脱氮除磷工艺汇总
污水脱氮除磷的原理及其工艺
污水脱氮除磷的原理及其工艺一、污水脱氮原理:污水中的氮主要以无机氮和有机氮两种形式存在,其中无机氮包括氨氮、亚硝酸盐氮和硝酸盐氮,有机氮主要包括蛋白质等有机物。
污水脱氮的主要原理是利用硝化反应和反硝化反应。
硝化反应是将氨氮转化为硝酸盐氮,该过程需利用到氨氧化细菌进行氧化作用,产生的硝酸盐氮可以被水中的反硝化细菌进一步还原为氮气释放到大气中。
这样就实现了对污水中氨氮的脱氮处理。
反硝化反应是将硝酸盐氮还原为氮气。
反硝化作用需要在无氧环境下进行,可通过添加外源电子供体(如甲烷、乙醇等)来提供反硝化细菌进行反硝化作用。
反硝化细菌利用硝酸盐氮作为电子受体进行还原,产生大量的氮气释放到大气中,实现了对污水中硝酸盐氮的脱氮处理。
二、污水除磷原理:污水中的磷主要以无机磷和有机磷两种形式存在,其中无机磷主要包括磷酸盐磷和亚磷酸盐磷,有机磷主要包括有机物中的磷酸酯等。
污水除磷的主要原理是利用化学沉淀法和生物吸附法。
化学沉淀法是通过给污水中添加适量的化学沉淀剂(如氯化铝、聚合氯化铝等)来与磷酸盐磷和亚磷酸盐磷反应生成难溶的沉淀物(如磷酸铝等),从而使磷被固定在沉淀物中,从而实现了对污水中无机磷的除磷处理。
生物吸附法是利用在废水生物处理系统中存在的一些微生物对磷进行吸附作用,这些微生物能将磷从废水中吸附到其细胞表面或胞囊中,从而实现了废水中磷的除磷处理。
三、污水脱氮除磷工艺:污水脱氮除磷工艺主要有一体化生物法、AO法和AB法等多种。
其中,一体化生物法比较常用,其工艺流程为:进水→除砂→调节池→好氧生物反应器(硝化反应)→缺氧生物反应器(反硝化反应)→二沉池(沉淀处理)→出水。
一体化生物法通过将硝化反应和反硝化反应合为一体,利用生物脱氮除磷技术处理污水。
系统中含有好氧区和缺氧区,其中好氧区负责氨氮的硝化反应,缺氧区则利用添加碳源(如甲醇、乙醇等)提供的外源电子供体来进行反硝化反应。
通过控制好氧区和缺氧区的进水比例,可实现对污水中的氮和磷的高效去除。
脱氮除磷工艺 -回复
脱氮除磷工艺-回复什么是脱氮除磷工艺?脱氮除磷工艺是指通过一系列工艺措施,将废水中的氮和磷元素去除,从而达到净化水质的目的。
氮和磷是废水中主要的养分物质,高浓度的氮和磷会导致水体富营养化,引发水环境污染和水生生物死亡。
因此,脱氮除磷工艺对于水环境保护和水资源可持续利用具有重要意义。
一、脱氮工艺1. 生物脱氮工艺生物脱氮工艺是通过特定的微生物将废水中的氮转化为氮气,或转化为固态氮,实现氮的去除。
常用的生物脱氮工艺有硝化和反硝化工艺、氨氧化-分解各的工艺等。
- 硝化和反硝化工艺:利用好氧菌将废水中的氨氮氧化为亚硝酸盐和硝酸盐,然后利用反硝化菌还原为氮气,最终实现脱氮。
该工艺适用于氨氮浓度较高的废水处理。
- 氨氧化-分解的工艺:适用于氨氮浓度较低的废水处理。
该工艺首先将废水中的氨氮通过氨氧化菌氧化为亚硝酸盐,然后再通过硝化菌将亚硝酸盐氧化为硝酸盐,最后通过厌氧菌将硝酸盐分解为氮气。
2. 化学脱氮工艺化学脱氮工艺主要是利用化学反应将废水中的氮转化为氮气或固态氮,达到脱氮的目的。
常见的化学脱氮工艺有硝化还原法、氨气蒸发法等。
- 硝化还原法:在含氮废水中加入硫酸、盐酸等化学试剂,使废水中的氨转化为氯化氨或硫酸铵等盐类,然后通过沉淀、过滤等操作将盐类去除,最终实现脱氮。
- 氨气蒸发法:将废水中的氨氮通过加热蒸发,从而实现氨的去除。
这种工艺适用于氨氮浓度较高、水量较小的废水处理。
二、除磷工艺1. 化学除磷工艺化学除磷工艺是通过加入适量的化学物质,使废水中的磷转化为不溶性的磷盐,从而实现磷的去除。
常用的化学除磷工艺有返硝除磷法、石灰石除磷法等。
- 返硝除磷法:在含磷废水中加入适量的硝酸盐等化学试剂,利用反硝化菌还原硝酸盐成为氮气,同时将废水中的磷转化为不溶性磷盐沉淀,最终实现除磷。
- 石灰石除磷法:在酸性废水中加入石灰石,通过化学沉淀的方式将废水中的磷转化为磷盐沉淀,从而实现除磷。
2. 生物除磷工艺生物除磷工艺是通过特定的微生物将废水中的磷转化为固态磷,实现磷的去除。
几种生物脱氮除磷工艺的区分
几种生物脱氮除磷工艺的区分一、四段Bardenpho脱氮工艺图1 四段Bardenpho脱氮工艺示意图如图1所示,四段Bardenpho脱氮工艺的设计目标是在不投加碳源时脱氮效率达到90%以上。
沉淀池的污泥回流到缺氧池1,同时,好氧池1的混合液也回流到缺氧池1。
沉淀池污泥回流比设计为100%,主要脱氮作用发生在缺氧池1,可实现脱氮70%。
