(物理)物理动能与动能定理提高训练及解析

合集下载

高中物理第八章机械能守恒定律第3节动能和动能定理训练含解析

高中物理第八章机械能守恒定律第3节动能和动能定理训练含解析

第3节动能和动能定理1。

(多选)对于动能的理解,下列说法中正确的是()A.动能是普遍存在的机械能的一种基本形式,凡是运动的物体都具有动能B.动能总是正值,但对于不同的参考系,同一物体的动能大小是不同的C.一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化D.动能不变的物体,一定处于平衡状态2.下列关于运动物体的合外力做功和动能、速度变化的关系,正确的是()A.物体做变速运动,合外力一定不为零,动能一定变化B.若合外力对物体做功为零,则合外力一定为零C.物体的合外力做功,它的速度大小一定发生变化D.物体的动能不变,所受的合外力必定为零3。

如图所示,在2018世界杯足球比赛时,某方获得一次罚点球机会,该方一名运动员将质量为m的足球以速度v0猛地踢出,结果足球以速度v撞在球门高h的门梁上而被弹出.现用g 表示当地的重力加速度,则此足球在空中飞往门梁的过程中克服空气阻力所做的功应等于()A.mgh+错误!mv2-错误!mv错误!B. 错误!mv2-错误!mv错误!-mghC。

错误!mv错误!-错误!mv2-mghD.mgh+12mv错误!-错误!mv24.质量为m的金属块,当初速度为v0时,在水平面上滑行的最大距离为s,如果将金属块质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为() A.s B.2sC.4s D.8s5.一物体以初速度v0竖直向上抛出,落回原地速度为错误!,设物体在运动过程中所受的阻力大小保持不变,则重力与阻力大小之比为()A.3︰1 B.4︰3C.5︰3 D.3︰5关键能力综合练进阶训练第二层一、单选题1.下列关于动能的说法正确的是()A.两个物体中,速度大的动能也大B.某物体的速度加倍,它的动能也加倍C.做匀速圆周运动的物体动能保持不变D.某物体的动能保持不变,则速度一定不变2.从地面竖直向上抛出一个小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k与时间t的关系图像是()3.一质量为1 kg的滑块以6 m/s的初速度在光滑的水平面上向左滑行.从某一时刻起在滑块上施加一个向右的水平力,经过一段时间后,滑块的速度方向变成向右,大小仍为6 m/s。

高考物理动能与动能定理解题技巧(超强)及练习题(含答案)及解析

高考物理动能与动能定理解题技巧(超强)及练习题(含答案)及解析

高考物理动能与动能定理解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

高考物理动能与动能定理提高训练含解析

高考物理动能与动能定理提高训练含解析

高考物理动能与动能定理提高训练含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t=1 s或t=73s(不合题意,舍去)故本题答案是:(1)70 N (2)1 m/s2(3)1 s【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.【答案】(1)5 m/s (2)3 s (3)360 J【解析】试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02,v1=5m/s(2)设选手放开抓手时的水平速度为v2,v2=v1cosθ①选手在传送带上减速过程中 a=-μg② v=v2+at1③④匀速运动的时间t2,s-x1=vt2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥得:t=3s(3)由动能定理得W f=mv2-mv22,解得:W f=-360J故克服摩擦力做功为360J.考点:动能定理的应用3.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kgm=,电量4310Cq-=⨯的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
(2)等离子体由下方进入区域I后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q´,则q´E=q´v1B1,即:E=B1v1;正离子束经过区域I加速后,离开PQ的速度大小为v3,根据动能定理可知:qU= mv32- mv22,其中电压U=Ed=B1v1d
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?

