是 ;当A<1时,则塔 端 相组成趋向极限组成是 10 对不饱和湿空气加热升温,则其湿球温度将 ,相对湿度将 露点温度将 空气的湿度将12 在萃取计算中,物系中溶质A 在两相中的分配系数可以表示为 而选择性系数可以表示为二 (3 分)简要回答在恒压过滤实验中如何测定过滤常数K 以及滤布阻力e V ,e三 (19分)由水库将水打入一敞口水池,水池水面比水库水面高50m ,要求的流量为903/m h ,输送管内径为156mm ,在阀门全开时,管长和各种局部阻力的当量长度的总和为1000m ,对所使用的泵在Q=65~1353/m h 范围内属于高效区,在高效区中,泵的性能曲线可以近似的用直线H=124.5-0.392Q 表示,此处的H 为泵的扬程m ,Q 为泵的流量3/m h ,泵的转速为2900r/min ,管子的摩擦系数可以取λ=0.025,水的密度ρ=10003/kg m 1 核算一下此泵能否满足要求2 如泵的效率在Q=903/m h 时可以取68%,求泵的轴功率,如果用阀门进行调节,由于阀门关小而损失的功率为多少?此时泵出口处的压力表如何变化?3 将泵的转速调为2600r/min ,并辅以阀门调节使流量达到要求的903/m h ,比第2问的情况节约能量百分之多少?与第2问相比,泵出口处的压力表读书如何变化?4画图示意以上各变化过程的工作点,并简要说明.四 (16分)拟用冷却水冷却某有机产品,产品流量30000/kg h ,温度149℃,潜热为240/kJ kg ,壳程冷凝传热系数为12002/W m K ,冷却水的温度为28℃,冷却后最高允许出口温度35℃,取冷却水的物性数据为黏度μ=0.77╳310-PaS ,比热p c =4.174 kJ/kg ℃ 导热系数λ=0.621W/mK ,密度ρ=9943/kg m ,试求:1 最少冷却水用量2 现在库存一单管程单壳程换热器,其传热管规格为φ25×2.5,长度为3m ,管子数目为170根,忽略管壁热阻,管程污垢热阻为6×410-2m ℃/W ,则该换热器是否够用?3 因扩产,产品量增加30%,冷却水量受水资源限制只能增加50%,能否保证冷凝任务完成,实际冷凝量是多少?五 (16分)拟用一精馏塔中分离某二元混合物A ,B ,塔顶设有一分凝器和一全凝器,分凝器中的液相作为塔顶回流,其气相作为产品在全凝器中冷凝,已知处于泡点状态,进料流量为200kmol/h ,其中轻组分A 的浓度为0.5(摩尔分率,下同)A ,B 间的相对挥发度α=2.5,操作回流比为2.0,现在要求塔顶产品A 组分浓度为95%,塔底产中B 组分的浓度为94%试求:1 分凝器的热负荷是多少?2 再沸器的热负荷是多少?3 塔顶第二块理论板的气相组成是多少4 若将塔板数不断增多,而且保持产品的组成和流率不变,则理论上再沸器的热负荷可以降至多少?塔顶蒸汽的冷凝潜热为21700/kJ kmol 塔釜液体汽化潜热为21800/k J k m o l六 (17分)现在有一逆流操作的填料吸收塔,塔径为1.2m ,用清水脱除原料气中的甲醇,已知原料气的处理量是20003/m h (标准状况)原料气中含甲醇的摩尔分数为0.08。

大连理工-化工原理课件

大连理工-化工原理课件

目录绪论前言第1章流体流动1.1 概述1.2 流体静力学1.3_流体动力学1.4 流体流动阻力1.5 管路计算1.6 流速与流量的测定1.7 流体流动与动量传递第2章流体输送设备2.1 概述2.2 离心泵2.3 容积式泵2.4 其他类型的叶片式泵2.5 各类泵的比较与选择2.6 通风机、鼓风机、压缩机和真空泵第3章流体相对颗粒(床层)的流动及机械分离3.1 概述3.2 颗粒及颗粒床层的特性3.3 颗粒与颗粒间的相对运动3.4 沉降3.5 流体通过固定床的流动3.6 过滤3.7 固体流态化及气力输送3.8 气体的其他净化方法第4章传热4.1 概述4.2 热传导4.3 对流传热4.4 表面传热系数的经验关联4.5 辐射传热4.6 传热过程计算4.7 换热器第5章蒸发5.1 概述5.2 蒸发设备5.3 单效蒸发计算5.4 多效蒸发和提高加热蒸汽经济性的其他措施第6章蒸馏6.1 概述6.2 溶液气液相平衡6.3 简单蒸馏和平衡蒸馏6.4 精馏6.5 双组分连续精馏的设计计算6.6 间歇精馏6.7 恒沸精馏和萃取精馏6.8 多组分精馏6.9 特殊蒸馏6.10 板式塔大连理工大学化工原理(参赛课件)第7章气体吸收7.1 概述7.2 吸收过程中的质量传递7.3 相际间的质量传递7.4 低浓度气体吸收7.5 高浓度气体吸收7.6 多组分吸收过程7.7 化学吸收7.8 解吸操作7.9 填料塔第8章萃取8.1 概述8.2 液液相平衡关系8.3 部分互溶物系的萃取计算8.4 完全不互溶物系的萃取计算8.5 溶剂的选择及其他萃取方法8.6 浸取与超临界萃取8.7 萃取设备第9章干燥9.1 概述9.2 湿空气的性质及湿度图9.3 固体物料干燥过程的相平衡9.4 恒定干燥条件下的干燥速率9.5 干燥过程的设计计算9.6 干燥器第10章膜分离和吸附分离过程10.1 概述10.2 膜分离10.3 吸附化工原理实验是深入学习化工过程及设备原理、将过程原理联系工程实际、掌握化工单元操作研究方法的重要课程,是培养和训练化工技术人才分析解决工程实际问题能力的重要环节。

化工原理课程设计PPT课件

化工原理课程设计PPT课件
(2)溢流装置 采用单溢流 弓形降液管 平形受液盘及平形溢流堰 不设进口堰
ppt精选版
42
化工原理课程设计——筛板精馏塔的设计
hOW
hW
HT
Hd
hW
h0
h1
ppt精选版
43
化工原理课程设计——筛板精馏塔的设计 WC
lW A f
R
t
Aa
WD
x
WS
Dppt精选版
44
化工原理课程设计——筛板精馏塔的设计
进行设备选型,并提出保证过程正常、安全运行
所需要的检测和计量参数。
准确而迅速地进行过程计算及主要设备的工
艺设计计算。
用精练的语言、简洁的文字、清晰的图表来
表达自己的设计思想和计算结果。
ppt精选版
5
化工原理课程设计——筛板精馏塔的设计
二、化工原理课程设计的内容
(1)设计方案简介 (2)主要设备的工艺设计计算 (3)典型辅助设备的选型和计算 (4)工艺流程简图 (5)主体设备工艺条件图
H T h L 0 .4 0 .0 6 0 .3m 4
提馏段
1
LS VS
Lvmm((提提)) 2
史密斯关联图
C 20
D 4VS u
max C
L V V
C
C2
0
20
0.2
可取安全系数为(安全系数0.6—0.8)
u(0.6~0.8)umax
塔径圆整
ppt精选版
41
化工原理课程设计——筛板精馏塔的设计
ppt精选版
6
化工原理课程设计——筛板精馏塔的设计
化工原理课程设计需要准备的用具
ppt精选版
7