缺氧池2的停留时间可以达到内源呼吸要求,靠微生物的内源呼吸作用去除好氧池1出水中的硝态氮。
BOD去除、氨氮氧化、磷的吸收主要发生在好氧池1。
磷得不到充分地释放,生物除磷效果较差。
二、五段Bardenpho脱氮除磷工艺图2 五段Bardenpho脱氮除磷工艺示意图为了改善四段Bardenpho脱氮工艺的生物除磷效率,发展了五段Bardenpho脱氮除磷工艺。
如图2所示,五段Bardenpho脱氮除磷工艺的设计特点是在首端增加了厌氧池,沉淀池的污泥回流到厌氧池强化了生物除磷,污泥回流比设计为100%。
好氧池1的混合液回流到缺氧池1,好氧池1的混合液回流比设计为400%。
缺氧池2的反硝化效率明显低于缺氧池1,没有发挥显著的脱氮作用。
三、UCT脱氮除磷工艺图3 UCT脱氮除磷工艺示意图如图3所示,UCT脱氮除磷工艺的设计目的之一是减小沉淀池回流的活性污泥对生物除磷效率的影响,因为活性污泥中含有硝酸盐,如果回流到厌氧池,会影响磷的释放,所以改为回流到缺氧池。
建立缺氧池出水混合液回流到厌氧池,降低厌氧池的硝态氮负荷。
厌氧池污泥浓度偏低。
如果进水的TKN/COD的比值大于0.12~0.14,除磷效果较差。
四、改良UCT脱氮除磷工艺图4 改良UCT脱氮除磷工艺示意图如图4所示,改良UCT脱氮除磷工艺将缺氧池一分为二,沉淀池的活性污泥回流到缺氧池1,好氧池的混合液回流到缺氧池2,反硝化脱氮作用主要发生在缺氧池2。
厌氧池污泥浓度偏低。
要求进水的TKN/COD的比值不大于0.11。
五、A/O除磷工艺图5 A/O除磷工艺示意图A/O除磷工艺为了保证进水与回流的活性污泥混合后仍然保持一个厌氧状态,所以好氧池的水力停留时间设计非常短,在1.5~2.5小时。
污水处理脱氮除磷工艺介绍及对比分析
污水处理脱氮除磷工艺介绍及对比分析污水处理是保护环境、维护人类健康和可持续发展的重要措施之一、污水处理需要对其中的有害物质进行去除,其中包括氮和磷等营养物质。
脱氮除磷是其中一项重要的工艺,下面将对其进行介绍及比较分析。
脱氮工艺主要有生物脱氮工艺和物理化学脱氮工艺两种。
1.生物脱氮工艺:生物脱氮是利用污水处理系统中的微生物来将氨氮转化为氮气释放到大气中的过程。
其中常用的生物脱氮工艺包括硝化-反硝化法和硝化亚硝化法。
-硝化-反硝化法:该方法分为两个阶段,第一步是将氨氮通过硝化菌转化为亚硝酸盐,然后在缺氧条件下使用反硝化菌将亚硝酸盐转化为氮气。
该工艺具有能耗较低和无需额外药剂的优点,同时还可以降低化学消耗物。
-硝化亚硝化法:该方法将硝化菌和亚硝化菌结合在同一反应器中,通过控制氧气浓度和反应温度来实现硝化和亚硝化的联合作用。
该工艺节省了处理污水的时间,同时也减少了系统的占地面积。
2.物理化学脱氮工艺:物理化学脱氮工艺主要包括空气氧化剂法和化学沉淀法。
-空气氧化剂法:该方法是利用氧气或臭氧等氧化剂来氧化污水中的氨氮,使其转化为氮气释放。
该工艺适用于处理高氨氮浓度的废水,并且不需要添加额外的化学品。
-化学沉淀法:该方法通过添加化学药剂来使污水中的氨氮与其结合,形成不溶性的沉淀物进行去除。
常用的药剂包括氢氧化钙、氯化铁和磷酸铁等。
该工艺适用于处理低氨氮浓度的废水,但需要使用额外的化学药剂。
除磷工艺主要有生物除磷工艺和化学除磷工艺两种。
1.生物除磷工艺:生物除磷工艺主要是通过利用污水处理系统中的一些微生物来将废水中的磷元素转化为不溶性的磷酸钙沉淀物进行去除。
该工艺包括聚磷酸盐法、硝化反硝化除磷法和反硝化聚磷酸盐除磷法等。
-聚磷酸盐法:该方法通过添加一定剂量的磷源来诱导有利微生物的适应和繁殖,使其在系统中大量积累。
随后,在缺氧条件下,这些微生物将磷元素从水中去除,形成不溶性的磷酸钙沉淀物。
该工艺操作简单、不需要额外药剂,但容易受到外界环境的影响。
脱氮除磷污水处理工艺最新版本
生物法除磷的理论基础:
生物除磷是利用聚磷菌一类的微生物, 能够过量地, 在数量上超过其生理需要, 从外部环境摄取磷, 并将磷以聚合的形态储藏在体内, 形成高磷污泥, 排出系统外, 达到从污水中除磷的效果。
.
有机磷 ADP ATP 无机磷 无机磷 ATP ADP 有机磷 释放 聚磷 聚 磷 菌 → 聚 磷 菌 合成 降解 溶解质 ATP ADP PHB PHB ADP ATP 无机物 厌氧段 好氧段 聚 磷 菌 的 作 用 机 理
.
该反应的微生物属自养型厌氧细菌,生长速率非常低,但将氨氮厌氧转化能力非常高,可以达到4.8kgTN/(m3·d),最佳运行条件: 温度为10~43℃,pH值为6.7~8.3。
.