高中物理动能与动能定理题20套(带答案)含解析

高中物理动能与动能定理题20套(带答案)含解析
瞬时速度接近平均速度,因此有B点的速度为: ,根据运动学公式有:
,化简为 ,结合图象可得: ,
解得: ;
第二空:由 ,解得: ;
第三空:由于弹簧弹力远大于摩擦力和重力沿斜面的分量,所以摩擦力和重力沿斜面的分量
忽略不计,根据能量守恒可得: ;
第四空:考虑摩擦力和重力沿斜面的分量,根据动能定理可得: ,
②弹簧放在挡板P和滑块之间,当弹簧为原长时,遮光板中心对准斜面上的A点;
③光电门固定于斜面上的B点,并与数字计时器相连;
④压缩弹簧,然后用销钉把滑块固定,此时遮光板中心对准斜面上的O点;
⑤用刻度尺测量A、B两点间的距离L;
⑥拔去锁定滑块的销钉,记录滑块经过光电门时数字计时器显示的时间△t;
⑦移动光电门位置,多次重复步骤④⑤⑥。
,解得:
(2)C点的水平分速度与B点的速度相等,则
从A到B点的过程中,据动能定理得: ,解得:
(3)滑块在传送带上运动时,根据牛顿第二定律得:
解得:
达到共同速度所需时间
二者间的相对位移
由于 ,此后滑块将做匀速运动。
滑块在传送带上运动时与传送带摩擦产生的热量
2.如图所示,小滑块(视为质点)的质量m= 1kg;固定在地面上的斜面AB的倾角 =37°、长s=1m,点A和斜面最低点B之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。点B与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O点另一端恰好在B点。认为滑块通过点B前、后速度大小不变;最大静摩擦力等于滑动摩擦力。取g=10m/s2,sin37° =0.6,cos37° =0.8,不计空气阻力。
高中物理动能与动能定理题20套(带答案)含解析
一、高中物理精讲专题测试动能与动能定理

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析

高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。

水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。

用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。

已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =o sin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。

开始时让连着A 的细线与水平杆的夹角α。

现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭ 对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。

高中物理动能与动能定理及其解题技巧及练习题(含答案)

高中物理动能与动能定理及其解题技巧及练习题(含答案)

高中物理动能与动能定理及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o 有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =3.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力F 的大小; (2)滑块开始下滑的高度h ;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q . 【答案】(1) (2)0.1 m 或0.8 m (3)0.5 J【解析】 【分析】 【详解】解:(1)滑块受到水平推力F 、重力mg 和支持力F N 处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫4.如图所示,光滑水平平台AB与竖直光滑半圆轨道AC平滑连接,C点切线水平,长为L=4m的粗糙水平传送带BD与平台无缝对接。