化工原理实验绪论大连理工大学化工原理及实验课程

化工原理实验绪论大连理工大学化工原理及实验课程
化工原理实验教学研究5 室
量纲分析法的步骤
找出影响过程的独立变量 确定独立变量所涉及的基本量纲 构造变量和自变量间的函数式,通常以指数
方程的形式表示 用基本的量纲表示所有独立变量的量纲,并
写出独立变量的量纲式 依据物理方程的量纲一致性和π定理得出量
纲为一数群方程 通过实验归纳总结两岗位一的具体函数式
传热系数
化工原理实验教学研1究4 室
四、实验内容简介
➢ 板式塔流体力学性能实验 ➢ 填料塔流体力学性能实验 ➢ 气体膜分离实验 ➢ 液-液萃取实验 ➢ 单层圆筒流化床干燥实验
化工原理实验教学研1究5 室
五、实验课堂纪律和注意事项
准时进入教室,不得迟到或早退,不得无故缺课 遵守课堂纪律,严肃认真的进行实验。不准吸烟,打闹说
化工原理实验教学研究9 室
三、实验要求
3.实验报告
实验结束后应及时处理实验报告,按实验要求,认真 完成报告。实验报告应包括以下内容
实验题目
实验目的或任务
实验基本原理
试验设备及流程(绘制简图),简要操作说明
原始数据记录
数据整理方法及计算实例,实验结果可用列表,图形曲线 或经验公式来表示
分析讨论
一、实验意义及目的
配合理论教学,通过实验从实践中进一步 学习,掌握和运用学过的基本理论
运用学过的化工基本理论,分析实验过程 中的各种现象和问题,培养训练学生分析 能力和解决问题的能力
了解化工实验设备的结构,特点,学习常 用实验仪器仪表的使用,使学生掌握化工 实验的基本方法,并通过实验操作训练学 生的实验技能,通过设计性综合实验,提 高学生素质。
化工原理实验教学研究1 室
一、实验意义及目的
以用计算机进行实验数据的分析处理,编 写报告,培养训练学生实际计算和组织报 告的能力。

化工原理实验_大连理工大学中国大学mooc课后章节答案期末考试题库2023年

化工原理实验_大连理工大学中国大学mooc课后章节答案期末考试题库2023年

化工原理实验_大连理工大学中国大学mooc课后章节答案期末考试题库2023年1.燃烧必须具备可燃物、助燃物和点火源三大条件,缺一不可。

因此,可以采取尽量隔离的方式来防止实验室火灾发生。

参考答案:正确2.流体阻力实验中,必需用到的主要设备包括参考答案:离心泵、阀门、流量计、差压变送器、温度传感器3.为保证板式精馏塔具有较高的塔板效率,工业精馏塔塔板上主要的气液相接触状态为参考答案:泡沫态_喷射态4.流量计校正实验中,可以采用的流量测定方法有参考答案:待测流量计与标准流量计串联_使用置于电子称上方的容器收集液体,计量单位时间收集的液体质量_使用带刻度的容器收集液体,计量单位时间收集的液体体积5.下列流量计中,可以水平安装的流量计有参考答案:文丘里流量计_孔板流量计_涡轮流量计6.实验中如果出现了异常现象或实验数据有明显误差,正确的做法是参考答案:和指导教师一起研究异常现象发生的原因,解决问题_在数据记录中如实注明_对异常现象或有明显误差的数据做出合理的分析、解释7.在进行球阀的局部阻力测试时,可以通过管路系统中的()调整流量参考答案:管路系统中除待测球阀之外的其他阀门开度8.在实验室发生事故时,现场人员应迅速组织、指挥,切断事故源,尽量阻止事态蔓延、保护现场;及时有序的疏散学生等人员,对现场已受伤人员做好自助自救、保护人身及财产。

