最新数学高考复习小题标准练(十八)

合集下载

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。

2022高考数学(文)二轮复习高考小题标准练(十一) Word版含答案

2022高考数学(文)二轮复习高考小题标准练(十一) Word版含答案

温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。

关闭Word 文档返回原板块。

高考小题标准练(十一)满分75分,实战模拟,40分钟拿下高考客观题满分!一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|1≤x ≤2},B={x|x 2-1≤0},则A ∩B=( ) A.{x|-1<x<1} B{x|-1<x<2} C.{1} D.{-1,1}【解析】选C.由已知,得A={x|1≤x ≤2},B={x|-1≤x ≤1},则A ∩B={x|x=1}. 2.已知复数z 满足(2-i)2·z=1,则z 的虚部为( ) A.325i B.325C.425i D.425【解析】选D.设复数z=a+bi ,则由(2-i)2·z=1可得:(4-4i-1)·(a+bi)=1,即3a+4b+(3b-4a)i=1,所以{3a +4b =1,3b −4a =0,解得:a=325,b=425,故z 的虚部为425.3.已知log 2a>log 2b ,则下列不等式肯定成立的是( ) A.1a >1bB.log 2(a-b)>0C.2a-b<1 D.(13)a <(12)b【解析】选D.由log 2a>log 2b 得a>b>0,所以(13)a <(13)b <(12)b,故选D.4.函数f(x)=x 2+bx 的图象在点A(1,f(1))处的切线与直线3x-y+2=0平行,若数列{1f(n)}的前n 项和为S n ,则S 2021=( )A.1B.2 0132 014C.2 0142 015D.2 0152 016【解题提示】由f ′(1)与直线斜率相等可得f(x)的解析式,从而可得数列{1f(n)}的通项公式,计算可得答案.【解析】选D.f ′(x)=2x+b ,由直线3x-y+2=0可知其斜率为3, 依据题意,有f ′(1)=2+b=3,即b=1, 所以f(x)=x 2+x ,从而数列{1f(n)}的通项为1f(n)=1n 2+n =1n -1n+1,所以S 2021=1-12+12-13+…+12 015-12 016=2 0152 016.5.直线x-y+1=0被圆x 2+y 2+2my=0所截得的弦长等于圆的半径,则实数m=( ) A.√6-2或√6+2 B.2+√6或2-√6 C.1 D.√6【解析】选B.圆的方程即x 2+(y+m)2=m 2,圆心(0,-m)到已知直线的距离d=|m+1|√2=√3|m|2,解得m=2+√6或m=2-√6.6.函数f(x)的导函数f ′(x)的图象如图所示,那么f(x)的图象最有可能的是 ( )【解析】选A.由f ′(x)的图象可知f(x)在(-2,0)上是单调递增的, 在(-∞,-2),(0,+∞)单调递减,故选A.7.某程序框图如图所示,若该程序运行后输出的值是74,则( )A.a=3B.a=4C.a=5D.a=6【解析】选A.第一次:S=32,k=2;其次次:S=53,k=3;第三次:S=74,k=4,退出循环,故选A.8.已知不等式组{x −y ≥0,x +y ≤1,x +2y ≥1表示的平面区域为D ,若D 内存在一点P(x 0,y 0),使ax 0+y 0<1,则a 的取值范围为( )A.(-∞,2)B.(-∞,1)C.(2,+∞)D.(1,+∞)【解析】选A.平面区域D 如图所示,先求z=ax+y 的最小值,当a ≤12时,-a ≥-12,z=ax+y 在点A(1,0)取得最小值a ;当a>12,-a<-12,z=ax+y 在点B (13,13)取得最小值13a+13.若D 内存在一点P(x 0,y 0),使ax 0+y 0<1,则有z=ax+y 的最小值小于1,所以{a ≤12,a <1或{a >12,13a +13<1,解得a<2,故选A.9.在平行四边形ABCD 中,AB →·BD →=0,2AB →2+BD →2-4=0,若将其沿BD 折成直二面角A-BD-C ,则三棱锥A-BDC 的外接球的表面积为( )A.16πB.8πC.4πD.2π【解题提示】由已知中AB →·BD →=0,可得AB ⊥BD ,沿BD 折起后,由平面ABD ⊥平面BDC ,可得三棱锥A-BCD 的外接球的直径为AC ,进而依据2AB 2→+BD 2→-4=0,求出三棱锥A-BCD 的外接球的半径.【解析】选C.平行四边形ABCD 中,由于AB →·BD →=0,所以AB ⊥BD , 沿BD 折成直二面角A-BD-C , 由于平面ABD ⊥平面BDC ,三棱锥A-BCD 的外接球的直径为AC , 所以AC 2=AB 2+BD 2+CD 2=2AB 2+BD 2=4,所以外接球的半径为1,故表面积是4π.10.已知函数f(x)的定义域为[-1,5],部分对应值如表,f(x)的导函数y= f ′(x)的图象如图所示.x -1 0 2 4 5 y1221若函数y=f(x)-a 有4个零点,则实数a 的取值范围为( ) A.[1,2) B.[1,2] C.(2,3) D.[1,3)【解析】选A.依据导函数的图象可知:y=f(x)在[-1,0],[2,4]单调递增,在[0,2],[4,5]单调递减,将函数的大致图象画出,所以若y=f(x)-a 有4个零点,则a ∈[1,2),所以答案为A.【加固训练】已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x ∈(0, +∞),都有f[f(x)-log 2x]=3,则方程f(x)-f ′ (x)=2的解所在的区间是( ) A.(0,12) B.(12,1) C.(1,2) D.(2,3)【解析】选C.对任意的x ∈(0,+∞),都有f[f(x)-log 2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)-log 2x 为定值,设t=f(x)-log 2x ,则f(x)=log 2x+t ,又由f(t)=3,即log 2t+t=3, 解得t=2;则f(x)=log 2x+2,f ′(x)=1xln2,由于f(x)-f ′(x)=2, 所以log 2x+2-1xln2=2,即log 2x-1xln2=0,设h(x)=log 2x-1xln2,可知h(x)在定义域上为单调增函数,又由于h(1)=log 21-1ln2<0,h(2)=log 22-12ln2=1-1ln4>0,所以h(x)=log 2x-1xln2的零点在区间 (1,2)上,即方程f(x)-f ′(x)=2的解所在的区间是(1,2).二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知向量a =(x 2-1,2+x),b =(x ,1),a ∥b ,则x= .【解析】由于a =(x 2-1,2+x),b =(x ,1),a ∥b ,所以x 2-1=(2+x)x ,解得x=-12.答案:-1212.某几何体的三视图如图所示,则它的表面积为 .【解析】由三视图可知,该几何体是底面半径为2,高为4的圆锥的一半,其表面积为:S=12×π×22+12×4×4+12×12×2π×2×√42+22=8+(2+2√5)π.答案:8+(2+2√5)π13.椭圆C :x 24+y 23=1的左、右顶点A 1,A 2,点P 在C 上且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是 .【解析】椭圆C :x 24+y 23=1的左、右顶点A 1,A 2的坐标为(-2,0),(2,0),设点P的坐标为(x 0,y 0),由题意x 024+y 023=1,所以y 02x 02−4=-34,又由于k PA 1·k PA 2=y 0x 0+2·y 0x 0−2=y 02x 02−4=-34,k PA 1=−34k PA 2,直线PA 2的斜率的取值范围是[-2,-1],所以38≤k PA 1≤34.答案:[38,34]14.抛物线y 2=-12x 的准线与双曲线x 26-y 22=1的两条渐近线所围成的三角形的面积等于 .【解析】抛物线的准线方程为x=3,双曲线的渐近线方程为y=±√33x ,所以所要求的三角形的面积为12×3×2√3=3√3.答案:3√315.袋中有大小、质地相同的红、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得2分,摸出黑球,得1分,则3次摸球所得总分至少是4分的概率是 .【解析】全部基本大事为(红,红,红),(红,红,黑),(红,黑,红),(黑,红,红),(红,黑,黑),(黑,红,黑),(黑,黑,红),(黑,黑,黑)共计8个,总分至少4分的大事可分为“两黑一红”,“一黑两红”,“三红”这三个互斥大事,所以P=38+38+18=78;也可求对立大事“总分少于4分”即“三黑”的概率为18,所以P=1-18=78. 答案:78关闭Word 文档返回原板块。

高考数学二轮复习精准提分第二篇重点专题分层练中高档题得高分第18练圆锥曲线的定义方程及性质试题0108118

高考数学二轮复习精准提分第二篇重点专题分层练中高档题得高分第18练圆锥曲线的定义方程及性质试题0108118

第18练 圆锥曲线的定义、方程及性质[明晰考情] 1.命题角度:圆锥曲线是高考的热点,每年必考,小题中考查圆锥曲线的定义、方程、离心率等.2.题目难度:中档难度或偏难.考点一 圆锥曲线的定义与标准方程方法技巧 (1)椭圆和双曲线上的点到两焦点的距离可以相互转化,抛物线上的点到焦点的距离等于到准线的距离.(2)求圆锥曲线方程的常用方法:定义法、待定系数法.1.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,则椭圆的另一个焦点F 的轨迹方程是( ) A .y 2-x 248=1B .x 2-y 248=1C .y 2-x 248=1(y ≤-1)D .x 2-y 248=1(x ≥1)答案 C解析 由两点间距离公式,可得|AC |=13,|BC |=15,|AB |=14,因为A ,B 都在椭圆上,所以|AF |+|AC |=|BF |+|BC |,|AF |-|BF |=|BC |-|AC |=2<14,故F 的轨迹是以A ,B 为焦点的双曲线的下支.由c =7,a =1,得b 2=48,所以点F 的轨迹方程是y 2-x 248=1(y ≤-1),故选C.2.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则该双曲线的方程为( ) A.x 24-y 24=1B.x 28-y 28=1C.x 24-y 28=1D.x 28-y 24=1 答案 B解析 由e =2知a =b ,且c =2a .∴双曲线渐近线方程为y =±x . 又k PF =4-00+c =4c =1,∴c =4,则a 2=b 2=c 22=8.故双曲线方程为x 28-y 28=1.3.已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是________. 答案2解析 由椭圆的方程可知a =2,c =2,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2, 所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =22,所以有|PF 1|2=|PF 2|2+|F 1F 2|2,即△PF 1F 2为直角三角形,且∠PF 2F 1为直角,所以12PF F S △=12|F 1F 2||PF 2|=12×22×1= 2.4.已知抛物线y =116x 2,A ,B 是该抛物线上两点,且|AB |=24,则线段AB 的中点P 离x 轴最近时点P 的纵坐标为________. 答案 8解析 由题意得抛物线的标准方程为x 2=16y , 焦点F (0,4),设A (x 1,y 1),B (x 2,y 2),由|AB |≤|AF |+|BF |=(y 1+4)+(y 2+4)=y 1+y 2+8, ∴y 1+y 2≥16,则线段AB 的中点P 的纵坐标y =y 1+y 22≥8,∴线段AB 的中点P 离x 轴最近时点P 的纵坐标为8. 考点二 圆锥曲线的几何性质要点重组 在椭圆中:a 2=b 2+c 2,离心率为e =c a=1-⎝ ⎛⎭⎪⎫b a2;在双曲线中:c 2=a 2+b 2,离心率为e =c a=1+⎝ ⎛⎭⎪⎫b a 2.5.(2018·全国Ⅱ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 答案 A解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为bx ±ay =0.又∵离心率c a =a 2+b 2a=3,∴a 2+b 2=3a 2,∴b =2a (a >0,b >0). ∴渐近线方程为2ax ±ay =0,即y =±2x . 故选A.6.(2018·全国Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( ) A.5B .2C.3D. 2 答案 C解析 如图,过点F 1向OP 的反向延长线作垂线,垂足为P ′,连接P ′F 2,由题意可知,四边形PF 1P ′F 2为平行四边形,且△PP ′F 2是直角三角形.因为|F 2P |=b ,|F 2O |=c ,所以|OP |=a . 又|PF 1|=6a =|F 2P ′|,|PP ′|=2a , 所以|F 2P |=2a =b ,所以c =a 2+b 2=3a ,所以e =c a= 3.7.在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支与焦点为F 的抛物线x2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为______. 答案 y =±22x 解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,得a 2y 2-2pb 2y +a 2b 2=0,∴y 1+y 2=2pb2a2.又∵|AF |+|BF |=4|OF |,∴y 1+p 2+y 2+p 2=4×p2,即y 1+y 2=p ,∴2pb 2a 2=p ,即b 2a 2=12,∴b a =22, ∴双曲线的渐近线方程为y =±22x .8.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________. 答案233解析 如图,由题意知点A (a ,0),双曲线的一条渐近线l 的方程为y =bax ,即bx -ay =0,∴点A 到l 的距离d =aba 2+b2. 又∠MAN =60°,|MA |=|NA |=b , ∴△MAN 为等边三角形, ∴d =32|MA |=32b ,即ab a 2+b2=32b ,∴a 2=3b 2, ∴e =c a =a 2+b 2a 2=233. 考点三 圆锥曲线的综合问题方法技巧 (1)圆锥曲线范围、最值问题的常用方法 定义性质转化法;目标函数法;条件不等式法.(2)圆锥曲线中的定值、定点问题可以利用特例法寻求突破,然后对一般情况进行证明. 9.如图,点F 1,F 2是椭圆C 1的左、右焦点,椭圆C 1与双曲线C 2的渐近线交于点P ,PF 1⊥PF 2,椭圆C 1与双曲线C 2的离心率分别为e 1,e 2,则( )A .e 22=1+e 411-e 21B .e 22=2e 411-e 21C .e 22=1-e 412e 21-1D .e 22=e 412e 21-1答案 D解析 设椭圆C 1的方程为x 2a 2+y 2b2=1,点P 的坐标为(x 0,y 0),由图知x 0>0,y 0>0, 因为点P 在椭圆C 1上,所以|PF 1|+|PF 2|=2a .① 又因为PF 1⊥PF 2,所以|PF 1|2+|PF 2|2=4c 2,② 在Rt△PF 1F 2中,易得|PF 1|·|PF 2|=2c ·y 0,③联立①②③,得y 0=b 2c,代入椭圆方程,得x 0=a cc 2-b 2. 因为点P 在双曲线的渐近线上,所以双曲线的渐近线的斜率k =y 0x 0=b 2a c 2-b 2=a 2-c 2a 2c 2-a 2=1-e 212e 21-1, 又在双曲线中易得其渐近线的斜率k =e 22-1, 所以1-e 212e 21-1=e 22-1, 化简得e 22=e 412e 21-1,故选D.10.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.33 B.23 C.22D .1答案 C 解析 如图,由题意可知F ⎝ ⎛⎭⎪⎫p 2,0,设P 点坐标为⎝ ⎛⎭⎪⎫y 202p ,y 0,显然, 当y 0<0时,k OM <0; 当y 0>0时,k OM >0.要求k OM 的最大值,不妨设y 0>0,则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF → =⎝ ⎛⎭⎪⎫y 206p +p 3,y 03, k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22, 当且仅当y 20=2p 2时等号成立.故选C.11.过抛物线y =ax 2(a >0)的焦点F 作一条直线交抛物线于A ,B 两点,若线段AF ,BF 的长分别为m ,n ,则mnm +n=________. 答案14a解析 显然直线AB 的斜率存在,故设直线方程为y =kx +14a ,与y =ax 2联立,消去y 得ax2-kx -14a=0,设A (x 1,ax 21),B (x 2,ax 22),则x 1+x 2=k a ,x 1x 2=-14a2,x 21+x 22=k 2a 2+12a 2,m =ax 21+14a ,n =ax 22+14a ,∴mn =14a ·k 2+1a ,m +n =k 2+1a ,∴mn m +n =14a .12.已知椭圆x 2a 2+y 2b2=1(a >b >0)的短轴长为2,上顶点为A ,左顶点为B ,F 1,F 2分别是椭圆的左、右焦点,且△F 1AB 的面积为2-32,点P 为椭圆上的任意一点,则1|PF 1|+1|PF 2|的取值范围为________. 答案 [1,4]解析 由已知得2b =2,故b =1, ∵△F 1AB 的面积为2-32,∴12(a -c )b =2-32, ∴a -c =2-3,又a 2-c 2=(a -c )(a +c )=b 2=1, ∴a =2,c =3,∴1|PF 1|+1|PF 2|=|PF 1|+|PF 2||PF 1||PF 2| =2a |PF 1|(4-|PF 1|)=4-|PF 1|2+4|PF 1|, 又2-3≤|PF 1|≤2+3, ∴1≤-|PF 1|2+4|PF 1|≤4, ∴1≤1|PF 1|+1|PF 2|≤4,即1|PF 1|+1|PF 2|的取值范围为[1,4].1.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( ) A .[3-23,+∞)B .[3+23,+∞)C.⎣⎢⎡⎭⎪⎫-74,+∞ D.⎣⎢⎡⎭⎪⎫74,+∞答案 B解析 由题意,得22=a 2+1,即a =3, 设P (x ,y ),x ≥3,FP →=(x +2,y ), 则OP →·FP →=(x +2)x +y 2 =x 2+2x +x 23-1=43⎝ ⎛⎭⎪⎫x +342-74,因为x ≥3,所以OP →·FP →的取值范围为[3+23,+∞).2.若椭圆的对称轴是坐标轴,且短轴的一个端点与两个焦点组成一个正三角形,焦点到同侧顶点的距离为3,则椭圆的方程为________________. 答案x 212+y 29=1或x 29+y 212=1 解析 由题意,得⎩⎨⎧a =2c ,a -c =3,所以⎩⎨⎧a =23,c = 3.所以b 2=a 2-c 2=9.所以当椭圆焦点在x 轴上时,椭圆的方程为x 212+y 29=1;当椭圆焦点在y 轴上时,椭圆的方程为x 29+y 212=1.故椭圆的方程为x 212+y 29=1或x 29+y 212=1.3.已知A (1,2),B (-1,2),动点P 满足AP →⊥BP →.若双曲线x 2a2-y 2b2=1(a >0,b >0)的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值范围是________. 答案 (1,2)解析 设P (x ,y ),由题设条件,得动点P 的轨迹为(x -1)(x +1)+(y -2)(y -2)=0, 即x 2+(y -2)2=1,它是以(0,2)为圆心,1为半径的圆.又双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax ,即bx ±ay =0,由题意,可得2a a 2+b2>1,即2ac >1,所以e =ca<2, 又e >1,故1<e <2.解题秘籍 (1)椭圆的焦点位置不明确时,要分焦点在x 轴上或y 轴上进行讨论. (2)范围问题要注意圆锥曲线上点的坐标的范围和几何意义,不要忽略离心率本身的限制条件.1. (2018·全国Ⅰ)已知椭圆C :x2a 2+y24=1的一个焦点为(2,0),则C 的离心率为( )A.13B.12C.22D.223答案 C解析 ∵a 2=4+22=8,∴a =22,∴e =c a =222=22.故选C.2.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1 答案 B 解析 由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.3.过抛物线y 2=2px (p >0)的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,|PQ |=10,则抛物线的方程是( ) A .y 2=4x B .y 2=2x C .y 2=8x D .y 2=6x 答案 C解析 设抛物线y 2=2px (p >0)的焦点为F ,P (x 1,y 1),Q (x 2,y 2), 由抛物线的定义可知,|PQ |=|PF |+|QF |=x 1+p 2+x 2+p2=(x 1+x 2)+p ,∵线段PQ 中点的横坐标为3, 又|PQ |=10,∴10=6+p ,可得p =4, ∴抛物线的方程为y 2=8x .4.已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1答案 A解析 由题意可得m 2-1=n 2+1,即m 2=n 2+2,∵m >0,n >0,故m >n .又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1, ∴e 1e 2>1.5.已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为l ,圆C :(x -a )2+y 2=8与l 交于A ,B 两点,若△ABC 是等腰直角三角形,且OB →=5OA →(其中O 为坐标原点),则双曲线Γ的离心率为( )A.2133B.2135C.135D.133答案 D解析 双曲线的渐近线方程为y =bax ,圆(x -a )2+y 2=8的圆心为(a,0),半径r =22,由于∠ACB =π2,由勾股定理得|AB |=(22)2+(22)2=4,故|OA |=14|AB |=1.在△OAC ,△OBC中,由余弦定理得cos∠BOC =a 2+1-82a =52+a 2-810a ,解得a 2=13.由圆心到直线y =b a x 的距离为2,得ab c =2,结合c 2=a 2+b 2,解得c =133,故离心率为c a =13313=133.6.(2018·天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 29=1 D.x 29-y 23=1 答案 C解析 如图,不妨设A 在B 的上方,则A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a . 其中的一条渐近线为bx -ay =0,则d 1+d 2=bc -b 2+bc +b 2a 2+b 2=2bc c =2b =6,∴b =3. 又由e =c a=2,知a 2+b 2=4a 2,∴a = 3. ∴双曲线的方程为x 23-y 29=1. 故选C. 7.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34答案 A解析 设M (-c ,m )(m ≠0),则E ⎝ ⎛⎭⎪⎫0,am a -c ,OE 的中点为D ,则D ⎝ ⎛⎭⎪⎫0,am 2(a -c ),又B ,D ,M 三点共线, 所以am 2(a -c )=am a +c ,a =3c ,所以e =13. 8.设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( ) A.43B.53C.94D .3 答案 B解析 不妨设P 为双曲线右支上一点,|PF 1|=r 1,|PF 2|=r 2.根据双曲线的定义,得r 1-r 2=2a ,又r 1+r 2=3b ,故r 1=3b +2a 2,r 2=3b -2a 2. 又r 1·r 2=94ab ,所以3b +2a 2·3b -2a 2=94ab ,解得b a =43(负值舍去),故e =c a =a 2+b 2a 2=⎝ ⎛⎭⎪⎫b a 2+1⎝ ⎛⎭⎪⎫432+1=53,故选B. 9.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.答案 15解析 因为在椭圆x 225+y 216=1中,a =5,b =4,所以c =3,得焦点为F 1(-3,0),F 2(3,0).根据椭圆的定义,得|PM |+|PF 1|=|PM |+(2a -|PF 2|)=10+(|PM |-|PF 2|).因为|PM |-|PF 2|≤|MF 2|,当且仅当P 在MF 2的延长线上时等号成立,此时|PM |+|PF 1|的最大值为10+5=15.10.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.答案 6解析 如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF ,∴|MP |=12|FO |=1. 又|BP |=|AO |=2,∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.11.已知抛物线y 2=2px (p >0)上的一点M (1,t )(t >0)到焦点的距离为5,双曲线x 2a 2-y 29=1(a >0)的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值为________. 答案 3解析 由题意知1+p 2=5,∴p =8.∴M (1,4), 由于双曲线的左顶点A (-a ,0),且直线AM 平行于双曲线的一条渐近线,∴41+a =3a ,则a =3.12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 是椭圆上异于长轴端点的任意一点,若M 是线段PF 1上一点,且满足MF 1→=2PM →,MF 2→·OP →=0,则椭圆C 的离心率的取值范围为________.答案 ⎝ ⎛⎭⎪⎫12,1 解析 设P (x ,y )(y ≠0),取MF 1的中点N ,由MF 1→=2PM →知,NF 1→=12PN →,解得点N ⎝ ⎛⎭⎪⎫x -2c 3,y 3, 又MF 2→·OP →=0,所以MF 2→⊥OP →,连接ON ,由三角形的中位线可知ON →⊥OP →,即(x ,y )·⎝ ⎛⎭⎪⎫x -2c 3,y 3=0, 整理得(x -c )2+y 2=c 2(y ≠0),所以点P 的轨迹为以(c ,0)为圆心,c 为半径的圆(去除两点(0,0),(2c ,0)),要使得圆与椭圆有公共点,则a -c <c ,所以e =c a >12,又0<e <1, 所以椭圆的离心率为⎝ ⎛⎭⎪⎫12,1. 精美句子1、善思则能“从无字句处读书”。

抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。

第6节 第1课时 双曲线的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第6节  第1课时  双曲线的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第六节双曲线第1课时双曲线的定义、标准方程及其简单几何性质1.双曲线的定义把平面内与两个定点F 1,F 2的距离的差的01绝对值等于非零常数(02小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的03焦点,两焦点间的距离叫做双曲线的04焦距.2.双曲线的标准方程和简单几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质焦点05F 1(-c ,0),F 2(c ,0)06F 1(0,-c ),F 2(0,c )焦距07|F 1F 2|=2c范围08x ≤-a 或09x ≥a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性对称轴:10坐标轴;对称中心:11原点顶点12A 1(-a ,0),A 2(a ,0)13A 1(0,-a ),A 2(0,a )轴实轴:线段14A1A2,长:152a;虚轴:线段B1B2,长:162b,实半轴长:17a,虚半轴长:18b离心率e=ca∈19(1,+∞)渐近线y=±bax y=±abxa,b,c的关系c2=20a2+b2(c>a>0,c>b>0)1.双曲线的焦点到渐近线的距离为b,顶点到两条渐近线的距离为常数abc.2.双曲线上的任意点P到双曲线C的两条渐近线的距离的乘积是一个常数a2b2c2.3.若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min =c-a.4.离心率e=ca=a2+b2a=1+b2a2.5.双曲线上一点P(x0,y0)与两焦点F1,F2构成的△PF1F2为焦点三角形,设∠F1PF2=θ,|PF1|=r1,|PF2|=r2,则cosθ=1-2b2r1r2,S△PF1F2=12r1r2sinθ=sinθ1-cosθ·b2=b2tanθ2.1.概念辨析(正确的打“√”,错误的打“×”)(1)到两定点的距离差的绝对值等于常数的点的轨迹是双曲线.()(2)方程x2m-y2n=1(mn>0)表示焦点在x轴上的双曲线.()(3)双曲线x2m2-y2n2=1(m>0,n>0)的渐近线方程是xm ±yn=0.()(4)等轴双曲线的渐近线互相垂直,离心率等于2.()答案(1)×(2)×(3)√(4)√2.小题热身(1)(人教A选择性必修第一册习题3.2T3改编)双曲线2y2-x2=1的渐近线方程是() A.y=±12x B.y=±2xC.y=±22x D.y=±2x答案C解析依题意知,双曲线y212-x2=1的焦点在y轴上,实半轴长a=22,虚半轴长b=1,所以双曲线2y 2-x2=1的渐近线方程是y=±22x.(2)若双曲线x2a2-y2b2=1(a>0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为()A.5B.5C.2D.2答案A解析由题意知焦点到其渐近线的距离等于实轴长,即b=2a,又a2+b2=c2,∴5a2=c2.∴e2=c2a2=5,∴e= 5.故选A.(3)(人教A选择性必修第一册习题3.2T1改编)设P是双曲线x216-y220=1上一点,F1,F2分别是双曲线的左、右焦点,若|PF1|=9,则|PF2|=________.答案17解析根据双曲线的定义得||PF1|-|PF2||=8,因为|PF1|=9,所以|PF2|=1或17.又|PF2|≥c-a =2,故|PF2|=17.(4)(人教A选择性必修第一册习题3.2T6改编)对称轴为坐标轴,且经过点P(5,3)的等轴双曲线的标准方程为________.答案x216-y216=1解析设双曲线方程为x2-y2=λ(λ≠0),则λ=52-32=16,所以双曲线的方程为x2-y2=16,即x216-y216=1.考点探究——提素养考点一双曲线的定义及其应用(多考向探究)考向1利用双曲线的定义求轨迹方程例1(2024·山东青岛质检)已知动点M(x,y)满足x2+(y-3)2-x2+(y+3)2=4,则动点M 的轨迹方程为________________.答案y 24-x 25=1(y ≤-2)解析因为x 2+(y -3)2-x 2+(y +3)2=4表示点M (x ,y )到点F 1(0,3)的距离与到点F 2(0,-3)的距离的差为4,且4<|F 1F 2|,所以点M 的轨迹是以F 1,F 2为焦点的双曲线的下支,且该双曲线的实半轴长a =2,半焦距c =3,所以b 2=c 2-a 2=5,即动点M 的轨迹方程为y 24-x 25=1(y ≤-2).【通性通法】利用双曲线的定义求方程,要注意三点:①距离之差的绝对值;②2a <|F 1F 2|;③焦点所在坐标轴的位置.提醒:一定要分清是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.【巩固迁移】1.已知圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2外切,则动圆的圆心M 的轨迹方程为()A .x 2-y 28=1B .x 28-y 2=1C .x 2-y28=1(x ≤-1)D .x 2-y28=1(x ≥1)答案C解析设圆M 的半径为r ,由动圆M 同时与圆C 1和圆C 2外切,得|MC 1|=1+r ,|MC 2|=3+r ,|MC 2|-|MC 1|=2<6,所以圆心M 的轨迹是以点C 1(-3,0)和C 2(3,0)为焦点的双曲线的左支,且2a =2,a =1,又c =3,则b 2=c 2-a 2=8,所以圆心M 的轨迹方程为x 2-y 28=1(x ≤-1).故选C.考向2利用双曲线的定义解决焦点三角形问题例2已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为________.答案23解析解法一:不妨设点P 在双曲线的右支上,则|PF 1|-|PF 2|=2a =22,在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=12,∴|PF 1|·|PF 2|=8,∴S △F 1PF 2=12|PF 1||PF 2|sin60°=23.解法二:S △F 1PF 2=b 2tan θ2=2tan30°=2 3.【通性通法】在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法建立与|PF 1|·|PF 2|的联系.【巩固迁移】2.(2023·河北邯郸模拟)已知F 1,F 2是双曲线x 24-y 2b 2=1(b >0)的左、右焦点,点P 为双曲线右支上一点,且P 在以F 1F 2为直径的圆上,若|PF 1|·|PF 2|=12,则tan ∠POF 2=()A .34B .43C .35D .45答案A解析解法一:设|PF 1|=m ,|PF 2|=n ,则m >n .由双曲线的定义知,m -n =4,又mn =12,故m =6,n =2,由于P 在以F 1F 2为直径的圆上,所以PF 1⊥PF 2,故有tan ∠PF 1F 2=13,从而tan ∠POF 2=tan2∠PF 1F 2=2tan ∠PF 1F 21-tan 2∠PF 1F 2=34.故选A.解法二:同解法一,得到m =6,n =2,则|F 1F 2|=210,从而得到双曲线的方程为x 24-y 26=1.设P (x 0,y 0)(y 0>0),-y 206=1,y 20=10,解得y 0x 0=34,即tan ∠POF 2=y 0x 0=34.故选A.考向3利用双曲线的定义求最值例3(2024·江西南昌外国语学校月考)已知F 1是双曲线x 216-y 29=1的左焦点,A (4,4),P 是双曲线右支上的动点,则|PF 1|+|PA |的最小值为________.答案8+17解析由题意知,a =4,b =3,c =5.设双曲线的右焦点为F 2,由P 是双曲线右支上的点,则|PF 1|-|PF 2|=2a =8,则|PF 1|+|PA |=8+|PF 2|+|PA |≥8+|AF 2|,当且仅当A ,P ,F 2三点共线时,等号成立.又A (4,4),F 2(5,0),则|AF 2|=(5-4)2+(0-4)2=17.所以|PF 1|+|PA |的最小值为8+17.【通性通法】在利用双曲线的定义求最值时,如果所求的式子不易直接求最值,那么可以先利用关系式|PF 1|=2a +|PF 2|或|PF 2|=2a +|PF 1|进行转化,然后利用三角形三边的关系来求最值.【巩固迁移】3.若点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x+5)2+y 2=1上,则|PQ |-|PR |的最大值是()A .9B .10C .11D .12答案B解析在双曲线C 1中,a =4,b =3,c =5,易知两圆圆心分别为双曲线C 1的两个焦点,记点F 1(-5,0),F 2(5,0),当|PQ |-|PR |取最大值时,P 在双曲线C 1的左支上,所以|PQ |-|PR |≤|PF 2|+1-(|PF 1|-1)=|PF 2|-|PF 1|+2=2a +2=10.故选B.考点二双曲线的标准方程例4(2024·天津北辰区模拟)与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线的标准方程是________________.答案x 22-y 2=1解析解法一:椭圆x 24+y 2=1的焦点坐标是(±3,0).设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),因为双曲线过点P (2,1),所以4a 2-1b 2=1,又a 2+b 2=3,解得a 2=2,b 2=1,所以所求双曲线的标准方程是x 22-y 2=1.解法二:由题意知,双曲线焦点F 1(-3,0),F 2(3,0),设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),则2a =||PF 1|-|PF 2||=(2+3)2+1-(2-3)2+1=8+43-8-43,即a =2+3-2-3,所以a 2=2,则b 2=c 2-a 2=1,所以所求双曲线的标准方程为x 22-y 2=1.解法三:设所求双曲线的标准方程为x 24-λ+y 21-λ=1(1<λ<4),将点P (2,1)的坐标代入,可得44-λ+11-λ=1,解得λ=2(λ=-2舍去),所以所求双曲线的标准方程为x 22-y 2=1.【通性通法】求双曲线的标准方程的方法定义法由题目条件判断出动点轨迹是双曲线,由双曲线定义确定2a ,2b 或2c ,从而求得双曲线方程待定系数法能确定焦点在x 轴还是y 轴上时,设出标准方程,再由条件确定a 2,b 2的值焦点的位置不确定,要注意分类讨论.也可以将双曲线的方程设为x 2m 2-y 2n2=λ(λ≠0)或mx 2-ny 2=1(mn >0)求解与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线的方程可设为x 2a 2-y 2b2=λ(λ≠0)【巩固迁移】4.(2023·湖南郴州模拟)若双曲线经过点(3,2),且渐近线方程是y =±13x ,则双曲线的标准方程是________________.答案y 2-x 29=1解析设双曲线的方程是y 2-x 29=λ(λ≠0).因为双曲线过点(3,2),所以λ=2-99=1,故双曲线的标准方程为y 2-x 29=1.5.过点P (3,27),Q (-62,7)的双曲线的标准方程为________________.答案y 225-x 275=1解析设双曲线的方程为mx 2+ny 2=1(mn <0).因为所求双曲线过点P (3,27),Q (-62,7),m +28n =1,m +49n =1,=-175,=125.故所求双曲线的标准方程为y 225-x 275=1.考点三双曲线的简单几何性质(多考向探究)考向1双曲线的实轴、虚轴、焦距例5(1)双曲线x 24-y 2=1的实轴长是()A .1B .2C .5D .4答案D解析由x 24-y 2=1,得a 2=4,解得a =2,所以2a =4.故双曲线x 24-y 2=1的实轴长是4.故选D.(2)已知双曲线C :y 2-x22=1,则该双曲线的虚轴长为________,焦距为________.答案2223解析双曲线C :y 2-x 22=1的虚半轴长b =2,半焦距c =1+2=3,所以该双曲线的虚轴长为22,焦距为2 3.【通性通法】求解与双曲线几何性质有关的问题时,要理清顶点、焦点、实轴长、虚轴长、焦距等基本量的内在联系.【巩固迁移】6.(2023·河北唐山一调)设4x 2+ky 2-4k =0表示双曲线,则该双曲线的虚轴长为()A .2kB .2kC .2-kD .-2k答案C解析由题意,得k ≠0,将4x 2+ky 2-4k =0整理,得x 2k +y 24=1,由题意,得k <0,故焦点在y 轴上,b 2=-k ,所以b =-k ,所以该双曲线的虚轴长为2-k ,故选C.7.(2024·河南郑州期末)双曲线x 26-y 22=1与x 22-y 26=1有相同的()A .离心率B .渐近线C .实轴长D .焦点答案D解析对于双曲线x 26-y 22=1,其焦点在x 轴上,a 1=6,b 1=2,c 1=22,离心率e 1=c1a 1=233,渐近线y =±b 1a 1x =±33x ,实轴长2a 1=26,焦点为(±22,0);对于双曲线x 22-y 26=1,其焦点在x 轴上,a 2=2,b 2=6,c 2=22,离心率e 2=c 2a 2=2,渐近线y =±b 2a 2x =±3x ,实轴长2a2=22,焦点为(±22,0).故选D.考向2双曲线的渐近线例6(1)(2023·河北衡水模拟)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的焦距为25,且实轴长为2,则双曲线C的渐近线方程为() A.y=±12x B.y=±2xC.y=±5x D.y=±52x 答案B解析由题意可知,2c=25,2a=2,所以c=5,a=1,所以b=c2-a2=2,则ba=2.故双曲线C的渐近线方程为y=±2x.(2)(2022·全国甲卷)若双曲线y2-x2m2=1(m>0)的渐近线与圆x2+y2-4y+3=0相切,则m=________.答案3 3解析双曲线y2-x2m2=1(m>0)的渐近线为y=±xm,即x±my=0,不妨取x+my=0,圆x2+y2-4y+3=0,即x2+(y-2)2=1,所以圆心为(0,2),半径r=1,依题意,圆心(0,2)到渐近线x+my=0的距离d=|2m|1+m2=1,解得m=33或m=-33(舍去).【通性通法】求双曲线渐近线方程的方法【巩固迁移】8.(2023·全国甲卷)已知双曲线x2a2-y2b2=1(a>0,b>0)的离心率为5,其中一条渐近线与圆(x -2)2+(y-3)2=1交于A,B两点,则|AB|=()A.15B.55C .255D .455答案D解析由e =5,得c 2a 2=a 2+b 2a2=1+b 2a 2=5,解得ba =2,所以双曲线的渐近线方程为y =±2x ,易知渐近线y =2x 与圆相交,则圆心(2,3)到渐近线y =2x 的距离d =|2×2-3|22+(-1)2=55,所以弦长|AB |=2r 2-d 2=21-15=455.故选D.9.已知双曲线x 2m +1-y 2m =1(m >0)的渐近线方程为x ±3y =0,则m =________.答案12解析由渐近线方程y =±b a x =±33x ,得b a =33,则b 2a 2=13,即m m +1=13,m =12.考向3双曲线的离心率例7(1)(2023·新课标Ⅰ卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A →⊥F 1B →,F 2A →=-23F 2B →,则C 的离心率为________.答案355解析解法一:依题意,设|AF 2|=2m (m >0),则|BF 2|=3m =|BF 1|,|AF 1|=2a +2m ,在Rt △ABF 1中,9m 2+(2a +2m )2=25m 2,则(a +3m )(a -m )=0,故a =m 或a =-3m (舍去),所以|AF 1|=4a ,|AF 2|=2a ,|BF 2|=|BF 1|=3a ,则|AB |=5a ,故cos ∠F 1AF 2=|AF 1||AB |=4a 5a =45,所以在△AF 1F 2中,cos ∠F 1AF 2=16a 2+4a 2-4c 22×4a ×2a=45,整理得5c 2=9a 2,故e =c a =355.解法二:依题意,得F 1(-c ,0),F 2(c ,0),令A (x 0,y 0),B (0,t ),因为F 2A →=-23F 2B →,所以(x 0-c ,y 0)=-23(-c ,t ),则x 0=53c ,y 0=-23t ,又F 1A →⊥F 1B →,所以F 1A →·F 1B →,c ,t )=83c 2-23t 2=0,则t 2=4c 2,又点A 在C 上,则259c 2a 2-49t 2b 2=1,整理得25c 29a 2-4t 29b 2=1,则25c 29a 2-16c 29b2=1,所以25c 2b 2-16c 2a 2=9a 2b 2,即25c 2(c 2-a 2)-16a 2c 2=9a 2(c 2-a 2),整理得25c 4-50a 2c 2+9a 4=0,则(5c 2-9a 2)(5c 2-a 2)=0,解得5c 2=9a 2或5c 2=a 2,又e >1,所以e =c a =355.解法三:由解法二得,t 2=4c 2,所以|AF 1|=64c 29+4t 29=64c 29+16c 29=45c3,|AF 2|=4c 29+4t 29=4c 29+16c 29=25c3,由双曲线的定义可得|AF 1|-|AF 2|=2a ,即45c 3-25c 3=2a ,即53c =a ,所以C 的离心率e =c a =35=355.(2)(2024·辽宁沈阳模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,双曲线的左顶点为A ,以F 1F 2为直径的圆交双曲线的一条渐近线于P ,Q 两点,其中点Q 在y 轴右侧,若|AQ |≥2|AP |,则该双曲线的离心率的取值范围是________.答案,213解析由题意,以F 1F 2为直径的圆的方程为x 2+y 2=c 2,如图,设双曲线的一条渐近线方程为y =b a x .=b a x ,2+y 2=c 2,=a ,=b =-a ,=-b .∴P (-a ,-b ),Q (a ,b ).又A 为双曲线的左顶点,则A (-a ,0).∴|AQ |=(a +a )2+b 2=4a 2+b 2,|AP |=[-a -(-a )]2+b 2=b ,|AQ |≥2|AP |,即4a 2+b 2≥2b ,解得4a 2≥3(c 2-a 2),∴e =c a ≤213.又e >1,故e ,213.,213.【通性通法】求双曲线离心率或其取值范围的方法直接法求a ,b ,c 的值,由c 2a 2=a 2+b 2a2=1+b 2a 2直接求e方程(不等式)法列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解【巩固迁移】10.(2024·九省联考)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过坐标原点的直线与C 交于A ,B 两点,|F 1B |=2|F 1A |,F 2A →·F 2B →=4a 2,则C 的离心率为()A .2B .2C .5D .7答案D解析由双曲线的对称性可知|F 1A |=|F 2B |,|F 1B |=|F 2A |,则四边形AF 1BF 2为平行四边形,令|F 1A |=|F 2B |=m ,则|F 1B |=|F 2A |=2m ,由双曲线的定义可知|F 2A |-|F 1A |=2a ,故有2m -m =2a ,即m =2a ,即|F 1A |=|F 2B |=m =2a ,|F 1B |=|F 2A |=4a ,F 2A →·F 2B →=|F 2A →||F 2B →|cos ∠AF 2B =2a ×4a cos ∠AF 2B =4a 2,则cos ∠AF 2B =12,即∠AF 2B =π3,故∠F 2BF 1=2π3,则cos ∠F 2BF 1=|F 1B |2+|F 2B |2-|F 1F 2|22|F 1B ||F 2B |=(4a )2+(2a )2-(2c )22×4a ×2a =-12,即20a 2-4c 216a 2=-12,即2016-4e 216=-12,则e 2=7,又e >1,故e =7.故选D.11.已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 是双曲线C 上在第一象限内的一点,若sin ∠PF 2F 1=3sin ∠PF 1F 2,则双曲线C 的离心率的取值范围为________.答案(1,2)解析在△PF 1F 2中,sin ∠PF 2F 1=3sin ∠PF 1F 2,由正弦定理,得|PF 1|=3|PF 2|,又点P 是双曲线C 上在第一象限内的一点,所以|PF 1|-|PF 2|=2a ,所以|PF 1|=3a ,|PF 2|=a ,在△PF 1F 2中,由|PF 1|+|PF 2|>|F 1F 2|,得3a +a >2c ,即2a >c ,所以e =ca <2,又e >1,所以1<e <2.故双曲线C 的离心率的取值范围为(1,2).考向4与双曲线几何性质有关的最值(范围)问题例8(1)(2023·湖北名校联考)已知F 1,F 2分别是双曲线C :x 24-y 221=1的左、右焦点,动点P在双曲线C 的右支上,则(|PF 1|-4)(|PF 2|-4)的最小值为()A .-4B .-3C .-2D .-1答案B解析由双曲线的定义可得|PF 1|-|PF 2|=4,其中|PF 2|≥3,将|PF 1|=|PF 2|+4代入(|PF 1|-4)(|PF 2|-4),得|PF 2|·(|PF 2|-4)=|PF 2|2-4|PF 2|=(|PF 2|-2)2-4≥-3.故选B.(2)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是________.答案-33,解析因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1→·MF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 20-1<0,解得-33<y 0<33.故y 0-33,【通性通法】1.双曲线几何性质的综合应用涉及知识较宽,如双曲线定义、标准方程、对称性、渐近线、离心率等多方面的知识,在解决此类问题时要注意与平面几何知识的联系.2.与双曲线有关的取值范围问题的解题思路思路一若条件中存在不等关系,则借助此关系直接变换转化求解思路二若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决【巩固迁移】12.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为103,双曲线上的点到焦点的最小距离为10-3,则双曲线上的点到点A (5,0)的最小距离为()A .1B .62C .2D .6答案B解析由已知,得c a =103,c -a =10-3,解得c =10,a =3,故b 2=c 2-a 2=1.所以双曲线的方程为x 29-y 2=1,设P (x ,y )是双曲线x 29-y 2=1上的点,则y 2=x 29-1,且x ≤-3或x ≥3,则|AP |=(x -5)2+y 2=10x29-10x +24所以当x =92时,|AP |min =32=62.故选B.课时作业一、单项选择题1.(2023·福建泉州模拟)已知双曲线C :x 2a 2-y 2b 21(a >0,b >0)的焦距为25,点P (2,1)在C的一条渐近线上,则C 的方程为()A .x 2-y24=1B .x 24-y 2=1C .3x 220-3y 25=1D .x 216-y 24=1答案B解析解法一:由已知2c =25,则c = 5.又b a =12,且a 2+b 2=c 2,所以a =2,b =1.则C 的方程为x 24-y 2=1.故选B.解法二:由已知2c =25,则c =5,对于C ,a 2+b 2=253≠5,所以排除C ;对于D ,a 2+b 2=20≠5,所以排除D ;又由点P (2,1)在C 的一条渐近线上,坐标代入方程检验可排除A.故选B.2.(2024·广东江门联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的斜率为22,则C 的离心率为()A .3B .6C .9D .12答案A解析由题意可知b a =22,则C 的离心率e =ca=a 2+b 2a 2=1+(22)2=3.故选A.3.(2023·扬州、盐城、南通联考)已知双曲线C 的离心率为3,F 1,F 2是C 的两个焦点,P 为C 上一点,|PF 1|=3|PF 2|,若△PF 1F 2的面积为2,则双曲线C 的实轴长为()A .1B .2C .3D .6答案B解析由题意知,|PF 1|-|PF 2|=2a ,所以|PF 2|=a ,|PF 1|=3a ,又离心率e =ca=3,|F 1F 2|=2c =23a ,所以cos ∠F 1PF 2=9a 2+a 2-12a 22·3a ·a =-2a 26a 2=-13,sin ∠F 1PF 2=223,所以S △PF 1F 2=12·a ·3a ·223=2a 2=2,所以a =1,实轴长2a =2.故选B.4.已知双曲线E :x 24-y 2m =1的一条渐近线方程为3x +2y =0,则下列说法正确的是()A .E 的焦点到渐近线的距离为2B .m =6C .E 的实轴长为6D .E 的离心率为132答案D解析依题意,得32=m2,解得m =9,故B 不正确;因为b =m =3,a =2,c =a 2+b 2=13,所以E 的焦点到渐近线的距离为31332+22=3,故A 不正确;因为a =2,所以E 的实轴长为2a =4,故C 不正确;E 的离心率为c a =132,故D 正确.故选D.5.已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 交于点P ,则点P 的轨迹是()A .椭圆B .双曲线C .抛物线D .圆答案B解析如图,连接ON ,由题意可得|ON |=1,且N 为MF 1的中点,又O 为F 1F 2的中点,所以|MF 2|=2.因为点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 交于点P ,由垂直平分线的性质可得|PM |=|PF 1|,所以||PF 2|-|PF 1||=||PF 2|-|PM ||=|MF 2|=2<|F 1F 2|,所以由双曲线的定义可得,点P 的轨迹是以F 1,F 2为焦点的双曲线.故选B.6.(2023·天津高考)双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.过F 2作其中一条渐近线的垂线,垂足为P .已知|PF 2|=2,直线PF 1的斜率为24,则双曲线的方程为()A .x 28-y 24=1B .x 24-y 28=1C .x 24-y 22=1D .x 22-y 24=1答案D解析解法一:不妨取渐近线y =b a x ,此时直线PF 2的方程为y =-a b (x -c ),与y =ba x 联立,=a 2c,=ab c ,即因为直线PF 2与渐近线y =ba x 垂直,所以PF 2的长度即为点F 2(c ,0)到直线y =b a x (即bx -ay =0)的距离,由点到直线的距离公式,得|PF 2|=bc b 2+a 2=bcc =b ,所以b =2.因为F 1(-c,0),且直线PF 1的斜率为24,所以abc a 2c +c =24,化简得ab a 2+c 2=24,又b =2,c 2=a 2+b 2,所以2a 2a 2+4=24,整理得a 2-22a +2=0,即(a -2)2=0,解得a = 2.所以双曲线的方程为x 22-y 24=1.故选D.解法二:因为过点F 2向其中一条渐近线作垂线,垂足为P ,且|PF 2|=2,所以b =2,再结合选项,排除B ,C ;若双曲线方程为x 28-y 24=1,则F 1(-23,0),F 2(23,0),渐近线方程为y =±22x ,不妨取渐近线y =22x ,则直线PF 2的方程为y =-2(x -23),与渐近线方程y =22x 联立,得则kPF 1=25,又直线PF 1的斜率为24,所以双曲线方程x 28-y 24=1不符合题意,排除A.故选D.7.(2023·山西吕梁二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线y =kx 与C 交于P ,Q 两点,PF 1→·QF 1→=0,且△PF 2Q 的面积为4a 2,则C 的离心率是()A .3B .5C .2D .3答案B解析如图,若P 在第一象限,因为PF 1→·QF 1→=0,所以PF 1⊥QF 1,由图形的对称性,知四边形PF 1QF 2为矩形,因为△PF 2Q 的面积为4a 2,所以|PF 1|·|PF 2|=8a 2,又因为|PF 1|-|PF 2|=2a ,所以|PF 1|=4a ,|PF 2|=2a ,在Rt △PF 1F 2中,(4a )2+(2a )2=(2c )2,解得e =ca=5.故选B.8.(2023·安徽蚌埠模拟)已知双曲线C :x 29-y 2=1,点F 1是C 的左焦点,若点P 为C 右支上的动点,设点P 到C 的一条渐近线的距离为d ,则d +|PF 1|的最小值为()A .6B .7C .8D .9答案B解析过P 作PH 垂直于双曲线的一条渐近线,垂足为H ,则|PH |=d ,连接P 与双曲线的另一个焦点F 2,如图所示.由双曲线的定义可知,d +|PF 1|=|PH |+|PF 2|+2a ,又双曲线方程为x 29-y 2=1,故a =3,b =1,c =10,所以点F 2的坐标为(10,0),双曲线的一条渐近线为y =13x ,故点F 2到渐近线的距离为103103=1,故|PH |+|PF 2|+2a ≥1+6=7.故选B.二、多项选择题9.已知双曲线C :x 2a 2-y 23=1(a >0)的左、右焦点分别为F 1,F 2,离心率为2,P 为C 上一点,则()A .双曲线C 的实轴长为2B .双曲线C 的一条渐近线方程为y =3x C .|PF 1|-|PF 2|=2D .双曲线C 的焦距为4答案ABD解析由双曲线方程,知b=3,离心率为e=ca=a2+3a=2,解得a=1,故双曲线C的标准方程为x2-y23=1,实半轴长为1,实轴长为2a=2,A正确;因为可求得双曲线的渐近线方程为y=±3x,故双曲线的一条渐近线方程为y=3x,B正确;由于P可能在C的不同分支上,则有||PF1|-|PF2||=2,C错误;焦距为2c=2a2+b2=4,D正确.故选ABD.10.已知椭圆C1:x216+y29=1与双曲线C2:x216-k+y29-k=1(9<k<16),下列关于两曲线的说法正确的是()A.C1的长轴长与C2的实轴长相等B.C1的短轴长与C2的虚轴长相等C.焦距相等D.离心率不相等答案CD解析由题意可知,椭圆C1的长轴长为2a1=8,短轴长为2b1=6,焦距为2c1=216-9=27,离心率为e1=c1a1=74,当9<k<16时,16-k>0,9-k<0,双曲线C2的焦点在x轴上,其实轴长为2a2=216-k,虚轴长为2b2=2k-9,焦距为2c2=216-k+k-9=27,离心率为e2=c2a2=716-k.故C1的长轴长与C2的实轴长不相等,C1的短轴长与C2的虚轴长不相等,C1与C2的焦距相等,离心率不相等.故选CD.三、填空题11.(2022·北京高考)已知双曲线y2+x2m=1的渐近线方程为y=±33x,则m=________.答案-3解析对于双曲线y2+x2m=1,m<0,即双曲线的标准方程为y2-x2-m=1,则a=1,b=-m,又双曲线y2+x2m=1的渐近线方程为y=±33x,所以ab=33,即1-m=33,解得m=-3.12.(2024·山东潍坊摸底)已知双曲线C的焦点分别为F1,F2,虚轴为B1B2.若四边形F1B1F2B2的一个内角为120°,则C的离心率为________.答案6 2解析因为|F1F2|=2c,|B1B2|=2b,c>b,由双曲线的对称性可得四边形F1B1F2B2为菱形,又∠F1B1F2=120°,所以|F1O|=3|B1O|,即c=3b,可得c2=3b2=3(c2-a2),整理得c2a2=32,即C 的离心率e =c a =62.13.(2024·福建厦门质检)已知双曲线C :x 29-y 27=1,F 1,F 2是其左、右焦点.圆E :x 2+y 2-4y +3=0,点P 为双曲线C 右支上的动点,点Q 为圆E 上的动点,则|PQ |+|PF 1|的最小值是________.答案5+25解析由题设知,F 1(-4,0),F 2(4,0),E (0,2),圆E 的半径r =1.由点P 为双曲线C 右支上的动点,知|PF 1|=|PF 2|+6,∴|PQ |+|PF 1|=|PQ |+|PF 2|+6,∴(|PQ |+|PF 1|)min =(|PQ |+|PF 2|)min +6=|F 2E |-r +6=25-1+6=5+25.14.(2023·T8联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,过F 2作渐近线y =b a x 的垂线,垂足为P ,若∠F 1PO =π6,则双曲线的离心率为________.答案213解析设∠POF 2=α,则tan α=b a ,又F 2P 垂直于渐近线y =ba x ,即bx -ay =0,∴|PF 2|=|bc |a 2+b 2=b ,而tan α=|PF 2||OP |=b a ,∴|OP |=a ,∴sin α=b c ,cos α=a c ,在△OF 1P 中,∠F 1PO =π6由正弦定理得a=csin π6,∴a b c ·32-a c ·12=2c ,∴a =3b -a ,∴2a =3b ,∴a =32b ,∴e =ca =a 2+b 2a2=213.四、解答题15.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =5,且过点M (-2,23).(1)求双曲线C 的标准方程;(2)求与双曲线C 有相同渐近线,且过点P (3,25)的双曲线的标准方程.解(1)因为离心率e =ca =a 2+b 2a=1+b 2a2=5,所以b 2=4a 2,又因为点M (-2,23)在双曲线C 上,所以4a 2-12b2=1,联立上述方程,解得a 2=1,b 2=4,所以双曲线C 的标准方程为x 2-y 24=1.(2)设所求双曲线的方程为x 2-y 24=λ(λ≠0),因为所求双曲线经过点P (3,25),则3-204=λ,即λ=-2,所以所求双曲线的方程为x 2-y 24=-2,其标准方程为y 28-x 22=1.16.已知双曲线x 212-y 28=1.(1)求证:双曲线上任意一点到两条渐近线的距离之积为定值;(2)求直线2x -y +1=0被两条渐近线截得的线段长.解令x 212-y 28=0,则双曲线的渐近线方程为y =±63x .(1)证明:设点P (x ,y )为双曲线上任意一点,且点P 到渐近线6x +3y =0与6x -3y =0的距离分别为d 1,d 2,则d 1d 2=|6x +3y |15·|6x -3y |15=|6x 2-9y 2|15=|2x 2-3y 2|5==245.即双曲线上任意一点到两条渐近线的距离之积为定值.(2)=63x ,x -y +1=0,=-6+610,=-1+65.=-63,x -y +1=0,=6-610,=-1+65.所以直线2x -y +1=0-6+610,所以直线2x -y +1=0被两条渐近线截得的线段长为==305.17.在①左顶点为(-3,0);②双曲线过点(32,4);③离心率e =53这三个条件中任选一个,补充在下面问题中,并解答.问题:已知双曲线与椭圆x 249+y 224=1共焦点,且________.(1)求双曲线的方程;(2)若点P 在双曲线上,F 1,F 2分别是双曲线的左、右焦点,且|PF 1|=8,求|PF 2|.注:如果选择多个条件分别解答,按第一个解答计分.解(1)因为双曲线与椭圆x 249+y 224=1共焦点,所以双曲线的焦点在x 轴上,且c =49-24=5.选条件①:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由双曲线的左顶点为(-3,0),得a =3,所以b 2=c 2-a 2=25-9=16,所以双曲线的方程为x 29-y 216=1.选条件②:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由双曲线过点(32,4),得18a 2-16b 2=1,又a 2=25-b 2,解得b 2=16,所以a 2=9,所以双曲线的方程为x 29-y 216=1.选条件③:设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),由离心率e =53,得5a =53,解得a =3,所以b 2=c 2-a 2=25-9=16,所以双曲线的方程为x 29-y 216=1.(2)因为|PF 1|=8,||PF 1|-|PF 2||=2a =6,所以|PF 2|=2或|PF 2|=14.18.(多选)(2023·山西太原一模)已知双曲线C :x 24-y 25=1的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线C 的右支交于A ,B 两点,且AF 1⊥AB ,则下列结论正确的是()A .双曲线C 的渐近线方程为y =±52x B .若P 是双曲线C 上的动点,则满足|PF 2|=5的点P 有3个C .|AF 1|=2+14D .△ABF 1内切圆的半径为14-2答案ACD解析双曲线C :x 24-y 25=1中,实半轴长a =2,虚半轴长b =5,半焦距c =3,焦点F 1(-3,0),F 2(3,0).对于A ,双曲线C 的渐近线方程为y =±52x ,A 正确;对于B ,设点P (x 0,y 0),则y 20=54x 20-5,|PF 2|=(x 0-3)2+y 20=94x 20-6x 0+4=|32x 0-2|=5,解得x 0=-2或x 0=143,当x 0=-2时,P (-2,0),当x 0=143时,y 0有两个值,即符合条件的点P 有3个,B 错误;对于C ,由双曲线定义知|AF 1|-|AF 2|=4,而|F 1F 2|=6,且AF 1⊥AB ,则|AF 1|2+|AF 2|2=|F 1F 2|2=36,即|AF 1|+|AF 2|=2(|AF 1|2+|AF 2|2)-(|AF 1|-|AF 2|)2=214,因此|AF 1|=2+14,C 正确;对于D ,由双曲线的定义知|BF 1|-|BF 2|=4,因为AF 1⊥AB ,所以△ABF 1内切圆的半径r =|AF 1|+|AB |-|BF 1|2=|AF 1|+|AF 2|+|BF 2|-|BF 1|2=214-42=14-2,D 正确.故选ACD.19.(多选)(2023·河北石家庄模拟)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在C 的右支上,且不与C 的顶点重合,则下列命题中正确的是()A .若a =3,b =2,则C 的两条渐近线方程是y =±32xB .若点P 的坐标为(2,42),则C 的离心率大于3C .若PF 1⊥PF 2,则△F 1PF 2的面积等于b 2D .若C 为等轴双曲线,且|PF 1|=2|PF 2|,则cos ∠F 1PF 2=35答案BC解析当a =3,b =2时,双曲线的渐近线的斜率k =±b a =±23,A 错误;因为点P (2,42)在C 上,则4a 2-32b 2=1,得b 2a 2=b 248>8,所以e =1+b 2a2>3,B 正确;因为|PF 1|-|PF 2|=2a ,若PF 1⊥PF 2,则|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,即(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,即4a 2+2|PF 1|·|PF 2|=4c 2,得|PF 1|·|PF 2|=2(c 2-a 2)=2b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|=b 2,C 正确;若C 为等轴双曲线,则a =b ,从而|F 1F 2|=2c =22a .若|PF 1|=2|PF 2|,则|PF 2|=2a ,|PF 1|=4a .在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=16a 2+4a 2-8a 22×4a ×2a =34,D错误.故选BC.20.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是双曲线的右支上一点.(1)求|PF 1|的最小值;(2)若右支上存在点P 满足|PF 1|=4|PF 2|,求双曲线的离心率的取值范围.解(1)设F 1(-c ,0),F 2(c ,0),P (x ,y )(x ≥a ),则|PF 1|=(x +c )2+y 2=(x +c )2+b 2a 2x 2-b 2=c 2a 2x 2+2cx +a 2==|c a x +a |=c a x +a ≥ca ·a +a =a +c .当P 在右顶点时,|PF 1|最小,所以|PF 1|的最小值为a +c .(2)设∠F 1PF 2=θ,θ∈(0,π].依题意,1|-|PF 2|=2a,1|=4|PF 2|,1|=8a 3,2|=2a 3.由余弦定理,得cos θ2×8a 3×2a 3=17a 2-9c 28a 2=178-98e 2,所以-1≤178-98e 2<1,解得1<e 2≤259,又e >1,所以1<e ≤53.。