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析

高中物理动能与动能定理常有题型及答题技巧及练习题( 含答案 ) 及分析 (1)一、高中物理精讲专题测试动能与动能定理1.以下图,两物块A、 B 并排静置于高h=0.80m 的圆滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg的子弹 C 以v0=100m/s的水平速度从左面射入A,子弹射穿A 后接着射入 B 并留在 B 中,此时A、 B 都没有走开桌面.已知物块 A 的长度为0.27m, A 走开桌面后,落地址到桌边的水平距离s=2.0m.设子弹在物块A、 B 中穿行时遇到的阻力大小相等,g 取10m/s 2. (平抛过程中物块当作质点)求:(1)物块 A 和物块 B 走开桌面时速度的大小分别是多少;(2)子弹在物块 B 中打入的深度;(3)若使子弹在物块 B 中穿行时物块 B 未走开桌面,则物块 B 到桌边的最小初始距离.【答案】( 1) 5m/s ;10m/s ;( 2)L B 3.5 10 2 m (3)2.5 102m【分析】【剖析】【详解】试题剖析: (1)子弹射穿物块 A 后, A 以速度 v A沿桌面水平向右匀速运动,走开桌面后做平抛运动:h 1gt 2解得:t=0.40s 2A 走开桌边的速度v A s,解得: v A=5.0m/s t设子弹射入物块 B 后,子弹与 B 的共同速度为v B,子弹与两物块作用过程系统动量守恒:mv0 Mv A ( M m)v BB 走开桌边的速度v =10m/sB(2)设子弹走开 A 时的速度为v1,子弹与物块 A 作用过程系统动量守恒:mv0mv12Mv Av1=40m/s子弹在物块 B 中穿行的过程中,由能量守恒fL 1Mv21 mv21(M m)v2①B2A212B 子弹在物块 A 中穿行的过程中,由能量守恒fL A 1mv021mv121( M M )v A2②222由①② 解得 L B 3.5 10 2 m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:fs1(MM )v 2 0 ③1 2A子弹在物块 B 中穿行过程中,物块 B 在水平桌面上的位移为s 2,由动能定理fs 21Mv B21Mv A 2 ④22由②③④解得物块 B 到桌边的最小距离为: s min s 1 s 2 ,解得: s min2.5 10 2 m考点:平抛运动;动量守恒定律;能量守恒定律.2. 以下图,在娱乐节目中,一质量为 m =60 kg 的选手以 v 0= 7 m/s 的水平速度抓住竖直绳下端的抓手开始摇动,当绳摆到与竖直方向夹角 θ= 37°时,选手松开抓手,放手后的上升过程中选手水平速度保持不变,运动到水平传递带左端A 时速度恰巧水平,并在传递带上滑行,传递带以 v =2 m/s 匀速向右运动.已知绳索的悬挂点到抓手的距离为 L = 6 m ,传 送带两头点 A 、B 间的距离 s = 7 m ,选手与传递带间的动摩擦因数为μ= 0.2 ,若把选手看成质点,且不考虑空气阻力和绳的质量.(g = 10 m/s 2, sin 37 = 0°.6, cos 37 =°0.8)求:(1)选手松开抓手时的速度大小; (2)选手在传递带上从A 运动到B 的时间;(3)选手在传递带上战胜摩擦力做的功. 【答案】 (1)5 m/s (2)3 s (3)360 J【分析】试题剖析:( 1)设选手松开抓手时的速度为 v 1,则- mg (L - Lcos θ)= mv 12 - mv 0 2,v 1= 5m/s(2)设选手松开抓手时的水平速度为 v 2, v 2= v 1cos θ①选手在传递带上减速过程中a =- μg ② v = v 2+ at 1③④匀速运动的时间 t 2, s - x 1= vt 2⑤选手在传递带上的运动时间 t = t 1+ t 2⑥联立 ①②③④⑤⑥ 得: t = 3s(3)由动能定理得W f = mv 2- mv 22,解得: W f =- 360J故战胜摩擦力做功为360J .考点:动能定理的应用3.以下图,竖直平面内有一固定的圆滑轨道ABCD AB是足够长的水平轨道,B端,此中与半径为 R 的圆滑半圆轨道 BCD 光滑相切连结,半圆的直径BD 竖直, C 点与圆心 O 等高.现有一质量为 m 的小球 Q 静止在 B 点,另一质量为 2m 的小球 P 沿轨道 AB 向右匀速运动并与Q 发生对心碰撞,碰撞后瞬时小球 Q 对半圆轨道 B 点的压力大小为自己重力的 7 倍,碰撞后小球P 恰巧抵达 C 点.重力加快度为 g.(1)求碰撞前小球P 的速度大小;(2)求小球Q 走开半圆轨道后落回水平面上的地点与 B 点之间的距离;(3)若只调理圆滑半圆轨道 BCD半径大小,求小球 Q 走开半圆轨道 D 点后落回水平面上的地点与 B 点之间的距离最大时,所对应的轨道半径是多少?【答案】(1)(2)(3)【分析】【剖析】【详解】设小球 Q 在 B 处的支持力为;碰后小球 Q 的速度为,小球 P 的速度为;碰前小球 P 的速度为;小球 Q 抵达 D 点的速度为 .(1)由牛顿第三定律得小球Q 在 B 点碰后小球Q 在 B 点由牛顿第二定律得:碰后小球P 恰巧到 C 点,由动能定理得:P、Q 对心碰撞,由动量守恒得:联立解得 :(2)小球 Q 从 B 到 D 的过程中,由动能定理得:解得,所以小球Q 能够抵达 D 点由平抛运动规律有:联立解得(3)联立解得 :当时 x 有最大值所以【点睛】解决此题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确剖析能量是怎样转变,分段运用能量守恒定律列式是重点.4.以下图,斜面高为h,水平面上D、C 两点距离为L。

高中物理动能与动能定理解题技巧讲解及练习题含答案.doc

高中物理动能与动能定理解题技巧讲解及练习题含答案.doc

高中物理动能与动能定理解题技巧讲解及练习题( 含答案 )一、高中物理精讲专题测试动能与动能定理1.如图所示,质量为m=1kg 的滑块,在水平力 F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s ,长为 L=1.4m,今将水平力撤去,当滑块滑到传送带右端 C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力 F 的大小;(2)滑块开始下滑的高度h;(3)在第 (2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】 (1)(2)0.1 m 或 0.8 m (3)0.5 J【解析】【分析】【详解】解:( 1)滑块受到水平推力F、重力 mg 和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h 处下滑,到达斜面底端速度为v 下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则 t 时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量??2.如图所示,小滑块(视为质点)的质量m= 1kg AB的倾角;固定在地面上的斜面=37 °、长 s=1m ,点 A 和斜面最低点B 之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在 0≤μ≤1.5之间调节。

