小学五年级一元一次方程应用题2
《一元一次方程》应用题 (2)
1.某移动通讯公司开设了两种通讯业务“全球通”和“神舟行”.全球通:使用者先交50元月租费,然后每通话一分钟付0.4元话费,累计起来作为使用者一个月的通讯费;神州行:不缴月租费,每通话一分钟,付话费0.6元现有甲、乙二人分别使用“全球通“和”神州行“,设他们在一个月内通话时间均为x分钟.(1)如果x=30小时,分别计算甲、乙二人这一个月的通讯费;(2)当他们在这一个月中缴纳的通讯费相等时,你能通过自己学习的知识求出他们的通话时间是多少吗?试一试.2.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺柱和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?3.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元,在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:5 10 20 30 …一次复印页数(页)0.5 2 …甲复印店收费(元)0.6 2.4 …乙复印店收费(元)(2)复印张数为多少时,两处的收费相同?4.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?5.一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千米/小时,客车比卡车早2小时经过B地,A、B两地间的路程是多少千米?6.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?7.某校组织7年级师生外出进行研究性学习活动,学校联系了旅游公司提供车辆.该公司现有50座和35座两种车型.如果用35座的,会有5人没座位;如果全部换乘50座的,则可比35座车少用2辆,而且多出15个座位.若35座客车日租金为每辆250元,50座客车日租金为每辆300元,(1)请你算算参加互动师生共多少人?(2)请你设计一个方案,使租金最少,并说明理由.8.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?9.将连续的奇数1,3,5,7,9,…,排成如图所示的数阵.(1)设中间数为a,用式子表示十字框中五数之和并化简.(2)若将十字框上下左右移动,可框住另外五个数,这五个数的和还有这种规律吗?十字框中五数之和能等于2005吗?若能,请写出这五个数,若不能,说明理由.10.为准备联合韵律操表演,甲、乙两校共100人准备统一购买服装(一人买一套)参加表演,其中甲校人数多于乙校人数,下面是服装厂给出的演出服装的价格表:1套至49套50套至99套100套及以上购买服装的套数60元55元50元每套服装的价格如果两所学校分别单独购买服装,一共应付5710元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加表演?(3)如果甲校有9名同学抽调去参加迎奥运书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?参考答案1.解:(1)30小时=1800分钟,甲一个月的通讯费为50+0.4×1800=770(元),乙一个月的通讯录为0.6×1800=1080(元).(2)根据题意得:50+0.4x=0.6x,解得:x=250.答:当通话时间为250分钟时,两人通讯费用相等.2.解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得:x=6,则调入6名工人;(2)16+6=22(人),设y名工人生产螺柱,根据题意得:2×1200y=2000(22﹣y),解得:y=10,22﹣y=22﹣10=12(人),则10名工人生产螺柱,12名工人生产螺母.3.解:(1)10×0.1=1(元),30×0.1=3(元),10×0.12=1.2(元),20×0.12+(30﹣20)×0.9=3.3(元).故答案为:1;3;1.2;3.3.(2)设复印x张时,两处的收费相同,依题意,得:0.1x=20×0.12+(x﹣20)×0.09,解得:x=60.答:复印60张时,两处的收费相同.4.解:(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第一次购进甲种商品每件15元,乙种商品每件20元.(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润.(3)由题意80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得a=5.答:a的值是5.5.解:设A、B两地间的路程为x千米,根据题意得﹣=2解得x=240答:A、B两地间的路程是240千米.6.解:由题意得:50x+15﹣40x=30解得:x=1.5.答:经过1.5小时,两车相距30千米.7.解:(1)设参加互动师生共x人,由题意得:=+2即:10x﹣7x=105+50+700解得:x=285人,所以,参与本次师生互动的人共有285人.(2)设计方案为:租用1辆35座的车,租用5辆50座的车.