自养型氨厌氧氧化菌生长慢,启动时间非常长,为使ANAMMOX污泥保留在反应器中并得到足够的生物量,需要有效的污泥截留(由此建议用生物膜反应器)。另外ANAMMOX过程的营养需求,是否出现羟胺、肼类化合物,二氧化氮等代谢中间产[HJ]物和二次污染问题等都是新工艺实际运行中要解决的问题。
.
图1 ANAMMOX流化床反应器装置 1.污水 2.亚硝酸盐溶液 3.4.5.泵 6.取样口 7.ANAMMOX流化床反应器 8.恒温水浴 9.水封 10.湿式气体流量计 11.出水
.
该工艺的本质是通过控制环境温度造成两类细菌不同的增长速率,利用该动力学参数的不同造成“分选压力” 。使用无需污泥停留(以恒化器方式运行,其SRT=HRT)的单个CSTR反应器来实现,在较短的HRT(即SRT)和30 ~40℃的条件下,可有效地通过种群筛选产生大量的亚硝酸盐氧化菌,并使硝化过程稳定地控制在亚硝化阶段,以 NO2-为硝化终产物。SHARON工艺适用于含高浓度氨(>500mg/L)废水的处理工艺,
污水脱氮除磷工艺
)
(5)填料构型与高度。一般,填料间距40~50mm,填料高度为 6~7.5m。
(6) 结垢控制。填料结垢(
)将降低吹脱塔的处理效率。
3. 折点加氯法(★) :
折点氯化法:投加过量氯或次氯酸钠(超过“折点”),使废水中 氨完全氧化为N2的方法。
Cl 2 H2O HOCl H Cl
NH
4
生物强化除磷工艺可以使得系统排除的剩余污泥 中磷含量占到干重5%~6%。
若还未满足排放标准,就必须借助化学法除磷。
1、生物强化除磷工艺
利用好氧微生物中聚磷菌在好氧条件下对污水中 溶解性磷酸盐过量吸收作用,然后沉淀分离而除磷。
(1)生物除磷机理(★)
厌氧环境 有机基质
好氧环境
产酸菌 乙酸
聚P
聚ቤተ መጻሕፍቲ ባይዱ菌
P
(1)厌氧环境条件: (a)氧化还原电位:放磷时ORP一般小于
100mV; (b)溶解氧浓度:厌氧区要求无溶解氧;好氧
呼吸会消耗易降解有机质; (c)NOx-浓度:产酸菌利用NOx- 作为电子受体,
抑制厌氧发酵过程,反硝化时消耗易生物降解有机 质。
(2)有机物浓度及可利用性:碳源的性质对吸放 磷及其速率影响极大。
置式反硝化生物脱氮系统。 反硝化反应以水中的有机物为碳源,曝气池中
含有大量的硝酸盐的回流混合液,在缺氧池中进行 反硝化脱氮。
缺氧-好氧生物脱氮工艺
(二) 化学法除氮 1、离子交换法
常用天然的离子交换剂,如沸石等。
对某些阳离子的交换。选择性次序为:
与合成树脂相比,天然离子交换剂价格便宜且 可用石灰再生。
(3) 生物除磷工艺
(a) A/O法(☆) 由厌氧池和好氧池组成的同时去除污水中有机 污染物及磷的处理系统。
工艺方法——生物脱氮除磷技术
工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
脱氮除磷工艺指南
脱氮除磷工艺指南一、引言脱氮除磷是水处理工艺中非常重要的环节,它能有效地去除废水中的氮和磷,减少对环境的污染。
本文将介绍脱氮除磷的工艺原理、常用方法和设备以及操作注意事项,以帮助读者更好地了解和应用该工艺。
二、工艺原理脱氮除磷的原理是利用生物和化学方法将废水中的氮和磷转化为氮气和无机磷,从而实现去除的目的。
生物脱氮除磷是利用硝化细菌和反硝化细菌的作用,将废水中的氨氮和亚硝酸盐氮转化为氮气释放到大气中。
化学脱氮除磷是利用化学药剂与废水中的氮结合形成沉淀物,从而去除氮。
除磷主要是通过化学沉淀、吸附和生物吸附等方式将废水中的磷去除。
三、常用方法1. 生物脱氮除磷工艺生物脱氮除磷工艺主要包括A2O法、SBR法、AO法等。
其中,A2O法是指将好氧区、缺氧区和厌氧区结合在一起的工艺,通过不同区域中的细菌作用实现脱氮除磷。
SBR法是指在同一反应器中通过不同阶段的工作实现脱氮除磷。
AO法是指通过好氧区和厌氧区结合的方式,分别去除氮和磷。
2. 化学脱氮除磷工艺化学脱氮除磷工艺主要包括化学沉淀法和化学吸附法。
化学沉淀法是通过加入适量的化学药剂,使废水中的氮和磷形成沉淀,然后通过沉淀物的分离去除。
化学吸附法是利用一些特殊的吸附材料,如活性炭、氧化铁等,将废水中的氮和磷吸附在表面,从而实现去除。
四、常用设备1. 好氧池和厌氧池好氧池和厌氧池是生物脱氮除磷工艺中常用的设备。
好氧池提供氧气和充足的微生物,促进氮的氧化和磷的吸附,而厌氧池则提供缺氧条件,促进氮的还原和释放。
2. 沉淀池沉淀池是化学脱氮除磷工艺中常用的设备。
通过加入化学药剂,废水中的氮和磷形成沉淀物,在沉淀池中进行沉淀分离,然后排出清水。
3. 吸附装置吸附装置是化学吸附法中常用的设备。
利用特殊吸附材料,将废水中的氮和磷吸附在表面,然后进行分离和去除。
五、操作注意事项1. 控制好氧和厌氧条件,保证生物脱氮除磷工艺的正常运行。
2. 加入化学药剂时,要注意药剂的种类和用量,避免过量使用或不足。
污水脱氮除磷技术介绍
污水脱氮除磷技术介绍污水脱氮除磷技术是指对污水中的氮、磷进行有效去除的技术。
磷和氮是污水中的主要污染物之一,如果不进行有效去除,会导致水体富营养化,引发藻类大量繁殖,影响水体的生态平衡。
因此,对污水中的氮、磷进行去除是保护水体环境的重要措施之一一、污水脱氮技术1.生物脱氮法:生物脱氮法是利用特定微生物将污水中的氨氮转化为氮气排放。
这种方法需要提供好氧和缺氧条件,通过调控曝气和停氧时间,使特定微生物发挥作用。