点B与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O 点另一端恰好在 B 点。

认为滑块通过点 B 前、后速度大小不变;最大静摩擦力等于滑动摩擦力。

高中物理(新人教版)必修第二册课后习题:动能和动能定理(课后习题)【含答案及解析】

高中物理(新人教版)必修第二册课后习题:动能和动能定理(课后习题)【含答案及解析】

第八章机械能守恒定律动能和动能定理课后篇巩固提升合格考达标练1.(多选)质量一定的物体()A.速度发生变化时其动能一定变化B.速度发生变化时其动能不一定变化C.速度不变时其动能一定不变D.动能不变时其速度一定不变,速度变化时可能只有方向变化,而大小不变,动能是标量,所以速度只有方向变化时,动能可以不变;动能不变时,只能说明速度大小不变,但速度方向不一定不变,故B、C正确。

2.(多选)(2021山东临沂模拟)“雪如意”——北京2022年冬奥会首个跳台滑雪场地,其主体建筑设计灵感来自中国传统饰物“如意”。

“雪如意”内的部分赛道可简化为倾角为θ、高为h的斜坡雪道。

运动员从斜坡雪道的顶端由静止开始下滑,到达底端后以不变的速率进入水平雪道,然后又在水平雪道上滑行s后停止。

已知运动员与雪道间的动摩擦因数μ处处相同,不考虑空气阻力,运动员在斜坡雪道上克服摩擦力做的功为W,则下列选项正确的是()A.μ=ℎℎtanθ+sB.μ=ℎtanθℎ+stanθC.W=mgh1-stanθℎ+stanθD.W=mgh1+stanθℎ+stanθ解析对整个过程,由动能定理得mgh-μmg cos θ·ℎsinθ-μmgs=0,解得μ=ℎtanθℎ+stanθ,故A 错误,B 正确。

对整个过程,根据动能定理得mgh-W-μmgs=0,解得运动员在斜坡雪道上克服摩擦力做的功W=mgh 1-stanθℎ+stanθ,故C 正确,D 错误。

3.如图所示,左端固定的轻质弹簧被物块压缩,物块被释放后,由静止开始从A 点沿粗糙水平面向右运动。

离开弹簧后,经过B 点的动能为E k ,该过程中,弹簧对物块做的功为W ,则物块克服摩擦力做的功W f 为( )A.W f =E kB.W f =E k +WC.W f =WD.W f =W-E k,有W-W f =E k ,得W f =W-E k ,选项D 正确。

4.(多选)甲、乙两个质量相同的物体,用大小相等的力F 分别拉它们在水平面上从静止开始运动相同的距离s 。

高中物理动能与动能定理提高训练含解析

高中物理动能与动能定理提高训练含解析

高中物理动能与动能定理提高训练含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.3.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o 有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =4.如图甲所示,一倾角为37°的传送带以恒定速度运行.现将一质量m =1 kg 的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8:求:(1)物体与传送带间的动摩擦因数;(2) 0~8 s内物体机械能的增加量;(3)物体与传送带摩擦产生的热量Q。

