晶体学基础(晶体投影)1
XRD(2-晶体学基础)(1)
1.倒易点阵的定义? 2.倒易点阵的重要性质?
34
<100>等效晶向
16
(三)晶面和晶面间距 1、晶面
➢ 在布拉菲格子中作一簇平行的平面,这些相互平行、 等间距的平面可以将所有的格点包括无遗。
➢ 这些相互平行的平面称为晶体的晶面 ➢ 同一布拉菲格子中可以存在位相不同的的晶面
17
(hkl):表示一组相互平行的晶面, 称为晶面指数或米勒指数。
(hkl)是平面在三个坐标轴上截距倒数的互质比。 晶格中一组晶面不仅平行,并且等距;
一组晶面必包含了所有格点而无遗漏。
同一个格子,两组不同的晶面
18
例
以晶胞参数a,b,c为三个对应晶轴的度量单位,晶面ABC在 坐标轴上的截距分别为2、3、6; 其倒数为1/2、 1/3 、 1/6,
h:k:l = 1/2 :1/3 : 1/6
=3:2:1
故: 该晶面的晶面指数 (hkl)为(321)。
带轴。
凡属于[uvw]晶带的晶面,其面指数(hkl)必符合关系:
hu+kv+lw=0
晶带定律
跳过下一页PPT 26
二、倒易点阵(倒点阵)
倒点阵可以直观地解释衍射图的成因, 它是虚拟的、抽象的教学工具。
晶体学中的正点阵(空间点阵),通过某种联系,将其 抽象出另外一套结点的集合,得到倒点阵。
➢ 晶体点阵中的一个晶面(hkl),在倒点阵中将用 一个点Phkl表示。该点与其对应的晶面有倒易关系。
E、当晶面指数中某个位置上的指数为0时, 表示该晶面与对应的晶轴平行。 如(100)(001)。
22
2、晶面间距dhkl
晶面间距是指两个相邻的平行晶面间的垂直距离。 通常用dhkl 或简写为d来表示。
高考化学晶体投影知识点
高考化学晶体投影知识点晶体投影是高考化学中的重要知识点之一,理解和掌握晶体投影的相关概念和方法对于解决晶体结构问题具有重要意义。
下面将介绍晶体投影的相关知识点及其应用。
一、晶体投影的定义晶体投影是指将三维晶体结构中的原子、分子或离子的投影投射在一个平面上,用二维图形来表示晶体的结构。
晶体投影可以帮助我们更清晰地观察晶体的结构,便于分析和研究晶体的性质。
二、晶体投影的方法1. 平行投影法平行投影法是一种常用的晶体投影方法,通过将所有原子在一个平面上投影,使得所有原子在投影图上的尺寸和位置与真实晶体结构一致。
可以使用线段或圆点表示原子,根据需要选择合适的比例尺和投影方向进行绘制。
2. 立体投影法立体投影法是另一种常用的晶体投影方法,它可以提供三维晶体结构的立体感。
通常使用矩形或六边形的投影图形表示晶体结构,其中不同的原子用不同的颜色或符号表示。
三、晶体投影的应用1. 晶体结构分析晶体投影可以帮助我们分析和解释晶体的结构。
通过观察晶体投影图,可以确定晶体中的基本单元和各个原子的位置关系,进而推断晶体的晶格类型、空间群和化学组成等信息。
2. 晶体性质研究晶体投影还可以用于研究晶体的物理和化学性质。
通过观察晶体投影图的形状和对称性,可以推断晶体的晶胞参数、晶体的晶系和晶体的晶体学类别,进而预测晶体的性质,如硬度、光学性质等。
3. 材料设计和合成晶体投影在材料科学和工程中有着广泛的应用。
通过研究晶体投影图,可以了解晶体的结构特征和原子排列方式,从而指导新材料的设计和合成。
四、晶体投影的难点和注意事项1. 投影方向的选择选择合适的投影方向是进行晶体投影的关键。