2020高考数学文科刷题(2019真题+2019模拟)讲练(课件+优选练)专题18 统计、统计案例

   2020高考数学文科刷题(2019真题+2019模拟)讲练(课件+优选练)专题18 统计、统计案例

答案 C 解析 由茎叶图得:b 品种所含 β-胡萝卜素普遍高于 a 品种,∴-x a<-x b, 故 A 正确;a 品种的数据波动比 b 品种的数据波动大,∴a 的方差大于 b 的 方差,故 B 正确;b 品种的众数为 3.31 与 3.41,故 C 错误;a 品种的中位数 为3.23+2 3.31=3.27,故 D 正确.故选 C.
与性别有关”.故选 B.
答案
解析
11.(2019·全国卷Ⅰ)某学校为了解 1000 名新生的身体素质,将这些学
生编号为 1,2,…,1000,从这些新生中用系统抽样方法等距抽取 100 名学
生进行体质测验.若 46 号学生被抽到,则下面 4 名学生中被抽到的是( )
A.8 号学生
B.200 号学生
答案 D
答案
解析 由整个互联网行业从业者年龄分布的饼状图可知,互联网行业从 业者中 90 后占了 56%,故 A 正确;由两个统计图知,互联网行业从事技术 岗位的 90 后人数占总人数的 56%×39.6%=22.176%,已经超过了 20%, 所以整个互联网行业从事技术岗位的人数肯定会超过总人数的 20%,故 B 正确;由两个统计图知,互联网行业从事运营岗位的人数 90 后占总人数的 56%×17%=9.52%,超过了 80 前互联网行业从业者人数,故 C 正确;由 两个统计图知互联网行业 80 后的人数占 41%,但没有 80 后的岗位分布图, 因此无法判断互联网行业中从事技术岗位的人数 90 后与 80 后谁多谁少,故 D 不一定正确,故选 D.
答案 D
答案
解析 在频率等高条形图中,a+a b与c+c d相差很大时,我们认为两个分 类变量有关系,在四个选项中(等高的条形图)中,若 x1,x2 所占比例相差越 大,则分类变量 x,y 的相关性越强.故选 D.

【高考复习】2020年高考数学(文数) 函数的图象与性质 小题练(含答案解析)

【高考复习】2020年高考数学(文数) 函数的图象与性质 小题练(含答案解析)

【高考复习】2020年高考数学(文数)函数的图象与性质 小题练一、选择题1.已知函数f(x)=x|x|-2x ,则下列结论正确的是( )A .f(x)是偶函数,递增区间是(0,+∞)B .f(x)是偶函数,递减区间是(-∞,1)C .f(x)是奇函数,递减区间是(-1,1)D .f(x)是奇函数,递增区间是(-∞,0)2.使log 2(-x)<x +1成立的x 的取值范围是( )A .(-1,0)B .[-1,0)C .(-2,0)D .[-2,0)3.下列函数f(x)的图象中,满足f ⎝ ⎛⎭⎪⎫14>f(3)>f(2)的只可能是( )4.已知函数f(x)=⎩⎪⎨⎪⎧log 12x ,x >0,2x ,x ≤0,若关于x 的方程f(x)=k 有两个不等的实数根,则实数k 的取值范围是( )A .(0,+∞)B .(-∞,1)C .(1,+∞)D .(0,1]5.方程x 2+ax-2=0在区间[1,5]上有解,则实数a 的取值范围为( )A.B.(1,+∞)C.D.6.若函数f(x)=(1-x 2)(x 2+ax-5)的图象关于直线x=0对称,则f(x)的最大值是( ) A.-4 B.4 C.4或-4 D.不存在7.已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f(1-a)=f(1+a),则a 的值为( )A .-32B .-34C .-32或-34D .32或-348.y=x+xx ||的图象是( )9.已知函数f(x)=-x 2+4x +a ,x ∈[0,1],若f(x)有最小值-2,则f(x)的最大值为( )A .1B .0C .-1D .210.已知二次函数f(x)的二次项系数为a ,且不等式f(x)>-2x 的解集为(1,3).若方程f(x)+6a=0有两个相等的根,则实数a=( )A .-0.2B .1C .1或-0.2D .-1或-0.211.设函数f(x)=mx 2-mx -1,若对于x ∈[1,3],f(x)<-m +4恒成立,则实数m 取值范围为( )A .(-∞,0]B .0,57C .(-∞,0)∪0,57D .-∞,5712.对二次函数f(x)=ax 2+bx +c(a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A .-1是f(x)的零点B .1是f(x)的极值点C .3是f(x)的极值D .点(2,8)在曲线y=f(x)上二、填空题13.如图,函数f(x)的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝ ⎛⎭⎪⎫1f (3)的值等于________.14.已知点P 1(x 1,2 015)和P 2(x 2,2 015)在二次函数f(x)=ax 2+bx+9(a ≠0)的图象上,则f(x 1+x 2)的值为 . 15.已知函数⎩⎨⎧<-≥-=3,313,12)(x x x x x f ,则f[f(-1)]的值是________.16.已知f(x-1)的定义域为[-3,3],则f(x)的定义域为____________. 17.已知函数f(x)=x 2-2tx +1,在区间[2,5]上单调且有最大值为8,则实数t 的值为______.18.若函数y=x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则实数m 的取值范围是________.答案解析1.答案为:C ;解析:选C.将函数f(x)=x|x|-2x 去掉绝对值得f(x)=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f(x)的图象,如图,观察图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(-1,1)上单调递减.2.答案为:A ;解析:选A.在同一坐标系内作出y=log 2(-x),y=x +1的图象,知满足条件的x∈(-1,0).3.答案为:D.4.答案为:D ;解析:选D.作出函数y=f(x)与y=k 的图象,如图所示:由图可知k∈(0,1],故选D.5.C 方程x 2+ax-2=0在区间[1,5]上有解转化为方程a=在区间[1,5]上有解,即y=a 与y=的图象有交点,又因为y==-x 在[1,5]上是减函数,所以其值域为,故选C.6.B 依题意,知函数f(x)是偶函数,则y=x 2+ax-5是偶函数,故a=0,则f(x)=(1-x 2)(x 2-5)=-x 4+6x 2-5=-(x 2-3)2+4,当x 2=3时, f(x)取最大值,为4. 7.答案为:B.解析:当a >0时,1-a <1,1+a >1.由f(1-a)=f(1+a)得2-2a +a=-1-a -2a ,解得a=-32,不合题意;当a <0时,1-a >1,1+a <1,由f(1-a)=f(1+a)得-1+a -2a=2+2a +a ,解得a=-34,所以a 的值为-34,故选B.8.答案:C9.答案为:A ;解析:f(x)=-x 2+4x +a=-(x -2)2+a +4,∴函数f(x)=-x 2+4x +a 在[0,1]上单调递增, ∴当x=0时,f(x)取得最小值,当x=1时,f(x)取得最大值, ∴f(0)=a=-2,f(1)=3+a=3-2=1,故选A .10.答案为:A ;解析:因为f(x)+2x>0的解集为(1,3),设f(x)+2x=a(x -1)(x -3),且a<0,所以f(x)=a(x -1)(x -3)-2x=ax 2-(2+4a)x +3a .由方程f(x)+6a=0得ax 2-(2+4a)x +9a=0.因为方程有两个相等的根,所以Δ=[-(2+4a)]2-4a·9a =0,解得a=1或a=-15.由于a<0,则a=-15.故选A .11.答案为:D ;解析:由题意,f(x)<-m +4对于x ∈[1,3]恒成立,即m(x 2-x +1)<5对于x ∈[1,3]恒成立.∵当x ∈[1,3]时,x 2-x +1∈[1,7],∴不等式f(x)<-m +4等价于m<5x 2-x +1.∵当x=3时,5x 2-x +1取最小值57,∴若要不等式m<5x 2-x +1对于x ∈[1,3]恒成立,则必须满足m<57,因此,实数m 的取值范围为-∞,57,故选D .12.答案为:A ;解析:由已知得,f′(x)=2ax +b ,则f(x)只有一个极值点,若A ,B 正确,则有⎩⎪⎨⎪⎧a -b +c =0,2a +b =0,解得b=-2a ,c=-3a ,则f(x)=ax 2-2ax -3a .由于a 为非零整数,所以f(1)=-4a≠3,则C 错误.而f(2)=-3a≠8,则D 也错误,与题意不符, 故A ,B 中有一个错误,C ,D 都正确. 若A ,C ,D 正确,则有⎩⎪⎨⎪⎧a -b +c =0, ①4a +2b +c =8,②4ac -b 24a =3,③由①②得⎩⎪⎨⎪⎧b =83-a ,c =83-2a ,代入③中并整理得9a 2-4a +649=0,又a 为非零整数,则9a 2-4a 为整数,故方程9a 2-4a +649=0无整数解,故A 错误.若B ,C ,D 正确,则有⎩⎪⎨⎪⎧2a +b =0,a +b +c =3,4a +2b +c =8,解得a=5,b=-10,c=8,则f(x)=5x 2-10x +8,此时f(-1)=23≠0,符合题意.故选A .一、填空题13.答案为:2;解析:由题中图象知f(3)=1,∴1f (3)=1,∴f ⎝ ⎛⎭⎪⎫1f (3)=f(1)=2.14.答案9解析 依题意得x 1+x 2=-,则f(x 1+x 2)=f=a+b+9=9.15.答案为:7[解析]:∵x<3时,f(x)=1-3x ,∴f(-1)=1-3×(-1)=4.又∵x ≥3时,f(x)=2x-1,∴f(4)=2×4-1=7.∴f[f(-1)]=f(4)=7.16. [答案][-4,2][解析] ∵-3≤x ≤3,∴-4≤x-1≤2,∴f(x)的定义域为[-4,2].17.答案为:1.8;解析:函数f(x)=x 2-2tx +1图象的对称轴是x=t ,函数在区间[2,5]上单调,故t≤2或t≥5. 若t≤2,则函数f(x)在区间[2,5]上是增函数, 故f(x)max =f(5)=25-10t +1=8,解得t=1.8;若t≥5,函数f(x)在区间[2,5]上是减函数,此时f(x)max =f(2)=4-4t +1=8, 解得t=-0.75,与t≥5矛盾. 综上所述,t=1.8.18.答案为:⎣⎢⎡⎦⎥⎤32,3; 解析:因为y=x 2-3x -4=⎝ ⎛⎭⎪⎫x -322-254,且f(0)=-4,值域为⎣⎢⎡⎦⎥⎤-254,-4,所以32∈[0,m],即m≥32.又f(m)≤-4,则0≤m≤3,所以32≤m≤3.。

2013届高中文科数学高考复习辅导18-19

2013届高中文科数学高考复习辅导18-19

2013届高中文科数学高考复习辅导18一、选择题:每小题只有一项是符合题目要求的,将答案填在题后括号内. 1、函数()()lg 2f x x =+的定义域是( )A 、[)2,-+∞B 、()2,-+∞C 、[)2,+∞D 、()2,+∞ 2、已知()2sin cos 0,0,2αααπ-=∈,则221sin cos 4αα-=( )A 、15-B 、0C 、35D 、35- 3、已知函数()232,1,1x x f x x ax x +<⎧=⎨+≥⎩,若()0f f a =⎡⎤⎣⎦,则实数a =( ) A 、4- B 、2- C 、2 D 、44、已知数列{}n a 满足:11a =,223a =,且111120n n n n n n a a a a a a -+-++-=(2n ≥),则2011a =( ) A 、11005B 、12011C 、22011D 、11006二、填空题:将正确答案填在题后横线上. 5、已知数列{}n a ,()111,2n n a a a n N *+==+∈,则此数列的前n 项和n S = ;6、设等比数列{}n a 的前n 项和为n S ,若634S S =,则96SS = ; 7、在直角坐标系中(O 为坐标原点),P 为线段AB 上一点,且OP xOA yOB =+ ﹒则14x y+的最小值等于 ;8、给定以下三个命题:①当()0,x ∈+∞时,函数()f x x α=(0α>)为增函数;②“2b ac =”是“a 、b 、c 成等比数列”的必要非充分条件;③函数()sin 4f x x π⎛⎫=+⎪⎝⎭的图象关于直线()4x k k Z ππ=+∈对称﹒其中所有正确命题的序号是 ; 三、解答题:解答须写出文字说明、证明过程和演算步骤.9、 设n S 为数列{}n a 的前n 项和,且()111,42n n a S a n N *+==+∈(1)设12n n n b a a +=-,求证数列{}n b 为等比数列;(2)设2nn n a c =,求数列{}n c 的通项公式n c ﹒10、己知函数()2ln f x x ax bx =--﹒(1)若1a =-,函数()f x 在其定义域内是增函数,求实数b 的取值范围; (2)当1,1a b ==-时,判断并证明函数()f x 在R 上的零点个数﹒11、 已知点列B 1(1,b 1),B 2(2,b 2),…,B n (n ,b n ),…(n ∈N )顺次为抛物线y =14x 2上的点,过点B n (n ,b n )作抛物线y =14x 2的切线交x 轴于点A n (a n,0),点C n (c n,0)在x 轴上,且点A n ,B n ,C n 构成以点B n 为顶点的等腰三角形.(1)求数列{a n },{c n }的通项公式;(2)是否存在n 使等腰三角形A n B n C n 为直角三角形,若有,请求出n ;若没有,请说明理由.2013届高中文科数学高考复习辅导18答案1.B2. B3. A4. D5. 2n 6.1347. 9 8. ① ② ③ 9、解(1)利用递推易得11212.2523n n b b b a a -==-=-= 则数列{}n b 是以3为首项,2为公比的等比数列﹒(2)由(1)知:11322n n n n b a a -+=⋅=-, 又1112,2n n n n n n a c a c +++=⋅=⋅代入(﹡)式有:∴11113322224n n n n nn n c c c c -+++⋅=⋅-⋅⋅⇒-=11122a c == 则数列{}n c 是以12为首项,34为公差的等差数列 ()13311.244n n c n -∴=+-⋅=(3)由(2)知:31224nnn n n a c -=⋅=⋅,1231232222n n n S c c c c =⋅+⋅+⋅++⋅ ┄┄① 23112122222n n n n n S c c c c +-=⋅+⋅++⋅+⋅ ┄┄┄②①—②:()()231133112222234244nn n n n n S S n +---=++++-⋅⇒=+-⋅10、解(1)依题意:2()ln f x x x bx =+-()f x 在(0,)+∞上递增,1()20f x x b x'∴=+-≥对(0,)x ∈+∞恒成立 即12b x x ≤+对(0,)x ∈+∞恒成立,∴只需min 1(2)b x x≤+10,2x x x >∴+≥ 当且仅当2x =时取"",b =∴≤b ∴的取值范围为(-∞(2)当1,1a b ==-时,2()ln f x x x x =-+,其定义域是(0,),+∞2121(1)(21)()21,x x x x f x x x x x---+'∴=-+=-=-0,01x x >∴<< 时,()0;f x '>当1x >时,()0f x '<∴函数()f x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减 ∴当1x =时,函数()f x 取得最大值,其值为2(1)ln1110f =-+= 当1x ≠时,()(1),f x f <即()0f x < ∴函数()f x 只有一个零点11.解:(1)∵y =14x 2,∴y ′=x 2, y ′|x =n =n 2, 则点B n (n ,b n )作抛物线y =14x 2的切线方程为:y -n 24=n 2(x -n ),令y =0,则x =n 2,即a n =n2;∵点A n ,B n ,C n 构成以点B n 为顶点的等腰三角形,则:a n +c n =2n ,∴c n =2n -a n =3n 2.(2)若等腰三角形A n B n C n 为直角三角形,则|A n C n |=2b n, n =n 22,n =2,∴存在n =2,使等腰三角形A 2B 2C 2为直角三角形.2013届高中文科数学高考复习辅导19一、选择题:每小题只有一项是符合题目要求的,将答案填在题后括号内. 1.设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 3=( ) A .8 B .4 C .2 D .1 2.设数列{a n }的前n 项和S n =(n -1)2,则a 9+a 10=( ) A .16 B .24 C .32 D .483.已知数列{a n }的前n 项和S n =n 2-16n ,第k 项满足6<a k <9,则k =( ) A .13 B .12 C .10 D .94. 设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为∏n ,则∏2012的值为( )A .-12B .-1 C.12 D .1 二、填空题:将正确答案填在题后横线上.5.1,23,12,25,…的一个通项公式是________.6.设数列{a n }的前n 项和为S n ,对于所有n ∈N *,S n =a 1(3n -1)2,且a 4=54,则a 1=________.7.数列{a n }中,a n =1n +n +1,若S n =7,则n =________.8.一同学在电脑中打出如下若干个圆(图中●表示实心圆,○表示空心圆):●○●●○●●●○●●●●○●●●●●○●●●●●●○ 若将此若干个圆依次复制得到一系列圆,那么在前2013个圆中,空心圆的个数为________. 三、解答题:解答须写出文字说明、证明过程和演算步骤.9. 设数列{a n }中,a 1=1,点(a n ,a n +1)(n =1,2,3,…)均在直线y =2x +1上. (1)求a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.10.已知数列{a n }的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *满足关系式2S n =3a n -3.(1)求数列{a n }的通项公式; (2)设数列{b n }的通项公式是b n =1log 3a n ·log 3a n +1,前n项和为T n ,求证:对于任意的正整数n ,总有T n <1.11. 已知函数),()(2R n m nx mxx f ∈+=在1=x 处取到极值2 (1)求)(x f 的解析式; (2)设函数xanx x g +=1)(,若对任意的]1,1[1-∈x ,总存在],1[2e x ∈,使得27)()(12+≤x f x g ,求实数a 的取值范围。