参考答案:正确9.为方便进出专人管理的设备房间,可自行配制钥匙。

参考答案:错误10.实验室内可以堆放个人物品。

参考答案:错误11.为了预防电击(触电),电气设备的金属外壳须接地,最好是埋设接地电阻很小专用线。

参考答案:正确12.动某些非固定安装的电气设备时(如电风扇,照明灯),可以不必切断电源。

参考答案:错误13.有易燃易爆危险品的实验室禁止使用明火。

参考答案:正确14.从事特种作业(如电工、焊工、辐射、病原微生物等)的人员,必须接受相关的专业培训通过考核并持有相应的资质证书才能上岗。

化工原理课程设计

化工原理课程设计

化工原理课程设计任务书目录一前言 (3)二设计任务 (4)三设计条件 (4)四设计方案 (5)1.吸收剂的选择 (5)2.流程图及流程说明 (5)3.塔填料的选择 (7)五工艺计算 (11)1.物料衡算,确定塔顶、塔底的气液流量和组成 (11)2.塔径的计算 (12)3. 填料层高度计算 (14)4. 填料层压降计算 (16)5. 液体分布装置 (17)6. 液体再分布装置 (19)7. 填料支撑装置 (20)8. 流体进出口装置 (21)9. 水泵及风机的选型 (22)六设计一览表 (23)七对本设计的评述 (23)八参考文献 (24)九主要符号说明 (24)十致谢 (25)一前言在石油化工、食品医药及环境保护等领域,塔设备属于使用量大应用面广的重要单元设备;塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中;所以塔设备的研究一直是国内外学者普遍关注的重要课题;在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气;吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的;塔设备按其结构形式基本上可分为两类:板式塔和填料塔;以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔;近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点;因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔;如今,直径几米甚至几十米的大型填料塔在工业上已非罕见;随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中;氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染, 氨对接触的皮肤组织都有腐蚀和刺激作用,可以吸收皮肤组织中的水分,使组织蛋白变性,并使组织脂肪皂化,破坏细胞膜结构;氨的溶解度极高,所以主要对动物或人体的上呼吸道有刺激和腐蚀作用,常被吸附在皮肤粘膜和眼结膜上,从而产生刺激和炎症;可麻痹呼吸道纤毛和损害粘膜上皮组织,使病原微生物易于侵入,减弱人体对疾病的抵抗力;氨通常以气体形式吸入人体,氨被吸入肺后容易通过肺泡进入血液,与血红蛋白结合,破坏运氧功能;进入肺泡内的氨,少部分为二氧化碳所中和,余下被吸收至血液,少量的氨可随汗液、尿液或呼吸排出体外; 短期内吸入大量氨气后会出现流泪、咽痛、咳嗽、胸闷、呼吸困难、头晕、呕吐、乏力等;若吸入的氨气过多,导致血液中氨浓度过高,就会通过三叉神经末梢的反射作用而引起心脏的停搏和呼吸停止,危及生命;因此,吸收空气中的氨,防止氨超标具有重要意义;本次课程设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的空气;设计采用填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力;二 设计任务完成填料塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和填料塔装置图,编写设计说明书;三 设计条件查表知,25C 下水的饱和蒸气压为,干空气的密度为m 3,20C 下氨气的密度为m 3; 水蒸气的饱和分压为:KPa P P S V 2183.27.0169.3=⨯=⨯=ϕ 湿空气的湿度:绝干气水汽kg /01393.02183.23.1012183.2622.0622.0kg P P P H VV =-⨯=-= 湿空气的比体积:绝干气湿空气kg m t H v H /8621.012732984.221801393.02913.1013.1012732734.22182913=⨯⨯⨯⎪⎭⎫ ⎝⎛+=⨯+⨯⨯⎪⎭⎫ ⎝⎛+= 标准状态下,湿空气干空气339359.02982730216.11m m =⨯=氨气的体积分数=%68.19%1009359.07601.014.0=⨯⨯ 回收率=%64.99%1001968.00007.01968.0=⨯- 综上所述,本课程设计中填料塔的主要设计参数如下:1、气体混合物成分:空气和氨气;2、氨的含量: %体积;3、混合气体流量: 5000m 3/h ;4、操作温度:303K ;5、混合气体压力:;6、回收率: %;四 设计方案吸收剂的选择吸收过程是依靠气体溶质在吸收剂中的溶解来实现的,因此,吸收剂性能的优劣,是决定吸收操作效果的关键之一,选择吸收剂时应着重考虑以下几方面;1溶解度吸收剂对溶质组分的溶解度要大,以提高吸收速率并减少吸收剂的用量; 2选择性吸收剂对溶质组分要有良好的吸收能力,而对混合气体中其他组分不吸收或吸收甚微,否则不能直接实现有效分离;3挥发度要低操作温度下吸收剂的蒸气压要低,以减少吸收和再生过程中吸收剂的挥发损失;4黏度吸收剂在操作温度下的黏度越低,其在塔内的流动性越好,有助于传质速率和传热速率的提高;5其他所选用的吸收剂应尽可能满足无毒性、无腐蚀性,不易燃易爆、不发泡、冰点低、价廉易得以及化学性质稳定等要求;吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低;所以本课程设计选择用清水作吸收剂,氨气为吸收质;水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求;且氨气不作为产品,故采用纯溶剂;流程选择及流程说明吸收装置的流程主要有以下几种:1逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作;逆流操作的特点是传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高;工业生产中多用逆流操作;2并流操作气、液两相均从塔顶流向,此即并流操作;并流操作的特点是,系统不受液流限制,可提高操作气速,以提高生产能力;并流操作通常用于以下情况:当吸收过程的平衡曲线较平坦时,流向对推动力影响不大;易溶气体的吸收或处理的气体不需吸收很完全;吸收剂用量特别大,逆流操作易引起液泛;3吸收剂部分再循环操作在逆流操作系统中,用泵将吸收塔排除液体的一部分冷却后与补充的新鲜吸收剂一同送回塔内,即为部分再循环操作;通常用于以下操作:当吸收剂用量较小,为提高塔的液体喷淋密度;对于非等温吸收过程,为控制塔内的温升,需取出一部分热量;该流程特别适宜于相平衡常数m值很小的情况,通过吸收液的部分再循环,提高吸收剂的使用效率;应当指出,吸收剂部分再循环操作较逆流操作的平均推动力要低,且需设置循环泵,操作费用增加;4多塔串联操作若设计的填料层高度过大,或由于所处理物料等原因需经常清理填料,为便于维修,可把填料层分装在几个串联的塔内,每个吸收塔通过的吸收剂和气体量都相等,即为多塔串联操作;此种操作因塔内需留较大空间,输液、喷淋、支撑板等辅助装置增加,使设备投资加大;5串联-并联混合操作若吸收过程处理的液量很大,如果用通常的流程,则液体在塔内的喷淋密度过大,操作气速势必很小否则易引起塔的液泛,塔的生产能力很低;实际生产中可采用气相作串联、液相作并联的混合流程;若吸收过程处理的液量不大而气相流量很大时,可采用液相作串联、气相作并联的混合流程;列出几种常见的吸收过程如图1;(a)并流 b逆流图1 吸收流程属高溶解度的吸收过程,为提高传质效率和分离效率,所以本设计选用用水吸收NH3逆流吸收流程;该填料塔中,氨气和空气混合气体,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的水逆流接触,在填料的作用下进行吸收;经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出;塔填料选择塔填料简称为填料是填料塔的核心构件,它提供了气、液两相相接触传质与传热的表面,其性能优劣是决定填料塔操作性能的主要因素;填料的比表面积越大,气液分布也就越均匀,传质效率也越高,它与塔内件一起决定了填料塔的性质;因此,填料的选择是填料塔设计的重要环节;塔填料的选择包括确定填料的种类、规格及材料;填料的种类主要从传质效率、通量、填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公称直径比值D/d;填料种类的选择要考虑分离工艺的要求,通常考虑一下几个方面:1传质效率传质效率即分离效率,它有两种表的方法:一是以理论级进行计算的表示方法,以每个理论级当量的填料层高度表示,即HETP值;另一方面是以传质速率进行计算的表示方法,以每个传质单元相当高度表示,即HTU值;在满足工艺要求的前提下,应选用传质效率高,即HEYP或HTU值低的填料;对于常用的工业填料,其HEYP或HTU值可由有关手册或文献中查到,也可以通过一些经验公式来估算;2通量在相同的液体负荷下,填料的泛点气速愈高或气相动能因子愈大,则通量愈大,塔的处理能力亦越大;因此在选择填料种类时,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料;对于大多数常用填料其泛点气速或气相动能因子可由有关手册或文献中查到,也可以通过一些经验公式来估算;3填料层的压降填料层的压降是填料的主要应用性能,填料层的压降越低,动力消耗越低,操作费用越小;选择低压降的填料对热敏性物系的分离尤为重要;比较填料的压降有两种方法,一是比较填料层单位高度的压降△P/Z;另一是比较填料层单位传质效率的比压降△P/NT;填料层的压降可用经验公式计算,亦可从有关图表中查出;4填料的操作性能填料的操作性能主要指操作弹性、抗污堵性及抗热敏性等;所选填料应具有较大的操作弹性,以保证塔内气、液负荷发生波动时维持操作稳定;同时,还应具有一定的抗污堵、抗热敏能力,以适应物料的变化及塔内温度变化;此外,所选的填料要便于安装、拆卸和检修;填料种类很多,根据填料方式不同,可分为散装填料和规整填料两大类;1、散装填料散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料;散装填料根据结构特点不同,可分为环形填料、鞍形填料、环鞍形填料及球形填料等;现介绍几种典型的散装填料;1拉西环填料其结构为外径与高度相等的圆环,可用陶瓷、塑料、金属等材质制造;拉西环填料的气液分布较差,传质速率低,阻力大,通量小,目前工业上已很少用了;2鲍尔环填料鲍尔环是在拉西环的基础上改进而得;其结构为在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭,可用陶瓷、塑料、金属等材质制造;鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气体阻力小,液体分布均匀;与拉西环相比,其通量可增加50%左右;鲍尔环是目前应用较广的填料之一;3阶梯环填料阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边;由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力;锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的间隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高;阶梯环的综合性能优于鲍尔环,成为目前使用的环形填料中最为优良的一种;4弧鞍填料弧鞍填料属鞍形填料的一种,其形状如同马鞍,一般采用瓷质材料制成;弧鞍填料的特点是表面全部敞开,不分内外,液体在表面来那个侧均匀的流动,表面利用率高,流道呈弧形,流动阻力小;其缺点是易发生套叠,致使一部分填料表面被重合,使传质效率降低;弧鞍填料强度较差,容易破碎,工业生产应用不多;5矩鞍填料将弧鞍填料两端的弧形面改成矩形面,且两面大小不等,即成为矩鞍填料;矩鞍填料堆积时不会套叠,液体分布较均匀;矩鞍填料一般采用瓷质材料制成,其性能优于拉西环;目前国内绝大多数应用瓷拉西环的场合,均已被矩鞍填料所取代;6环矩鞍填料环矩鞍填料是兼顾环形和鞍形结构特点而设计出的一种新型填料,该填料一般以金属材质制成,故又称为金属环矩鞍填料;环矩鞍填料将环形填料和鞍形填料两者的优点集于一体,其综合性能优于鲍尔环和阶梯环,是工业应用最为普遍的一种金属散装填料;下图为几种实体填料:拉西环鲍尔环阶梯环弧鞍形填料矩鞍形填料图2 