设租用x辆35座的,则还需租用辆50座的,其中x≥0 由题意得:由于=5.7≈6辆,需要租金:6×300=1800元;所以当x=1时,=5,需要租金:250+300×5=1750元;当x=2时,=4.3≈5辆,需租金:250×2+300×5=2000元;当x=3时,=3.6≈4辆,需租金:3×250+4×300=1950元;当x=4时,=2.9≈3辆,需租金:4×250+3×300=1900元;当x=5时,=2.2≈3辆,需租金:5×250+3×300=2150元;当x=6时,=1.5≈2辆,需租金:6×250+2×300=2100元;当x=7时,=0.8≈1辆,需租金:7×250+300=2050元;当x=8时,≈1辆,需租金:8×250+300=2300元;当x=9时,35×9>285,此时需租金:9×250=2250元;综合上述比较当租用1辆35座的车,租用5辆50座的车时,所需资金最少.另法:假设租了35座汽车x辆,其余人乘坐50座客车,则所花租金等于:(285﹣35x)÷50×300+250x=(285﹣35x)6+250x=1710+40x,若要使租金最少,即要使(1710+40x)值最小,∴当x=1时,租金为1750元时为最低.或因为大车票价低于小车票价,所以尽可能多租大车,285÷50=5(辆)…35(人).故租了35座汽车1辆,50座客车5辆最合算.8.解:设每件服装的成本价为x元,那么每件服装的标价为:(1+40%)x=1.4x;每件服装的实际售价为:1.4x×0.8=1.12x;每件服装的利润为:0.12x;由此,列出方程:0.8×(1+40%)x﹣x=15;解方程,得x=125;答:每件服装的成本价是125元.9.解:(1)设中间数为a,则另外四个数分别为a﹣10、a﹣2、a+2、a+10,∴十字框中五数之和为(a﹣10)+(a﹣2)+a+(a+2)+(a+10)=5a.(2)无论如何移动,这五个数的和还有这种规律,十字框中五数之和不能等于2005,理由如下:设中间数为x时,五数之和为2005,根据题意得:5x=2005,解得:x=401,∵401为第201个奇数,且201=40×5+1,∴401为第40行的第一个数,∴401不能为中间数,∴十字框中五数之和不能等于2005.10.解:(1)若甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省:5710﹣50×100=710(元);(2)设甲校有学生x人(依题意50<x<100),则乙校有学生(100﹣x)人.依题意得:55x+60×(100﹣x)=5710,解得:x=58.经检验x=58符合题意.∴100﹣x=42.故甲校有58人,乙校有42人.(3)方案一:各自购买服装需49×60+42×60=5460(元);方案二:联合购买服装需(49+42)×55=5005(元);方案三:联合购买100套服装需100×50=5000(元);综上所述:因为5460>5005>5000.所以应该甲乙两校联合起来选择按50元每套一次购买100套服装最省钱.。
一元一次方程应用题归类汇集(含答案) (2)
一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际, 检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。
方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米? 提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。
一元一次方程应用题
一元一次方程应用题第一篇:一元一次方程应用题一元一次方程的解法(1)x+1.5-9x8+5=024y-12y+5(2)y+-=2-336(3)(4)(5)2311[3(x-)-3]-2=x 24214(1-x)-(2-)=2 3213x43x-1.50.2-0.1-0.20x.03=2.5第二篇:一元一次方程应用题1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完? 还要运x次才能完29.5-3*4=2.5x 17.5=2.5x x=7还要运7次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?它的高是x米x(7+11)=90*218x=180 x=10 它的高是10米3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个? 这9天中平均每天生产x个9x+908=5408 9x=4500 x=500这9天中平均每天生产500个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米?乙每小时行x千米3(45+x)+17=272 3(45+x)=255 45+x=85 x=40乙每小时行40千米5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?平均成绩是x分40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成绩是83分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱x盒10x=250+550 10x=800 x=80 平均每箱80盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组去踢足球,平均每组多少人?平均每组x人5x+80=200 5x=160 x=32 平均每组32人8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多少千克?食堂运来面粉x千克3x-30=1503x=180 x=60食堂运来面粉60千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多少棵?