广西壮族自治区桂林市第十八中2025届高考数学全真模拟密押卷含解析

广西壮族自治区桂林市第十八中2025届高考数学全真模拟密押卷含解析

广西壮族自治区桂林市第十八中2025届高考数学全真模拟密押卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图是二次函数2()f x x bx a =-+的部分图象,则函数()ln ()g x a x f x '=+的零点所在的区间是( )A .11,42⎛⎫⎪⎝⎭B .1,12⎛⎫⎪⎝⎭C .(1,2)D .(2,3)2.若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是 ( )A .0B .2-C .52-D .3-3.偶函数()f x 关于点()1,0对称,当10x -≤≤时,()21f x x =-+,求()2020f =( ) A .2B .0C .1-D .14.已知三点A (1,0),B (03),C (23,则△ABC 外接圆的圆心到原点的距离为( ) A .53 B 21C 25D .435.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数N 除以正整数m 所得的余数是n ”记为“(mod )N n m ≡”,例如71(mod 2)≡.执行该程序框图,则输出的n 等于( )A .16B .17C .18D .196.复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A .iB .i -C .1-D .17.设x 、y 、z 是空间中不同的直线或平面,对下列四种情形:①x 、y 、z 均为直线;②x 、y 是直线,z 是平面;③z 是直线,x 、y 是平面;④x 、y 、z 均为平面.其中使“x z ⊥且y z x y ⊥⇒∥”为真命题的是( ) A .③④B .①③C .②③D .①②8.关于函数()cos cos 2f x x x =+,有下列三个结论:①π是()f x 的一个周期;②()f x 在35,44ππ⎡⎤⎢⎥⎣⎦上单调递增;③()f x 的值域为[]22-,.则上述结论中,正确的个数为() A .0B .1C .2D .39.设集合{}2320M x x x =++>,集合1{|()4}2xN x =≤ ,则 M N ⋃=( )A .{}2x x ≥-B .{}1x x >-C .{}2x x ≤-D .R10.若2332a b a b +=+,则下列关系式正确的个数是( ) ①0b a << ②a b = ③01a b <<< ④1b a << A .1B .2C .3D .411.函数()3221f x x ax =-+在()0,∞+内有且只有一个零点,则a 的值为( ) A .3B .-3C .2D .-212.定义运算()()a a b a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

人教版新高三数学起始考复习练习题含答案

人教版新高三数学起始考复习练习题含答案

新高三数学起始考复习练习题1学校:___________姓名:___________班级:___________考号:___________新高三数学起始考复习练习题1学校:___________姓名:___________班级:___________考号:___________一、解答题1.在等差数列{}n a 中,38a =,724a a a =+. (1)求数列{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S .2.记n S 为等差数列{}n a 的前n 项和,已知36a =-,728S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.3.等差数列{}n a 中,1239a a a ++=,12n n a a +-=. (1)求{}n a 的通项公式; (2)求{}2nn a +的前n 项和nS.4.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为矩形,E 为PC 的中点,且3PD =,2AD =,4AB =. (1)求证:PA 平面BDE ;(2)若点F 为线段PC 上一点,且AF BD ⊥,求四棱锥F ABCD -的体积.5.如图,已知PA ⊥平面ABCD ,ABCD 为矩形,M N 、分别为AB PC 、的中点,,2,PA AD AB AD ===.(1)求证:MN ∥平面PAD ; (2)求证:面MPC ⊥平面PCD ; (3)求点B 到平面MNC 的距离.6.如图所示,在四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ∆为等腰三角形,APD 90︒∠=,平面PAD ⊥平面ABCD ,且1,2,,AB AD E F ==分别为,PC BD的中点.(1)证明://EF 平面PAD ; (2)证明:平面PDC ⊥平面PAD ; (3)求三棱锥E ABD -的体积.7.已知函数2()cos 2cos f x x x x =+. (I )求()f x 最小正周期; (Ⅱ)求()f x 在闭区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.8.已知函数())cos()f x x x ωϕωϕ=+++,0,02πωϕ⎛⎫><< ⎪⎝⎭的图像经过点3π⎛⎝且相邻两条对称轴间的距离为π. (1)求函数()f x 的解析式和单调减区间; (2)若将()f x 的图像上所有点的横坐标变为原来的13,纵坐标不变,得到函数()h x 的图像,求函数()h x 在区间,63ππ⎛⎫⎪⎝⎭上的值域.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc . (1)求角A 的大小;(2)设函数2()sin cos 222x x xf x =,当f (B )取最大值时,判断△ABC 的形状.10.在ABC ∆中,已知角,,A B C 的对边分别为,,a b c ,且cos cos a B b A b c -=+. (1)求角A 的大小;(2)若4a =,b c +=ABC ∆的面积.11.在ABC ∆中,已知()cos cos 2sin cos 0B A A C +-=. (1)求角C 的余弦值;(2)若BC =,AB 边上的中线CD =,求ABC ∆的面积.12.已知函数()222cos 1f x x x =--,x ∈R(1)求函数()f x 的最小正周期;(2)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且c =()0f C =,()sin sin 2sin 2C B A A +-=,求ABC ∆的面积.13.已知椭圆C :()222210x y a b a b+=>>的右焦点为()1,0F ,点()2,0A 在椭圆C 上,过F 点的直线l 与椭圆C 交于不同两点M 、N . (1)求椭圆C 的方程;(2)设直线l 斜率为1,求线段MN 的长;(3)设线段MN 的垂直平分线交y 轴于点()00,p y ,求0y 的取值范围.14.已知椭圆C 的焦点为1F (-和2F ,长轴长为6,设直线y=x+2交椭圆C 于A 、B 两点.求:(1)椭圆C 的标准方程; (2)弦AB 的中点坐标及弦长.15.已知椭圆22221(0)x y E a b a b =+=>>CH 在椭圆上.(1)求椭圆E 的方程;(2)①直线:(0)l y kx m k =+≠与椭圆E 交于两点,A B .求AB 的弦长;②若直线l 与椭圆E 交于两点,A B .且线段AB 的垂直平分线经过点10,2⎛⎫⎪⎝⎭,求AOB∆的面积的最大值.(O 为原点)16.已知椭圆C :22221(0)x y a b a b+=>>的短轴长为12,直线l :()1y k x =-与椭圆C 交于不同的两点M ,N ,A 为椭圆C 的左顶点.(1)求椭圆C 的标准方程;(2)当AMN ∆的面积为7时,求l 的方程.一、解答题1.在等差数列{}n a 中,38a =,724a a a =+. (1)求数列{}n a 的通项公式; (2)设1n nb na =,求数列{}n b 的前n 项和n S .【答案】(1)22n a n =+(2)22nn +【解析】 【分析】(1)利用等差数列的性质可求出1,a d ,进而可求出{}n a 的通项公式;(2)()1121n n b na n n ==+11121n n ⎛⎫=- ⎪+⎝⎭,由裂项相消求和法可求出n S . 【详解】解:(1)设等差数列{}n a 的公差为d ,则()11n a a n d +-=.因为37248,a a a a =⎧⎨=+⎩所以11112863a d a d a d a d +=⎧⎨+=+++⎩,解得14a =,2d =,所以数列{}n a 的通项公式为22n a n =+. (2)由题意知()1121n n b na n n ==+11121n n ⎛⎫=- ⎪+⎝⎭, 所以111111122231n S n n ⎛⎫=-+-++-= ⎪+⎝⎭1112122n n n ⎛⎫-= ⎪++⎝⎭. 【点睛】本题考查了等差数列的通项公式的求法,考查了利用裂项相消求数列的前n 项和,属于基础题.2.记n S 为等差数列{}n a 的前n 项和,已知36a =-,728S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)212n a n =-;(2)2212111( 5.5)4n S n n n =-=--,30-. 【解析】 【分析】(1)先求出公差d 和首项1a ,可得通项公式;(2)由(1)可得前n 项和n S ,由二次函数性质可得最小值(只要注意n 取正整数). 【详解】(1)设{}n a 的公差为d ,由题意得126a d +=-,17(3)28a d +=-, 解得110a =-,2d =.所以{}n a 的通项公式为212n a n =-. (2)由(1)得22(10212)12111( 5.5)24n n n S n n n -+-==-=--因为*n N ∈所以当5n =或6n =时,n S 取得最小值,最小值为-30. 【点睛】本题考查等差数列的通项公式和前n 项和公式,方法叫基本量法. 3.等差数列{}n a 中,1239a a a ++=,12n n a a +-=. (1)求{}n a 的通项公式; (2)求{}2nn a +的前n 项和nS.【答案】(1)21n a n =-;(2)2122n n S n +=+-.【解析】 【分析】(1)由12n n a a +-=得出等差数列{}n a 的公差为2,再利用1239a a a ++=,得出1a 的值,再利用等差数列的通项公式求出数列{}n a 的通项公式; (2)求出数列{}2nn a +的通项公式,再利用分组求和法求出nS.s【详解】(1)12n n a a +-=Q ,∴等差数列{}n a 的公差为2,()()1231111222369a a a a a a a ∴++=++++⨯=+=,解得11a =,因此,()12121n a n n =+-=-; (2)()2212nnn a n ∴+=-+,()()()()123123252212nn S n ⎡⎤∴=+++++++-+⎣⎦L()()123135212222nn =++++-+++++⎡⎤⎣⎦L L()()2121212122212nn n n n+-+-=+=+--,因此,2122n n S n +=+-.【点睛】本题考查等差数列的通项与分组求和法,对于等差数列通项,一般利用首项和公差建立方程组求解,对于等差与等比相加所构成的新数列,一般利用分组求和法进行求和,考查计算能力,属于基础题。

第3节 圆的方程--2025年高考数学复习讲义及练习解析

第3节  圆的方程--2025年高考数学复习讲义及练习解析

第三节圆的方程1.圆的定义及圆的方程=D 2+E 2-4F2的圆;当D 2+E 2-4F =0时,-D 2,D2+E 2-4F <0时,不表示任何图形.2.点与圆的位置关系平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2或x 2+y 2+Dx +Ey +F =0之间存在着下列关系:位置关系判断方法几何法代数法(标准方程)代数法(一般方程)点在圆上|MC |=r (x 0-a )2+(y 0-b )2=r 2x 20+y 20+Dx 0+Ey 0+F =0点在圆外|MC |>r (x 0-a )2+(y 0-b )2>r 2x 20+y 20+Dx 0+Ey 0+F >0点在圆内|MC |<r(x 0-a )2+(y 0-b )2<r 2x 20+y 20+Dx 0+Ey 0+F <01.确定圆的方程时,常用到的圆的两个性质(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.1.概念辨析(正确的打“√”,错误的打“×”)(1)圆x2+y2=a2的半径为a.()(2)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()(3)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.()答案(1)×(2)√(3)√2.小题热身(1)圆x2+y2-4x+6y=0的圆心坐标和半径分别是()A.(2,3),3B.(-2,3),3C.(-2,-3),13D.(2,-3),13答案D解析圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3),半径r=13.故选D.(2)(人教A选择性必修第一册2.4.1练习T1改编)圆心为(1,1)且过原点的圆的标准方程是________________.答案(x-1)2+(y-1)2=2解析因为圆心为(1,1)且过原点,所以该圆的半径r=12+12=2,则该圆的标准方程为(x -1)2+(y-1)2=2.(3)(人教A选择性必修第一册复习参考题2T7改编)若圆C:x2+y2-2(m-1)x+2(m-1)y+2m2-6m+4=0过坐标原点,则实数m的值为________.答案2解析∵x2+y2-2(m-1)x+2(m-1)y+2m2-6m+4=0表示圆,∴[-2(m-1)]2+[2(m-1)]2-4(2m2-6m+4)>0,∴m>1.又圆C过原点,∴2m2-6m+4=0,∴m=2或m=1(舍去),∴m=2.(4)(人教A选择性必修第一册复习参考题2T6改编)圆心在直线x+y=0上,且过点(0,2),(-4,0)的圆的标准方程为________________.答案(x+3)2+(y-3)2=10解析点(0,2)与点(-4,0)确定直线的斜率为k=2-00-(-4)=12,其中点为(-2,1),所以线段的中垂线方程为y-1=-2(x+2),即2x+y+3=0,又圆心在直线x+y=0上,由x+y+3=0,+y=0,=-3,=3,所以圆心为(-3,3),r=(-3)2+(3-2)2=10,所以圆的标准方程为(x+3)2+(y-3)2=10.考点探究——提素养考点一求圆的方程例1(1)已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的一般方程是________________.答案x2+y2+4x-2y=0解析设直径的两个端点分别为A(a,0),B(0,b),圆心C为点(-2,1),由中点坐标公式,得a+02=-2,0+b2=1,解得a=-4,b=2.∴半径r=(-2+4)2+(1-0)2=5,∴圆的方程是(x+2)2+(y-1)2=5,即x2+y2+4x-2y=0.(2)(2024·江苏南京一中月考)已知△ABC的顶点A(0,0),B(0,2),C(-2,2),则其外接圆的标准方程为________________.答案(x+1)2+(y-1)2=2解析设△ABC的外接圆的方程为(x-a)2+(y-b)2=r2,因为△ABC的顶点A(0,0),B(0,2),C(-2,2),2+b2=r2,2+(2-b)2=r2,2-a)2+(2-b)2=r2,=-1,=1,=2,因此(x+1)2+(y-1)2=2即为所求圆的方程.【通性通法】(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;②若已知条件没有明确给出圆心和半径,则选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.【巩固迁移】1.(2024·河北邯郸模拟)已知三点A(3,2),B(5,-3),C(-1,3),以P(2,-1)为圆心作一个圆,使得A,B,C三点中的一个点在圆内,一个点在圆上,一个点在圆外,则这个圆的标准方程为________________.答案(x-2)2+(y+1)2=13解析由题设知,|PA|=10,|PB|=13,|PC|=5,∴|PA|<|PB|<|PC|,要使A,B,C三点中的一个点在圆内,一个点在圆上,一个点在圆外,则圆以|PB|为半径,故圆的标准方程为(x -2)2+(y+1)2=13.2.已知圆的圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5),则圆的一般方程为________________.答案x2+y2+2x+4y-5=0解析解法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2,由题意,得2-a)2+(-3-b)2=r2,2-a)2+(-5-b)2=r2,-2b-3=0,=-1,=-2,2=10,故所求圆的方程为(x+1)2+(y+2)2=10,即x2+y2+2x+4y-5=0.解法二:线段AB的垂直平分线方程为2x+y+4=0,x+y+4=0,-2y-3=0,解得交点坐标C(-1,-2),又点C到点A的距离d=10,所以所求圆的方程为(x+1)2+(y+2)2=10,即x2+y2+2x+4y-5=0.考点二与圆有关的轨迹问题例2(2024·山东枣庄八中月考)已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程.解(1)解法一:设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,且直线AC,BC的斜率均存在,所以k AC k BC=-1,又k AC=yx+1,k BC=yx-3,所以yx+1·yx-3=-1,化简,得x2+y2-2x-3=0.因此直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).解法二:设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|=12|AB|=2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点).所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式,得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1),知点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入,得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1(y ≠0).所以直角边BC 的中点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).【通性通法】求与圆有关的轨迹问题的方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)几何法:利用圆的几何性质列方程.(4)相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式求解.【巩固迁移】3.已知两点A (-5,0),B (5,0),动点P 到点A 的距离是它到点B 的距离的3倍,则点P 的轨迹方程为________________.答案x 2+y 2-252x +25=0解析设P (x ,y ),由题意可知|PA |=3|PB |,由两点间距离公式,可得(x +5)2+y 2=3(x -5)2+y 2,化简,得x 2+y 2-252x +25=0.4.(2023·江苏淮安一模)已知点A (2,0)是圆x 2+y 2=4上一点,点B (1,1)是圆内一点,P ,Q 为圆上的动点.(1)求线段AP 的中点M 的轨迹方程;(2)若∠PBQ =90°,求线段PQ 的中点N 的轨迹方程.解(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,点P 的坐标为(2x -2,2y ).因为点P在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4.故线段AP 的中点M 的轨迹方程为(x -1)2+y 2=1.(2)如图,设PQ 的中点N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 的中点N 的轨迹方程为x 2+y 2-x -y -1=0.考点三与圆有关的最值问题(多考向探究)考向1借助几何性质求最值例3已知M(x,y)为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)求y-3x+2的最大值和最小值;(3)求y-x的最大值和最小值.解(1)由圆C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,所以圆心C的坐标为(2,7),半径r=2 2.又|QC|=(2+2)2+(7-3)2=42,所以|MQ|max=42+22=62,|MQ|min=42-22=22.(2)可知y-3x+2表示直线MQ的斜率k.设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0.因为直线MQ与圆C有交点,所以|2k-7+2k+3|k2+1≤22,解得2-3≤k≤2+3,所以y-3x+2的最大值为2+3,最小值为2- 3.(3)设y-x=b,则x-y+b=0.当直线x-y+b=0与圆C相切时,截距b取到最值,所以|2-7+b|12+(-1)2=22,解得b=9或b=1,所以y-x的最大值为9,最小值为1.【通性通法】借助几何性质求最值的常见形式及求解方法(1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.【巩固迁移】5.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A .4B .5C .6D .7答案A解析设圆心为C (x ,y ),则(x -3)2+(y -4)2=1,化简得(x -3)2+(y -4)2=1,所以圆心C 的轨迹是以M (3,4)为圆心,1为半径的圆,如图.所以|OC |+1≥|OM |=32+42=5,所以|OC |≥5-1=4,当且仅当C 在线段OM 上时取得等号.故选A.6.已知A (-2,0),B (2,0),点P 是圆C :(x -3)2+(y -7)2=1上的动点,则|AP |2+|BP |2的最大值为()A .40B .46C .48D .58答案D解析设O 为坐标原点,P (x ,y ),则|AP |2+|BP |2=(x +2)2+y 2+(x -2)2+y 2=2(x 2+y 2)+8=2|PO |2+8.圆C 的圆心为C (3,7),半径为r =1,|OC |=4,所以|PO |2的最大值为(|OC |+r )2=(4+1)2=25,所以|AP |2+|BP |2的最大值为58.考向2构建目标函数求最值例4(2023·湘潭质检)设点P (x ,y )是圆x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则PA →·PB →的最大值为________.答案12解析由题意,得PA →=(2-x ,-y ),PB →=(-2-x ,-y ),所以PA →·PB →=x 2+y 2-4,由于点P (x ,y )是圆上的点,故其坐标满足方程x 2+(y -3)2=1,故x 2=-(y -3)2+1,所以PA →·PB →=-(y -3)2+1+y 2-4=6y -12.易知2≤y ≤4,所以当y =4时,PA →·PB →的值最大,最大值为6×4-12=12.【通性通法】建立函数关系式求最值时,首先根据已知条件列出关于所求目标式子的函数关系式,然后根据关系式的特征选用配方法、判别式法、基本不等式法等求最值.【巩固迁移】7.等边三角形ABC 的面积为93,且△ABC 的内心为M ,若平面内的点N 满足|MN |=1,则NA →·NB →的最小值为()A .-5-23B .-5-43C .-6-23D .-6-43答案A解析设等边三角形ABC 的边长为a ,则面积S =34a 2=93,解得a =6.以AB 所在直线为x 轴,AB 的垂直平分线为y 轴建立如图所示的平面直角坐标系.由M 为△ABC 的内心,则M 在OC 上,且|OM |=13|OC |,则A (-3,0),B (3,0),C (0,33),M (0,3),由|MN |=1,则点N 在以M 为圆心,1为半径的圆上.设N (x ,y ),则x 2+(y -3)2=1,即x 2+y 2-23y +2=0,且3-1≤y ≤1+3,又NA →=(-3-x ,-y ),NB →=(3-x ,-y ),所以NA →·NB →=(x +3)(x -3)+y 2=x 2+y 2-9=23y -11≥23×(3-1)-11=-5-2 3.考向3利用对称性求最值例5一束光线,从点A (-2,2)出发,经x 轴反射到圆C :(x -3)2+(y -3)2=1上的最短路径的长度是()A .52-1B .52+1C .32+1D .32-1答案A解析如图,依题意知,圆C 的圆心C (3,3),半径r =1,点A (-2,2)关于x 轴的对称点为A ′(-2,-2),连接A ′C 交x 轴于点O ,交圆C 于点B ,圆外一点与圆上的点的距离的最小值是圆外这点到圆心的距离减去圆的半径,于是得点A ′与圆C 上的点的距离的最小值为|A ′B |=|A ′C |-r =(-2-3)2+(-2-3)2-1=52-1.在x 轴上任取点P ,连接AP ,A ′P ,PC ,PC交圆C于点B′,而|AO|=|A′O|,|AP|=|A′P|,|AO|+|OB|=|A′O|+|OB|=|A′B|=|A′C|-r≤|A′P|+|PC|-r=|AP|+|PB′|,当且仅当点P与点O重合时取“=”,所以最短路径的长度是52-1.故选A.【通性通法】求解形如|PA|+|PB|且与圆C有关的折线段的最值问题的基本思路:(1)“动化定”,把与圆上动点的距离转化为与圆心的距离;(2)“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.【巩固迁移】8.(2024·浙江金华模拟)已知圆C:x2+(y-2)2=1上一动点A和定点B(6,2),点P为x轴上一动点,则|PA|+|PB|的最小值为________.答案213-1解析根据题意画出圆C:x2+(y-2)2=1,以及点B(6,2)的图象如图,作B关于x轴的对称点B′,连接B′C,则当A,P分别是B′C与圆和x轴的交点时,|PA|+|PB|最小,最小值|AB′|为点C(0,2)到点B′(6,-2)的距离减去圆的半径,即|AB′|=(6-0)2+(-2-2)2-1=213-1.课时作业一、单项选择题1.(2023·甘肃酒泉模拟)已知点(1,1)在圆x2+y2+ax+a=0外,则实数a的取值范围为() A.(-1,+∞)B.(-1,0)C.(-1,0)∪(4,+∞)D.(-∞,0)∪(4,+∞)答案C解析∵点(1,1)在圆x2+y2+ax+a=0外,∴a2-4a>0,且12+12+a+a>0,解得-1<a <0或a>4.∴实数a的取值范围为(-1,0)∪(4,+∞).故选C.2.(2023·重庆九龙坡期中)在平面直角坐标系xOy中,已知P(-2,4),Q(2,6)两点,若圆M 以PQ为直径,则圆M的标准方程为()A.x2+(y+5)2=5B.x2+(y-5)2=5C.x2+(y+5)2=25D.x2+(y-5)2=25答案B解析因为圆M以PQ为直径,所以圆心M的坐标为(0,5),半径为|MQ|=(0-2)2+(5-6)2=5,所以圆M的标准方程为x2+(y-5)2=5.故选B. 3.(2024·河南洛阳阶段考试)方程x2+y2+2x-m=0表示一个圆,则m的取值范围是() A.(-1,+∞)B.(-∞,-1)C.[-1,+∞)D.(-∞,-1]答案A解析由方程x2+y2+2x-m=0,可化为(x+1)2+y2=m+1,要使得方程x2+y2+2x-m=0表示一个圆,则满足m+1>0,解得m>-1,所以m的取值范围为(-1,+∞).故选A. 4.(2024·山东淄博淄川区期末)圆(x+2)2+(y-12)2=4关于直线x-y+6=0对称的圆的方程为()A.(x+6)2+(y+4)2=4B.(x-4)2+(y+6)2=4C.(x-4)2+(y-6)2=4D.(x-6)2+(y-4)2=4答案D解析由圆的方程(x+2)2+(y-12)2=4可得,圆心坐标为(-2,12),半径为2,由题意可得关于直线x-y+6=0对称的圆的圆心为(-2,12)关于直线对称的点,半径为2,设所求圆的圆心为(a,b),-b+122+6=0,1,解得a=6,b=4,故圆的方程为(x-6)2+(y-4)2=4.故选D.5.点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,|PA|=1,则点P的轨迹方程是() A.(x-1)2+y2=4B.(x-1)2+y2=2C.y2=2x D.y2=-2x答案B解析∵|PA |=1,∴点P 和圆心的距离恒为2,又圆心坐标为(1,0),设P (x ,y ),∴由两点间的距离公式,得(x -1)2+y 2=2.故选B.6.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为()A .7B .6C .5D .4答案B解析∵在Rt △APB 中,原点O 为斜边中点,|AB |=2m (m >0),∴|OC |-r ≤m =|OP |≤|OC |+r ,又C (3,4),r =1,∴4≤|OP |≤6,即4≤m ≤6.故选B.7.若点P 为圆x 2+y 2=1上的一个动点,A (-1,0),B (1,0)为两个定点,则|PA |+|PB |的最大值为()A .2B .22C .42D .4答案B解析由已知,得线段AB 为圆的直径.所以|PA |2+|PB |2=4,由基本不等式,得≤|PA |2+|PB |22=2,所以|PA |+|PB |≤22,当且仅当|PA |=|PB |=2时,等号成立.故选B.8.(2023·内蒙古赤峰模拟)已知圆O :x 2+y 2=1,点P (x 0,y 0)是直线l :3x +2y -4=0上的动点,若在圆O 上总存在不同的两点A ,B ,使得直线AB 垂直平分OP ,则y 0的取值范围为()AB ,2413C-1013,D.-1013,答案C解析在圆O 上总存在不同的两点A ,B 使得AB 垂直平分OP .若P 为直线l 与y 轴的交点,得P (0,2),此时圆O 上不存在不同的两点A ,B 满足条件;若P为直线l 与x 轴的交点,得此时直线AB 的方程为x =23,满足条件,y 0=0;当直线AB 的斜率存在且不为0时,∵AB ⊥OP ,k OP =y 0x 0,∴k AB =-x 0y 0,∴直线AB 的方程为y -y 02=-化为2x 0x +2y 0y-x 20-y 20=0,由圆心到直线AB 的距离d =x 20+y 202<1,得x 20+y 20<4,又3x 0+2y 0-4=0,化为13y 20-16y 0-20<0,解得-1013<y 0<2,∴y 0-1013,故选C.二、多项选择题9.已知△ABC 的三个顶点为A (-1,2),B (2,1),C (3,4),则下列关于△ABC 的外接圆圆M 的说法正确的是()A .圆M 的圆心坐标为(1,3)B .圆M 的半径为5C .圆M 关于直线x +y =0对称D .点(2,3)在圆M 内答案ABD解析设△ABC 的外接圆圆M 的方程为x 2+y 2+Dx +Ey +F =0,+4-D +2E +F =0,+1+2D +E +F =0,+16+3D +4E +F =0,=-2,=-6,=5.所以△ABC 的外接圆圆M 的方程为x 2+y 2-2x -6y +5=0,即(x -1)2+(y -3)2=5.故圆M 的圆心坐标为(1,3),圆M 的半径为5,因为直线x +y =0不经过圆M 的圆心(1,3),所以圆M 不关于直线x +y =0对称.因为(2-1)2+(3-3)2=1<5,故点(2,3)在圆M 内.故选ABD.10.设有一组圆C k :(x -k )2+(y -k )2=4(k ∈R ),下列命题正确的是()A .不论k 如何变化,圆心C 始终在一条直线上B .所有圆C k 均不经过点(3,0)C .经过点(2,2)的圆C k 有且只有一个D .所有圆的面积均为4π答案ABD解析圆心C 的坐标为(k ,k ),在直线y =x 上,故A 正确;令(3-k )2+(0-k )2=4,化简,得2k 2-6k +5=0,∵Δ=36-40=-4<0,∴2k 2-6k +5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简,得k 2-4k +2=0,∵Δ=16-8=8>0,有两个不相等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD.三、填空题11.(2024·安徽蚌埠模拟)已知定点A (4,0),P 是圆x 2+y 2=4上的一动点,Q 是AP 的中点,则点Q 的轨迹方程是________.答案(x -2)2+y 2=1解析如图所示,设P (x 0,y 0),Q (x ,y ),则x 20+y 20=4①,因为Q 为AP 的中点,所以x ,y 0=2x -4,0=2y②,所以由①②得,(2x -4)2+(2y )2=4,即(x -2)2+y 2=1,所以点Q 的轨迹方程为(x -2)2+y 2=1.12.(2023·广东湛江三模)已知圆C 过点A (-2,0),B (2,4),当圆心C 到原点O 的距离最小时,圆C 的标准方程为________.答案(x -1)2+(y -1)2=10解析由A (-2,0),B (2,4),可得线段AB 中点的坐标为(0,2),又k AB =4-02-(-2)=1,所以AB 垂直平分线的方程为y =-x +2,则圆心C 在线段AB 的垂直平分线y =-x +2上,当圆心C 到原点O 的距离最小时,则OC 垂直于直线y =-x +2,则OC ∥AB ,所以直线OC的方程为y =x ,=x ,=-x +2=1,=1,所以圆心C (1,1),又半径r 2=|AC |2=(-2-1)2+(0-1)2=10,所以圆C 的标准方程为(x -1)2+(y -1)2=10.13.(2024·福建泉州期中)已知点P (m ,n )在圆C :(x -2)2+(y -2)2=9上运动,则(m +2)2+(n +1)2的最大值为________.答案64解析由题意得,圆心C (2,2),半径r =3.(m +2)2+(n +1)2表示圆C 上的点P 到点M (-2,-1)的距离的平方,因为|CM |=5,所以|PM |max =5+3=8,即(m +2)2+(n +1)2的最大值为64.14.已知A (0,2),点P 在直线x +y +2=0上,点Q 在圆C :x 2+y 2-4x -2y =0上,则|PA |+|PQ |的最小值是________.答案25解析因为圆C :x 2+y 2-4x -2y =0,故圆C 是以C (2,1)为圆心,半径r =5的圆.设点A (0,2)关于直线x +y +2=0的对称点为A ′(m ,n ),+n +22+2=0,1,=-4,=-2,故A ′(-4,-2).由对称性可知|PA |+|PQ |=|A ′P |+|PQ |≥|A ′Q |≥|A ′C |-r =2 5.四、解答题15.(2023·广东佛山期中)已知圆C 过点A (4,0),B (0,4),且圆心C 在直线l :x +y -6=0上.(1)求圆C 的方程;(2)若从点M (4,1)发出的光线经过直线y =-x 反射,反射光线l 1恰好平分圆C 的圆周,求反射光线l 1的一般方程.解(1)由A (4,0),B (0,4),得直线AB 的斜率为k AB =0-44-0=-1,线段AB 的中点D (2,2),所以k CD =1,直线CD 的方程为y -2=x -2,即y =x ,+y -6=0,=x ,=3,=3,即C (3,3),所以半径r =|AC |=(4-3)2+(0-3)2=10,所以圆C 的方程为(x -3)2+(y -3)2=10.(2)由l 1恰好平分圆C 的圆周,得l1经过圆心C (3,3),设点M 关于直线y =-x 的对称点N (x ,y ),则直线MN 与直线y =-x 垂直,且线段MNy =-x 上,则有(-1)=-1,=-x +42,=-1,=-4,所以N (-1,-4),所以直线CN 即为直线l 1,且k l 1=k CN =3-(-4)3-(-1)=74,反射光线l 1的方程为y -3=74(x -3),即7x -4y -9=0.16.在平面直角坐标系xOy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A ,B ,C 三点的圆过定点.解由曲线Γ:y =x 2-mx +2m (m ∈R ),令y =0,得x 2-mx +2m =0.设A (x 1,0),B (x 2,0),由题意可得Δ=m 2-8m >0.则m <0或m >8,x 1+x 2=m ,x 1x 2=2m .令x =0,得y =2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC →·BC →=0,得x 1x 2+4m 2=0,即2m +4m 2=0,所以m =0(舍去)或m =-12.此时C (0,-1),AB 的中点M -14,,半径r =|CM |=174,+y 2=1716.(2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0,将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0,整理,得x 2+y 2-y -m (x +2y -2)=0.2+y 2-y =0,+2y -2=0,=0,=1=25,=45.故过A ,B ,C 三点的圆过定点(0,1)17.(多选)已知圆C 过点M (1,-2)且与两坐标轴均相切,则下列叙述正确的是()A .满足条件的圆C 的圆心在一条直线上B .满足条件的圆C 有且只有一个C .点(2,-1)在满足条件的圆C 上D .满足条件的圆C 有且只有两个,它们的圆心距为42答案ACD解析因为圆C 和两个坐标轴都相切,且过点M (1,-2),所以设圆心坐标为(a ,-a )(a >0),故圆心在直线y =-x 上,故A 正确;圆C 的方程为(x -a )2+(y +a )2=a 2,把点M 的坐标代入可得a 2-6a +5=0,解得a =1或a =5,则圆心坐标为(1,-1)或(5,-5),所以满足条件的圆C 有且只有两个,故B 错误;圆C 的方程分别为(x -1)2+(y +1)2=1,(x -5)2+(y +5)2=25,将点(2,-1)代入这两个方程可知其在圆C 上,故C 正确;由C 项知,它们的圆心距为(5-1)2+(-5+1)2=42,D 正确.故选ACD.18.(多选)(2023·浙江温州期末)已知圆C :(x -2)2+(y -3)2=1,点M (4,2),点P 在圆C 上,O 为原点,则下列命题正确的是()A .M 在圆上B .线段MP 的长度的最大值为5+1C .当直线MP 与圆C 相切时,|MP |=2D .MO →·MP →的最大值为25+6答案BCD解析将M (4,2)代入圆的方程,(4-2)2+(2-3)2=5>1,所以M 在圆外,A 错误;线段MP的长度的最大值为|MC |+1=(4-2)2+(2-3)2+1=5+1,B 正确;当直线MP 与圆C 相切时,|MC |2=|MP |2+1=[(4-2)2+(2-3)2]2,∴|MP |=2,C 正确;设动点P (x ,y ),点P 的轨迹是圆心为(2,3),半径为1的圆,x =2+cos θ,y =3+sin θ,又M (4,2),所以MO →·MP →=(-4,-2)·(x -4,y -2)=-4(x -4)+(-2)·(y -2)=-4x -2y +20,因为x =2+cos θ,y =3+sin θ,所以MO →·MP →=-4cos θ-2sin θ+6=25sin(θ+φ)+6,θ∈[0,2π),且sin φ=-255,cos φ=-55,则MO →·MP →的最大值为25+6,D 正确.故选BCD.。