几种实体填料2、规整填料规整填料是按一定的几何图形排列,整齐堆砌的填料;规整填料种类很多,根据几何结构可分为格栅填料、波纹填料、脉冲填料等;工业上应用的规整填料绝大部分为波纹填料;波纹填料按结构分为网波纹填料和板波纹填料两大类,可用陶瓷、塑料、金属等材质制造;金属丝网波纹填料是网波纹填料的主要形式,是由金属丝网制成的;其特点是压降低、分离效率高,特别适用于精密精馏及真空精馏装置,为难分离物系、热敏性物系的精馏提供了有效的手段;尽管其造价高,但因性能优良仍得到广泛使用;金属板波纹填料是板波纹填料的主要形式;该填料的波纹板片上冲压有许多φ的小孔,可起到粗分配板片上的液体,加强横向混和作用;波纹板片上轧成4φmm6~mm细小沟纹,可起到细分配板片上的液体、增强表面润湿性能的作用;金属孔板波纹填料强度高,耐腐蚀性强,特别适用于大气直径塔及气、液负荷较大的场合;波纹填料的优点是结构紧凑,阻力小,传质效率高,处理能力大,比表面积大;其缺点是不适用于处理黏度大、易聚合或有悬浮物的材料,且装卸、清理困难,造价高;综上所述,经分析各填料特点、性能,本课程设计选择散装阶梯环填料;工业上,填料的材质分为陶瓷、金属和塑料三大类;1陶瓷填料陶瓷填料具有良好的耐腐蚀性及耐热性,一般能耐除氢氟酸以外的常见的各种无机酸、有机酸的腐蚀,对强碱介质,可以选用耐碱配方制造的耐碱陶瓷填料;陶瓷填料因其质脆、易碎,不易在高冲击强度下使用;陶瓷填料价格便宜,具有很好的表面润湿性,工业上,主要用于气体吸收、气体洗涤、液体萃取等过程;2金属填料金属填料可用多种材质制成,金属材料的选择主要根据物系的腐蚀性和金属材质的耐腐蚀性来综合考虑;碳钢填料造价低,且具有良好的表面湿润性能,对于无腐蚀或低腐蚀性物系应优先考虑使用;不锈钢填料耐腐蚀性强,一般能耐cl 以外常见物系的腐蚀,但其造价较高;钛材、特种合金钢等材质制成的填料造价级高,一般只在某些腐蚀性极强的物系下使用;,与同种类型、同种规格的陶瓷、塑料填料相比,它的通量金属填料可制成薄壁结构~大、气体阻力小,且具有很高的抗冲击性能,能在高温、高压、高冲击强度下使用,工业应用主要以金属填料为主;3塑料填料塑料填料的材质主要包括聚丙烯、聚乙烯及聚氯乙烯等,国内一般多采用聚丙烯材质;塑料填料的耐腐蚀性能较好,可耐一般的无机酸、碱和有机溶剂的腐蚀;其耐温性良好,可长期在100℃以下使用;聚丙烯填料在低温低于0℃时具有冷脆性,在低于0℃的条件下使用要谨慎,可选用耐低温性能好的聚氯乙烯填料;塑料填料具有轻质、廉价、耐冲击、不易破碎等优点,多用于吸收、解吸、萃取、除尘等装置中;塑料填料的缺点是表面润湿性能较差,在某些特殊应用场合,需要对其表面进行处理,以提高表面润湿性能;所以本次课程设计选用聚丙烯填料;通常,散装填料与规整填料的规格标示方法不同,选择地方法亦不尽相同;①散装填料规格的选择散装填料的规格通常是指填料的公称直径;工业塔常用的散装填料主要有DN16、DN25、DN38、DN50、DN76等几种规格;同类填料,尺寸越小,分离效率越高,但阻力增加,通量减小,填料费用也增加很多;而大尺寸的填料应用于小塔径中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低;本课程设计处理量不大,所用的塔直径不会太大,故选用38mm;②规整填料规格的选择 工业上常用规整填料的型号和规格的表示方法很多,国内习惯用比表面积表示,主要有125、150、250、350、500、700等几种规格;同种类型的规整填料,其比表面积越大,传质效率越高,但阻力增加,通量减小,填料费用也明显增加;选用时应从分类要求、通量要求、场地要求、物料性质及设备投资、操作费用等方面综合考虑,使所选填料既能满足工艺要求,又具有经济合理性;应当指出,一座填料塔可以选用同种类型、同一规格的填料,也可以使用同种类型、不同规格的填料;可以选用同种类型的填料,也可以选用不同类型的填料;有的塔段可选用规整填料,而有的塔段可选用散装填料;综上所述选用38mm 聚丙烯阶梯环塔填料,其主要性能参数查表1得:比表面积a :32/m m空隙率ε:干填料因子Φ:16.175-m表1 国内阶梯环特性数据五 工艺计算查表知,30C 下空气和水的物理性质常数如下:空气:)/(067.01086.1/165.153h m kg s Pa m kg ⋅=⋅⨯==-μρ粘度:密度:水:253kg/h 940896dyn/cm 72.61007.80/7.995==⋅⨯==-L L L sPa m kg σμρ表面张力:粘度:密度:物料衡算,确定塔顶、塔底的气液流量和组成查表知,30C 下氨在水中的溶解度系数)/(4146.03kpa m kmol H ⋅= 亨利系数SLHM E ρ=相平衡常数3156.13.10102.184146.07.995=⨯⨯===P HM PE m S Lρ;进塔气相摩尔比为:2450.01968.011968.01=-=Y出塔气相摩尔比为:0008821.01968.01)9964.01(1968.02=--⨯=Y对于纯溶剂吸收过程,进塔液相组成为:02=X 清水 混合气体的平均摩尔质量为:混合气体的密度为:333/037.1313314.81064.26103.101m kg RT M P v =⨯⨯⨯⨯==-ρ 混合气体流量:)/(688.1944.2213132735000h kmol =⨯⨯惰性气体流量:)/(373.156)1968.01(688.194h kmol V =-⨯=最小液气比:3109.103156.12450.00008821.02450.0)(21212121min =--=--=--=*X m Y Y Y X X Y Y V L 取实际液气比为最小液气比的倍,则可得吸收剂用量为:液气比 069.1037.1500002.18484.307=⨯⨯=V L ωω经计算该吸收过程为低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据;混合气体的黏度可近似取为空气的黏度;塔径计算采用贝恩Bain-霍根Hougen 泛点关联式计算泛点速度: 气体质量流量:液相质量流量可近似按纯水的流量计算,即: 填料总比表面积:32/5.132m m a t = 水的黏度:s mPa L ⋅=8007.0μA 、K 取值可由表2查得;取泛点率为,即s m u u F /781.2973.37.07.0=⨯== 则 m uV D S7976.0781.214.33600/500044=⨯⨯==π圆整后取 D=常用的标准塔径为400、500、600、700、800、1000、1200、1400、1600、2000、2200 泛点率校核:s m u /765.28.0785.03600/50002=⨯=6959.0973.3/765.2/==F u u 对于散装填料,其泛点率的经验值为85.0~5.0/=F u u填料规格校核:805.2138800>==d D 液体喷淋密度校核:取最小润湿速率为:)/(08.0)(3min h m m L W ⋅= 所以 )/(6.105.13208.0)(23min min h m m a L U t W ⋅=⨯=⋅=经以上校核可知,填料塔直径选用m D 8.0=合理;填料层高度计算查表知, 0C , kpa 下,3NH 在空气中的扩散系数s cm D /17.02=o由23))((oo o T TP P D D G =,则303k ,kpa 下,3NH 在空气中的扩散系数为: 液相扩散系数s m D L /10105.229-⨯=液体质量通量为)/(785.110288.0785.002.18484.30722h m kg U L ⋅=⨯⨯= 气体质量通量为)/(462.103208.0785.0037.1500022h m kg U V ⋅=⨯⨯= 脱吸因数为6691.05.13109.13156.1=⨯==L mV S气相总传质单元数为:气相总传质单元高度采用修正的恩田关联式计算: 不同材质的бc 值见表3;表3 不同材质的бc 值查表知,2/427680/33h kg cm dyn c ==σ所以,3560.0})5.1329408967.995785.11028()1027.17.9955.132785.11028()883.25.132785.11028()940896427680(45.1exp{12.0205.08221.075.0=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯--=-t w a a气膜吸收系数由下式计算:)/(1206.0)303314.81036001988.05.132()3600101988.0037.1067.0()067.05.132462.10320(237.0)()()(237.0243147.0317.0kpa h m kmol RTDa D a U V t V V V v t V G ⋅⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⋅⋅=--ρμμκ液膜吸收系数由下式计算:6524.0)7.9951027.1883.2()360010105.27.995883.2()883.25.1323560.0785.11028(0095.0)()()(0095.031821932312132=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⋅⋅⋅⋅⋅⋅=---LL L L L L w L L gD a U ρμρμμκ表4 各类填料的形状系数查表4得:45.1=ψ 则ha a kpa h m kmol a a w L L w G G 170.3545.15.1323560.06524.0)/(561.845.15.1323560.01206.04.04.031.11.1=⨯⨯⨯=⋅⋅=⋅⋅=⨯⨯⨯=⋅⋅=ψκκψκκ由a u ua a u ua L FLG FGκκκκ⋅-⋅+='⋅-⋅+='])5.0(6.21[])5.0(5.91[2.24.1 得,则)/(173.826.384146.0186.16111113kpa h m kmol a H a a L GG ⋅⋅=⨯+='⋅+'=κκκ由m P a V a K V H G Y OG 3759.08.0785.03.101173.8373.1562=⨯⨯⨯=Ω⋅⋅=Ω⋅=κ由 m N H Z OG OG 142.568.133759.0=⨯=⋅= 设计取填料层高度为:m Z 7= 对于阶梯环填料,m h Dh615~8max ≤=, 将填料层分为2段设置,每段,两段间设置一个液体再分布器; 取12=Dh,则填料塔总高度为:m D h 6.98.01212=⨯== 填料层压降计算采用Eckert 通用关联图计算填料层压降: 横坐标为:03449.0)7.995037.1(037.1500002.18484.307)(5.05.0=⨯⨯⨯=L V V L ρρωω 查表知:1116-=Φm P纵坐标为:09006.08007.07.995037.181.91116765.22.022.02=⨯⨯⨯⨯=⋅⋅ΦL L V P g u μρρψ查图3得,m pa ZP/8.735=∆ 填料层压降为:kpa pa P 151.578.735=⨯=∆图3 通用压降关联图液体分布装置液体分布器的作用:液体分布装置设于填料层顶部,用于将塔顶液体均匀分布在填料表面上,液体的分布装置性能对填料塔效率影响很大,特别是大直径、低填料层的填料塔,尤其需要性能良好的液体分布装置;由于液体在填料塔内分布均匀,可以增大填料的润湿表面积,以提高分离效果;因此,液体在塔顶的初始均匀喷淋,是保证填料塔达到预期分离效果的重要条件;从喷淋密度考虑,应保证每602m 的塔截面上约有一个喷淋点,这样,可以防止塔内壁流和沟流现象; 常用的液体分布装置有莲蓬式、盘式、齿槽式及多孔管式分布器等;莲蓬式喷淋器:液体经半球形喷头的小孔喷出;小孔直径为3~10m,做同心圆排列,喷洒角不超过︒80;这种喷淋器结构简单,但只适用于直径小于600mm 的塔中,且小孔易堵塞;盘式分布器:盘低开有筛孔的称为塞孔式,盘底装有垂直短管的称为溢流管式;液体加至分布盘上,经筛孔或溢流短管流下;筛孔式的液体分布效果好,而溢流管式自由截面积较大,且不易堵塞;盘式分布器常用于直径较大的塔中,基本可保证液体分布均匀,但其制造较麻烦;齿槽式分布器:液体先经过主干齿槽向其下个条形做第一级分布,然后再向填料层上面分布;这种分布自由截面积大,不易堵塞,多用于直径较大的填料塔;多孔环管式分布器:由多孔圆形盘管、联接管及中央进料管组成;这种分布器气体阻力小,特别使用于液量小而气量大的填料吸收塔;液体分布装置的安装位置,须高于填料层表面200mm,以提供足够的自由空间,让上升气流不受约束地穿过分布器;根据氨气易溶解的性质,可选用目前应用较为广泛的多孔型布液装置中的排管式喷淋器;多孔型布液装置能提供足够均匀的液体分布和空出足够大的气体通道自由截面一般在70%以上,也便于制成分段可拆结构;液体引入排管喷淋器的方式采用液体由水平主管一侧引入,通过支管上的小孔向填料层喷淋;排管式喷淋器采用塑料制造; 分布点密度计算:为了使液体初始分布均匀,原则上应增加单位面积上的喷淋点数;但是,由于结构的限制,不可能将喷淋点设计得很多;根据Eckert 建议,当mm D 750≈时,每260cm 塔截面设一个喷淋点;则总布液孔数为: 布液计算: 由 H g n d L o S ∆Φ=242π取60.0=Φ,mm H 160=∆则 mmm Hg n L d So 70.4004696.016.081.926.08414.3001546.0424==⨯⨯⨯⨯⨯⨯=∆⋅Φ=π液体再分布装置实践表明,当喷淋液体沿填料层向下流动时,不能保持喷淋装置所提供的原始均匀分。