不同的投影方向可以呈现不同的晶体结构信息。
经验上,选择高对称轴或者对称平面作为投影方向,可以简化晶体投影图的绘制,并且更容易把握晶体的对称性。
2. 投影图的分析正确理解和分析晶体投影图对于解决晶体结构问题至关重要。
需要注意的是,晶体投影图只能提供晶体中原子位置在投影面上的信息,需要结合其它实验数据和理论知识进行综合分析。
晶体的投影和倒易点阵PPT课件
6
-
2021年2月7日4时8分
2. 晶体的极射投影:是一种二次投影,即将晶体的晶面或晶向的球 面投影再以一定的方式投影到赤平面所获得的投影。包括心射极平 投影和极射赤平投影。
➢ 心射极平投影:
定义:将投影平面与上述带有晶面极点的球面相切与球面上的任一点, 以球心为视点,将球面上的晶面极点投影于投影平面上,即以球心与球 面上的晶面极点做直线延伸到投影平面,此直线与投影平面相交点即为 此晶面极点的投影点。 缺点:投影直线与投影平面平行的那些晶面极点无法做投影,一个投影 平面只能记录球面上部分晶面极点。 应用:诠释劳埃衍射照片十分有用。
1.正点阵 2.倒易点阵 3.倒易矢量的基本性质 4.正倒空间的关系 5.广义晶带理论
14 -
2021年2月7日4时8分
一、正点阵
概念:晶体的空间点阵。反映了晶体中的质点在三维空间中的周 期性排列;与晶体结构相关,描述的是晶体中原子的分布规律, 是实际物质空间,所在空间为正空间;
分类:7大晶系、14种晶胞类型; 晶面、晶向表征方法:米勒指数(hkl)、[uvw]或(hkil)、
7
-
➢ 极射赤平投影:
以赤道平面为投影平面,以南极(或北极)为视点,将球面上的各个点、 线进行投影。
晶体投影的基本要素
8
-
D’
C’
B’
A’
极射赤平投影
2021年2月7日4时8分
球面投影与极射赤面投影之间的关系: 球面上过南北轴的大圆,其极射赤面投影为过基圆中心的直径; 球面上未过南北轴的倾斜大圆,其投影为大圆弧,大圆弧的弦为基圆直径; 水平大圆即赤道平面与投影球的交线,其极射赤面投影为投影基圆本身; 水平小圆的极射赤面投影为与基圆同心的圆; 倾斜小圆的投影为椭圆; 直立小圆的极射赤面投影为一段圆弧,其大小和位置取决于小圆的大小和位置。
2012-晶体学基础1
点阵矢量:a b c
棱边夹角, ,
14种布拉菲点阵
根据6个点阵参数间的相互关系,可将全部空间点阵归属 于7种类型,即7个晶系。按照“每个阵点的周围环境相 同“的要求,布拉菲(Bravais A.)用数学方法推导出 能够反映空间点阵全部特征的单位平行六面体只有14种, 这14种空间点阵也称布拉菲点阵。
晶胞选取的原则
同一空间点阵可因选取方式不同而得到不相同的晶胞
晶胞选取的原则
选取的平行六面体应反映出点阵的最高对称性;
平行六面体内的棱和角相等的数目应最多; 当平行六面体的棱边夹角存在直角时,直角数目应最多; 当满足上述条件的情况下,晶胞应具有最小的体积。
晶胞、晶轴和点阵矢量
点阵常数:a, b, c
倒易点阵与正点阵的关系
4、对于面心型,指数同为偶数或奇数的晶面才出现; (111) (220)
(200)
倒易点阵小结
1、均为无限的周期点阵, 2、正点阵的晶面对应于倒易点阵的阵点(除有公因子指数外); 3、晶系不变,为11种中心对称的劳厄点群; 4、P->P*, C->C*, I->F*, F->I*,即对复合单胞出现倒易点阵系统消光.