2018年高三最新 高考复习材料 精品

2018年高三最新 高考复习材料 精品

数学小题训练卷(1)集合的概念与集合间的关系 (时间45分钟,满分76分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、同时满足① M ⊆{1, 2, 3, 4, 5}; ② 若a ∈M ,则(6-a)∈M, 的非空集合M 有( C ). (A )16个 (B ).15个 (C )7个 (D )8个2、已知集合P ={x| (x -1)(x -4)≥0},Q ={n| (n +1)(n -5)≤0, n ∈N}与集合S ,且S ∩P ={1, 4},S ∩Q =S ,那么集合S 的元素的个数是( A ). (A) 2个 (B )2个或4个(C )2个或3个或4个 (D )无穷多个3、满足{1, 2}⊆T ⊆{1, 2, 3, 4,}的集合T 的个数是( D ). (A )1 (B )2 (C )3 (D )43.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是 ( C ). (A)(M ∩P )∩S (B)(M ∩P )∪S(C)(M ∩P )∩S C I (D)(M ∩P )∪S C I4、已知集合S={},,a b c 中的三个元素是ABC 的三边长,那么ABC 一定不是( D ). (A) 锐角三角形 (B )直角三角形(C )钝角三角形(D )等腰三角形5、集合S={}0,1,2,3,4,5,A 是S 的一个子集,当x A ∈时,若有1,1x A x A -∉+∉且则称x 为A 的一个孤立元素,那么,S 中无孤立元素的四元素子集的个数是( C ). (A )4个 (B )5个 (C )6个 (D )7个6、有以下四个集合:①{}2|210x x x -+=;②{}1,2-;③ {}(1,2)-;④{}3,4两边长为的直角三角形其中为单元素集合的是( B ) (A )③④ (B )①③ (C )①③④ (D )②④7、由实数2,|,x x x - C )(A )2个元素(B )3个元素(C )4个元素(D )5个元素8、设集合}1/{},1/{2+==+==x y y Q x y y P ,则=Q P ( D )(A ) {1,2} (B ){(0,1),(1,2)} (C ){0,1} (D ) }1/{≥y y 9.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是B(A) I B A C I =⋃ (B )I B C A C I I =⋃ (C )φ=⋂B C A I (D )B C B C A C I I I =⋃10.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂=D(A ){0}(B ){0,1}(C ){1,2}(D ){0,2}11.已知:2()f x x ax b =++,{}{}|()22A x f x x ===,则实数a 、b 的值分别为( A )(A )-2,4(B )2,-4(C )2,4(D )-2-4 12、设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则集合M ∩N 中元素的个数为( B )(A )1 (B )2 (C )3 (D )4二、填空题(本题共4小题,每小题4分,共16分,请将答案写在题目中的横线上) 13、含有三个实数的集合可表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可以表示为{}2,,0a a b +,则:20072007a b += -114.设数集3{|}4M x m x m =≤≤+,1{|}3N x n x n =-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,那么集合MN 的长度的最小值是112. 15、满足条件{1,2}⊆A ⊆{1,2,3,4,5}的集合A 共有 8 个.16、集合{}23,,2x x x -中,x 满足的条件是031x x x ≠≠≠-且且数学小题训练卷(2)集合间的运算(时间45分钟,满分76分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若M 、N 是两个集合,则下列关系中成立的是( B )(A )∅M (B )M N M ⊆)( (C )N N M ⊆)( (D )N)(N M2.设集合U={1,2,3,4,5},集合M={0,3,5},N={1,4,5}, 则M ∩(ðU N )=( B )(A ){5} (B ){0,3}(C ){0,2,3,5}(D ) {0,1,3,4,5}3、已知全集},0|{},0|{>=≥=x x M x x I 则I M ð等于( C ) (A )}0|{≥x x (B )}0|{<x x (C )}0{ (D ) φ4、设全集I={1,2,3,4,5},集合M={1,3,4},N={2,4,5},则()()I IM N 痧=( A) (A )φ (B ) {4} (C ){1,3} (D ) {2,5} 5、已知集合},2|||{},23|{>=<<-=x x P x x M 则=⋂P M ( A )(A )}2223|{<<-<<-x x x 或 (B )R (C )}23|{-<-x x (D ) }22|{<<x x6、.设B A Q x x x B N k k x x A ⋂∈≤∈+==则},,6|{),,15|{等于( D ) (A ){1,4} (B ){1,6} (C ){4,6} (D ){1,4,6}7、设A ={x| x 2+px +q =0},B ={x| x 2+(p -1)x +2q =0},若A ∩B ={1},则(A )。