大连理工大学化工原理课程讲义-干燥2

大连理工大学化工原理课程讲义-干燥2
9.3 固体物料干燥过程的相平衡
9.3.1 湿物料含水量的表示方法
湿基含水量 w:
w 湿物料中的水分的质量 湿物料总质量
kg/kg湿物料
干基含水量 X:
湿物料中的水分的质量 X 湿物料中绝干物料的质 量
X w 1 w
kg/kg干物料
换算关系
w
X 1 X
9.3.2 水分在气、固之间的平衡及干燥平衡曲线
设备和管道的热损失,都有助于热效率的提高。
作业:P321
6、8
② 预热器的耗热量
该过程为恒湿增温过程 。
忽略热损失,有:
ΦP qmL ( I1 I 0 ) qmL (1.01 1.88H 0 )(t1 t0 )
③ 干燥器热量衡算 以干燥器为衡算系统,热量收支情况如下表所示: 输入热量
1. 湿物料带入的热量 干产品带入:qm2cmθ1 蒸发水分带入:qmwcwθ1
较高,降速段为一平滑曲线。
(2)液体扩散理论

主要论点:
在降速干燥阶段中,湿物料内部的水分不均匀,形成了浓度梯 度,使水分由含水量较高的物料内部向含水量较低的表面扩散, 然后水分在表面蒸发,进入干燥介质。

干燥速率完全决定于物料内部的扩散速率。此时,除了空气
的湿度影响表面上的平衡值外,干燥介质的条件对干燥速率已
D E
2 4 6 8 10 12 14 16
0
τ/h 干燥曲线
降速阶段 R C
恒速阶段 B
A’
A X* D XC 0 E X X*
典型的干燥速率曲线(恒定干燥条件)
曲线分析:
◆ AB(或A’B)段:
A点代表时间为零时的情况, AB为湿物料不稳
定的加热过程。