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ;(2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离.【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处【解析】【分析】【详解】(1)在B 点时有v B =0cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案1.[2024·江苏省淮安市学情调研]质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一水平放置的轻弹簧O 端相距s ,轻弹簧的另一端固定在竖直墙上,如图所示,已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,重力加速度为g ,则从开始碰撞到弹簧被压缩至最短的过程中,克服弹簧弹力所的功为( )A .12 m v 20 -μmg (s +x )B .12m v 20 -μmgx C .μmg (s +x )-12m v 20 D .-μmg (s +x ) 答案:A解析:从开始碰撞到弹簧被压缩至最短的过程中,由动能定理-μmg (s +x )-W =0-12m v 20 ,解得W =12 m v 20 -μmg (s +x ),A 正确.2.[2024·河南省部分学校摸底测试]如图所示,水平圆盘桌面上放有质量为0.1 kg 的小铁碗A (可视为质点),一小孩使圆盘桌面在水平面内由静止开始绕过圆盘中心O 的轴转动,并逐渐增大圆盘转动的角速度,直至小铁碗从圆盘的边缘飞出,飞出后经过0.2 s 落地,落地点与飞出点在地面投影点的距离为80 cm.若不计空气阻力,该过程中,摩擦力对小铁碗所做的功为( )A.0.2 J B .0.4 JC .0.8 JD .1.6 J答案:C解析:小铁碗飞出后做平抛运动,由平抛运动规律可得v =x t,解得v =4 m/s ,小铁碗由静止到飞出的过程中,由动能定理有W =12m v 2,故摩擦力对小铁碗所做的功W =0.8 J ,C 正确.3.(多选)如图所示,在倾角为θ的斜面上,质量为m 的物块受到沿斜面向上的恒力F 的作用,沿斜面以速度v 匀速上升了高度h .已知物块与斜面间的动摩擦因数为μ、重力加速度为g .关于上述过程,下列说法正确的是( )A .合力对物块做功为0B .合力对物块做功为12m v 2 C .摩擦力对物块做功为-μmg cos θh sin θD .恒力F 与摩擦力对物块做功之和为mgh答案:ACD解析:物体做匀速直线运动,处于平衡状态,合外力为零,则合外力做功为零,故A正确,B 错误;物体所受的摩擦力大小为f =μmg cos θ,物体的位移x =h sin θ,摩擦力对物块做功为W f =-fx =-μmg cos θh sin θ,C 正确;物体所受各力的合力做功为零,则W G +W F +W f =0,所以W F +W f =-W G =-(-mgh )=mgh ,D 正确.4.(多选)质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图所示,重力加速度g 取10 m/s 2,则此物体( )A .在位移x =9 m 时的速度是33 m/sB .在位移x =9 m 时的速度是3 m/sC .在OA 段运动的加速度是2.5 m/s 2D .在OA 段运动的加速度是1.5 m/s 2答案:BD解析:运动x =9 m 的过程由动能定理W -μmgx =12m v 2,得v =3 m/s ,A 错误,B 正确;前3 m 过程中,水平拉力F 1=W 1x 1 =153N =5 N ,根据牛顿第二定律,F 1-μmg =ma 得a =1.5 m/s 2,C 错误,D 正确.5.[2024·张家口市期末考试]如图所示,倾角为θ=37°的足够长光滑斜面AB 与长L BC =2 m 的粗糙水平面BC 用一小段光滑圆弧(长度不计)平滑连接,半径R =1.5 m 的光滑圆弧轨道CD 与水平面相切于C 点,OD 与水平方向的夹角也为θ=37°.质量为m 的小滑块从斜面上距B 点L 0=2 m 的位置由静止开始下滑,恰好运动到C 点.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC 间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D 点,求小滑块的释放位置与B 点的最小距离.答案:(1)0.6 (2)6.75 m解析:(1)滑块恰好运动到C 点,由动能定理得mgL 0sin 37°-μmgL BC =0-0解得μ=0.6(2)滑块能够通过D 点,在D 点的最小速度,由mg sin θ=m v 2D R解得v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12m v 2D -0 解得L =6.75 m。

高考物理动能与动能定理解题技巧和训练方法及练习题(含答案)

高考物理动能与动能定理解题技巧和训练方法及练习题(含答案)

高考物理动能与动能定理解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。

物理动能与动能定理提高训练含解析

物理动能与动能定理提高训练含解析

物理动能与动能定理提高训练含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,固定的粗糙弧形轨道下端B 点水平,上端A 与B 点的高度差为h 1=0.3 m ,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C 点到B 点的高度差为h 2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m =1 kg 的滑块(可看作质点)从轨道的A 点由静止滑下,然后从B 点抛出,恰好以平行于传送带的速度从C 点落到传送带上,传送带逆时针传动,速度大小为v =0.5 m/s ,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g =10 m/s 2,试求:(1).滑块运动至C 点时的速度v C 大小;(2).滑块由A 到B 运动过程中克服摩擦力做的功W f ; (3).滑块在传送带上运动时与传送带摩擦产生的热量Q . 【答案】(1)2.5 m/s (2)1 J (3)32 J【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。

(1) 在C 点,竖直分速度: 22 1.5/y v gh m s ==0sin37y c v v =,解得: 2.5/c v m s =(2)C 点的水平分速度与B 点的速度相等,则372/B x C v v v cos m s ︒===从A 到B 点的过程中,据动能定理得: 2112f B mgh W mv -=,解得: 1f W J = (3) 滑块在传送带上运动时,根据牛顿第二定律得: 3737mgcos mgsin ma μ︒︒-=解得: 20.4/a m s = 达到共同速度所需时间5cv v t s a-== 二者间的相对位移52cv v x t vt m +∆=-= 由于3737mgsin mgcos μ︒<︒,此后滑块将做匀速运动。

滑块在传送带上运动时与传送带摩擦产生的热量0cos3732Q mg x J μ⋅∆==2.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

高考物理动能与动能定理解题技巧和训练方法及练习题(含答案)

高考物理动能与动能定理解题技巧和训练方法及练习题(含答案)