2024年8月第三届”鱼塘鸽子杯“高考适应性练习数学试题+答案

2024年8月第三届”鱼塘鸽子杯“高考适应性练习数学试题+答案

2024年8月第三届「鱼塘鸽子杯」高考适应性练习.注意事项:1.本参考答案和评分标准选择题部分提供了答案和解析,非选择题部分提供了标准解答和评分标准.2.非选择题部分每一题只给出了一种解答提供阅卷参考,如果出现新的解答,按照本参考答案和评分标准的精神,划定步骤分评分.3.如果考生发现自己的改卷结果和本参考答案和评分标准不一致,可在官方QQ 群中@任意一个管理员进行申诉,申诉时需要提供准考证号和自己的解答拍照.4.本联考活动最终解释权归鱼塘杯联考命题组所有.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.本题主要考察基本知识和基本方法.1.设复数z =1−i ,则z z 的值是A.−1 C.√B.12D.2【答案】D.【解析】z z =|z|2=1+1=2.2.设1,3a,4a 构成等差数列,则a 的值是B.−A.−11 C.21 D.21【答案】C.【解析】因为1+4a =2⋅3a 13.如果A ={x ∈R ∣y =√−x},所以B =,a =N 2.,则A B =A.∅B.{0}C.ND.R【答案】B.【解析】可以知道A ={x ∈R ∣x ⩽0},它和自然数集唯一的公共元素是0,所以A B ={0}.4.如果A.−√2P (x,y)是单位圆上一点,则xy 的最小值是B.−11 D.−C.−214【答案】C.2【解析】设x =cos θ,y =sin θ,那么xy =sin θcos θ=1sin 2θ⩾−12.5.在棱长为1的正方体ABCD −EF GH 中,设O 为中心点,则⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗OA ⋅(OC +OF )=B.−A.−11D.C.2012【答案】B.ABCD −A 的中心点,所以不妨以A ⃗⃗⃗⃗⃗原点,AB B 1(1,0,1),则OA =(−1,−1⃗⃗⃗⃗⃗,−【解析】因为O 是棱长为1的正方体1),⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗1B 211C 222OC =(,211D ,−11),⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗=(11,12OB 1为22),故⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗=(1,0,0),因此OC +OB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗OA ⋅(OC +OB 1221⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗)= (−1)2×1+(−12)×0+(−,−2)×0=−12.6.如果在△ABC 中,sin C <sin (A −B),则△ABC 的最大内角是A.AB.BC.CD.无法比较【答案】A.【解析】因为在sin sin ,而sin (A −B)sin A B sin B sin C <cos sin ,整理得,故而△ABC sin cos 中,(A +B)<A +B +C =π0<B <π,所以,即,故而C =sin cos sin B >0(π−A −B)=A <A <0(A +B)B +sin ,因此cos cos sin A cos sin ,而B −,又因为A (A −B)π2<A <π,A <00<A <π,所以2B B +C <π2<A ,因此最大角为A.若某正三棱锥的侧面为直角三角形,则该三棱锥的体积与其外接球体积之比是7.√√33√B.36π3C.18π D.√9π3A.72π【答案】D.【解析】解析:记该正三棱锥为P −ABC ,其中|P A|=|P B|=|P C|,因为三个侧面都是直角三角形,所以都是等腰直角三角形,故只能有P A ⟂P B ,P B ⟂P C 1,P C ⟂P A 设|P A|=|P B|=|P C|=a ,则该三棱锥的体积V 1=1⋅(1⋅a ⋅a)⋅a =6a 3..32不妨要研究正三棱锥P −ABC 的外接球,可转化为研究以P A ,P B ,P C 为直角边的长方体的外接球;该长方体的体对角线长度等于该长方体外接球的直径,故外接球半径r =d2=2√a 2+a 2+a 2=√23a ,36a V 213因此外接球体积V 2=4πr 3=√23πa 3,故V 1=√23πa3=√9π3即为所求.8.已知函数f(x)=ln x −e,如果对于任意的x 1∈(0,+∞)2,存在,则x 2∈R ,使得f(x 1)<g(x 2)2x 2,a g(x)=−x 的取值范围是+2ax −2A.(−1,1)√C.(−∞,−1)(1,+∞) D.(−∞,−B.(−2,√√2)2)(√2,+∞)【答案】C.1【解析】分别求出f(x),g(x)的最大值.f(x)的定义域为(0,+∞),f ′(x)=x−ex ,当f ′(x)>0时,0<x <√1e ;f ′(x)<0时x >√1e ,因此f(x)在(0,√1e )单调递增,在(√1e ,+∞)单调递减,f(x)的最大值f(x)max =f (√1e)=−1;由二次函数性质可知,g(x)的2−2.1∈(0,+∞)R ,使得f(x 1)<g(x 2,存在),所以f(x)maxmax x 2∈(1,+∞).二、选择题:本题共3−1<a 2−2,解得最大值g(x)max <g(x)=g(a)=a ,即小题,每小题因为对于任意分,共x 6a ∈(−∞,−1)分18.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.本题主要考察基本知识和基本方法的拓展运用.9.如果随机事件A,B,C 满足A 与B 独立,A 与C 互斥,则A.P (C)⩽P (A) B.P (C)≠P (B)C.A 与B 独立D.B 与C 独立【答案】AC.C =∅,所以CA ,进而P (C)⩽P (A).立性的意义可以知道A 也与B 独立另外根据独A 【解析】因为A ,C 互斥,所以.10.在四面体,,2=|AC|⋅|BD|一个动点,设αABCD 是过点中,且垂直于AB ⟂AC BC BD ⟂CD 的平面,设平面|AD|α与折线BAC ,̂P BC 是线段上的相交于点M ,与折线BDC相交于点N ,则̂P A.∠MP N 是二面角A −BC −D 的平面角B.平面α截四面体ABCD 的截面是三角形C.若∠ABC =∠BCD =60∘,则直线AD 与直线BC 夹角的正弦值为√36D.若∠ABC =∠BCD =60∘,则二面角A −BC −D 的余弦值为√36【答案】AC.【解析】因为P M,P N∠MP N 是二面角A−BC −D 的平面角α⟂BC 在平面,并且.ABC,DBC α,所以中,分别作AG,DH ⟂BC P M,P N ⟂BC ,当,所以P G,H 之间时,αa的截面是四边形.设在|BC|=a ,若∠ABC =∠BCD =60∘,|AB|=|DC|=2,|AC|=|BD|=2√3a ,根据|AD|2=|AC|⋅|BD|得到|AD|=√23a .而且|BG|=|CH|=a ,|CG|=3a ,所以2,2|AE|=√2,所以直|GH|=a ,过点D 作DE//GH ,|DE|=|GH|,则√线AD 与直线BC 夹角的正弦值为sin ∠ADE =AE ⟂ED 36.此时|AG|=|GE|=,|ED|=a4√32a ,|AE|=2a 4√22a ,3所以cos ∠AGC =2≠√36.11.在1717年,法国流行这样一个赌博游戏:连续抛掷一个骰子四次,赌是否会出现至少一个(Chevalier de Méré)发现6点.记“会出现至少一个6点”是事件A .经过试验,赌徒德·梅勒至少出现一个6点比不出现的几率似乎要稍微大一些.他总是赌“会出现”,每次结算下来他总是赢.在这个赌博游戏的一个“加强版”中,赌徒们需要猜测,连续抛掷两个骰子24次,是否会出现至少一对6点.记“会出现至少一对6点”为事件B 1,则A.Chevalier de Méré的试验中,事件A 发生的频率大于2B.可以根据Chevalier de Méré的多次试验估计P (A)比12大C.Chevalier de Méré需要赌“不会出现”才能确保在“加强版”中赢的几率更大D.因为两个骰子都是6点的概率是一个骰子是6点概率的16,而且“加强版”游戏的投掷次数正好是“原版”游戏投掷次数的6倍,所以P (A)=P (B)【答案】ABC.【解析】因为在Chevalier de Méré着事件A 发生的频率大于1,并且可以根据2总是赌“会出现”时,每次结算下来他总是赢,这意味Chevalier de Méré的多次试验,由频率估计概率P (A)比1大.为了判断在“加强版”中Chevalier de Méré2需要采取什么策略,计算得到P (B)=1−(35)24,需要将其与12比较大小,可以比较出前者比后者小(具体讲解参见直播讲解).36三、填空题:本题共3小题,每小题5分,共15分.本题主要考察基本知识和基本方法.12.若函数f(x)=sin x 的图像与函数g(x)的图像关于y 轴对称,则g(x)为的一个解析式.【答案】g(x)=−sin x.(答案不唯一)g(x)=−sin x 【解析】注意到sin x 是奇函数,因此.13.若(1+x 2)4=a 8x 8+a 7x 7+⋯+a 0,则a 3+a 5+a 7=.【答案】0.【解析】式中含有x 的项,指数一定是偶数,所以a 3=a 5=a 7=0,所以a 3+a 5+a 7=0.a 2+y 14.已知过椭圆x 2b 22=1上点(x 0,y 0)的切线方程是xx a 2+yy=10b20.l 设1,l 分别是椭圆C ∶x 72+y 32=1的两条垂直切线,切点分别为P (x 1,y 1),Q(x ,y 22).设向量n 2x 711=(,y ),n 231=(x 72,y 32),则∣n 1|n |12+2|n n ∣=2|2.√【答案】10.l 【解析】1方程为x a 12x +y b 2y 1=1,则l 1v 的一个方向向量为1=(−y 2,x 1a b 12).注意到v 1⋅n 1=0,故n 1与直线l 1垂直.取向量α=(x 1,y 1),有α⋅n 1=1,|n n 1n =[α⋅(|n 1|1|)](n1方向上的分向量,n 1212|1OR .|n 1|⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗)易证得1√10|n n 是α在√n |⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗OR|=7+3=22|√10.同理,设l 1,l 2交点为R ,则|n 2+|n n 22|2,故答案为=四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)(1)求数列{a n }的通项公式;n 项和为S n ,且S n =(a 1+a n )2设公差不为0的等差数列{a n }的前.{{(2)如果数列{b n }满足b n =⎧a n −a 1,n 为奇数时,求数列{b n }的前n 项之和T n ⎨a n +a 1,n 为偶数时⎩,.本题主要考察求数列通项公式和前缀和的基本知识和基本方法,考察奇偶数列的综合分析处理能力.【参考答案与评分标准】(1)设等差数列的公差为d ,其中+1=S =(a 1)2−{a +a (a 1+a n )2=(2a 1+a n n+1n })(a n+1−a n )=d(2a d ≠0.+a 则+a 1n n+1a n ),a n n+1−a n+2−S n+1+a +a n+11n+1+21a n+2)−d(2a 1+a n +a n+1)=d(a n+2−a n ),即d =2d 2,解得d =1,所以=d(2a d =2.(4分)2所以a n+1=1(2a 1+a n +a n+1),整理得a 1=1(a n+1−a n )=d =1,因此a n =a 124+(n−1)d =21n −11+n −1=.(8分)42241⋅(−1)n ,(2)b n =a n +4S n =(a 1=n 2.设数列}的前项和为T n ,则4T n =S n +1⋅(−1)⋅(1−(−1)n )1−(−1).当n T 为奇数时,n =14n 4,当n 1+a n )242−1{b n n 为偶数时,T 1n =n 42.{1n 2−1综上,T n =⎧,n 为奇数时,{1⎨4n 24为偶数时⎩4,n .(13分)16.(15分)在(1)求△ABC ;中,sin (2A −B)=cos A 2C +2.(2)若点D 满足cos ∠DBC =√33,且|BD|=|AC|=2,求△ABD 的面积.本题主要考察解三角形和三角函数的基础知识和综合方法,考察对复杂情形的分类解决能力.【参考答案与评分标准】(1)因为sin ,cos ,,故cos sin sin (2A −B)=−1⩽2C +2(2A −B)⩽1(2A −B)=−1⩽cos 2C +2=12C ⩽1,即1⩽cos cos 2C =−12C +2⩽3,又因为.(分)由于A,B,C ∈(0,π),故−π<2A −B <2π,0<2C <2π,因此π,2C =π42A −B =;又3π因为在△ABC 中有A +B +C =π,解三元方程得A =π,B =6,C =π2(2.7分)sin |AC|(2)在△ABC 中,由正弦定理得=sin |AB|,故|AB|=4.∠ACB∠ABC (9分)1sin ∠ABD ,故只需求出sin 又因为cos ∠DBC =而△BCD 的面积√S =,∠ABC =⋅|AB|⋅|BD|⋅,所以sin sin 6∠ABD =46∠ABC =2cos ∠ABC =33.2π∠DBC =√3,sin 1,∠ABD .√23故∠DBC >∠ABC .对于有两种情况,其一是,则sin ∠ABD =sin ∠ABC .若∠ABD ∠ABD =∠DBC +∠ABC ∠ABD =∠DBC +∠ABC ∠DBC ,另一是∠ABC +cos ∠ABD =∠DBC −cos ∠DBC6sin ∠ABC =3√2+√3,则面积S =6√2+2√3;若∠ABD =∠DBC−∠ABC ,则sin ∠DBC cos ∠ABC −cos ∠DBC sin 33∠ABC =√2−√3,则面积S =6√2−23√sin .3∠ABD =因此△ABD 的面积为6√2+2√3或63√√62−233.(15分)x 设倾斜角为622交于点|AB|∶|AC|∶|BC|=2∶a上,217.(15分)π的直线l 与椭圆Γ∶√3∶1+y 当=1(a >1)轴平行时,A,B AC 与.x |BC|=异于点A,B 的一点,√2.C 在(1Γ)求且的标准方程Γ;(2)证明:原点O 在△ABC 某条边上.本题主要考察解析几何问题的一般处理方法,考察对复杂几何关系的代数解释能力和基本的运算能力.【参考答案与评分标准】(1)由对称性,不妨C(x 0,y 0).则A(−x 0,y 0),B(x 在第一象限0,y 0A,B 3y 关于),O 故点对称的理由关于点0.O(32y 0=√2.代入回椭圆Γ方程可以得3须给出√AB 根据上面的描述,可以得到,分)对称,进而x 0=√√2Γ的标准方程为2+y 2(5分)(2)由对称性,C .又根据|BC|=x 3,不妨点=1.在l 此时上方.由对称性分两种情况讨论AC ,,得到a =x 轴,根据(1平行于)的分析得到情形一如果点A .在点B 右侧上,(7情形二.,y 1),AB 的中点M ,由几何关系分),CM 平1A(x 1l ∶x =2B(x √2,y 2)..3y +m 设线段联立l 和Γ6y 2+2√3my +m 得2−3=0.点O 在边点AB 在点B 左侧−y 设行于y 轴,且Δ>0计算判别式得√6(10分)由韦达定理,y 1+y 2=−√3A |CM|=|y |m|<3m |,..y 设y 12m =2−36|y −y ,进而计算得12|=√18−3m 故点2√3m ),A (M (m ,−6m ,−√3m +26√18−3m 2).323,2m 2−4m √6−m 2+4(6−m 2)=12,代入椭圆方程,即有也即6−m (2m −√2√26−m )=0,(14分)此时,|CM|=解得m =√530.2√510,M (−√101030,√10).此时由几何关系,点O 是AC ,中点当且仅当|CM|=2|OM|,成立,故这种情形点O 在直线BC 上.(15分)综上,不论如何,总有点O 在△ABC 某条边上.18.(17分)已知函数f(x)=ax −ln x +b,g(x)=e x−1+(a −1)x +c ,其中a,b,c ∈R 并且a >0x.(2)已知函数(1)当b =c 时,证明f(x),g(x)f(x)⩽g(x)均存在零点;如果f(x)=0是g(x)=0的充要条件,求a ..本题主要考察用导数证明不等式以及讨论有关函数零点的问题的综合方法和综合技巧.【参考答案与评分标准】(1)注意到g(x)−f(x)=e x−1+ln x x −x =e x−1x −ln (x−1e x )−1,令t =x−1e x >0,φ(t)=t −ln t −1,即证φ(t)⩾0.φ′(t)=t −1,故φ(t)在(0,1)递减,在(1,+∞)φ(t)⩾φ(1)=0,等号成立当且仅当t =1t递增,进而.(4分)(2)先证明a =1时,结论成立.b =−2,此时,由f (12)=f(x)=φ(x)+b +1,由(1),f(x)在(0,1)递减,在(1,+∞)递增.e 12取>0,f (4)=2−22>0,f (1)=−1<0,由零点存在定理,存在ln n ∈(1e 2,1),m ∈(1,4),e 使得f(m)=f(n)=0.(6分)又g(m)=ef(m)−b−1+c =ef(n)−b−1+c =g(n),再取c =−e 则满足条件.(8分)再证明a ≠1结论不成立.反证法,假设对于某个a ,结论成立.由题,f(x)至多两个零点.11情形一若f(x),g(x)均有一个零点,设为x 0.则f ′(x)=a −x ,f(x)在(0,a)递减,在11lim lim 1(a ,+∞)递增.假设x 0≠a ,则注意到x→0+f(x)=x→+∞f(x)=+∞,及f (a )<0,由零点1存在定理知f(x)恰有两个零点,矛盾,故x 0=a .同理,x 0也是g(x)极值点,故g ′(x 0)=0,即x 2(x 0−1)ex 0−1+x 10−1=0,也即(x 0−1)(e x 0−1−x 0)=0故x 0=1或x 0−ln x 0−1=φ(x 0)=00,也即x 0=1,从而a =x 10=1,矛盾.情形二若f(x),g(x)均有两个零点.由题意,f(m)=f(n),即am e m =an ,g(m)=g(n)e n,e n−1即(a −1)(m −n)=−e m−1n m.(13分)当a >1时,由(1),φ(e(a−1)(m−n))⩾0,即有e n−10<−e m−1n m=(a −1)(m −n)⩽e (a−1)(m−n)−1=m e n−m n −1m n e n−1e m−1(−m e m−1)=e −φ(m)(e m−1−e m−1n m)=⩽e n−1−e m−1,mn 进而中间几步均取等号,故(a −1)(m −n)=0,即m =n ,矛盾.19.(17分)(17分)设M 是关于x,y 的多项式组成的集合,定义平面中的元素是使得2−1})xOy 0的点例如:2就代表着单位圆上的点集V (M).对平面上的非M 中所有多项式取值为,满足空点集S ,如果存在.1S 2S =V (M)V ({x ,那么称的真子集,那么称是完美的;如果完美的集合xOy S ,其中1不能分成.是绝对完美的S S =S (1M ,S 2是完美的,且都是V (M)+y ,求S )如果2S ;M ={x −y,−x {(1,1),(2,2)}+y}是否是绝对完美的,并给出理由;(2)判断集合S (3)考虑平面上的椭圆C 1∶x 42+y ,C 32=1以及抛物线C 2∶y 2=2px .已知C 上所有点与它们的焦点12构成的集合S ,其中4p >0个绝对完美的集合的并集,求都是绝对完美的.证明:S 是完美的.S 只能被拆分为至多进一步地,如果p .本题主要考察对全新定义的理解能力以及针对复杂问题的综合处理能力和判断能力.【参考答案与评分标准】2的交点的集合,联立方程并求解(1)根据题意,V (M)应该是直线y =x 和抛物线y =−x 得到.(3分)不是绝对完美的V (M)={(0,0),(1,1)}得到x =0,1,代入(2)集合{(1,1),(2,2)}y =x (5.分)这是因为可以把这个集合拆分为{(1,1)}{(1,1)}=V ({x−1,y −1}),{(2,2)}={(2,2)},其中都是完美的,并且都是原来集合的真子集.(7分)V ({x −2,y −2})(3)满足答案的p =2或4.(9分)我们可以得到椭圆和抛物线的三个焦点分别是(1,0),(−1,0)以及(p,0).(11分)根据(2)的论述,单点集合都是绝对完美的,所以可以把S 拆分为C 12C2{(1,0)}{(0,1)}{(p,0)},这是五个绝对完美集合的并,为了让S 2最多只能拆分为4个绝对完美集合的并,必须让(p,0)包含在某个绝对完美的集合里面,因此要么这个点和椭圆的右焦点重合,此时2p =2或者和椭圆的右端点重合,此时p =4.(14分)这个部分的讲解,为了顺应鱼塘的传统,请期待讲评现场.关于S 是完美的证明,可以证明两个完美的集合的并也是完美的,也可以直接构造出M (,关于17分)。

第01讲统计(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考)

第01讲统计(八大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考)
(2023·上海浦东新·高三上海市建平中学校考阶段练习)某校为了了解高三年级学生的身体素质状况,在开学初举行
了一场身体素质体能测试,以便对体能不达标的学生进行有针对性的训练,促进他们体能的提升,现从整个年级测试成绩中
抽取100名学生的测试成绩,并把测试成绩分成 40,50 , 50,60 , 60,70 , 70,80 , 80,90 , 90,100 六组,绘制成频率分布直方
(2)理解统计图表的含义.
大,未来在考试中的出题角度会更加与实际生活紧密联
(3)会用统计图表对总体进行估计,会求n
系,背景新颢、形式多样.
个数据的第p百分位数.
稿定PPT
(4)能用数字特征估计总体集中趋势和总
体离散程度.
稿定PPT,海量素材持续更
新,上千款模板选择总有一
款适合你
02
网络构建
03
1
综上,根据统计结果,数据中肯定没有出现点数6的是乙同学.
平均数为:ҧ = 5 1 + 2 + 3 + 3 + 6 =3,
1.简单随机抽样和分层随机抽样在抽样过程中每个个体被抽取
的机会相等,分层随机抽样中各层抽样时采用简单随机抽样.
2.利用分层随机抽样要注意按比例抽取,若各层应抽取的个体
数不都是整数,可以进行一定的技术处理,比如将结果取成
整数等.
常用结论
3.在分层随机抽样中,以层数是 2 层为例,如果第 1 层和第 2 层
2025
高考一轮复习讲练测
第01讲 统计
目录
C
O
N
T
E
01
考情分析
N
T
S
02
03
04

第3节 第2课时 列联表与独立性检验--2025年高考数学复习讲义及练习解析

第3节  第2课时  列联表与独立性检验--2025年高考数学复习讲义及练习解析

第2课时列联表与独立性检验课标解读考向预测1.通过实例,理解2×2列联表的统计意义.2.通过实例,了解2×2列联表独立性检验及其应用.预计2025年高考列联表、独立性检验可能会以实际问题为背景,与概率、随机变量的分布列及数字特征相结合命题,难度适中.必备知识——强基础1.分类变量:变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.2.2×2列联表一般地,假设有两个分类变量X和Y,它们的取值均为0,1,其2×2列联表为XY合计Y=0Y=1X=0a b a+bX=1c d c+d合计a+c b+d a+b+c+d3.独立性检验(1)零假设:以Ω为样本空间的古典概型,设X和Y为定义在Ω上,取值于{0,1}的成对分类变量,H0:01P(Y=1|X=0)=P(Y=1|X=1).通常称H0为零假设或原假设.(2)χ2的计算公式:记n=a+b+c+d,则χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).(3)临界值:对于任何小概率值α,可以找到相应的正实数xα,使得后面关系成立:P(χ2≥xα)=α.我们称xα为α的临界值,这个临界值就可以作为判断χ2大小的标准,概率值α02越小,临界值xα越大.(4)基于小概率值α的检验规则是:当χ2≥xα时,我们就推断H0不成立,即认为X和Y不独立,该推断犯错误的概率不超过α;当χ2<xα时,我们没有充分证据推断H0不成立,可以认为X和Y独立.(5)应用独立性检验解决实际问题的主要环节①提出零假设H0:X和Y相互独立,并给出在问题中的解释;②根据抽样数据整理出2×2列联表,计算χ2的值,并与临界值xα比较;③根据检验规则得出推断结论;④在X和Y不独立的情况下,根据需要,通过比较相应的频率,分析X和Y间的影响规律.根据χ2的值可以判断两个分类变量有关的可信程度,若χ2越大,则认为两分类变量有关的把握越大.1.概念辨析(正确的打“√”,错误的打“×”)(1)分类变量中的变量与函数中的变量是同一概念.()(2)2×2列联表是借助两个分类变量之间频率大小差异说明两个变量之间是否有关联.()(3)应用独立性检验的基本思想对两个变量间的关系作出的推断一定是正确的.()(4)若分类变量X,Y关系越密切,则由观测数据计算得到的χ2的观测值越小.()答案(1)×(2)√(3)×(4)×2.小题热身(1)(人教B选择性必修第二册4.3.2练习A T2改编)为了解某大学的学生是否爱好体育锻炼,用简单随机抽样方法在校园内调查了120位学生,得到如下2×2列联表:男女合计爱好a b73不爱好c25合计74则a-b-c=()A.7B.8C.9D.10答案C解析根据题意,可得c =120-73-25=22,a =74-22=52,b =73-52=21,∴a -b -c=52-21-22=9.(2)在下列两个分类变量X ,Y 的样本频数列联表中,可以判断X ,Y 之间有无关系的是()y 1y 2合计x 1a b a +b x 2c d c +d 合计a +cb +da +b +c +dA .|a a +b -b c +d |B .|c a +b -d c +d|C .|b a +b -c c +d |D .|a a +b -c c +d |答案D解析∵χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),则分类变量X 和Y 有关系时,ad 与bc 差距会比较大,由a a +b -c c +d =ac +ad -ac -bc (a +b )(c +d )=ad -bc (a +b )(c +d ),故a a +b 与cc +d 的值相差应该大,即|a a +b -c c +d |的大小可以判断X ,Y 之间有无关系.(3)已知P (χ2≥6.635)=0.01,P (χ2≥10.828)=0.001.在检验喜欢某项体育运动与性别是否有关的过程中,某研究员搜集数据并计算得到χ2=7.235,则根据小概率值α=________的χ2独立性检验,分析喜欢该项体育运动与性别有关.答案0.01解析因为6.635<7.235<10.828,所以根据小概率值α=0.01的χ2独立性检验,分析喜欢该项体育运动与性别有关.考点探究——提素养考点一分类变量的两种统计表示形式(多考向探究)考向1等高堆积条形图例1(2023·四川南充三诊)为考查A ,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高堆积条形图,根据图中信息,下列说法最佳的是()A .药物B 的预防效果优于药物A 的预防效果B .药物A 的预防效果优于药物B 的预防效果C .药物A ,B 对该疾病均有显著的预防效果D .药物A ,B 对该疾病均没有预防效果答案B解析根据题干中两个等高堆积条形图知,药物A 实验显示不服药与服药时患病差异较药物B 实验显示明显,所以药物A 的预防效果优于药物B 的预防效果.【通性通法】在等高堆积条形图中,a a +b 与cc +d 相差越大,我们认为两个分类变量之间关系越强.【巩固迁移】1.(多选)现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列统计结论正确的是()A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理答案ABC解析由等高堆积条形图知,女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选ABC.考向22×2列联表例2(1)下面是一个2×2列联表,则表中a ,c 处的值分别为()X Y 合计y 1y 2x 1a 2573x 221b c合计d 49A .98,28B .28,98C .48,45D .45,48答案C解析由2×2列联表知a +25=73,b +25=49,b +21=c ,解得a =48,b =24,c =45.故选C.(2)假设两个分类变量X 和Y 的2×2列联表如下:X Y 合计y 1y 2x 1a 10a +10x 2c 30c +30合计a +c40100对于同一样本,以下数据能说明X 和Y 有关系的可能性最大的一组是()A .a =40,c =20B .a =45,c =15C .a =35,c =25D .a =30,c =30答案B解析χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=根据2×2列联表和独立性检验的相关知识,知当b ,d 一定时,a ,c 相差越大,a a +10与cc +30相差就越大,χ2就越大,即X和Y有关系的可能性越大,结合选项,知B中a-c=30与其他选项相比相差最大.【通性通法】在2×2列联表中,如果两个变量没有关系,则应满足ad-bc≈0.|ad-bc|越小,说明两个变量之间关系越弱;|ad-bc|越大,说明两个变量之间关系越强.【巩固迁移】2.(多选)有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀,得到列联表如下:班级数学成绩优秀非优秀合计甲班10b乙班c30合计105已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是()A.c=30,b=35B.c=15,b=50C.c=20,b=45D.由列联表可看出数学成绩与班级有关系答案CD解析依题意10+c105=27,解得c=20,由10+20+b+30=105,解得b=45.补全2×2列联表如下:班级数学成绩合计优秀非优秀甲班104555乙班203050合计3075105甲班学生数学成绩的优秀率为1055≈0.182,乙班学生数学成绩的优秀率为2050=0.4,乙班学生数学成绩的优秀率明显高于甲班学生数学成绩的优秀率,可以认为两班学生的数学成绩优秀率存在差异,所以数学成绩与班级有关.故选CD.考点二独立性检验的应用例3(2024·山西太原模拟)为进一步保护环境,加强治理空气污染,某市环保监测部门对市区空气质量进行调研,随机抽查了市区100天的空气质量等级与当天空气中SO2的浓度(单位:μg/m3),整理数据得到下表:SO2的浓度空气质量等级[0,50](50,150](150,475]1(优)28622(良)5783(轻度污染)3894(中度污染)11211若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”,根据上述数据,回答以下问题:(1)估计事件“该市一天的空气质量好,且SO2的浓度不超过150”的概率;(2)完成下面的2×2列联表;SO2的浓度空气质量[0,150](150,475]合计空气质量好空气质量不好合计(3)根据(2)中的列联表,依据小概率值α=0.01的独立性检验,能否据此推断该市一天的空气质量与当天SO2的浓度有关?解(1)由表格可知,该市一天的空气质量好,且SO2的浓度不超过150的天数为28+6+5+7=46,则“该市一天的空气质量好,且SO2的浓度不超过150”的概率P=46100=0.46.(2)由表格数据可得列联表如下,SO2的浓度空气质量[0,150](150,475]合计空气质量好461056空气质量不好242044合计7030100(3)零假设为H 0:该市一天的空气质量与当天SO 2的浓度无关.由(2)知χ2=100×(46×20-10×24)256×44×70×30≈8.936>6.635=x 0.01,根据小概率值α=0.01的独立性检验,我们推断H 0不成立,即认为该市一天的空气质量与当天SO 2的浓度有关,此推断犯错误的概率不超过0.01.【通性通法】独立性检验的一般步骤(1)根据样本数据制成2×2列联表;(2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算;(3)比较χ2与临界值的大小关系,作统计推断.【巩固迁移】3.(2022·全国甲卷)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A 24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),α0.1000.0500.010x α2.7063.8416.635解(1)根据表中数据,A 家公司共有班次260次,其中准点班次有240次,设A 家公司长途客车准点事件为M ,则P (M )=240260=1213;B 家公司共有班次240次,其中准点班次有210次,设B 家公司长途客车准点事件为N ,则P (N )=210240=78.故A 家公司长途客车准点的概率为1213,B 家公司长途客车准点的概率为78.(2)由题可得χ2=500×(240×30-20×210)2(240+20)×(210+30)×(240+210)×(20+30)≈3.205>2.706,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.课时作业一、单项选择题1.如表是2×2列联表,则表中a ,b 的值分别为()y 1y 2合计x 1a 835x 2113445合计b4280A .27,38B .28,38C .27,37D .28,37答案A解析a =35-8=27,b =a +11=27+11=38.2.某课外兴趣小组通过随机调查,利用2×2列联表和χ2统计量研究数学成绩优秀是否与性别有关.计算得χ2=6.748,经查阅临界值表知P (χ2≥6.635)=0.010,则下列判断正确的是()A .每100名数学成绩优秀的人中就会有1名是女生B .若某人数学成绩优秀,那么他为男生的概率是0.010C .有99%的把握认为“数学成绩优秀与性别无关”D .在犯错误的概率不超过1%的前提下认为“数学成绩优秀与性别有关”答案D解析∵χ2=6.748>6.635,∴有99%的把握认为“数学成绩优秀与性别有关”,即在犯错误的概率不超过1%的前提下认为“数学成绩优秀与性别有关”.故选D.3.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表为y1y2合计x1101828x2m26m+26合计m+1044m+54则当整数m取________时,X与Y的关系最弱.()A.8B.9C.14D.19答案C解析在两个分类变量的列联表中,当|ad-bc|的值越小时,认为两个分类变量有关的可能性越小.令|ad-bc|=0,得10×26=18m,解得m≈14.4,又m为整数,所以当m=14时,X与Y的关系最弱.4.(2024·海南华侨中学模拟)某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:偏爱蔬菜偏爱肉类合计50岁以下481250岁以上16218合计201030则可以说其亲属的饮食习惯与年龄有关的把握为()附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.α0.0500.0100.001xα 3.841 6.63510.828A.90%B.95% C.99%D.99.9%答案C解析根据列联表中数据,计算χ2=30×(4×2-8×16)212×18×20×10=10>6.635,可以说其亲属的饮食习惯与年龄有关的把握为99%.故选C.5.为了考查某种病毒疫苗的效果,现随机抽取100只小白鼠进行试验,得到如下2×2列联表:感染未感染合计服用104050未服用203050合计3070100附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.α0.100.050.0250.0100.0050.001xα 2.706 3.841 5.024 6.6357.87910.828根据以上数据,得到的结论正确的是()A.在犯错误的概率不超过2.5%的前提下,认为“小白鼠是否被感染与有没有服用疫苗有关”B.在犯错误的概率不超过1%的前提下,认为“小白鼠是否被感染与有没有服用疫苗有关”C.有95%的把握认为“小白鼠是否被感染与有没有服用疫苗有关”D.有95%的把握认为“小白鼠是否被感染与有没有服用疫苗无关”答案C解析依题意,χ2=100×(10×30-40×20)250×50×30×70=10021≈4.762,显然有3.841<4.762<5.024<6.635,所以有95%的把握认为“小白鼠是否被感染与有没有服用疫苗有关”,A,B,D不正确,C正确.6.假设有两个变量x与y的2×2列联表如下:y1y2x1a bx2c d对于以下数据,对同一样本能说明x与y有关系的可能性最大的一组为()A.a=20,b=30,c=40,d=50B.a=50,b=30,c=30,d=40C.a=30,b=60,c=20,d=50D.a=50,b=30,c=40,d=30答案B解析对于A,|ad-bc|=200;对于B,|ad-bc|=1100;对于C,|ad-bc|=300;对于D,|ad -bc|=300,显然B中|ad-bc|最大,该组数据能说明x与y有关系的可能性最大.7.为了解某社区60岁以上老年人使用手机支付和现金支付的情况,抽取了部分居民作为样本,统计其喜欢的支付方式,并制作出如下等高堆积条形图:根据图中的信息,下列结论中不正确的是()A.样本中多数男性喜欢手机支付B.样本中的女性数量少于男性数量C.样本中多数女性喜欢现金支付D.样本中喜欢现金支付的数量少于喜欢手机支付的数量答案C解析对于A,由题中右图可知,样本中多数男性喜欢手机支付,A正确;对于B,由题中左图可知,样本中的男性数量多于女性数量,B正确;对于C,由题中右图可知,样本中多数女性喜欢手机支付,C不正确;对于D,由题中右图可知,样本中喜欢现金支付的数量少于喜欢手机支付的数量,D正确.故选C.8.针对短视频热,某高校团委对学生性别和喜欢短视频是否有关联进行了一次调查,其中被调查的男生、女生人数均为5m(m∈N*),男生中喜欢短视频的人数占男生人数的45,女生中喜欢短视频的人数占女生人数的35.零假设为H0:喜欢短视频和性别相互独立.若依据α=0.05的独立性检验认为喜欢短视频和性别不独立,则m的最小值为()附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).α0.050.01x α3.8416.635A .7B .8C .9D .10答案C解析根据题意,不妨设a =4m ,b =m ,c =3m ,d =2m ,于是χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=10m ·(5m 2)25m ·5m ·7m ·3m =10m21,由于依据α=0.05的独立性检验认为喜欢短视频和性别不独立,根据表格可知10m 21≥3.841,解得m ≥8.0661,于是m 的最小值为9.二、多项选择题9.(2024·福建福州一中模拟)“一粥一饭,当思来之不易”,道理虽简单,但每年我国还是有2000多亿元的餐桌浪费,被倒掉的食物相当于2亿多人一年的口粮.为营造“节约光荣,浪费可耻”的氛围,某市发起了“光盘行动”.某机构为调研民众对“光盘行动”的认可情况,在某大型餐厅中随机调查了90位来店就餐的客人,制成如下所示的列联表,通过计算得到χ2的观测值为9.认可不认可40岁以下202040岁以上(含40岁)4010已知P (χ2≥6.635)=0.010,P (χ2≥10.828)=0.001,则下列判断正确的是()A .在该餐厅用餐的客人中大约有66.7%的客人认可“光盘行动”B .在该餐厅用餐的客人中大约有99%的客人认可“光盘行动”C .有99%的把握认为对“光盘行动”的认可情况与年龄有关D .在犯错误的概率不超过0.001的前提下,认为对“光盘行动”的认可情况与年龄有关答案AC解析∵χ2的观测值为9,且P (χ2≥6.635)=0.010,P (χ2≥10.828)=0.001,又9>6.635,但9<10.828,∴有99%的把握认为对“光盘行动”的认可情况与年龄有关,或者说,在犯错误的概率不超过0.010的前提下,认为对“光盘行动”的认可情况与年龄有关,故C正确,D错误;由表可知,认可“光盘行动”的人数为60,∴在该餐厅用餐的客人中认可“光盘行动”的比例为60×100%≈66.7%,故A正确,B错误.故选AC.9010.为了解阅读量多少与幸福感强弱之间的关系,一个调查机构根据所得到的数据,绘制了如下所示的2×2列联表(个别数据暂用字母表示):幸福感强幸福感弱合计阅读量多m1872阅读量少36n78合计9060150计算得χ2≈12.981,参照下表:α0.100.050.0250.0100.0050.001xα 2.706 3.841 5.024 6.6357.87910.828下列说法正确的是()A.根据小概率值α=0.010的独立性检验,可以认为“阅读量多少与幸福感强弱无关”B.m=54C.根据小概率值α=0.005的独立性检验,可以在犯错误的概率不超过0.5%的前提下认为“阅读量多少与幸福感强弱有关”D.n=52答案BC解析∵χ2≈12.981>7.879>6.635,∴根据小概率值α=0.010的独立性检验,可以在犯错误的概率不超过1%的前提下认为“阅读量多少与幸福感强弱有关”,根据小概率值α=0.005的独立性检验,可以在犯错误的概率不超过0.5%的前提下认为“阅读量多少与幸福感强弱有关”,∴A错误,C正确;∵m+36=90,18+n=60,∴m=54,n=42,∴B正确,D错误.故选BC.三、填空题11.某校为研究该校学生性别与体育锻炼的经常性之间的联系,随机抽取100名学生(其中男生60名,女生40名),并绘制得到如图所示的等高堆积条形图,则这100名学生中经常锻炼的人数为________.答案68解析这100名学生中经常锻炼的人数为60×0.8+40×0.5=68.12.长绒棉是世界上纤维品质最优的棉花,也是全球高端纺织品及特种纺织品的重要原料.新疆具有独特的自然资源优势,是我国最大的长绒棉生产基地,产量占全国长绒棉总产量的95%以上.新疆某农科所为了研究不同土壤环境下棉花的品质,选取甲、乙两地实验田进行种植.在棉花成熟后采摘,分别从甲、乙两地采摘的棉花中各随机抽取50份样本,测定其马克隆值,整理测量数据得到如下2×2列联表(单位:份),其中40≤a≤50且a∈N*.注:棉花的马克隆值是反映棉花纤维细度与成熟度的综合指标,是棉纤维重要的内在质量指标之一.根据现行国家标准规定,马克隆值可分为A,B,C三个级别,A级品质最好,B级为标准级,C级品质最差.A级或B级C级合计甲地a50-a50乙地80-a a-3050合计8020100当a=a0时,有99%的把握认为该品种棉花的马克隆值级别与土壤环境有关,则a0的最小值为________.附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.α0.0500.0100.001xα 3.841 6.63510.828答案46解析依题意,χ2≥6.635,即100×[a(a-30)-(50-a)(80-a)]250×50×80×20≥6.635,(10a-400)2≥2654,由于40≤a≤50且a∈N*,所以10a-400≥2654,a≥40+265410,因为45<40+265410<46,所以a0的最小值为46.四、解答题13.某城市地铁将于2024年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:月收入(单位:百元)[15,25)[25,35)[35,45)赞成定价者人数123认为价格偏高者人数4812月收入(单位:百元)[45,55)[55,65)[65,75]赞成定价者人数534认为价格偏高者人数521(1)若以区间的中点值作为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距(结果保留两位小数);(2)由以上统计数据列出2×2列联表,依据小概率值α=0.01的独立性检验,可否认为“月收入以55百元为分界点对地铁定价的态度有差异”?附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.α0.10.050.010.005xα 2.706 3.841 6.6357.879解(1)“赞成定价者”的月平均收入为x1=20×1+30×2+40×3+50×5+60×3+70×41+2+3+5+3+4≈50.56.“认为价格偏高者”的月平均收入为x2=20×4+30×8+40×12+50×5+60×2+70×14+8+12+5+2+1=38.75,∴“赞成定价者”与“认为价格偏高者”的月平均收入的差距是x1-x2≈50.56-38.75=11.81(百元).(2)根据条件可得2×2列联表如下:对地铁定价的态度月收入合计不低于55百元的人数低于55百元的人数认为价格偏高者32932赞成定价者71118合计104050零假设为H0:月收入以55百元为分界点对地铁定价的态度无差异.χ2=50×(3×11-29×7)232×18×10×40≈6.27<6.635=x0.01,∴根据小概率值α=0.01的独立性检验,没有充分证据推断H0不成立,因此可以认为“月收入以55百元为分界点对地铁定价的态度无差异”.14.(2023·全国甲卷)一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表;<m≥m对照组试验组(ⅱ)根据(ⅰ)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),α0.1000.0500.010xα 2.706 3.841 6.635解(1)试验组的样本平均数为120×(7.8+9.2+11.4+12.4+13.2+15.5+16.5+18.0+18.8+19.2+19.8+20.2+21.6+22.8+23.6+23.9+25.1+28.2+32.3+36.5)=39620=19.8.(2)(ⅰ)依题意,可知这40只小白鼠体重的增加量的中位数是将两组数据合在一起,从小到大排序后第20位与第21位数据的平均数,第20位数据为23.2,第21位数据为23.6,所以m=23.2+23.62=23.4,故列联表为<m≥m对照组614试验组146(ⅱ)由(ⅰ)可得,χ2=40×(6×6-14×14)220×20×20×20=6.4>3.841,所以能有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.。