化工原理教案

化工原理教案
教学后记
上课日期
2015年 月 日
第 讲
章节
第一章 流体流动 第三节 流体流动现象
教学目的要求
了解流体在管内速度分布。掌握流动的型态及判据—雷诺实验及雷诺准数。
重点及处理方法
流体流动类型与雷诺数;讲解、动画
难点及处理方法
雷诺数;边界层的形成、发展与分离;讲解、示例
授课方式
课堂教学
教学内容
教学步骤、内容(详细内容见课件)
(3)陈敏恒等编.《化工原理》(下册), 化学工业出版社, 1999.
教学后记
上课日期
2015年 月 日
第 讲
章节
第一章 流体流动第四节 管内流动的阻力
教学目的要求
掌握直管内的流动阻力损失,摩擦系数,迭代试差法。
重点及处理方法
摩擦因数及摩擦因数图、阻力计算;讲解、示例
难点及处理方法
量纲分析方法、迭代试差法;讲解
第三节 气体输送机械
教学目的要求
熟悉离心泵的特性曲线;了解离心泵的气蚀现象。掌握离心泵的安装高度;了解离心泵的流量调节方法,离心泵的类型及选择。了解往复泵的工作原理和操作,了解常用气体输送机械,了解往复压缩机的工作原理。
重点及处理方法
离心泵的特性曲线;离心泵的安装高度;离心泵的类型、2004
化工原理
陈敏恒
化学工业出版社、1999
授课教师
职称
院(部)
实践教师
职称
院(部)
辅导教师
职称
院(部)
上课日期
2015年 月 日
第 讲
章节
绪论 第一章 流体流动 第一节流体静止的基本方程
教学目的要求
熟悉化工研究对象、研究方法、本课程特点、知识结构、学习方法。掌握混合物密度的求法。

化工原理课程设计精馏板式塔的设计ppt课件

化工原理课程设计精馏板式塔的设计ppt课件

有关计算中的空塔气速值。
完整最新ppt
22
4.3 其它塔体的主要尺寸
4.3.1塔顶高度HD
塔顶空间高度作用是安装塔板和人孔的需要,也使气体中的液滴自由沉降,塔顶空间 高度一般取1.0~1.5m。
4.3.3进料段高度 HF
进料如果是液相,则HF应稍大于一般的板间距,并满足安装人孔的 需要。如果是两相进料,则HF需要取得大一些,以利于进料两相分 离。一般可取: HF=(1.0~1.2)m。
• 为使塔的操作稳定,免受季节气温影响,精、提馏段采 用相同塔径以便于制造,则采用饱和液体(泡点)进料, 但需增设原料预热器。
• 若工艺要求减少塔釜加热量避免釜温过高,宜采用气态
进料。
完整最新ppt
11
2.3加热方式
• 蒸馏大多采用间接蒸汽加热,设置再沸器,以提 供足够的热量;
• 若待分离的物系为某种轻组分和水的混合物,也 可采用直接蒸汽加热。
堵塞,不适宜处理粘性大、脏的和带固体粒子的料液。
完整最新ppt
25
5.2 塔板有关参数的计算 5.2.1板上液流型式的确定
常用的塔板流动型式有下面几种:
(1)单流型:这是最普遍和最常用的,液体的流径较长,板面利用好; 塔板结构简单,直径小于2.2m以下的塔普遍采用此型;
(2)双流型:用于大塔径及液相负荷较大的场合; (3)回流型:又称U型流型,用于液气比较小的场合; (4)其他流型:当塔径及液流量都特大式,双流型无法满足,可以用四
浮阀塔是现今应用最广的一种板型,其主要优点是生产能力大,操作弹性较 大,分离效果较高,塔板结构较泡罩塔简单。制造费是泡罩塔板的60~80%, 是筛板塔的120~130%。目前国内多用F1型(重阀)浮阀塔。

《化工原理精品课程》PPT课件

《化工原理精品课程》PPT课件

煤气
孔板流量计 水封
泵 水池

煤气洗涤塔
填料塔
煤气
流体流动是最普遍的化工单元操作之一; 研究流体流动问题也是研究其它化工单元操作的 重要基础。
两类问题: 流体静力学问题 流体动力学问题
研究流体在流动和静止时的规律。
2 . 连续介质假定 假定流体是由无数内部紧密相连、彼此间没有
间隙的流体质点(或微团)所组成的连续介质。 质点:由大量分子构成的微团,其尺寸远小于设备
设液面上方的压强为P0
p p0 gh
——静力学基本方程
讨论: (1)适用于重力场中静止、连续的同种不可压缩性 流体; (2)液体内部压强P是随P0和h的改变而改变的,即:
P f P0 , h
(3)当容器液面上方压强P0一定时,静止液体内部
的压强P仅与垂直距离h有关,即: P h
在静止的、连续的同种流体内,处于同一水平面上 各点的压力处处相等。压力相等的面称为等压面。
二、静力学基本方程的应用 普通的
1. 压力及压力差的测量
起放大作用
(1)U形压差计
设指示液的密度为 a ,
复式压差计p1p2来自被测流体的密度为b 。 m
A与A′面 为等压面,即 p A p A'
而 pA p1 b g(m R)
R
A
A’
pA' p2 b gm a gR
所以
p1 b g(m R) p2 b gm a gR
整理得
p1 p2 (a b )gR
若被测流体是气体,b a ,则有 p1 p2 Rg a
讨论:
(1)U形压差计可测系统内两点的压力差,当将U形
管一端与被测点连接、另一端与大气相通时,也可测

化工原理多媒体教学课件

化工原理多媒体教学课件

1 . 化学工程学科中的基本概念
化工单元操作的分类 根据单元操作的理论基础进行的分类
1)以动量传递(momentum transfer)理论为基础: 流体流动、流体输送机械、沉降、过滤、搅拌、固体流态化 等
2)以热量传递(heat transfer)理论为基础: 加热、冷却、蒸发 等 3)以质量传递(mass transfer)理论为基础: 吸收、精馏、萃取、干燥 等
产过程与设备计算的工程技术学科。
化学工程:研究以化学工业为代表的过程工业中有关化学过程 和物理过程的一般原理和共性规律,解决过程和装置的开发、 设计、操作及优化的理论和方法问题。
化工单元操作:(unit operation of Chemical Engineering):
一物理性的化工基本操作过程。 任何一种化工过程(chemicals production process)均是由若干化工单 元操作及化学反应过程有机组合而成。
流体中发生的这三种传递现象(transport phenomena)都是由于
流体质点的运动和分子扩散运动所产生的结果。
流体流动: 研究流体流动的规律,完成流体输送的任务。
流体输送机械:研究流体输送机械的性能特点,进行正确的选用及安装。
沉降:利用密度差,从气体或液体中分离悬浮的固体颗粒、液滴或气泡。
过滤:根据尺寸不同的截留,从气体或液体中分离悬浮的固体颗粒。
随着新产品、新工艺的开发或为实现绿色化工生产,对物理过程提出了
一些特殊要求,又不断地发展出新的单元操作或化工技术,如膜分离、参数 泵分离、电磁分离、超临界技术等。同时,以节约能耗,提高效率或洁净无 污染生产的集成化工艺(如反应精馏、反应膜分离、萃取精馏、多塔精馏系 统的优化热集成等)将是未来的发展趋势。

《化工原理》课程教学大纲

《化工原理》课程教学大纲

《化工原理》课程教学大纲合用专业:工艺类专业有化学工程工艺、应用化学、环境工程、制药工程、生物工程、食品工程、轻化工工程,非工艺专业有工份子材料、安全工程、生物技术、过程装备与控制;对非工艺类专业,带*部份不做要求,也可根据专业特点选择下册中的气体吸收和塔设备等部分。

课程性质:技术基础课一、目的及任务学时数: 120/80 学时学分: 7.5/5 学分第一部份教学基本要求化工原理是化学工程与工艺及相关专业最重要的技术基础课之一。