a h k l
2 2 2
六方晶系
1 4 h hk k l 2 3 a c
2 2 2 2
☆ 晶带和晶带定律
空间点阵中同时平行于某一轴向[uvw]的所有晶面构 成一个晶带,这些晶面叫晶带面,而这个轴向[uvw] 称为这一晶带的晶带轴。
[001]
凡属于[uvw]晶带的晶面,它的晶面指 数(hkl)都必然符合关系式:
1、简单正交点阵
010 r*110 b a 000 a* b* 110
晶体学基础
2020/3/3
3
1.1 晶体及其基本性质
晶体结构 = 点阵 + 结构基元
2020/3/3
4
空间点阵的四要素
1. 阵点: 空间点阵中的点; 2. 阵列: 结点在直线上的排列; 3. 阵面: 阵点在平面上的分布。
2020/3/3
5
空间点阵的四要素
4. 阵胞: 结点在三维空间形成的平行六面体。
原胞:最小的平行六面体,只考虑周期性,不考虑对称性; 晶胞:通常满足对称性的前提下,选取体积最小的平行六面体。
ur b/k
P
a/h A
v
a
2020/3/3
25
倒易点阵的应用
uur dhkl 1/ r *hkl
1、计算面间距
1
d2 hkl
r rhkl
r .rhkl
h
k
av*
l
r bcv**
av*
r b*
h
cv*
k
l
h
h
k
l
G
*
k
2020/3/3
3
c
28
倒易点阵的应用
2、计算晶面夹角
• 两晶面之间的夹角,可以用各自法线之间的夹角来表示, 或用它们的倒易矢量的夹角来表示:
c((ohhs21kk12ll12)c)osrvrv(hh2rv1kk2h1l1l21k1l1 ,hhrv21hav2avk*2*l+2+)kk21bvbv*rvv*+h+1kl12ll11cvcv*vrv*h2k2l2
4. 若已知两个晶带面,则晶带轴;
5. 已知两个不平行的晶向,可以求出过这两个晶向的晶面;
[工学]第一章 晶体学基础-1
lattice 点阵
structural motif 结构基元
Crystal structure 晶体结构
晶体结构 = 点阵 + 结构基元
晶体结构
点 阵
结构基元
+
直线点阵 所有点阵点分布在一条直线上。 所有点阵点分布在一个平面上。
点阵
平面点阵 空间点阵
所有点阵点分布在三维空间上。
1、直线点阵:一维点阵
世界上的固态物质可分为二类,一类是晶态,
另一类是非晶态。自然界存在大量的晶体物质 ,如高山岩石、地下矿藏、海边砂粒、两极冰 川都是晶体组成。人类制造的金属、合金器材、 水泥制品及食品中的盐、糖等都属于晶体,不 论它们大至成千上万吨,小至毫米、微米,晶 体中的原子、分子都按某种规律周期性排列。 另一类固态物质,如玻璃、明胶、碳粉、塑料 制品等,它们内部的原子、分子排列杂乱无章, 没有周期性规律,通常称为玻璃体、无定形物 或非晶态物质
晶胞的两个要素: 1.
晶胞的大小与形状:
由晶胞参数a,b,c,α
,β,γ表示, a,b,c 为 六面体边长, α,β,γ 分 别是bc,ca,ab 所组成的 夹角 晶胞的内容:粒子的种类、数目及它在晶胞 中的相对位置
2.