高考物理动能与动能定理解题技巧和训练方法及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB 是在竖直平面内的14圆周,B 点离地面的高度h =0.8m ,该处切线是水平的,一质量为m =200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D 到C 点的距离为x =4m ,重力加速度为g =10m /s 2.求:(1)圆弧轨道的半径(2)小球滑到B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m .(2)小球滑到B 点时对轨道的压力为6N ,方向竖直向下. 【解析】(1)小球由B 到D 做平抛运动,有:h=12gt 2 x =v B t 解得: 10410/220.8B g v xm s h ==⨯=⨯ A 到B 过程,由动能定理得:mgR=12mv B 2-0 解得轨道半径 R =5m(2)在B 点,由向心力公式得:2Bv N mg m R-=解得:N =6N根据牛顿第三定律,小球对轨道的压力N =N =6N ,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。

游客乘坐的滑草车(两者的总质量为60kg ),从倾角为53θ=︒的光滑直轨道AC 上的B 点由静止开始下滑,到达C 点后进入半径为5m R =,圆心角为53θ=︒的圆弧形光滑轨道CD ,过D 点后滑入倾角为α(α可以在075α︒剟范围内调节)、动摩擦因数为33μ=的足够长的草地轨道DE 。

已知D 点处有一小段光滑圆弧与其相连,不计滑草车在D 处的能量损失,B 点到C 点的距离为0=10m L ,10m/s g =。

求:(1)滑草车经过轨道D 点时对轨道D 点的压力大小;(2)滑草车第一次沿草地轨道DE 向上滑行的时间与α的关系式;(3)α取不同值时,写出滑草车在斜面上克服摩擦所做的功与tan α的关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(物理)物理动能与动能定理提高训练及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。

质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。

已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。

【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】(1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有:0=m 1v 1-m 2v 2解得v 1=10m/s剪断细绳前弹簧的弹性势能为:2211221122p E m v m v =+ 解得E p =19.5J(2)设m 2向右减速运动的最大距离为x ,由动能定理得:-μm 2gx =0-12m 2v 22 解得x =3m <L =4m则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。

设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。

取向左为正方向。

根据动量定理得:μm 2gt =m 2v 0-(-m 2v 2)解得:t =3s该过程皮带运动的距离为:x 带=v 0t =4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为:E =μm 2gx 带解得:E =6.75J(3)设竖直光滑轨道AC 的半径为R 时小物体m 1平抛的水平位移最大为x 。

从A 到C 由机械能守恒定律得:2211111 222C m v m v mgR =+ 由平抛运动的规律有:x =v C t 121122R gt =联立整理得410()4x R R =-根据数学知识知当4R =10-4R即R =1.25m 时,水平位移最大为x =5m2.如图,在竖直平面内,半径R =0.5m 的光滑圆弧轨道ABC 与粗糙的足够长斜面CD 相切于C 点,CD 与水平面的夹角θ=37°,B 是轨道最低点,其最大承受力F m =21N ,过A 点的切线沿竖直方向。

现有一质量m =0.1kg 的小物块,从A 点正上方的P 点由静止落下。

已知物块与斜面之间的动摩擦因数μ=0.5.取sin37°=0.6.co37°=0.8,g=10m/s 2,不计空气阻力。

(1)为保证轨道不会被破坏,求P 、A 间的最大高度差H 及物块能沿斜面上滑的最大距离L ; (2)若P 、A 间的高度差h =3.6m ,求系统最终因摩擦所产生的总热量Q 。

【答案】(1) 4.5m ,4.9m ;(2) 4J 【解析】 【详解】(1)设物块在B 点的最大速度为v B ,由牛顿第二定律得:2Bm v F mg m R-=从P 到B,由动能定理得21()02B mg H R mv +=- 解得H =4.5m物块从B 点运动到斜面最高处的过程中,根据动能定理得:-mg [R (1-cos37°)+L sin37°]-μmg cos37°•L =2102B mv -解得L =4.9m(3)物块在斜面上,由于mg sin37°>μmg cos37°,物块不会停在斜面上,物块最后以B 点为中心,C 点为最高点沿圆弧轨道做往复运动,由功能关系得系统最终因摩擦所产生的总热量Q =mg (h +R cos37°)解得Q =4J3.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kg m =,电量4310C q -=⨯的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J 。

某一瞬间释放弹簧弹出小物块,小物块从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点B ,并沿轨道BC 滑下,运动到光滑水平轨道CD ,从D 点进入到光滑竖直圆内侧轨道。