通过这门课程的学习,要使学生系统地获得:‘三传’的基本概念;各单元操作的原理、典型设备的结构、工艺尺寸计算、设备选型与校核和工程学科的研究方法。

培养学生的工程观念、分析和解决单元操作中各种问题的能力。

突出课程的实践性,使学生受到利用自然科学的基本原理解决实际工程问题的初步训练,提高学生的定量运算能力、实验技能、设计能力、单元操作的分析与调节能力。

二、本课程的先行课程数学、普通物理、物理化学、计算方法、化工设备设计基础。

三、各章节具体内容要求绪论掌握的内容:1、掌握单位换算方法;2、掌握物、热衡算的原则以及衡算的方法和步骤。

熟悉的内容:1、熟悉单元操作的概念及其在化工过程中的地位。

了解的内容:1、了解化工原理的目的、任务、化学工程的发展简史;2、了解过程速率、平衡关系。

第一章流体流动掌握的内容:1、流体的密度和粘度的定义、单位、影响因素及数据获取;2、压强的定义、表达方法、单位换算;3、流体静力学方程、连续性方程、柏努利方程及其应用; 4、流体的流动类型及其判断、蕾诺准数的物理意义、计算;5、流体阻力产生的原因、流体在管内流动的机械能损失计算;6、管路的分类、简单管路计算及输送能力核算;7、液柱式压差计、测速管、孔板流量计和转子流量计的工作原理、基本结构、安装要求和计算;8、因次分析的目的、意义、原理、方法、步骤;熟悉的内容:1、流体的连续性和压缩性,定常态流动与非定常态流动;2、层流与湍流的特征;3、圆管内流速分布公式及应用;4、Hagon-Poiseeuill方e程推导和应用;5、复杂管路计算的要点;6、正确使用各种数据图表;了解的内容:1、牛顿粘性定律,牛顿流体与非牛顿流体;2、边界层的概念、边界层的发展、层流底层、边界层分离。

化工原理课程设计(doc 28页)

化工原理课程设计(doc 28页)

化工原理课程设计任务书生产能力:11700t/年年工作日:300天釜液组成0.035 〔以上均为摩尔分率〕压力:常压进料加料热状况q=1.0塔顶全凝器泡点回流回流比单板压降≤一.概要蒸馏是别离液体混合物的一种方法,是传质过程中最重要的单元操作之一,蒸馏的理论依据是利用溶液中各组分蒸汽压的差异,即各组分在相同的压力、温度下,其探发性能不同〔或沸点不同〕来实现别离目的。

在工业中,广泛应用精馏方法别离液体混合物,从石油工业、酒精工业直至焦油别离,根本有机合成,空气别离等等,特别是大规模的生产中精馏的应用更为广泛。

蒸馏按操作可分为简单蒸馏、平衡蒸馏、精馏、特殊精馏等多种方式。

按原料中所含组分数目可分为双组分蒸馏及多组分蒸馏。

按操作压力那么可分为常压蒸馏、加压蒸馏、减压〔真空〕蒸馏。

此外,按操作是否连续蒸馏和间歇蒸馏。

2.筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。

体系介绍甲醇-水体系汽液平衡数据(101.325kPa):表2-------1甲醇、水密度、粘度、外表张力在不同温度下的值:表2-------2二、设计说明书蒸馏过程按操作方式的不同,分为连续蒸馏和间歇蒸馏两种流程。

连续蒸馏具有生产能力大,产品质量稳定等优点,工业生产中以连续蒸馏为主。

间歇蒸馏具有操作灵活、适应性强等优点,但适合于小规模、多品种或多组分物系的初步别离。

故别离苯-甲苯混合物体系应采用连续精馏过程。

蒸馏是通过物料在塔内的屡次局部气化与屡次局部冷凝实现别离的,热量自塔釜输入,由冷凝器和冷却剂中的冷却介质将余热带走。

塔顶冷凝装置可采用全凝器、分凝器-全凝器两种不同的设置。

工业上以采用全凝器为主,以便准确控制回流比。

三.设计计算书根据设计要求,泡点进料,q=1。

精馏塔的设计中多在塔底加一个再沸器以采用间接蒸汽加热以保证塔内有足够的热量供给;由于甲醇-水体系中,甲醇是轻组分由塔顶冷凝器冷凝得到,水为重组分由塔底排出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章1.已知101.3kPa,25℃时,100g水中溶有1g氨,其平衡分压为0.987kPa,在此浓度范围内气液平衡关系服从亨利定律。

试求:亨利系数E,以kPa表示;H以kPa.m3/kmol表示;以及相平衡常数m值。

2.在20℃时,氧溶解于水中的平衡关系为p e=4.06×106x。

式中p e为氧的平衡分压,kPa;x为氧在水中的摩尔分数。

试求:(1)与101.325kPa之大气充分接触的20℃水中最大溶氧浓度为多少?分别以摩尔分数和质量比表示。

(2)若将20℃的饱和含氧水加热至95℃,则最大溶氧浓度又为多少?分别以摩尔分数和质量比表示。

3.常压、30℃条件下,于填料塔中用清水逆流吸收空气-SO2混合气中的SO2。

已知入塔混合气中含SO2为5%(体积分数),出塔气中SO2为0.2%(体积分数);出塔吸收液中每100g 含SO2为0.356g。

若操作条件下气液平衡关系为y e=47.87x,试求塔底和塔顶处的吸收推动力,分别以Δy、Δx、Δp、Δc表示。

4.在1.1768Mpa、20℃条件下,用清水于填料塔内逆流吸收H2-CO2混合气中的CO2。

已知入塔混合气中含CO2为30%(体积分数),假若出塔吸收液中CO2达到饱和,那么1kg水可吸收多少千克CO2。

假定此吸收和解吸的平衡关系服从亨利定律。

5.在0℃、101.3kPa下,Cl2在空气中进行稳态分子扩散。

若已知相距50mm两截面上Cl2的分压分别为26.66kPa和6.666kPa,试计算以下两种情况Cl2通过单位横截面积传递的摩尔流量。

(1)Cl2与空气作等分子反向扩散;(2)Cl2通过静止的空气作单向扩散。

6.在一直立的毛细玻璃管内装有乙醇,初始液面距管口10mm,如附图所示。

管内乙醇保持为293K(乙醇饱和蒸气压为1.9998kPa),大气压为101.3kPa。

当有一空气始终缓吹过管口时,经100h后,管内乙醇液面下降至距管口21.98mm处。

试求该温度下乙醇在空气中的扩散系数。

7.吸收塔内某一横截面处气相组成y=0.05,液相组成x=0.01(均为摩尔分数),操作条件下相平衡关系为y e=2x,若两相传质系数分别为k y=1.25×10-5kmol/(m2.s.Δy),k x=1.25×10-5kmol/(m2.s.Δx),试求:(1)该截面上相际传质总推动力、总阻力,气、液相阻力占总阻力分数,以及传质速率。

(2)若吸收温度降低,相平衡关系变为y e=0.5x。

假定其余条件不变,则相际传质总推动力、总阻力,气、液相阻力占总阻力分数,以及传质速率又各如何?8.用清水于填料塔中吸收空气中甲醇蒸气。

操作温度为27℃、压力为101.3kPa,亨利系数H=0.5kN.m/kmol,k G=1.56×10-5kmol/(m2.s. kPa),k L=2.08×10-5kmol/(m2.s. kPa),求:(1)总传质系数K G和K L;(2)气相阻力占总阻力的分数。