CsCl晶体结构
上图为CsCl的晶体结构。Cl与Cs的1:1存在 若
a≠b 。 a∧b≠120
( a )NaCl
( b )Cu
二维周期排列的结构及其点阵(黑点代表点阵点)
b
a
(c)石墨 二维周期排列的结构及其点阵(黑点代表点阵点)
3、空间点阵:三维点阵特点:
①空间点阵可以分解成一组组平面点阵 ②取不在同一平面的三个向量组成平行六面
材料科学基础I 第一章(晶体学基础)
第一章 晶体学基础
1、晶面指数 、
方法和步骤与三指数时相同, 方法和步骤与三指数时相同, 只是要找出晶面 在四个坐标 轴上的截距。 轴上的截距。 例如: 例如: a3 o a1 a2
(1010) (0110) (1100)
(1010)
2、晶向指数: 、晶向指数:
四坐标晶向指数的确定方法有行走法和解析法。 四坐标晶向指数的确定方法有行走法和解析法。由于行走法 确定的晶向指数不是唯一的,所以这里仅介绍解析法 解析法。 确定的晶向指数不是唯一的,所以这里仅介绍解析法。 步骤: 步骤: 1)求出待定晶向在 1,a2,c三个坐标轴下的指数:U, V, W 求出待定晶向在a 三个坐标轴下的指数: 求出待定晶向在 三个坐标轴下的指数 2)按以下公式算出在四坐标轴下的指数:u, v, t, w 按以下公式算出在四坐标轴下的指数: 按以下公式算出在四坐标轴下的指数
多数金属和非金属材料都是晶体。因此, 多数金属和非金属材料都是晶体。因此,首先 要掌握晶体的特征及其描述方法。 要掌握晶体的特征及其描述方法。 晶体——组成晶体的质点在三维空间作周期性地、 组成晶体的质点在三维空间作周期性地、 晶体 组成晶体的质点在三维空间作周期性地 规则地排列。 规则地排列。 晶体的特点: 晶体的特点: 质点排列具有规则性、 质点排列具有规则性、周期性 有固定熔点(结晶温度) 非晶体没有固定的熔点 非晶体没有固定的熔点] 有固定熔点(结晶温度)[非晶体没有固定的熔点 各向异性(包含多种性能) 各向异性(包含多种性能)
1_《材料科学基础》第一章_晶体学基础1
晶体结构
找 代 表
找等同点
空间格子(14种)
找 代 表
晶胞
形状、大小一致
单胞(14种)
晶 体 划 分 为 据 点 阵 参 数
晶系(7个)
本节重点掌握:
1、概念:空间点阵;晶胞;点阵常数
2、空间点阵及其要素
3、Bravais晶系的格子常数特点
§1.3 晶向指数和晶面指数(参考P13-16)
根据6个点阵参数间的相互关系,可将全部空间点阵归属7种晶系。
晶系
等轴晶系 四方晶系 六方晶系
三方(菱方)晶系
Bravais晶系的格子常数特点 单胞形状 格子常数特点
a = b=c a = b≠c a = b≠c α=β=γ=90° α=β=γ=90° α=β=90°γ=120°
a = b=c
α=β=γ ≠ 90°
食 盐
NaCl晶体结构
晶体★ :晶体是内部质点(原子、离子或分子) 在三维空间呈周期性重复排列的固体。 有些固体如玻璃、琥珀、松香等,它们的内部质 点不作规则排列,称为非晶体。
比 较 图
古
液、准
液晶
液晶:介于固态和液态之间的各向异性的流体。 性质上:
既具有液体的可流动性、粘滞性, 又具有晶体的各向异性
结构上,
具有一维或二维近似有序晶,即分子按某一从优方向排列
平移无序或部分平移无序的
准晶
是一种介于晶体和非晶体之间的固体。准晶具有长程定向有
序,然而又不具有晶体所应有的平移对称性,因而可以具有
晶体所不允许的宏观对称性。
基本性质
以色列人达尼埃尔· 谢赫特曼以发现准晶体赢得2011年度诺贝尔化学奖。
(完整版)第1章 晶体学基础