平均每行梨树有x棵6x-52=20 6x=72 x=12平均每行梨树有12棵10、一块三角形地的面积是840平方米,底是140米,高是多少米?高是x米140x=840*2 140x=1680 x=12 高是12米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服.每件大人衣服用2.4米,每件儿童衣服用布多少米? 每件儿童衣服用布x米16x+20*2.4=72 16x=72-48 16x=24x=1.5每件儿童衣服用布1.5米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁? 女儿今年x岁30=6(x-3)6x-18=30 6x=48 x=8 女儿今年8岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?需要x时间50x=40x+80 10x=80 x=8 需要8时间14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?苹果x 3x+2(x-0.5)=155x=16 x=3.2苹果:3.2 梨:2.715、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点.甲几小时到达中点?甲x小时到达中点50x=40(x+1)10x=40 x=4甲4小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇.如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙.已知甲速度是15千米/时,求乙的速度.乙的速度x 2(x+15)+4x=60 2x+30+4x=606x=30 x=5 乙的速度517.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米.问原来两根绳子各长几米? 原来两根绳子各长x米3(x-15)+3=x 3x-45+3=x 2x=42 x=21原来两根绳子各长21米18.某校买来7只篮球和10只足球共付248元.已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元? 每只篮球x 7x+10x/3=248 21x+10x=744 31x=744x=24 每只篮球:24 每只足球:8 这还有追问:再多点,那里没答案!追答:16.(9分)某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?设胜了x场,可列方程:2x+(8-x)=13,解之得x=5 17.(9分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.小赵是9号出去的,小王是7月15号回家的(提示:可设七天的中间一天日期数是x,则其余六天分别为x-3,x-2,x-1,x+1,x+2,x+3,由题意列方程,易求得中间天数,对小王的情形,由于七天的日期数之和是7的倍数,因为84是7的倍数,所以月份数也是7的倍数,可知月份数是7,且在8号至14号在舅舅家.故于7月15号回家.18.(9分)一批树苗按下列方法依次由各班领取:第一班取100棵和余下的,第二班取200棵和余下的,第三班取300棵和余下的,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x棵,由第一、第二两个班级的树苗数相等可列方程:100+(x-100)=200+ [x-200-100-•(x-100)],也可设有x个班级,则最后一个班级取树苗100x棵,倒数第二个班级先取100(x-1)棵,又取“余下的”也是最后一个班级的树苗数的,由最后两班的树苗相等,可得方程: 100(x-1)+ x=100x若注意到倒数第二个班级先取的100(x-1)棵比100x棵少100棵,即得=100,还可以设每班级取树苗x棵,得 =100. 19.(9分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.设购买单价1.80元的笔记本x本,列方程可得:1.8x+2.6•(36-x)=100-27.60,解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元.第三篇:一元一次方程应用题及答案1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇 50a+75(a-1)=275 50a+75a-75=275 125a=350 a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地距离。
一元一次方程应用题2