已知倾斜轨道与水平方向夹角为37α︒=,倾斜轨道长为2.0m L =,带电小物块与倾斜轨道间的动摩擦因数0.5μ=。

小物块在C 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。

只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强5210V/m E =⨯。

已知cos370.8︒=,sin370.6︒=,取210m/s g =,求:(1)小物块运动到A 点时的速度大小A v ; (2)小物块运动到C 点时的速度大小C v ;(3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?【答案】(1)4m/s ;(233;(3)R ⩽0.022m 【解析】 【分析】 【详解】(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能212P A E mv =解得220.324m/s 0.04P A E v m ===⨯ (2)A 到B 物体做平抛运动,到B 点有cos37A Bvv ︒= 所以45m/s 0.8B v == B 到C 根据动能定理有2211sin37cos3722C B mgL mg L mv mv μ︒-︒⋅=- 解得33m/s C v =(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为F=qE-mg =59.6N所以D 点为等效最高点,则小球到达D 点时对轨道的压力为零,此时的速度最小,即2Dv F m R=解得D FRv m=所以要小物块不离开圆轨道则应满足v C ≥v D 得:R≤0.022m4.如图所示,竖直平面内有一固定的光滑轨道ABCD,其中AB是足够长的水平轨道,B端与半径为R的光滑半圆轨道BCD平滑相切连接,半圆的直径BD竖直,C点与圆心O等高.现有一质量为m的小球Q静止在B点,另一质量为2m的小球P沿轨道AB向右匀速运动并与Q发生对心碰撞,碰撞后瞬间小球Q对半圆轨道B点的压力大小为自身重力的7倍,碰撞后小球P恰好到达C点.重力加速度为g.(1)求碰撞前小球P的速度大小;(2)求小球Q离开半圆轨道后落回水平面上的位置与B点之间的距离;(3)若只调节光滑半圆轨道BCD半径大小,求小球Q离开半圆轨道D点后落回水平面上的位置与B点之间的距离最大时,所对应的轨道半径是多少?【答案】(1)(2)(3)【解析】【分析】【详解】设小球Q在B处的支持力为;碰后小球Q的速度为,小球P的速度为;碰前小球P 的速度为;小球Q到达D点的速度为.(1)由牛顿第三定律得小球Q在B点碰后小球Q在B点由牛顿第二定律得:碰后小球P恰好到C点,由动能定理得:P、Q对心碰撞,由动量守恒得:联立解得:(2)小球Q从B到D的过程中,由动能定理得:解得,所以小球Q能够到达D点由平抛运动规律有:联立解得(3)联立解得:当时x有最大值所以【点睛】解决本题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确分析能量是如何转化,分段运用能量守恒定律列式是关键.5.如图所示,在竖直平面内的光滑固定轨道由四分之一圆弧AB和二分之一圆弧BC组成,两者在最低点B平滑连接.过BC圆弧的圆心O有厚度不计的水平挡板和竖直挡板各一块,挡板与圆弧轨道之间有宽度很小的缝隙.AB弧的半径为2R,BC弧的半径为R.一直径略小于缝宽的小球在A点正上方与A相距23R处由静止开始自由下落,经A点沿圆弧轨道运动.不考虑小球撞到挡板以后的反弹.(1)通过计算判断小球能否沿轨道运动到C点.(2)若小球能到达C点,求小球在B、C两点的动能之比;若小球不能到达C点,请求出小球至少从距A点多高处由静止开始自由下落才能够到达C点.(3)使小球从A点正上方不同高度处自由落下进入轨道,小球在水平挡板上的落点到O点的距离x会随小球开始下落时离A点的高度h而变化,请在图中画出x2­h图象.(写出计算过程)【答案】(1)13mg (2) 4∶1 (3) 过程见解析【解析】 【详解】(1)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力N 应满足N ≥0 设小球的质量为m ,在C 点的速度大小为v C ,由牛顿运动定律和向心加速度公式有N +mg =2C mv R小球由开始下落至运动到C 点过程中,机械能守恒,有22132C mgR mv = 由两式可知N =13mg 小球可以沿轨道运动到C 点.(2)小球在C 点的动能为E k C ,由机械能守恒得E k C =23mgR设小球在B 点的动能为E k B ,同理有E k B =83mgR得E k B ∶E k C =4∶1.(3)小球自由落下,经ABC 圆弧轨道到达C 点后做平抛运动。