第一篇 X射线衍射分析(15万字)1 晶体学基础1.1 晶体结构的周期性与点阵晶体是由原子、离子、分子或集团等物质点在三维空间内周期性规则排列构成的固体物质,这种周期性是三维空间的。
晶体中按周期重复的原子、分子或离子团称为结构基元,也就是重复单元。
为了描述晶体内部原子排列的周期性,总是把一个结构基元抽象地看成为一个几何点,而不考虑它的实际内容(指原子、离子或分子)。
这些几何点按结构周期排列,这种几何点的集合就称为点阵,将点阵中的每个点叫阵点。
要构成点阵,必须具备三个条件:(1)点阵点数无限多;(2)各点阵点所处的几何环境完全相同;(3)点阵在平移方向的周期必须相同。
凡是能够抽取出点阵的结构可称为点阵结构或晶体点阵。
点阵中每一阵点对应于点阵结构中的一个结构基元,在晶体中则是一些组成晶体的实物粒子,即原子、分子或离子等,或是这些微粒的集团。
这样,晶体结构与晶体点阵是两个不同的概念,其关系如图1-1所示,晶体结构可以表示为:晶体结构= 晶体点阵+ 结构基元图1-1晶体结构与点阵的关系根据点阵的性质,把分布在同一直线上的点阵称为直线点阵或一维点阵,分布在同一平面内的点阵称为平面点阵或二维点阵,分布在三维空间中的点阵称为空间点阵或三维点阵。
1.1.1 一维周期性结构与直线点阵图1-2(a)是聚乙烯分子链的结构示意图,具有一维周期结构,其结构基元(CH2CH2)周期性地排列在一个方向上。
每一个结构基元的等同位置抽象成一个几何点,可形成一条直线点阵,是等距离分布在一条直线上的无限点列,如图1-2(b)所示。
取任一阵点作为原点O ,A 为相邻的阵点,则矢量a=OA 表示重复的大小和方向,称为初基(单位)矢量或基矢,若以单位矢量a 进行平移,必指向另一阵点,而矢量的长度a a =ρ称为点阵参数。
图1-2晶体结构与点阵的关系(a )聚乙烯分子链的结构示意图;(b )等效的一维直线点阵直线点阵中任何两阵点的平移矢量称为矢径,可表示为T p = p a (0, ±1, ±2……)矢径T p 完整而概括地描述了一维结构基元排列的周期性。
晶体学基础第1章-课件1
晶体学基础绪论刘彤固体中的晶体气态:内部微粒(原子、分子、离子)无规运动液态:内部微粒(原子、分子、离子)无规运动固态:内部微粒(原子、分子、离子)振动自然界中绝大多数固体物质都是晶体。
如:食盐、冰糖、金属、岩石等。
¾单质金属和合金在一般条件下都是晶体。
¾一些陶瓷材料是晶体。
¾高聚物在某些条件下也是晶体。
“德里紫蓝宝石”如何在千姿百态的晶体中发现其规律?熔体凝固液相结晶晶体并非局限于天然生成的固体人工单晶飞机发动机叶片飞机发动机晶体的共同规律和基本特征?水晶石英晶体具有规则的凸多面体外形。
α石英的内部结构大球代表小球代表晶体的概念NaCl的晶体结构晶体(crystal):其内部质点(原子、分子或离子)在3维空间周期性重复排列的固体。
也称具有格子构造的固体。
晶体材料:单晶,多晶¾在一个单晶体的范围内,晶格中的质点均呈有序分布。
多晶体内形成许多局限于每个小区域内的有序结构畴,但在畴与畴之质点的分布是无序的或只是部分有序的。
晶界(晶体缺陷)Be 2O 3非晶体Be 2O 3 晶体分子晶体(范德华力)晶体学的发展历史¾有文字记载以前,人们对矿物晶体瑰丽的色彩和特别的多面体外形引起了的注意,开始观察研究晶体的外形特征。
¾17世纪中叶,丹麦学者斯丹诺(steno)1669年提出面角守恒定律,这可以说是晶体学作为一门正式科学的标志,它找出了晶体复杂外形中的规律性,从而奠定了几何晶体学的基础。
¾1801年,法国结晶学家阿羽依(Haüy)基于对方解石晶体沿解理面破裂现象的观察,发现晶体学基本定律之一的整数定律。