目前常用的生物脱氮方法有硝化-反硝化法和厌氧氨氧化-硝化法两种。
2.化学脱氮法:化学脱氮法是指通过加入化学药剂使污水中的氮污染物发生化学反应,将氮污染物转化为氮气排放。
常用的化学药剂有硫酸铁、硫酸铝等。
这种方法操作简单,但药剂投入量大,处理成本较高。
3.膜法脱氮:膜法脱氮是利用气液界面上的气流驱动气体分子穿透膜,并利用膜的选择性透过性,选择性去除污水中的氮气。
膜法脱氮技术通常包括反渗透法(RO)、气体渗透法(GO)、气体渗透双极渗透法(GPD)等。
二、污水除磷技术1.化学除磷法:化学除磷法是通过加入化学药剂与污水中的磷形成沉淀物,将磷从污水中去除。
常用的化学药剂有氢氧化钙(Ca(OH)2)、氢氧化铝(Al(OH)3)等。
这种方法操作简单,但药剂投入量大,处理成本较高。
2.生物除磷法:生物除磷法是通过调控好氧-缺氧情况下特定微生物的生长环境,促使其在缺氧条件下吸收和积累磷。
常用的生物除磷方法有反硝化除磷法、AO法、高效耐磷生物工艺等。
3.吸附除磷法:吸附除磷法是通过将特定材料引入污水中,利用材料对磷的吸附性能,将污水中的磷吸附到材料表面。
常用的吸附材料有Fe3O4、氧化铝、活性炭等。
4.膜法除磷:膜法除磷是利用膜的选择性透过性,选择性去除污水中的磷。
常见的膜法除磷技术有微滤膜法(MF)、超滤膜法(UF)、纳滤膜法(NF)、反渗透膜法(RO)等。
需要注意的是,不同的工业场所的污水特性各异,其处理过程、工艺选择也会有所不同。
脱氮除磷工艺汇总
脱氮除磷工艺汇总MBR工艺脱氮除磷MBR是一种结合膜分离和微生物降解技术的高效污水处理工艺。
在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善。
MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善。
所以MBR工艺一般和SBR系列/AAO等工艺组合使用。
五种常见组合工艺:SBR-MBR工艺A2O-MBR工艺3A-MBR工艺A2O/A-MBR工艺A(2A)O-MBR工艺SBR-MBR工艺:将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身和SBR工艺两种程序运行都互有帮助。
由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附和降解有机物的能力较强,同时也具有较好的硝化能力。
此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。
与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR的循环时间;同时,序批式的运行方式可以延缓膜污染。
A2O-MBR工艺:由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O-MBR工艺,可进一步拓展MBR的应用范畴。
在该工艺中设置有两段回流,一段是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段是缺氧池的混合液回流至厌氧池,实现厌氧释磷。
A2O-MBR工艺中高浓度的MLSS、独立控制的水力停留时间和污泥停留时间、回流比及污泥负荷率等都会产生与传统A2O工艺不同的影响,具有较好的脱氮除磷效率。
废水脱氮除磷工艺
废水脱氮除磷工艺
废水脱氮除磷工艺是一种用于处理含有高浓度氮和磷的废水的技术,旨在减少这些有害污染物的排放,以满足环保标准。
以下是常见的废水脱氮除磷工艺:
1.生物脱氮除磷工艺:
生物脱氮(BNR):生物脱氮是通过在废水处理系统中引入一些特定的微生物,将废水中的氮转化为氮气的过程。
这通常包括硝化和反硝化两个阶段,其中氨氮首先被氧化成亚硝酸盐,然后转化为氮气。
生物除磷(BPR):生物除磷是通过引入能够吸附磷的微生物,将废水中的磷物质吸附并沉淀出来的过程。
2.化学脱氮除磷工艺:
化学沉淀:添加化学药剂,如氧化铁、氧化铝等,与废水中的磷形成沉淀物,从而实现除磷的效果。
这一过程通常被称为磷酸盐的化学沉淀。
硝化-脱硝:使用化学方法将废水中的氨氮氧化成硝酸盐,然后再还原成氮气。
3.物理化学脱氮除磷工艺:
生物物理化学一体化工艺:将生物处理、物理处理和化学处理结合在一起,以提高脱氮除磷效果。
膜分离技术:利用膜过滤技术,如超滤、反渗透等,从废水中去除氮和磷。
4.湿地处理:
人工湿地:利用植物和微生物的协同作用,通过湿地过程去除废水中的氮和磷。
自然湿地模拟:模仿自然湿地的生态系统,利用湿地中的植物和微生物去除废水中的有机和无机污染物。
脱氮除磷工艺及微生物学原理
脱氮除磷工艺及微生物学原理A2O工艺A2/O工艺是将厌/好氧除磷系统和缺氧/好氧脱氮系统相结合而成,是生物脱氮除磷的基础工艺,可同时去除水中的BOD、氮和磷。
A2O工艺流程:原水与从沉淀池回流的污泥首先进入厌氧池,在此污泥中的聚磷菌利用原污水中的溶解态有机物进行厌氧释磷;然后与好氧末端回流的混合液一起进入缺氧池,在此污泥中的反硝化菌利用剩余的有机物和回流的硝酸盐进行反硝化作用脱氮;脱氮反应完成后,进入好氧池,在此污泥中的硝化菌进行硝化作用将废水中的氨氮转化为硝酸盐同时聚磷菌进行好氧吸磷,剩余的有机物也在此被好氧细菌氧化,最后经沉淀池进行泥水分离,出水排放,沉淀的污泥部分返回厌氧池,部分以富磷剩余污泥排出。