由动能定理得:212C mgh mv =由平抛运动的规律得:212R gt =x =v C t解得:x =因为x ,且C v ≥所以324R R h ≤< x 2-h 图象如图所示:6.光滑水平面AB与一光滑半圆形轨道在B点相连,轨道位于竖直面内,其半径为R,一个质量为m的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知 EP≤mgR若物块刚好通过C 点,则物块从B 到C 由动能定理得物块在C 点时mg =m 则联立知:EP≥mgR .综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .7.如图所示,一个质量为m =0.2kg 的小物体(P 可视为质点),从半径为R =0.8m 的光滑圆强轨道的A 端由静止释放,A 与圆心等高,滑到B 后水平滑上与圆弧轨道平滑连接的水平桌面,小物体与桌面间的动摩擦因数为μ=0.6,小物体滑行L =1m 后与静置于桌边的另一相同的小物体Q 正碰,并粘在一起飞出桌面,桌面距水平地面高为h =0.8m 不计空气阻力,g =10m/s 2.求:(1)滑至B 点时的速度大小; (2)P 在B 点受到的支持力的大小; (3)两物体飞出桌面的水平距离; (4)两小物体落地前损失的机械能.【答案】(1)14m/s v = (2)6N N F = (3)s =0.4m (4)△E =1.4J 【解析】 【详解】(1)物体P 从A 滑到B 的过程,设滑块滑到B 的速度为v 1,由动能定理有:2112mgR mv =解得:14m/s v =(2)物体P 做匀速圆周运动,在B 点由牛顿第二定律有:21N F g mv m R-= 解得物体P 在B 点受到的支持力6N N F = (3)P 滑行至碰到物体Q 前,由动能定理有:22211122mv mg v L m μ--=解得物体P 与Q 碰撞前的速度22m/s v =P 与Q 正碰并粘在一起,取向右为正方向,由动量守恒定律有:()23mv m m v =+解得P 与Q 一起从桌边飞出的速度31m/s v = 由平碰后P 、Q 一起做平抛运动,有:212h gt =3s v t =解得两物体飞出桌面的水平距离s =0.4m(4)物体P 在桌面上滑行克服阻力做功损失一部分机械能:1 1.2J E mgL μ∆==物体P 和Q 碰撞过程中损失的机械能:2222311()0.2J 22mv m m v E -+=∆=两小物体落地前损失的机械能12E E E ∆=∆+∆ 解得:△E =1.4J8.如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L .导轨上端并联接有一电容为C 的平行板电容器和阻值为R 的电阻.导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于导轨平面.在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g .忽略其它电阻.让金属棒在不同情况下从导轨上端由静止开始下滑,求:(1)当断开S 1闭合S 2时,金属棒由静止开始下滑位移x 后开始匀速,求匀速的速度大小和这过程电阻生的热量;(2)当断开S 2闭合S 1时金属棒的速度大小随时间变化的关系.【答案】(1)22(sin cos )m mgR v B Lθμθ-= ,232244(sin cos )(sin cos )2m g R Q mgx B Lθμθθμθ-=-- (2)22(sin cos )mg v t m B L C θμθ-=⋅+ 【解析】【详解】(1)金属棒在斜面上匀速直线运动时,由平衡条件:sin cos mg BIL mg θμθ=+ 由闭合电路的欧姆定律E I R=而动生电动势m E BLv = 联立解得:22(sin cos )m mgR v B L θμθ-=对金属棒下滑过程,由动能定理得:21sin cos =02m F mgx mg x W mv θμθ-⋅+-安 而由功能关系,克服安培力做功等于电路的焦耳热:=F W Q -安 联立解得:232244(sin cos )(sin cos )2m g R Q mgx B L θμθθμθ-=-- (2)设金属棒经历时间t ∆,速度的变化量为v ∆,通过金属棒的电流为i ,流过金属棒的电荷量为Q ∆, 按照电流的定义Q i t∆=∆ Q ∆也是平行板电容器的极板在t ∆内的增加量,Q C U CBL v ∆=∆=⋅∆金属棒受到的摩擦力为cos f mg μθ=金属棒受到的安培力为i F BiL =设金属棒下滑的加速度为a ,由牛顿第二定律有:sin i mg f F ma θ--= 联立解得:22(sin cos )mg a m B L Cθμθ-=+ 加速度为恒定值,说明金属棒做匀加速直线运动有v at =可得瞬时速度与时间的关系:22(sin cos )mg v t m B L Cθμθ-=⋅+9.如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住。

相关文档
最新文档