¾1805-1809年,德国学者魏斯(Weiss)发现晶带定律以及晶体外形对称理论。
几何晶体学发展到了相当高的程度。
¾1830年,德国学者赫塞尔(Hessel)推导出描述晶体外形对称性的32种点群。
¾1837年,英国学者米勒(Miller)提出晶面在三维空间位置的表示方法---米勒指数。
1.晶体学基础
原子可在 顶角、线 、面、内 部。
晶胞参数:
平行六面体的三根棱长a、b、c及其夹角α、β、γ是表示它本 身的形状、大小的一组参数,称为点阵参数(晶胞参数)
依照晶胞参数之间的关系,所有晶体的空间点阵可以划分为7个晶系:
晶 系 立方晶系 四方晶系 a=b=c a=b≠c 格子常数特点 α=β=γ=90° α=β=γ=90°
晶面族指数:用晶面族中 某个最简便的晶面指数填 在大括号{ }内作为该晶面
族的指数。
晶面间距
一般是晶面指数数值越小,其面间距较大,并且其阵点密度较大
a
b
(100)
(110) (210) (4-10) (130)
晶面间距的计算
一组平行晶面的晶面间距dhkl与晶面指数和晶格常数a、b、c有下列关系:
(2)晶胞
ClNa+
空间格子+基元
●晶胞:是指晶体结构中的平行六面体单位,其形状大小与对应的 空间格子中的平行六面体一致。 ●晶胞:是描述晶体结构的基本组成单位。 ●晶胞:能够反映整个晶体结构特征的最小结构单元。
周期性、对称 性
晶胞的选取不是唯一的!
晶胞的选取原则: 1)充分表示出晶体的对称性 2)三条棱边尽量相等 3)夹角尽量为直角 4)单元体积尽可能小
晶体结构=空间点阵+结构基元
实际晶体——质点体积忽略——空间点阵——阵点连线——晶格(空间格子)
等同点: 各阵点的周围 环境完全相同, 周围阵点排布 及取向完全相 同。 A位臵
B位臵
空间格子有下列几种要素存在:
面网
平行六面体
晶面:可将晶体点阵在任意方向上分解 为相互平行的节点平面。 晶面族:对称性高的晶体中,不平行的 两组以上的晶面,它们的原子排列状况 是相同的,这些晶面构成一个晶面族。 晶向:也可将晶体点阵在任意方向上分 解为相互平行的节点直线组,质点等距 离的分布在直线上。 晶向族:晶体中原子排列周期相同的所 有晶向为一个晶向族。
01晶体学基础
上一内容 下一内容 回主目录
返回
续二
(1)电子和空穴:有效电荷与实际电荷相等。 (2)原子晶体:带电的取代杂质缺陷的有效电荷就
等于该杂质离子的实际电荷。 (3)化合物晶体:缺陷的有效电荷一般不等于实际
电荷。
上一内容 下一内容 回主目录
返回
缺陷的表示
• 无缺陷状态:0 • 晶格结点空位:VM, VX • 填隙原子:Ai, Xi • 错位原子:在AB中,AB, BA • 取代原子:在MX中NM • 电子缺陷:e’, h• • 带电缺陷: VM’, VX •, Ai •, Xi’, AB, BA , NM(n-m)
• 箭头表示反应方向
V V 0 NaCl(s) ' •
Na
Cl
• 箭头上表示基质的化学
式
•
生成物主要由缺陷组成
AgCl
AgCl(s )
Agi•
VA' g
Cl
Cl
上一内容 下一内容 回主目录
返回
基本的缺陷反应方程式
1.具有夫伦克耳缺陷(具有等浓度的晶格空位和填隙原子的 缺陷)的整比化合物M2+X2-:
位错模型
如图所示,晶体中多余的半原子面好象一片刀刃切入晶体中, 沿着半原子面的“刃边”,形成一条间隙较大的“管道”,该 “管道”周围附近的原子偏离平衡位置,造成晶格畸变。刃型 位错包括“管道”及其周围晶格发生畸变的范围,通常只有3到 5个原子间距宽,而位错的长度却有几百至几万个原子间距。刃 位错用符号 “┻”表示。
内容回顾