一、填空题1、某商店一套服装的进价为200元,若按标价的80%销售可获利72元,则该服装的标价为元.2、某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为元.3、一家商店将某种商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润__________元.4、某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为本,付款金额为元,请填写下表:5、五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了折优惠.6、如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55 cm,此时木桶中水的深度是 cm.7、.某公园门票价格如下表,有27名中学生游公园,则最少应付费_________元.(游客只能在公园售票处购票)8、依法纳税是每个公民应尽的义务,新的《中华人民共和国个人所得税法》规定,从2008年3月1日起公民全月工薪不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得税额,此项税款按下表分段累进计算.黄先生4月份缴纳个人所得税税金55元,那么黄先生该月的工薪是元.9、某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为元时,获得的利润最多.10、某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名。
五年级一元一次方程练习题
五年级一元一次方程练习题
《五年级一元一次方程练题》一元一次方程是数学中最基础的概念,在研究过程中,我们要多加练,才能熟练掌握。
下面是五年级学生一元一次方程练题,希望大家通过练,让自己更加熟练掌握一元一次方程。
一、求解一元一次方程
解:2x-1=-5
2x=-6
x=-3
2、5x-2=4
解:5x-2=4
5x=6
x=
1.2
二、求解不等式
1、2x-1≤3
解:2x-1≤3
2x≤4
x≤2
2、5x+2>-3
解:5x+2>-3
5x>-5
x>-1
三、给出一元一次方程的解
1、解:3x+2=7
解:3x+2=7
3x=5
x=5/3
2、解:-7x-1=-11
解:-7x-1=-11
-7x=-12
x=12/7
四、解决应用题
1、求一个数加2等于-7
解:设该数为x则有:x+2=-7
解得:x=-9
2、一个数乘以4等于12
解:设该数为x则有:4x=12
解得:x=3
以上就是五年级学生一元一次方程练题的全部内容,希望大家通过努力的练,能够更加熟练掌握一元一次方程的解题方法,做到熟能生巧。
一元一次方程应用题练习(二)附答案
一元一次方程应用题共同点:1、方程只含有一个未知数;2、未知数的次数是1;3、等式两边都是整式.只含有一个未知数,未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程一、工程问题1某管道由甲乙两个工程队单独施工分别要30天,20天铺完。
1.如果两队从两端同时施工,需要多少天铺完?2.已知甲队单独施工每天200元,乙队单独施工每天280元,那么怎样施工才能满足少花钱多办事的目的。
2一个水池安有甲乙丙三个水管,甲单独开12h注满水池,乙单独开8h注满,丙单独开24h可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水?3某工人若每小时生产38个零件,在规定时间内还有15个不能完成;若每小时生产42个,则可超额5个,问规定时间是多少?共生产多少个零件?4某工厂今年比去年增产60%,达到生产320万件产品的目标,那么该工厂去年的年产量是多少?5某工程,甲单独完成续20天,乙单独完成续12天甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?二.路程问题6甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?7小王在400米的环形跑道上跑了一圈,从起点出发,最初跑了45秒,后来加速0.5米/秒,再花了20秒跑到终点,问小王最初跑的速度是多少?8小张骑车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进,已知两人在上午8点同时出发,到上午10点两人还相距36千米,到中午12点两人又相距36千米,求A、B两地间的路程。
9甲乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km,已知慢车先行1.5h,快车再开出,问快车开出多少小时后与慢车相遇?10甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.(1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇?(2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?11小张开车去火车站,如果速度为30千米/时,则早15分钟到达,如果18千米/时,则迟到5分,现在打算提前5分钟到达,那么他开车的速度是多少?12A、B两地相距49千米,某人步行从A地出发,分三段以不同速度走完全程,共用10小时。
一元一次方程应用题(难)
精心整理
页脚内容
一元一次方程2
1、如图所示,是本月份的日历表,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是。
A 、 24
B 、43
C 、57
D 、69
2某人以4km/h 的速度从甲地步行到乙地,又以6km/h
的速度从乙地返回到甲地,那么他往返的平均速度是多少?
如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?
15、国家规定个人发表文章,出版着作所获稿酬应纳税,其计算方法是:(1)不高于800元的、不交税;(2)高于800元但不超过4000元的,应缴纳超过800元部分的14%的税;(3)稿费高于4000元的部分缴纳11%的税。
张老师出版了一本书,缴纳550元的税,他的稿费是多少元?