9.硫铁矿焙烧的炉气中含SO29%(体积分数),其余可视为空气。

将炉气冷却后送入吸收塔以清水逆流吸收其中的SO2,要求回收率为95%。

若操作温度为30℃、压力为100kPa,每小时处理炉气为1000 m3,取操作液气比为最小液气比的1.2倍,气液平衡关系可视为直线。

试求:(1)操作液气比及用水量;(2)吸收液出塔浓度。

10.在填料塔中用清水吸收空气-氨混合气中的氨。

入塔混合气中含氨为5%(摩尔分数,下同),要求氨的回收率不低于95%,出塔吸收液含按4%。

操作条件下气液平衡关系为y e=0.95x,试求:(1)(q nL/q nG)操作及(q nL/q nG)min;(2)所需传质单元数。

11.用煤油于填料塔中逆流吸收混于空气中的苯蒸气。

入塔混合气含苯2%(摩尔分数,下同),入塔煤油中含苯0.02%,要求苯回收率不低于99%。

操作条件下相平衡关系为y e=0.36x,入塔气体摩尔流率为0.012kmol/(m2.s),吸收剂用量为最小用量的1.5倍,总传质系数K y a=0.015kmol/(m3.s)。

试求:(1)煤油用量;(2)填料层高度。

12.对于低浓度气体吸收过程,试推导:H OG= H G + H L/A式中A=L/(mG)吸收因子13.用纯吸收剂逆流吸收贫气中的溶质组分,气液平衡关系服从亨利定律,相平衡常数为m。

若吸收剂用量为最小用量的1.5倍,传质单元高度H OG=0.8m,试求:(1)溶质回收率Φ=90%时,所需填料层高度;(2)溶质回收率Φ=99%时,所需填料层高度;(3)对应如上两种回收率,吸收剂用量有何关系。

14.在填料塔中用稀硫酸吸收混于空气中的氨。

在以下三种情况下,气液流速及其它操作条件大体相同,总传质单元高度H OG=0.8m,试计算并比较所需填料层高度。

入塔,要求氨的回收率不低于95%,出塔吸收液含按4%。

操作条件下气液平衡关系为y e=0.95x,试求:(1)混合气含氨1%(摩尔分数,下同),要求回收率90%;(2)混合气含氨1%(摩尔分数,下同),要求回收率99%;(3)混合气含氨5%(摩尔分数,下同),要求回收率99%。

15.对于低浓度气体的逆流吸收,试证明:N OG= ln(Δy1/Δy2)/(1-1/A)式中Δy1=y1-y e1为塔底吸收推动力Δy 2=y 2-y e2为塔顶吸收推动力A=L/(mG )为吸收因子16. 用一直径为0.88m ,装有50mm ×50mm ×1.5mm 金属鲍尔环,填料层高为6m 的填料塔,以清水吸收空气中混有的丙酮。

在25℃、101.3kPa 下,每小时处理2000 m 3混合气,其中含有5%(摩尔分数,下同)丙酮,出塔尾气中含丙酮为0.263%,出塔的每1kg 吸收液中含丙酮61.2g 。

若操作条件下的相平衡关系为y e =2.0x ,试计算:(1)丙酮的回收量和回收率;(2)操作液气比和吸收剂用量;(3)气相总体积传质系数;(4)若将填料层加高3m ,则丙酮回收率提高到多少?可多回收多少丙酮?(5)若填料层为无限高时,畜塔气体和液体中丙酮的极限浓度为多少?17. 试证明:若吸收过程中的平衡线和操作线均为直线时,传质单元数与理论板数的关系为:当操作线与平衡线平行(A=1)时,N=N OG18.用清水于填料塔中逆流吸收混合气中SO 2,混合气流量为5000标准m 3/h ,其中含SO 2为10%(体积分数),要求回收率为95%,操作条件下气液平衡关系为y e =26.7x ,试求:(1)取用水量为最小用水量的1.5倍时,用水量为多少?(2)所需理论板数;(3)若采用(2)中求得的理论板数,而要求回收率由95%提高到98%,则用水量应增加多少?19.有一吸收塔填料层高3m ,20℃、101.3kPa 下用清水内逆流吸收吸收混于空气中的氨。

混合气体的质量流率为580kg/(m 2.h ),含氨6%(体积分数),吸收率为99%,水的)l(111=NN质量流率为770kg/(m2.h)。

操作条件下平衡关系为y e=0.9x,K G a与气相质量流率的0.7次方成正比,而受液体质量流率的影响甚小,可忽略。

当操作条件分别作如下改变时,计算填料层高度应如何变化才能保持原来的吸收率(塔径不变,且假定不发生异常流动现象):(1)操作压强增加一倍;(2)操作流量增加一倍;(3)气体流量增加一倍;20.在填料塔内用清水内逆流吸收混于空气中的氨。

已知填料层高3.5m,入塔混合气的质量流率为1.42×10-1kg/(m2.s),其中含氨5%(体积分数),入塔清水的质量流率为1.44×10-1kg/(m2.s)。

要求氨的回收率为99%,操作温度为20℃,压力为101.3kPa,相平衡关系为y e=0.9x,且知K G a正比于气相质量流率的0.7次方,试求:(1)气相总传质单元高度H OG;(2)吸收因子A值,H G与H OG数值间的大小关系;(3)若入塔混合气量提高了20%,仍要求氨的回收率为99%,那么填料层高度应如何变化?(4)在填料层高度和氨的回收率保持不变的前提下,欲将入塔气量增加20%,则用水量将如何变化?21.在填料层高为4m的填料塔内,用解吸后的循环水吸收混合气中某溶质组分以达净化目的。

已知入塔气中含溶质2%(体积分数),q nL/q nG=2,操作条件下气液平衡关系为y e=1.4x,试求:(1)解吸操作正常,保证入塔吸收剂中溶质浓度x2=0.0001,要求吸收率为99%,吸收液出塔组成和气相总传质单元高度为多少?(2)若解吸操作质量下降,入塔的吸收剂中溶质浓度升到x2=0.004,其余操作条件不变,则溶质可能达到的吸收率为多少?出塔溶液浓度为多少?解决该净化质量降低的原则途径有哪些?22.用某种化学吸收剂吸收混和气中的溶质组分,使其浓度自y1=0.5降到y1=0.01。

在吸收剂量足够时,溶质的平衡蒸气压为零(m=0),在保证填料充分润湿的条件下,全塔平均的气相总传质单元高度H OG=1.0m。

试按高浓度气体吸收计算所需填料层高度,并与按低浓度气体吸收计算的结果进行比较。

23.将35℃,压力为1215.9kPa(绝)条件下,碳酸丙烯酯吸收变换气中CO2所得的吸收液,x1=0.0265,减压解吸至常压(101.3kPa)。

已知平衡关系p e=10740.5x(kPa)。

若减压解吸释放气含CO2为90%(体积分数),其余为N2、H2等,试求:(1)解吸液含CO2的最低浓度及CO2的理论回收率;(2)若将如上解吸液送至填料塔中,在35℃下以空气(含CO2为0.05%,体积分数)为载气逆流解吸之,要求解吸液浓度为x2<0.0283。

若选q nG/q NL=1.4(q nG/q nL)min,则①q nG/q NL为若干?出塔载气中CO2浓度为多少?②若取H OL为0.8m,求所需填料层高度。

24.对用纯吸收剂吸收某溶质组分已提出附图所示的三种双塔流程。

若气液相平衡关系服从亨利定律,试在y-x图上定性画出每种流程中A、B两塔的操作线和平衡线,并标出进出两塔的气液相组成。

25.用纯吸收剂逆流吸收混合气中某溶质A。

已知A在入塔气中的浓度为0.05%(摩尔分数),新鲜吸收剂与混合气体的摩尔流量比q nG/q NL=1.2,操作条件下相平衡关系为y e=1.2x,该吸收可视为气相阻力控制,现按图示两种流程计算:(1)当Φ=0.80%时,所需填料层高度比为多少?(2)当Φ=0.90%时,所需填料层高度比为多少?26.30℃、506.5kPa下,在装有25块塔板的吸收塔内用纯烃油吸收炼厂气。

相关文档
最新文档