SBR工艺SBR工艺是将反应、沉淀和在一个池体内,在同一池体内分别完成进水、反应、沉淀、排水、闲置等五个过程。
该工艺不需要设置二沉池和污泥回流系统,对污染物的去除效率高、占地面积少、布置紧、运行方式灵活,对水量和水质的变化有较大的适应性,在操作运行管理方面就有较大的灵活性,并且运行费用低。
工艺机理:SBR工艺与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。
它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR 反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。
CASS工艺CASS是周期循环活性污泥法的简称,整个工艺在一个反应器中完成,工艺按“进水—出水”、“曝气—非曝气”顺序进行,在序批式活性污泥法(SBR)的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。
整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法的二沉池和污泥回流系统;同时可连续进水,间断排水。
工艺机理在预反应区内,微生物能通过酶的快速转移机理迅速吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,这对进水水质、水量、PH和有毒有害物质起到较好的缓冲作用,同时对丝状菌的生长起到抑制作用,可有效防止污泥膨胀;随后在主反应区经历一个较低负荷的基质降解过程。
生物脱氮除磷原理及工艺
生物脱氮除磷原理及工艺生物脱氮的原理主要是利用微生物中的硝化和反硝化过程。
首先,硝化细菌通过氧化氨将氨氮转化为亚硝酸盐,然后亚硝酸盐进一步被亚硝酸盐脱氢酶转化为硝酸盐。
这个过程被称为硝化作用。
反硝化过程是指在缺氧或低氧条件下,反硝化细菌通过还原硝酸盐来释放出氮气。
生物脱磷的原理主要是利用微生物中的磷酸盐积累和释放过程。
一些细菌和藻类能够以有机物的形式从水中吸收和积累磷酸盐,并在一定条件下释放出来。
这个过程被称为磷酸盐吸收和释放作用。
通过调节水体中的氧气、有机负荷和pH值等条件,可以促进微生物的磷酸盐吸收和释放过程,从而实现生物脱磷。
非曝气法主要是在低氧或缺氧条件下进行处理。
这种方法的优点是能够节省能源和减少氧气需求,适用于中小型处理单位。
常见的非曝气法包括:厌氧氨氧化-硝化还原法(Anammox-Detritus-Anoxia法)、系统内侧流间歇式处理法(SCT法)和单球状厌氧硝化反硝化法等。
曝气法主要是通过加氧来提供充足的氧气供给,促进硝化和反硝化过程。
这种方法的优点是处理效果稳定可靠,适用于大型处理装置。
常见的曝气法包括:AO法(活性污泥法)、A2/O法(改良后的活性污泥法)和SBR法(顺序批处理法)等。
在实际的生物脱氮除磷工程中,通常会采用多级处理工艺。
例如,可以将生物脱氮和生物除磷结合起来,构建生物反硝化除磷工艺(SND)。
这种工艺可以同时去除水体中的氮和磷,效果较好。
总的来说,生物脱氮除磷通过利用微生物的生长和代谢活动,可以有效地降低水体中的氮和磷浓度,改善水质,保护生态系统。
不同的工艺可以根据具体情况选择和组合,以达到最佳的去除效果。
除磷脱氮技术的几种工艺介绍
除磷脱氮技术的几种工艺介绍所属行业: 水处理关键词:除磷脱氮污水处理城市污水氮、磷等污染物的大量排放,进一步加剧了水资源短缺的矛盾,为此,对污水排放情况的控制很重要。
磷、氮废水的大量排放,造成水体的富营养化,最终会导致生态平衡,影响人类健康与发展等危害。
下面主要介绍城市污水处理的除磷脱氮技术:处理城市污水中的氮磷多采用A/O、A2/O工艺、序批式工艺、氧化沟系列工艺等。
以下是城市污水除磷脱氮几种工艺的介绍。
01.A2/O法:传统A2/O法传统A2/O法是目前普遍采用的同时脱氮除磷的工艺,它是在传统活性污泥法的基础上增加一个缺氧段和一个厌氧段。
倒置A2/O工艺倒置A2/O是对传统A2/O工艺的改进,其脱氮除磷效果更好,其原因在于:缺氧区位于厌氧区之前,有利于微生物形成更强的吸磷动力,微生物厌氧释磷后直接进入好氧环境充分吸磷;所有参与回流的污泥都经历了完整的释磷、吸磷过程;缺氧池位于厌氧池前,允许反硝化菌优先获得碳源,因而加强了系统的脱氮能力。
02序批式工艺传统的SBR法传统SBR是间歇性活性污泥法,它由一个或多个曝气反应池组成,污水分批进入池中,经活性污泥净化后,上清夜排出池外即完成一个运行周期。
SBR工艺处理简单,处理构筑物少,曝气反应池集曝气沉淀污泥回流于一体,且污泥量少,容易脱水,但存在自动控制和连续在线分析仪器仪表要求高的特点。
CASS工艺CASS是一种连续进水式SBR曝气系统,不仅具有SBR工艺简单可靠、运行方式灵活、自动化程度高的特点,而且脱氮除磷效果明显。
这一功能主要实现于CASS池通过隔墙将反应池分为功能不同的区域,在各分隔中溶解氧、污泥浓度和有机负荷不同,各池中的生物也不同,同时在传统的SBR池前或池中设置了选择器及厌氧区,提高了脱氮除磷效果。
03氧化沟工艺氧化沟工艺是一种延时曝气的活性污泥法,由于负荷很低,耐冲击负荷强,出水水质较好,污泥产量少且稳定,构筑物少,氧化沟可以按脱氮设计,也可以略加改进实现脱氮除磷。
第4章 生物脱氮除磷工艺