1.晶体结构的周期性; 2.点阵结构与点阵; 3. 点阵与平移群及与点阵结构的关系; 4. 晶体结构参数; 5. 晶面指数的确定;
上一内容 下一内容 回主目录
晶体学基础-球面投影
晶面扩大后与球的交线--面痕
17:15
4
(二)极射赤平投影
( polar stereographic projection)
将球面上极点投影到一个平面(赤道平面)上。
NS:投影轴; N\S:目测点(南北极); Q:赤道平面
17:15
5
17:15
6
17:15
7
立方晶系(001)标准极图
晶体取向
1.晶面与晶向指数 2.晶体投影图
标注
按一定规则表示各晶面和晶
向分布的图形。
球面投影
17:15
2
(一)球面投影
(spherical projection)
17:15
3
(一)球面投影
(spherical projection)
1. 将晶体放在一个大球的中心, 所有的晶面和晶向都通过球心。
2. 晶向的表示:它与球面的交点。 3. 晶面的表示:
17:15指数的确定:
一个晶面在空间的取向可以由它的法线与三个晶轴 [100]、[010]及[001]的夹角确定。
h:k:l=acosρ:bcosσ:ccosτ
注意: 量度两个极点间的角度,
是过两个极点的经线来量度。
计算机绘制任意投影面的标准极图。
17:15
15
谢 谢!
17:15
9
晶体投影要解决的问题? -晶向(面)间关系的表达
1.晶面的夹角
P1与P2面的夹角-- OP1与OP2夹角φ: 过P1,P2与球心O做一大圆, P1P2的弧度。
17:15
11
(三)乌氏网(Wulff net)
刻度球的
极射赤平投影面 度量
晶体学基础专题知识
2.3 极射赤平投影和乌尔夫网
直立小园旳投影为一段圆弧。其位置和大小取决 于小园旳位置和大小。
2.3 极射赤平投影和乌尔夫网 水平小园投影仍为一种园,并以基园旳圆心为圆心。
2.3 极射赤平投影和乌尔夫网 倾斜小园旳投影为一小圆。其位置决定于小园旳位置。
2.3 极射赤平投影和乌尔夫网 ②和投影面垂直旳大圆旳极射投影是过基圆圆心旳直线。
2.1 面角守恒定律
晶面角守恒定律告诉我们:将一种物质旳一种晶体旳m1面 与另一晶体旳相应面m1´平行放置,则这两个晶体其他旳相 应晶面m2与m2´,…………,mn与mn´也相互平行,即同一种
物质旳相应晶面间夹角不变。
2.1 面角守恒定律
成份和构造相同旳晶体,经常因生长环境条件变化旳 影响,而形成不同旳外形,或者偏离理想旳形态而形 成所谓旳“歪晶”。
2.3 极射赤平投影和乌尔夫网 将基园拿出来,根据倾斜大园和直立小园投影旳成果, 并标示出合适旳角度间隔,就是著名旳乌尔夫网(吴 氏网)。
乌尔夫网是极射投影旳量度工具。
2.3 极射赤平投影和乌尔夫网
基园旳刻度可用来度量方位角 ,旋转 一周为360; 直径上旳刻度能够用来度量极距角, 从圆心为=0,到圆周为=90;
在球面坐标网中,与纬度相当旳是极距角,与经 度相当旳是方位角。如图所示。
2.2 晶体旳球面投影及其坐标
① 极距角():投影轴与晶面法线或直线间旳夹角,也 就是北极N与球面上投影点之间旳弧度,故称极距角。 极距角都是从北极N点开始度量,从投影球N极到S极, 共分180°。
② 方位角():是包括晶面法线或直线要素旳子午面与 投影球零子午面之间旳夹角。也就是球面上投影点所在 旳子午线与零子午线之间旳水平弧度,故称方位角。方 位角都是从零度子午线(=0,一般在投影球最右侧) 开始顺时针方向计角旳,投影球一周旳方位角共分为 360°。 有了球面坐标网后来,只要懂得投影点旳球面坐标值, 即能够拟定投影点在球面上旳位置。