2024年高考数学的备考方法总结(2篇)

2024年高考数学的备考方法总结(2篇)

2024年高考数学的备考方法总结____年高考数学备考方法总结一、总体规划1. 制定明确的目标:确定目标分数和所需的高校录取线。

2. 制定备考计划:合理安排备考时间,按模块划分备考内容。

3. 设定阶段性目标:每个备考阶段都设定阶段性目标,逐步提高能力。

二、知识点掌握1. 全面复习基础知识:系统地复习数学基础知识,包括代数、几何、概率等。

2. 突破薄弱环节:针对个人薄弱的知识点进行有针对性的复习和强化练习,找出问题并解决。

三、题型训练1. 强化题型训练:对各类题型进行分类整理,进行针对性的训练。

2. 模拟考试:模拟考试可以提供真实考试环境,检测自己的备考情况,同时可以锻炼答题速度和心理素质。

四、解题技巧1. 重视答题技巧:了解考试常用的解题方法和技巧,熟悉题目的解题思路,提高解题的效率。

2. 多做题目:通过大量做题可以提高自己的解题能力和思维逻辑,同时培养对不同题型的敏感度。

五、考前备战1. 复习要点:针对重点和难点进行有针对性的复习,确保基础知识掌握全面。

2. 真题演练:进行历年真题的演练,熟悉考试形式和题目类型。

3. 积极备考心态:保持积极的备考心态,相信自己的能力,不给自己过多的压力。

六、备考建议1. 合理安排时间:合理分配时间,保证每个知识点都得到足够的复习。

2. 建立错题本:将错题及其解析记录下来,重点整理,多次复习,避免犯同样的错误。

3. 阅读相关学术书籍和资料:扩大数学视野,增强数学的学科性。

4. 注重基础知识的掌握:高中数学基础知识是数学复习的基础,需要通过大量的习题来练习。

七、备考注意事项1. 提前规划备考内容和时间,避免临时抱佛脚。

2. 注意保持良好的作息时间,保障充足的睡眠。

3. 合理分配复习时间,不要进行过多的复习,也不要过于单一地复习某一知识点。

4. 面对压力时,保持积极乐观的心态,克服困难。

八、备考结束后1. 自我总结:总结备考经验,找出备考中的问题和不足。

2. 分析成绩:对考试分数进行分析,找出低分的原因并进行思考和改进。

第5节 第1课时 椭圆的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第5节  第1课时  椭圆的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第五节椭圆第1课时椭圆的定义、标准方程及其简单几何性质1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于01常数(大于|F 1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的02焦点,两焦点间的距离叫做椭圆的03焦距.2.椭圆的标准方程及简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围04-a≤x≤a且-b≤y≤b05-b≤x≤b且-a≤y≤a顶点06A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)07A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长为082b,长轴长为092a焦点10F1(-c,0),F2(c,0)11F1(0,-c),F2(0,c)焦距|F1F2|=122c对称性对称轴:13x轴和y轴,对称中心:14原点离心率e=ca(0<e<1)a,b,c的关系15a2=b2+c2椭圆的焦点三角形椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.如图所示,设∠F1PF2=θ.(1)当P为短轴端点时,θ最大,S△F1PF2最大.(2)S△F1PF2=12|PF1|·|PF2|sinθ=b2tanθ2=c|y0|.(3)|PF1|max=a+c,|PF1|min=a-c.(4)|PF1|·|PF2|=a2.(5)4c2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ.1.概念辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆是轴对称图形,也是中心对称图形.()(3)y2 m2+x2n2=1(m≠n)表示焦点在y轴上的椭圆.()(4)x2 a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相等.()答案(1)×(2)√(3)×(4)√2.小题热身(1)(人教A选择性必修第一册习题3.1T3改编)已知椭圆C:16x2+4y2=1,则下列结论正确的是()A.长轴长为12B.焦距为34C .短轴长为14D .离心率为32答案D解析把椭圆方程16x 2+4y 2=1化为标准方程可得y 214+x 2116=1,所以a =12,b =14,c =34,则长轴长2a =1,焦距2c =32,短轴长2b =12,离心率e =c a =32.故选D.(2)(人教A 选择性必修第一册习题3.1T5改编)已知点P 为椭圆x 216+y 29=1上的一点,B 1,B 2分别为椭圆的上、下顶点,若△PB 1B 2的面积为6,则满足条件的点P 的个数为()A .0B .2C .4D .6答案C解析在椭圆x 216+y 29=1中,a =4,b =3,则短轴|B 1B 2|=2b =6,设椭圆上点P 的坐标为(m ,n ),由△PB 1B 2的面积为6,得12|B 1B 2|·|m |=6,解得m =±2,将m =±2代入椭圆方程,得n =±332,所以符合题意的点P ,22,共4个满足条件的点P .故选C.(3)(人教A 选择性必修第一册习题3.1T1改编)已知点M (x ,y )在运动过程中,总满足关系式x 2+(y -2)2+x 2+(y +2)2=8,则点M 的轨迹方程为________________.答案x 212+y 216=1解析因为x 2+(y -2)2+x 2+(y +2)2=8>4,所以点M 的轨迹是以(0,2),(0,-2)为焦点的椭圆,设椭圆方程为x 2b 2+y 2a 2=1(a >b >0),由题意得2a =8,即a =4,则b 2=a 2-c 2=12,所以点M 的轨迹方程为x 212+y 216=1.(4)(人教A 选择性必修第一册习题3.1T4改编)已知椭圆C 的焦点在x 轴上,且离心率为12,则椭圆C 的方程可以为________________(写出满足题意的一个椭圆方程即可).答案x 24+y 23=1(答案不唯一)解析因为焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b 2=1,a >b >0,因为离心率为12,所以ca=12,所以c 2a 2=a 2-b 2a2=14,则b 2a 2=34.所以椭圆C 的方程可以为x 24+y 23=1(答案不唯一).考点探究——提素养考点一椭圆的定义及其应用(多考向探究)考向1利用椭圆的定义求轨迹方程例1(2024·山东烟台一中质检)已知圆(x +2)2+y 2=36的圆心为M ,设A 是圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹方程为________.答案x 29+y 25=1解析点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |.由椭圆的定义知,点P 的轨迹是以M ,N 为焦点的椭圆,且2a =6,2c =4,故所求的轨迹方程为x 29+y 25=1.【通性通法】在求动点的轨迹时,如果能够判断动点的轨迹满足椭圆的定义,那么可以直接求解其轨迹方程.【巩固迁移】1.△ABC 的两个顶点为A (-3,0),B (3,0),△ABC 的周长为16,则顶点C 的轨迹方程为()A .x 225+y 216=1(y ≠0)B .y 225+x 216=1(y ≠0)C .x 216+y 29=1(y ≠0)D .y 216+x 29=1(y ≠0)答案A解析由题意,知点C 到A ,B 两点的距离之和为10,故顶点C 的轨迹为以A (-3,0),B (3,0)为焦点,长轴长为10的椭圆,故2a =10,c =3,b 2=a 2-c 2=16.其方程为x 225+y 216=1.又A ,B ,C 三点不能共线,所以x 225+y 216=1(y ≠0).故选A.考向2利用椭圆的定义解决焦点三角形问题例2(1)如图,△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.答案43解析因为a 2=3,所以a = 3.△ABC 的周长为|AC |+|AB |+|BC |=|AC |+|CF 2|+|AB |+|BF 2|=2a +2a =4a =43.(2)设点P 为椭圆C :x 2a 2+y 24=1(a >2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________.答案433解析解法一:由题意,知c =a 2-4.又∠F 1PF 2=60°,|PF 1|+|PF 2|=2a ,|F 1F 2|=2a 2-4,∴|F 1F 2|2=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1||PF 2|cos60°=4a 2-3|PF 1||PF 2|=4a 2-16,∴|PF 1||PF 2|=163,∴S △PF 1F 2=12|PF 1||PF 2|sin60°=12×163×32=433解法二:S △PF 1F 2=b 2tan ∠F 1PF 22=4tan30°=433.【通性通法】将定义和余弦定理结合使用可以解决焦点三角形的周长和面积问题.【巩固迁移】2.(2023·全国甲卷)已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos∠F 1PF 2=35,则|PO |=()A .25B .302C .35D .352答案B解析解法一:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1||PF 2|=152,|PF 1|2+|PF 2|2=21,而PO →=12(PF 1→+PF 2→),所以|PO |=|PO →|=12|PF 1→+PF 2→|,即|PO →|=12|PF 1→+PF 2→|=12|PF 1→|2+2PF 1→·PF 2→+|PF 2→|2=1221+2×152×35=302.故选B.解法二:设∠F 1PF 2=2θ,0<θ<π2,所以S △PF 1F 2=b 2tan∠F 1PF 22=b 2tan θ,由cos ∠F 1PF 2=cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=35,解得tan θ=12.由椭圆的方程可知,a 2=9,b 2=6,c 2=a 2-b 2=3,所以S △PF 1F 2=12|F 1F 2|×|y P |=12×23×|y P |=6×12,解得y 2P =3,所以x 2P ==92,因此|PO |=x 2P +y 2P =3+92=302.故选B.解法三:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1|2+|PF 2|2=21,由中线定理可知,(2|PO |)2+|F 1F 2|2=2(|PF 1|2+|PF 2|2)=42,易知|F 1F 2|=23,解得|PO |=302.故选B.考向3利用椭圆的定义求最值例3已知F 1,F 2是椭圆C :x 216+y 212=1的两个焦点,点M ,N 在C 上,若|MF 2|+|NF 2|=6,则|MF 1|·|NF 1|的最大值为()A .9B .20C .25D .30答案C解析根据椭圆的定义,得|MF 1|+|MF 2|=8,|NF 1|+|NF 2|=8,因为|MF 2|+|NF 2|=6,所以8-|MF 1|+8-|NF 1|=6,即|MF 1|+|NF 1|=10≥2|MF 1|·|NF 1|,当且仅当|MF 1|=|NF 1|=5时,等号成立,所以|MF 1|·|NF 1|≤25,则|MF 1|·|NF 1|的最大值为25.故选C.【通性通法】在椭圆中,结合|PF 1|+|PF 2|=2a ,运用基本不等式或三角形任意两边之和大于第三边可求最值.【巩固迁移】3.(2024·河北邯郸模拟)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则|PA |+|PF |的最大值为________,最小值为________.答案6+26-2解析由题意知a =3,b =5,c =2,F (-2,0).设椭圆的右焦点为F ′,则|PF |+|PF ′|=6,所以|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2或最小值-|AF ′|=- 2.所以|PA |+|PF |的最大值为6+2,最小值为6- 2.考点二椭圆的标准方程例4(1)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则椭圆C 的方程为()A .x 22+y 2=1B .x 23+y 22=1C .x 29+y 26=1D .x 25+y 24=1答案B解析设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义,得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 221.故选B.(2)(2024·山西大同模拟)过点(2,-3),且与椭圆x 24+y 23=1有相同离心率的椭圆的标准方程为________________.答案x 28+y 26=1或y 2253+x 2254=1解析椭圆x 24+y 23=1的离心率是e =12,当焦点在x 轴上时,设所求椭圆的标准方程是x 2a 2+y 2b2=1(a >b >0)=12,b 2+c 2,+3b 2=1,2=8,2=6,∴所求椭圆的标准方程为x 28+y 26=1;当焦点在y 轴上时,设所求椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0)=12,b 2+c 2,+4b 2=1,2=253,2=254,∴所求椭圆的标准方程为y 2253+x 2254=1.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.【通性通法】1.求椭圆方程的常用方法(1)定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程.(2)待定系数法求椭圆标准方程的一般步骤注意:一定先判断椭圆的焦点位置,即先定型后定量.2.椭圆标准方程的两个应用(1)方程x 2a 2+y 2b 2=1(a >0,b >0)与x 2a 2+y 2b2=λ(a >0,b >0,λ>0)有相同的离心率.(2)与椭圆x 2a 2+y 2b 2=1(a >b >0)共焦点的椭圆系方程为x 2a 2+k +y 2b 2+k =1(a >b >0,k +b 2>0).恰当选用椭圆系方程,可使运算更简便.【巩固迁移】4.已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b>0)的两个焦点,若P |PF 1|+|PF 2|=4,则椭圆C 的方程为________________.答案x 24+y 23=1解析由|PF 1|+|PF 2|=4得2a =4,解得a=2.又P C :x 2a 2+y 2b2=1(a >b >0)上,所以1222+1,解得b=3,所以椭圆C的方程为x24+y23=1.5.已知椭圆的中心在原点,以坐标轴为对称轴,且经过P1(6,1),P2(-3,-2)两点,则该椭圆的方程为________________.答案x29+y23=1解析设椭圆的方程为mx2+ny2=1(m>0,n>0,且m≠n).因为椭圆经过P1,P2两点,所以点P1,P2的坐标满足椭圆方程,m+n=1,m+2n=1,=19,=13.所以所求椭圆的方程为x29+y23=1.考点三椭圆的简单几何性质(多考向探究)考向1椭圆的长轴、短轴、焦距例5已知椭圆x225+y29=1与椭圆x225-k+y29-k=1(k<9,且k≠0),则两椭圆必定() A.有相等的长轴长B.有相等的焦距C.有相等的短轴长D.有相同的离心率答案B解析由椭圆x225+y29=1,知a=5,b=3,c=4,所以长轴长是10,短轴长是6,焦距是8.在椭圆x225-k+y29-k1(k<9,且k≠0)中,因为a1=25-k,b1=9-k,c1=4,所以其长轴长是225-k,短轴长是29-k,焦距是8.所以两椭圆有相等的焦距.故选B.【通性通法】求解与椭圆几何性质有关的问题时,要理清顶点、焦点、长轴长、短轴长、焦距等基本量的内在联系.【巩固迁移】6.若连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,则长轴长与短轴长之比为()A.2B.23C.233D.4答案C解析因为连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,所以a=2c,所以b2=a 2-c 2=3c 2,所以b =3c ,故2a 2b =a b =2c 3c =233,所以长轴长与短轴长之比为233.故选C.7.(2024·河北沧州统考期末)焦点在x 轴上的椭圆x 2a 2+y 23=1的长轴长为43,则其焦距为________.答案6解析由题意,得2a =43,所以a 2=12,c 2=a 2-b 2=12-3=9,解得c =3,故焦距2c =6.考向2椭圆的离心率例6(1)(2024·江苏镇江模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率为________.答案33解析由题意知F 1(-c ,0),F 2(c ,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x=c ,由椭圆的对称性,可设它与椭圆的交点为,因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,又|AF 1|=|BF 1|,则△AF 1B 为等边三角形.解法一:由|F 1F 2|=3|AF 2|,可知2c =3·b 2a ,即3b 2=2ac ,所以3(a 2-c 2)=2ac ,即3e 2+2e -3=0,解得e =33(e =-3舍去).解法二:由|AF 1|+|BF 1|+|AB |=4a ,可知|AF 1|=|BF 1|=|AB |=43a ,又|AF 1|sin60°=|F 1F 2|,所以43a ×322c ,解得c a =33,即e =33.解法三:由|AF 1|+|BF 1|+|AB |=4a ,可知|AB |=|AF 1|=|BF 1|=43a ,即2b 2a =43a ,即2a 2=3b 2,所以e =c 2a 2=1-b 2a 2=33.(2)(2024·广东七校联考)已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案解析根据椭圆的对称性,不妨设焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),设F 1(-c ,0),F 2(c ,0).解法一:设M (x 0,y 0),MF 1→·MF 2→=0⇒(-c -x 0,-y 0)·(c -x 0,-y 0)=0⇒x 20-c 2+y 20=0⇒y 20=c2-x 20,点M (x 0,y 0)在椭圆内部,有x 20a 2+y 20b 2<1⇒b 2x 20+a 2(c 2-x 20)-a 2b 2<0⇒x 20>2a 2-a 4c2,要想该不等式恒成立,只需2a 2-a 4c 2<0⇒2a 2c 2<a 4⇒2c 2<a 2⇒e =c a <22,而e >0⇒0<e <22,即椭圆离心解法二:由MF 1→·MF 2→=0,可知点M 在以F 1F 2为直径的圆上,即圆x 2+y 2=c 2在椭圆x 2a 2+y 2b 2=1(a >b >0)内部,所以c <b ,则c 2<b 2,即c 2<a 2-c 2,所以2c 2<a 2,即e 2<12,又e >0,所以0<e <22,【通性通法】求椭圆离心率的方法方法一直接求出a ,c ,利用离心率公式e =ca求解方法二由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解方法三构造a ,c 的齐次式,可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e注意:解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式.【巩固迁移】8.(2023·新课标Ⅰ卷)设椭圆C 1:x 2a 2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A .233B .2C .3D .6答案A解析由e 2=3e 1,得e 22=3e 21,因此4-14=3×a 2-1a 2,而a >1,所以a =233.故选A.9.(2024·广东六校联考)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是________.答案33,解析设F 1(-c ,0),F 2(c ,0),由线段PF 1的中垂线过点F 2,得|PF 2|=|F 1F 2|,即2c ,得m 2=4c 2=-a 4c2+2a 2+3c 2≥0,即3c 4+2a 2c 2-a 4≥0,得3e 4+2e 2-1≥0,解得e 2≥13,又0<e <1,故33≤e <1,即椭圆离心率的取值范围是33,考向3与椭圆几何性质有关的最值(范围)问题例7(2024·石家庄质检)设点M 是椭圆C :x 29+y 28=1上的动点,点N 是圆E :(x -1)2+y 2=1上的动点,且直线MN 与圆E 相切,则|MN |的最小值是________.答案3解析由题意知,圆E 的圆心为E (1,0),半径为1.因为直线MN 与圆E 相切于点N ,所以NE ⊥MN ,且|NE |=1.又E (1,0)为椭圆C 的右焦点,所以2≤|ME |≤4,所以当|ME |=2时,|MN |取得最小值,又|MN |=|ME |2-|NE |2,所以|MN |min =22-12= 3.【通性通法】与椭圆有关的最值(范围)问题的求解策略【巩固迁移】10.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1(b >0)的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.答案4解析由题意,知a =2,因为e =c a =12,所以c =1,所以b 2=a 2-c 2=3,故椭圆的方程为x 24+y 23=1.设点P 的坐标为(x 0,y 0),所以-2≤x 0≤2,-3≤y 0≤3.因为F (-1,0),A (2,0),所以PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),所以PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2,所以当x 0=-2时,PF →·PA →取得最大值4.课时作业一、单项选择题1.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为()A .x 29+y 2=1B .y 29+x 25=1C .y 29+x 2=1D .x 29+y 25=1答案D解析由题意有6>2+2=4,故点M 的轨迹为焦点在x 轴上的椭圆,则2a =6,c =2,故a 2=9,所以b 2=a 2-c 2=5,故椭圆的方程为x 29+y 25=1.故选D.2.(2024·九省联考)椭圆x 2a 2+y 2=1(a >1)的离心率为12,则a =()A .233B .2C .3D .2答案A解析由题意得e =a 2-1a=12,解得a =233.故选A .3.(2024·河南信阳模拟)与椭圆9x 2+4y 2=36有相同焦点,且满足短半轴长为25的椭圆方程是()A .x 225+y 220=1B .x 220+y 225=1C .x 220+y 245=1D .x 280+y 285=1答案B解析由9x 2+4y 2=36,可得x 24+y 29=1,所以所求椭圆的焦点在y 轴上,且c 2=9-4=5,b=25,a 2=25,所以所求椭圆方程为x 220+y 225=1.4.设e 是椭圆x 24+y 2k =1的离心率,且e k 的取值范围是()A .(0,3)BC .(0,3)D .(0,2)答案C解析当k >4时,c =k -4,由条件,知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件,知14<4-k4<1,解得0<k <3.故选C.5.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部,且与圆C 1内切,与圆C 2外切,则动圆的圆心M 的轨迹方程是()A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1答案D解析设动圆的圆心M (x ,y ),半径为r ,因为圆M 与圆C 1:(x -4)2+y 2=169内切,与圆C 2:(x +4)2+y 2=9外切,所以|MC 1|=13-r ,|MC 2|=3+r .因为|MC 1|+|MC 2|=16>|C 1C 2|=8,由椭圆的定义,知M 的轨迹是以C 1,C 2为焦点,长轴长为16的椭圆,则a =8,c =4,所以b 2=82-42=48,动圆的圆心M 的轨迹方程为x 264+y 248=1.故选D.6.(2023·全国甲卷)设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1→·PF 2→=0,则|PF 1|·|PF 2|=()A .1B .2C .4D .5答案B解析解法一:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,从而S △F 1PF 2=b 2tan45°=1=12|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=2.故选B.解法二:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,由椭圆方程可知,c 2=5-1=4⇒c =2,所以|PF 1|2+|PF 2|2=|F 1F 2|2=42=16,又|PF 1|+|PF 2|=2a =25,平方得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=16+2|PF 1|·|PF 2|=20,所以|PF 1|·|PF 2|=2.故选B.7.(2023·甘肃兰州三模)设椭圆x 24+y 23=1的一个焦点为F ,则对于椭圆上两动点A ,B ,△ABF周长的最大值为()A .4+5B .6C .25+2D .8答案D解析设F 1为椭圆的另外一个焦点,则由椭圆的定义可得|AF |+|BF |+|AB |=2a -|AF 1|+2a -|BF 1|+|AB |=4a +|AB |-|BF 1|-|AF 1|=8+|AB |-|BF 1|-|AF 1|,当A ,B ,F 1三点共线时,|AB |-|BF 1|-|AF 1|=0,当A ,B ,F 1三点不共线时,|AB |-|BF 1|-|AF 1|<0,所以当A ,B ,F 1三点共线时,△ABF 的周长取得最大值8.8.(2024·安徽三市联考)已知椭圆C 的左、右焦点分别为F 1,F 2,P ,Q 为C 上两点,2PF 2→=3F 2Q →,若PF 1→⊥PF 2→,则C 的离心率为()A .35B .45C .135D .175答案D解析设|PF 2→|=3m ,则|QF 2→|=2m ,|PF 1→|=2a -3m ,|QF 1→|=2a -2m ,|PQ |=5m ,在△PQF 1中,得(2a -3m )2+25m 2=(2a -2m )2,即m =215a .因此|PF 2→|=25a ,|PF 1→|=85a ,|F 2F 1→|=2c ,在△PF 1F 2中,得6425a 2+425a 2=4c 2,故17a 2=25c 2,所以e =175.故选D.二、多项选择题9.对于曲线C :x 24-k +y 2k -1=1,下列说法中正确的是()A .曲线C 不可能是椭圆B .“1<k <4”是“曲线C 是椭圆”的充分不必要条件C .“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件D .“曲线C 是焦点在x 轴上的椭圆”是“1<k <2.5”的充要条件答案CD解析对于A ,当1<k <4且k ≠2.5时,曲线C 是椭圆,A 错误;对于B ,当k =2.5时,4-k =k -1,此时曲线C 是圆,B 错误;对于C ,若曲线C 是焦点在y 轴上的椭圆,-k >0,-1>0,-1>4-k ,解得2.5<k <4,所以“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件,C 正确;对于D ,若曲线C 是焦点在x 轴上的椭圆,-1>0,-k >0,-k >k -1,解得1<k <2.5,D 正确.故选CD.10.(2024·海口模拟)设椭圆x 29+y 23=1的右焦点为F ,直线y =m (0<m <3)与椭圆交于A ,B两点,则()A .|AF |+|BF |为定值B .△ABF 周长的取值范围是[6,12]C .当m =32时,△ABF 为直角三角形D .当m =1时,△ABF 的面积为6答案ACD解析设椭圆的左焦点为F ′,则|AF ′|=|BF |,∴|AF |+|BF |=|AF |+|AF ′|=6,为定值,A 正确;△ABF 的周长为|AB |+|AF |+|BF |,∵|AF |+|BF |为定值6,|AB |的取值范围是6),∴△周长的取值范围是(6,12),B 错误;将y =32与椭圆方程联立,解得-332,又F (6,0),∴AF →·BF →=0,∴AF ⊥BF ,∴△ABF 为直角三角形,C 正确;将y =1与椭圆方程联立,解得A (-6,1),B (6,1),∴S △ABF=12×26×1=6,D 正确.故选ACD.三、填空题11.(2023·四川南充三诊)若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍,则m 的值为________.答案14解析将原方程变形为x 2+y 21m=1.由题意知a 2=1m,b 2=1,所以a =1m ,b =1,所以1m=2,m =14.12.(2024·南昌模拟)已知椭圆E 的中心为原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,则椭圆E 的方程为________.答案x 28+y 24=1解析椭圆E 的中心在原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,c =22-2,=22,=22,=2,从而a 2=8,b 2=4,所以椭圆E 的方程为x 28+y 24=1.13.(2024·河南名校教研联盟押题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,下顶点为A ,AF 的延长线交C 于点B ,若|AF |∶|BF |=2∶1,则C 的离心率为________.答案33解析解法一:如图,设椭圆C 的右焦点为F ′,则|AF |=|AF ′|=a ,因为|AF |∶|BF |=2∶1,所以|BF |=a 2,所以|AB |=|AF |+|BF |=3a 2,又|BF |+|BF ′|=2a ,所以|BF ′|=2a -|BF |=3a2,由余弦定理可知cos ∠BAF ′=|AB |2+|AF ′|2-|BF ′|22|AB ||AF ′|=13,设O 为坐标原点,椭圆C 的焦距为2c ,则离心率e =ca =sin ∠OAF ′,因为∠BAF ′=2∠OAF ′,故cos ∠BAF ′=1-2sin 2∠OAF ′=1-2e 2,所以e =33.解法二:设B 在x 轴上的射影为D ,由于|AF |∶|BF |=2∶1,所以|BD |=|OA |2=b 2,|FD |=|OF |2=c 2,即-3c 2,将B 的坐标代入C 的方程,得9c 24a 2+b 24b 2=1,得e =33.14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,上顶点为A ,左顶点为B ,左、右焦点分别为F 1,F 2,且△F 1AB 的面积为2-32,若点P 为椭圆上任意一点,则1|PF 1|+1|PF 2|的取值范围是________.答案[1,4]解析由已知,得2b =2,故b =1.∵△F 1AB 的面积为2-32,∴12(a -c )b =2-32,∴a -c=2-3,又a 2-c 2=(a -c )(a +c )=b 2=1,∴a =2,c =3,∴1|PF 1|+1|PF 2|=|PF 1|+|PF 2||PF 1|·|PF 2|=2a|PF 1|(2a -|PF 1|)=4-|PF 1|2+4|PF 1|.又2-3≤|PF 1|≤2+3,∴1≤-|PF 1|2+4|PF 1|≤4,∴1≤1|PF 1|+1|PF 2|≤4,即1|PF 1|+1|PF 2|的取值范围为[1,4].四、解答题15.(2024·辽宁阜新校考期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 1P C 上.(1)求椭圆C 的方程;(2)设点A (0,-1),点M 是椭圆C 上任意一点,求|MA |的最大值.解(1)因为P 3,P 4关于坐标轴对称,所以P 3,P 4必在椭圆C 上,有1a 2+34b 2=1,将点P 1(1,1)代入椭圆方程得1a 2+1b 2>1a 2+34b 2=1,所以P 1(1,1)不在椭圆C 上,P 2(0,1)在椭圆C 上,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)点A (0,-1)是椭圆C 的下顶点,设椭圆上的点M (x 0,y 0)(-1≤y 0≤1),则x 204+y 20=1,即x 20=4-4y 20,所以|MA |2=x 20+(y 0+1)2=4-4y 20+(y 0+1)2=-3y 20+2y 0+5=-0+163,又函数y =-+163在∞,+,所以当y 0=13时,|MA |2取到最大值,为163,故|MA |的最大值为433.16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),焦点F 1(-c ,0),F 2(c ,0),左顶点为A ,点E 的坐标为(0,c ),A 到直线EF 2的距离为62b .(1)求椭圆C 的离心率;(2)若P 为椭圆C 上的一点,∠F 1PF 2=60°,△PF 1F 2的面积为3,求椭圆C 的标准方程.解(1)由题意,得A (-a ,0),直线EF 2的方程为x +y =c ,因为A 到直线EF 2的距离为62b ,即|-a -c |12+12=62b ,所以a +c =3b ,即(a +c )2=3b 2,又b 2=a 2-c 2,所以(a +c )2=3(a 2-c 2),所以2c 2+ac -a 2=0,因为离心率e =ca ,所以2e 2+e -1=0,解得e =12或e =-1(舍去),所以椭圆C 的离心率为12.(2)由(1)知离心率e =c a =12,即a =2c ,①因为∠F 1PF 2=60°,△PF 1F 2的面积为3,所以12|PF 1|·|PF 2|sin60°=3,所以|PF 1|·|PF 2|=4,1|+|PF 2|=2a ,1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=(2c )2,所以a 2-c 2=3,②联立①②,得a =2,c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.17.(多选)(2023·山东济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆CD .若PF 1→=F 1Q →,则椭圆C 的长轴长为5+17答案ACD解析由题意知2c =2,则c =1,因为点Q 在椭圆上,所以|QF 1|+|QF 2|=2a ,|QF 1|+|QP |=2a -|QF 2|+|QP |,又-1≤-|QF 2|+|QP |≤1,所以A 正确;因为点P (1,1)在椭圆内部,所以b >1,2b >2,所以B 错误;因为点P (1,1)在椭圆内部,所以1a 2+1b 2<1,即b 2+a 2-a 2b 2<0,又c =1,b 2=a 2-c 2,所以(a 2-1)+a 2-a 2(a 2-1)<0,化简可得a 4-3a 2+1>0(a >1),解得a 2>3+52或a 2<3-52(舍去),则椭圆C 的离心率e =ca<13+52=15+12=5-12,又0<e <1,所以椭圆C 所以C 正确;由PF 1→=F 1Q →可得,F 1为PQ 的中点,而P (1,1),F 1(-1,0),所以Q (-3,-1),|QF 1|+|QF 2|=(-3+1)2+(-1-0)2+(-3-1)2+(-1-0)2=5+17=2a ,所以D 正确.故选ACD.18.(多选)(2023·辽宁大连模拟)已知椭圆C :x 216+y 29=1的左、右焦点分别是F 1,F 2,左、右顶点分别是A 1,A 2,点P 是椭圆C 上异于A 1,A 2的任意一点,则下列说法正确的是()A .|PF 1|+|PF 2|=4B .存在点P 满足∠F 1PF 2=90°C .直线PA 1与直线PA 2的斜率之积为-916D .若△F 1PF 2的面积为27,则点P 的横坐标为±453答案CD解析由椭圆方程,知a =4,b =3,c =7,|PF 1|+|PF 2|=2a =8,A 错误;当P 在椭圆上、下顶点时,cos ∠F 1PF 2=2a 2-4c 22a 2=18>0,即∠F 1PF 2的最大值小于π2,B 错误;若P (x ′,y ′),则k P A 1=y ′x ′+4,k P A 2=y ′x ′-4,有k P A 1·k P A 2=y ′2x ′2-16,而x ′216+y ′29=1,所以-16y ′2=9(x ′2-16),即有k P A 1·k P A 2=-916,C 正确;若P (x ′,y ′),△F 1PF 2的面积为27,即2c ·|y ′|2=27,故y ′=±2,代入椭圆方程得x ′=±453,D 正确.故选CD.19.(2023·河北邯郸二模)已知O 为坐标原点,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,上顶点为B ,线段BF 的中垂线交C 于M ,N 两点,交y 轴于点P ,BP →=2PO →,△BMN 的周长为16,求椭圆C 的标准方程.解如图,由题意可得|BP |=23b ,|PO |=13b ,连接PF .由题意可知|BP |=|PF |,在Rt △POF 中,由勾股定理,得|PO |2+|OF |2=|PF |2,+c 2,整理得b 2=3c 2,所以a 2-c 2=3c 2,即a 2=4c 2,所以椭圆C 的离心率e =c a =12.在Rt △BOF 中,cos ∠BFO =|OF ||BF |=c a =12,所以∠BFO =60°.设直线MN 交x 轴于点F ′,交BF 于点H ,在Rt △HFF ′中,有|FF ′|=|HF |cos ∠BFO =a =2c ,所以F ′为椭圆C 的左焦点,又|MB |=|MF |,|NB |=|NF |,所以△BMN 的周长等于△FMN 的周长,又△FMN 的周长为4a ,所以4a =16,解得a =4.所以c =2,b 2=a 2-c 2=12.故椭圆C 的标准方程为x 216+y 212=1.20.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆的离心率的取值范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.解(1)不妨设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c .在△F 1PF 2中,由余弦定理,得cos60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|,即4a 2-2|PF 1|·|PF 2|-4c 22|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=4a 2-2|PF 1|·|PF 2|-4c 2,所以3|PF 1|·|PF 2|=4b 2,所以|PF 1|·|PF 2|=4b 23.又因为|PF 1|·|PF 2|=a 2,当且仅当|PF 1|=|PF 2|时,等号成立,所以3a 2≥4(a 2-c 2),所以c a ≥12,所以e ≥12.又因为0<e <1,所以椭圆的离心率的取值范围是12,(2)证明:由(1)可知|PF 1|·|PF 2|=43b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|sin60°=12×43b 2×32=33b 2,所以△F 1PF 2的面积只与椭圆的短轴长有关.。