(1)Barth三段(三级)生物脱氮工艺
(2)O/A两级活性污泥法脱氮工艺
(3) A/O (缺氧——好氧)(工艺) ——又称“前置式反硝化生物脱氮系统”
(4)多点进水多缺氧池脱氮工艺(1)
多点进水
0.1
0.4
0.3
0.2
缺好缺好缺好缺好 氧氧氧氧氧氧氧氧
沉淀
回流污泥
不设置内回流
(5)多点进水多缺氧池脱氮工艺(2)
4. 4 间歇式活性污泥生物脱氮除磷工艺
• (1)SBR • (2)CASS • (3)ICEAS工艺 • (4)UNITANK • (5)MSBR工艺 • (6)双污泥反硝化脱氮除磷系统
(5)MSBR工艺(Modified Sequencing Batch Reactor)
• M SBR 工艺实质上是SBR 和A /A/O 工艺的组合,
(1)A/O(厌氧-好氧)生物除磷工艺
进水
厌氧
好氧(无硝化)
二沉池 出水
污泥回流
剩余污泥
(2)Phostrip(弗斯特利普)除磷工艺
4.3 连续流活性污泥生物脱氮除磷工艺
✓ A/A/O(厌氧-缺氧-好氧) ✓ 改进A/A/O ✓ 倒置A/A/O ✓ Bardenpho(巴顿甫)工艺 ✓ 改进的Bardenpho工艺 ✓ UCT工艺 ✓ 改良UCT工艺 ✓ VIP脱氮除磷工艺 (Viginia Initiative Plant) ✓ Johannesburg脱氮除磷工艺 (南非) ✓ 化学强化的生物脱氮除磷工艺 ✓ 氧化沟 ✓ 连续流双污泥反硝化除磷系统
可持续的脱氮除磷第4章生物脱氮除磷工艺41连续流活性污泥生物脱氮工艺42连续流活性污泥生物除磷工艺43连续流活性污泥同步生物脱氮除磷工艺44间歇式活性污泥生物脱氮除磷工艺45生物膜法脱氮工艺46人工湿地41连续流活性污泥生物脱氮工艺barth三段三级生物脱氮工艺两级硝化反硝化oa前置反硝化ao生物脱氮工艺多点进水多缺氧池脱氮工艺babe工艺短程硝化反硝化工艺厌氧氨氧化工艺1barth三段三级生物脱氮工艺2oa两级活性污泥法脱氮工艺3ao缺氧好氧工艺又称前置式反硝化生物脱氮系统4多点进水多缺氧池脱氮工艺1沉淀多点进水回流污泥不设置内回流缺氧好氧缺氧好氧缺氧好氧缺氧好氧010302045多点进水多缺氧池脱氮工艺2好氧缺氧好氧缺氧好氧缺氧沉淀多点进水回流污泥不设置内回流6babe工艺babe污泥消化曝气池提高硝化菌的浓度污水厂升级改造influentq43215m3danoxictank680m3returnsludgelineaerationtanks5320m3effluentsludgecompartment1650m3settlerexcesssludgebaberecirculation消化液aerobic500m3anoxic350m3利用babe工艺改造污水厂walcheren42连续流活性污泥生物除磷工艺ao厌氧好氧生物除磷工艺phostrip弗斯特利普除磷工艺1ao厌氧好氧生物除磷工艺2phostrip弗斯特利普除磷工艺43连续流活性污泥生物脱氮除磷工艺aao厌氧缺氧好氧改进aao倒置aaobardenpho巴顿甫工艺改进的bardenpho工艺uct工艺改良uct工艺vip脱氮除磷工艺viginiainitiativeplantjohannesburg脱氮除磷工艺南非化学强化的生物脱氮除磷工艺氧化沟连续流双污泥反硝化除磷系统1aao厌氧缺氧好氧厌氧缺氧调节厌氧缺氧好氧二沉回流污泥混合液回流1090进水2改进的aao工艺增加了一个厌氧调节池3倒置aao工艺倒置aao在流程上的特点
a2o同步脱氮除磷工艺流程
a2o同步脱氮除磷工艺流程A2O同步脱氮除磷工艺流程。
一、前言。
今天咱们来唠唠A2O同步脱氮除磷这个超厉害的工艺流程。
这个工艺在污水处理领域可是个“明星”,它能同时搞定污水中的氮和磷,让污水变得更干净呢。
二、A2O工艺的组成部分。
(一)厌氧区。
1. 功能。
- 这是污水进入A2O工艺的第一站。
在这里,主要发生的是聚磷菌的释磷过程。
污水中的有机物会被聚磷菌分解利用,同时聚磷菌会释放出体内储存的磷。
就像聚磷菌在这个小天地里把自己的“磷仓库”打开,把磷放出来一样。
2. 环境特点。
- 这个区域基本没有氧气哦。
如果有氧气跑进来,就会干扰聚磷菌的正常工作,它们就不能好好地释磷啦。
(二)缺氧区。
1. 功能。
- 污水从厌氧区流到缺氧区后,这里可是反硝化细菌的“主战场”。
反硝化细菌会利用污水中的有机物作为碳源,把在好氧区产生的硝酸盐和亚硝酸盐还原成氮气。
这就相当于把污水里的氮元素以气体的形式赶出去,是不是很神奇呢?2. 环境特点。
- 缺氧区的氧气含量非常低,主要是为了满足反硝化细菌的生长和反应需求。
如果氧气太多,反硝化细菌就不乐意干活了,它们更喜欢这种低氧的环境。
(三)好氧区。
1. 功能。
- 这是整个A2O工艺中最热闹的地方啦。
在这里,好氧微生物们可忙乎了。
一方面,有机物会被好氧微生物分解成二氧化碳和水,这就是污水中有机物被去除的重要过程。
另一方面,氨氮会被氧化成硝酸盐和亚硝酸盐,这是硝化反应哦。
而且聚磷菌在这个区域会大量吸收污水中的磷,把之前在厌氧区释放的磷加倍吸收回来,储存在体内。
2. 环境特点。
- 好氧区充满了氧气,就像一个充满活力的有氧健身房一样。
这些氧气是通过曝气系统提供的,就像给好氧微生物们吹泡泡一样,让它们有足够的氧气来进行各种反应。
三、污水在A2O工艺中的流动过程。
1. 进水。
- 污水首先进入厌氧区,开始它的“变身之旅”。
2. 区域间流动。
- 从厌氧区出来后,污水就流到了缺氧区,然后再进入好氧区。
这个流动顺序可不能乱哦,就像排队一样,每个区域都有自己的任务要完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脱氮除磷工艺汇总MBR工艺脱氮除磷MBR就是一种结合膜分离与微生物降解技术的高效污水处理工艺。
在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善。
MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善。
所以MBR工艺一般与SBR系列/AAO等工艺组合使用。
五种常见组合工艺:SBR-MBR工艺A2O-MBR工艺3A-MBR工艺A2O/A-MBR工艺A(2A)O-MBR工艺SBR-MBR工艺:将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身与SBR工艺两种程序运行都互有帮助。
由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附与降解有机物的能力较强,同时也具有较好的硝化能力。
此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。
与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR 的循环时间;同时,序批式的运行方式可以延缓膜污染。
A2O-MBR工艺:由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O-MBR工艺,可进一步拓展MBR的应用范畴。
在该工艺中设置有两段回流,一段就是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段就是缺氧池的混合液回流至厌氧池,实现厌氧释磷。
A2O-MBR工艺中高浓度的MLSS、独立控制的水力停留时间与污泥停留时间、回流比及污泥负荷率等都会产生与传统A2O工艺不同的影响,具有较好的脱氮除磷效率。
3A-MBR工艺:3A-MBR就是依据生物脱氮除磷机理,结合膜生物反应器技术特点而形成的具有高效脱氮除磷性能的新型污水处理工艺。
其基本原理就是,膜生物反应器内的高浓度硝化液与高浓度活性污泥经过回流系统形成良好的缺氧、厌氧条件,实现系统的高效脱氮除磷。
该工艺的内部流程依次就是第一缺氧池、厌氧池、第二缺氧池、好氧池与膜池,膜池混合液分别回流至第一缺氧池与第二缺氧池。
第一缺氧池利用进水碳源与回流硝化液进行快速反硝化,接着混合液进入厌氧池进行厌氧释磷,减少了硝酸盐对释磷的影响,第二缺氧池再利用污水中剩余的碳源与回流的硝化液进一步反硝化脱氮,好氧池内同步发生有机物降解、好氧释磷与好氧硝化等多种反应,彻底去除污水中的污染物,混合液再a经膜过滤出水,实现了对污水中有机物与氮磷的去除。
3A-MBR工艺合理地组合了有机物降解与脱氮除磷等各处理单元,协调了各种生物降解功能的发挥,达到了同步去除各污染指标的目的,具有较高的推广应用价值。
A2O/A-MBR工艺:A2O/A-MBR工艺就是一种强化内源反硝化的新型工艺,该工艺利用MBR内高浓度活性污泥与生物多样性来强化脱氮除磷效果,工艺流程依次为厌氧、缺氧、好氧、缺氧与膜池。
该工艺在普通A2O工艺后再设一级缺氧池,在利用进水快速碳源完成生物除磷与脱氮后,再利用第二缺氧池进行内源反硝化,进一步去除TN,之后,再利用膜池的好氧曝气作用保障出水。
A2O/A-MBR工艺就是针对进水碳源不足,而同时又有较高脱氮要求的污水处理项目所开发,也就是强化脱氮的MBR脱氮处磷工艺。
A(2A)O-MBR工艺:A(2A)O-MBR工艺就是两段缺氧A2O工艺与MBR工艺的结合,其特点就是在传统的A2O工艺中设置了两段缺氧区(缺氧区Ⅰ与缺氧区Ⅱ),在第一缺氧区内从好氧区回流的NO3-完全被还原,实现完全反硝化;而在第二缺氧区内实现内源反硝化,节省外加碳源的投加。
有关研究发现污泥中含有的碳水化合物(50、2%)、蛋白质(26、7%)、脂肪(20、0%)均属于慢速可生物降解碳源,如果将这些物质转化为易生物降解碳源用于脱氮系统,则可大大提高污水的生物脱氮效率,同时避免了外加碳源,节约运行费用,因此具有很高的价值。
A(2A)OMBR工艺生物池两段缺氧的设计正就是借鉴了这个原理A2O工艺:A2/O工艺就是将厌/好氧除磷系统与缺氧/好氧脱氮系统相结合而成,就是生物脱氮除磷的基础工艺,可同时去除水中的BOD、氮与磷。
A2O工艺流程为:原水与从沉淀池回流的污泥首先进入厌氧池,在此污泥中的聚磷菌利用原污水中的溶解态有机物进行厌氧释磷;然后与好氧末端回流的混合液一起进入缺氧池,在此污泥中的反硝化菌利用剩余的有机物与回流的硝酸盐进行反硝化作用脱氮;脱氮反应完成后,进入好氧池,在此污泥中的硝化菌进行硝化作用将废水中的氨氮转化为硝酸盐同时聚磷菌进行好氧吸磷,剩余的有机物也在此被好氧细菌氧化,最后经沉淀池进行泥水分离,出水排放,沉淀的污泥部分返回厌氧池,部分以富磷剩余污泥排出。