椭圆课件-2025届高三数学一轮基础专项复习

椭圆课件-2025届高三数学一轮基础专项复习
2.[链接苏教选必一P88—P89知识]椭圆的右焦点为,椭圆上的两点, 关于原点对称,若,且椭圆的离心率为,则椭圆 的方程为( )
A
A. B. C. D.
【解析】由题意知,,关于原点对称,所以,得,又椭圆的离心率为,所以 ,得,故椭圆的方程为 ,选A.
解后反思若椭圆的左、右焦点分别为,,,两点在椭圆上,且关于坐标原点对称,则,,, 四点所构成的四边形为平行四边形,若或四边形有一个内角为 ,则该四边形为矩形.
10.[人A选必一P115习题3.1第4题变式]求满足下列条件的椭圆的标准方程.
(1)长半轴长为4,半焦距为,焦点在 轴上;
【答案】设椭圆方程为,(注意焦点在 轴上)由题意得,,,所以 ,所以其标准方程为 .
(2)与椭圆有相同的焦点,且经过点 ;
【答案】易知椭圆的焦点坐标为 ,设所求椭圆方程为,则 ,因为椭圆过点,所以,即 ,所以,所以所求椭圆的标准方程为 .
教材知识萃取
方法技巧利用椭圆的简单几何性质求最值或范围的思路
(1)将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系,利用函数或基本不等式求最值或范围;
(2)将所求范围用 , , 表示,利用 , , 自身的范围、关系求范围.
教材素材变式
1.[多选][苏教选必一P93习题3.1(2)第13题变式]如图所示,一个底面半径为 的圆柱被与其底面成 角的平面所截,截面是一个椭圆,则( )
3.[人B选必一P141练习A第4题变式]已知,分别是椭圆的左顶点和右焦点, 是椭圆上一点,直线与直线相交于点,且是顶角为 的等腰三角形,则该椭圆的离心率为( )
C
A. B. C. D.
【解析】如图,设直线与轴的交点为,由是顶角为 的等腰三角形,知, ,则在中, .又,所以.结合得,即 ,解得或 (舍去).故选C.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

()
A. ( 1 ,e)
e
C. (, 1 )
2e
B.( 1 , 1)
2e e
D. ( 1 , )
2e
【解析】选D.由题意f(x)>0在函数定义域内恒成立,即kx2-ln x>0在函数定义域
内恒成立,即k> ln x在函数定义域内恒成立.设g(x)= l,n x
x2
x2
则g′(x)=
x
2xln x4
55
55
4.抛物线顶点为坐标原点O,对称轴为y轴,直线3x-2y-6=0过抛物线的焦点,则该
抛物线的方程为( )
A.x2=-12y
B.y2=12x
C.x2=8y
D.y2=8x
【解析】选A.由题意得抛物线的焦点在y轴,设抛物线的方程为x2=2py.把焦点
(0,代p )入直线3x-2y-6=0⇒-2× -6p=0⇒p=-6,所以x2=-12y.
1 2t
为增函
数,当x∈(0, 时) ,t=cos 2x为减函数,根据复合函数单调性可知,f(x)在
2
单(0, )
2
调递减;因为t=cos2x∈[-1,1],所以增函数y=2t-2-t=2t-
1 2t
在t=cos
2x∈[-1,1]
时,- ≤3 y≤ ,即3f(x)的值域为
2
2
;因-为32 ,f32(x+π)=2cos 2(x+π)-
25 16
c≤ F≤P1a+c,即有2≤|FP1|≤8,故 的F最P1小值为2,B正确;设 , , FP,1…F组P2 FP3
成的等差数列为an,公差d>0,则a1≥2,an≤8,又d=
an ,所a1 以d≤
n 1
所以0<d≤ 3 ,所以d的最大值是 ,3故C正确,D错误.
10
10
6 6 3, n 1 211 10
2AP PQ
PO
⇒PM=5
3
.
10 3
答案: 10
3
1-q
1-q
1-q
因为a2a7=3a4,
(q, 1)
所以a1qa1q6=3a1q3⇒aq134=
,所以a1=3
16
.
6.在Rt△ABC中,BA=BC=2,点D在斜边AC上,且2AD=CD,E为BD的中点,则 CE BD
=( )
A. 1
B. 2
18
9
C.- 1
18
D.- 2
9
【解析】选D.在Rt△ABC中,因为BA=BC=2,所以AC=22 .因为2AD=CD,所以
x
x当(1xx∈42l(n0x,),
)时,函数ge(x)单调递增;当
x∈( e,+∞)时,函数g(x)单调递减,所以当x= 时e,函数g(x)取得最大值,此时
最大值为g(x)max=21e
,所以实数k的取值范围是 ( 1 ,).
2e
二、多项选择题(共4小题,每小题5分,共20分) 9.下列说法正确的是( ) A.回归直线一定经过样本点的中心(x, y) B.若两个具有线性相关关系的变量的相关性越强,则线性相关系数r的值越接近 于1 C.在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合精度越高 D.在线性回归模型中,相关指数R2越接近于1,说明回归模型的拟合效果越好
【解析】选ACD.对于选项A:因为回归直线恒过样本中心点(x, y),不一定经过每 个样本点,故选项A正确; 对于选项B:由相关系数的绝对值越趋近于1,相关性越强可知,若两个变量负相 关,其相关性越强,则线性相关系数r的值越接近于-1,故选项B错误; 对于选项C:因为在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合 精度越高,故选项C正确; 对于选项D:因为在线性回归模型中,相关指数R2越接近于1,说明线性回归模型的 拟合效果越好,故选项D正确.
3.设复数z=a+i, z 是其共轭复数,若 z = 3 + 4 i,则实数a=( )
z 55
A.4
B.3
C.2
D.1
【解析】选C.因为z=a+i,所以
z =a-i,所以
z=
z
3 + 4 i⇒a+i= 3a +
55
5
4+
5
(4a-3) i,所以a= 3a 4 或1= 4a-3 ,所以a=2.
55
DC=4 2 ,AD= 2 2,所以
3
3
CE=BD
1 (CB CD=) (BA AD) 1(CB BA CB AD CD BA
2
2
CD AD)= 1(2×2×cos 90° 2 2 2 cos 135 4 2 2 cos 45 4 2 2 2 cos 180)
2
3
3
33
2. 9
14.已知a>0,b>0,(ax b )6展开式的常数项为 20 ,则a+2b的最小值为________.
x
27
【解析】(ax xb展)6开式的通项公式为Tr+1= (aCx6r )6-r
=a( b6-)rrbr
x
x6-r-Cr,6r令6-
2r=0,得r=3,从而求得
C36a3b3=
20,整理得ab=
11.设函数f(x)=2cos 2x-2-cos 2x,则( )
A.f(x)在 (0, ) 单调递增
2
B.f(x)的值域为
3 2
,
3 2
C.f(x)的一个周期为π
D.f (x ) 的图象关于点 ( ,0) 对称
4
4
【解析】选BC.令t=cos 2x,则y=2t-2-t=2t-1
2t
,显然函数y=2t-2-t=2t-
【解析】由题意可得r= 22 22 22 如 图3,为正方体的两底边对角线与棱构
2
成的矩形,其中A1A=PB=2.A1P=AB2=2 ,
由正方体的对称性和球的对称性可知,当点Q为点P对角线棱的中点时PQ被球O截
得线段最长,由图可得AP=2 3⇒OP= 3 ,由余弦定理得cos∠QPA=
AP2 PQ2 A⇒QP2 NP=N
7.函数f(x)=2sin (x ) (ω>0)的图象在0, 上恰有2个最大值点,则ω的取
3
值范围为( )
A. 2,4
C. 163,265
B.
2,92
D.
2,265
【解析】选C.由正弦型函数的图象性质可得
2 , 4 ,解得13 25.
6 6
6
6
8.已知函数f(x)=kx2-ln x,若f(x)>0在函数定义域内恒成立,则k的取值范围是
2cos 2(x)
=2cos 2x-2-cos 2x=f(x),所以f(x)的一个周期为π;因为f (x =2)-sin 2x-2sin 2x,令
4
h(x)=2-sin 2x-2sin 2x,设P(x,y)为h(x)=2sin 2x 上2sin任2x 意一点,则P′
-x,-y( )
2
为P(x,y)关于 ( ,对0) 称的点,而h
10.已知F是椭圆 x2 y2 =1的右焦点,椭圆上至少有21个不同的点Pi (i 1,2,3,,)
25 16
FP1 , FP2 , FP3 , 组成公差为d(d >0)的等差数列,则( )
A.该椭圆的焦距为6
B. FP1 的最小值为2
C.d的值可以为 3
10
D.d的值可以为 2
5
【解析】选ABC.由椭圆 x2 =y21,得a=5,b=4,c=3,故A正确;椭圆上的动点P,a-
A.若AB∥CD,则MN∥l B.若M,N重合,则AC∥l C.若AB与CD相交,且AC∥l,则BD可以与l相交 D.若AB与CD是异面直线,则MN不可能与l平行
【解析】选BD.若AB∥CD,则A,B,C,D四点共面,设为平面γ,当AB<CD时,平面 α,β,γ两两相交有三条交线,分别为AC,BD,l,则三条交线交于一点O,则l与平面γ交 于点O,所以MN与l不平行,故A错误; 若M,N两点重合,则AC∥BD,A,B,C,D四点共面,设为平面γ,平面α,β,γ两两相交有 三条交线,分别为AC,BD,l,由AC∥BD,得AC∥BD∥l,故B正确; 若AB与CD相交,确定平面γ,平面α,β,γ两两相交有三条交线,分别为AC,BD,l,由 AC∥l,得AC∥BD∥l,故C错误;
三、填空题(共4小题,每小题5分,共20分)
13.已知等差数列an的前n项和为Sn,若S6=15,S15=6,则a11=________.
【解析】由题意可得
SS165
6a1 15a1
15d 15, 105d 6
⇒a1= 11,d= 7 ,所以a11=a1+10d=-1.
3
15
答案:-1
高考小题标准练(十八) 满分80分,实战模拟,40分钟拿下 高考客观题满分!
一、单项选择题(共8小题,每小题5分,共40分)
1.已知集合A={y|y=x+2},B= {x | y x2},则A∩B=( )
A.{-1,2}
B.{1,4}
C. [0,+∞)
D.R
【解析】选D.由题可得A= {y | y R} ,B= {x | x R} ,所以A∩B=R.
整理可得4y2+(6z-2)y+(9z2-3z)=0,
满足题意时上述关于y的一元二次方程有实数根,则Δ=(6z-2)2-16(9z2-3z)≥0,
整理可得(3z-1)(9z+1)≤0,则 1 z 1.
93
则z的最小值是- 1,最大值为 . 1
9
3
答案:- 1
相关文档
最新文档