其工艺特点为:1.本工艺在系统上可以称为最简单的同步脱N除P工艺,总的水力停留时间于其她同类工艺;2、在厌氧(缺氧)、好氧交替运行条件下,丝状菌不能大量增殖,无污泥膨胀虞,SVI值一般均小于100;3、污泥中含P浓度高,一般为2、5%以上,具有很高的肥效;4、运行中勿需投药,两个A段只用轻缓搅拌,以不增加溶解氧为度,运行费用低;5、厌氧、缺氧、好氧三种不同的环境条件与不同种类微生物菌群的有机配合,能同时具有去除有机物、脱N除P的功能;6、脱N效果受混合液回流比大小的影响,除P效果则受回流污泥中夹带DO与硝酸态氧的影响,因而脱N除P效率不可能很高。
BAF曝气生物滤池:BAF工艺就是一种上流生物滤池,就是一种运行可靠、自动化程度高、出水水质好、抗冲击能力强与节约能耗的新一代污水处理革新工艺,工艺成熟高效。
工艺流程:污水通过滤料层,水体含有的污染物被滤料层截留,并被滤料上附着的生物降解转化,同时,溶解状态的有机物与特定物质也被去除,所产生的污泥保留在过滤层中,而只让净化的水通过,这样可在一个密闭反应器中达到完全的生物处理而不需在下游设置二沉池进行污泥沉降。
滤池底部设有进水与排泥管,中上部就是填料层,厚度一般为2、5~3、5m,为防止滤料流失,滤床上方设置装有滤头的混凝土挡板,滤头可从板面拆下,不用排空滤床,方便维修。
挡板上部空间用作反冲洗水的储水区,其高度根据反冲洗水头而定。
该区内设有回流泵用于将滤池出水泵至配水廊道,继而回流到滤池底部实现反硝化,在不需要反硝化的工艺中没有该回流系统。
填料层底部与滤池底部的空间留作反冲洗再生时填料膨胀之用。
滤池供气系统分两套管路,置于填料层内的工艺空气管用于工艺曝气(主要由曝气风机提供增氧曝气),并将填料层分为上下两个区:上部为好氧区,下部为缺氧区。
根据不同的原水水质、处理目的与要求,填料层的高度不同,好氧区、厌氧区所占比例也相应变化。
工艺特点:上流滤池,底部渠道进配水,顶部出水;滤料比重小于1;穿孔管曝气,节省设备投资与维护费;滤头在滤池的顶部,与处理后水接触,易于维护;重力反冲洗,无须反冲洗水泵;工艺空气与反冲洗用气共用鼓风机;曝气管可布置在滤层中部或底部,在同一池中可完成硝化、反硝化功能;氧化沟工艺:氧化沟又名氧化渠,因其构筑物呈封闭的环形沟渠而得名。
它就是活性污泥法的一种变型。
因为污水与活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池”、“无终端曝气池”。
氧化沟的水力停留时间长,有机负荷低,其本质上属于延时曝气系统。
工艺特点:1、氧化沟利用连续环式反应池(Continuous Loop Reato,简称CLR)作生物反应池,混合液在该反应池中一条闭合曝气渠道进行连续循环,氧化沟通常在延时曝气条件下使用。
氧化沟使用一种带方向控制的曝气与搅动装置,向反应池中的物质传递水平速度,从而使被搅动的液体在闭合式渠道中循环。
一般由沟体、曝气设备、进出水装置、导流与混合设备组成,沟体的平面形状一般呈环形,也可以就是长方形、L形、圆形或其她形状,沟端面形状多为矩形与梯形。
2、氧化沟法由于具有较长的水力停留时间,较低的有机负荷与较长的污泥龄。
因此相比传统活性污泥法,可以省略调节池,初沉池,污泥消化池,有的还可以省略二沉池。
氧化沟能保证较好的处理效果,这主要就是因为巧妙结合了CLR形式与曝气装置特定的定位布置,就是式氧化沟具有独特水力学特征与工作特性。
SBR工艺:SBR工艺就是将反应、沉淀与在一个池体内,在同一池体内分别完成进水、反应、沉淀、排水、闲置等五个过程。
该工艺不需要设置二沉池与污泥回流系统,对污染物的去除效率高、占地面积少、布置紧、运行方式灵活,对水量与水质的变化有较大的适应性,在操作运行管理方面就有较大的灵活性,并且运行费用低。
工艺机理:SBR工艺与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。
它的主要特征就是在运行上的有序与间歇操作,SBR技术的核心就是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。
工艺特点:1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量与有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
[3]5、处理设备少,构造简单,便于操作与维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建与改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
CASS就是周期循环活性污泥法的简称,整个工艺在一个反应器中完成,工艺按“进水—出水”、“曝气—非曝气”顺序进行,在序批式活性污泥法(SBR)的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。
整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法的二沉池与污泥回流系统;同时可连续进水,间断排水。
•在预反应区内,微生物能通过酶的快速转移机理迅速吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,这对进水水质、水量、PH与有毒有害物质起到较好的缓冲作用,同时对丝状菌的生长起到抑制作用,可有效防止污泥膨胀;随后在主反应区经历一个较低负荷的基质降解过程。