17、某公园的门票价格规定如下表。
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元。
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生
精心整理
页脚内容。
一元一次方程应用题(50道)
一元一次方程应用题(50道)一元一次方程应用题(50道)1. 池塘问题:有一个池塘,里面有一些鱼和青蛙。
已知鱼和青蛙的总数为36,头数为100,请问池塘里有多少只鱼和青蛙?2. 苹果贩卖问题:小明每天贩卖一些苹果和橙子。
已知他卖出的苹果数目是橙子的2倍,他总共卖出了15个水果。
请问他每天贩卖多少个苹果和橙子?3. 铁路站台问题:火车站上有一辆高铁和一辆普速列车,一共有30个车厢。
已知高铁的车厢数是普速列车的2倍,问高铁和普速列车各有多少个车厢?4. 小明和小红问题:小明比小红大2岁,两人年龄之和是28岁。
请问小明和小红分别多少岁?5. 汽车和自行车问题:青松和小明一起从A城到B城,青松骑自行车,每小时的速度是12km/h;小明开汽车,每小时速度是60km/h。
已知他们离开A城和到达B城的时间差2个小时,求A城到B城的距离。
6. 水果和蔬菜问题:在一次农贸市场活动中,小王和小李带来各自的水果和蔬菜卖。
已知小王卖出了10个水果和5个蔬菜,而小李卖出了8个水果和7个蔬菜。
小王的水果每个价格是3元,蔬菜每个价格是2元;小李的水果每个价格是4元,蔬菜每个价格是1元。
请分别计算小王和小李卖出水果和蔬菜的总金额。
7. 儿童和成人门票问题:某游乐园门票分为儿童票和成人票。
已知一天销售的门票总数为48张,总金额为240元。
儿童票的价格是每张15元,成人票的价格是每张20元。
请问儿童票和成人票分别售出了多少张?8. 书包和铅笔盒问题:小明的书包和铅笔盒总共有9个,书包比铅笔盒的数量多3。
请问书包和铅笔盒各有多少个?9. 电脑和手机问题:小王带着电脑和手机出门,电脑的重量是手机的2倍,他们的总重量是6kg。
请问电脑和手机各有多重?10. 停车费问题:某停车场停车费为每小时8元。
小明停车了4小时,停车费用为多少元?11. 毛巾和浴巾问题:某商店有毛巾和浴巾两种商品,已知毛巾的价格是浴巾的三分之一。
小张花了27元买了3个毛巾和2个浴巾,请问每个毛巾和浴巾的价格分别是多少元?12. 配菜问题:在一次聚餐中,小明带来了甲菜和乙菜两种配菜。
一元一次方程应用题2篇
一元一次方程应用题第一篇:水桶倒水问题问题描述:小明有一个容量为12升的水桶,里面装满了水。
他用这个水桶分别给两个植物浇水,第一个植物每次需要2升水,第二个植物每次需要3升水。
假设两个植物都需要浇水n次,问小明能够连续给这两个植物浇水的最大次数是多少次?解决方法:设小明能够给两个植物连续浇水的次数为x次。
根据题意,每次给两个植物浇水后,第一个植物的水量会减少2升,第二个植物的水量会减少3升。
因此,通过一次操作,两个植物共需要消耗的水量为2x + 3x = 5x升。
而小明的水桶容量为12升,假设小明能够连续给这两个植物浇水n次,则总共需要消耗的水量为5xn升。
因此,5xn ≤ 12,解这个不等式可以得到小明能够连续给这两个植物浇水的最大次数n的取值范围。
首先,根据不等式5xn ≤ 12,我们可以将不等式两边同除以5得到n ≤ 12/5,即n的取值范围为n ≤ 2.4。
由于n是正整数,所以n的取值范围应该是n ≤ 2。
这意味着小明最多能够连续给这两个植物浇水2次。
因此,小明能够连续给这两个植物浇水的最大次数是2次。
第二篇:汽车加速问题问题描述:某辆汽车以初速度为10 m/s匀加速行驶,在行驶的过程中,速度与时间的关系为v(t) = 10 + 2t,其中v是速度(m/s),t是时间(s)。
问该汽车在何时速度能达到60 m/s?解决方法:根据题意,汽车的速度与时间的关系为v(t) = 10 + 2t。
我们需要找到一个时间t,使得v(t) = 60。
将v(t) = 10 + 2t = 60,化简得2t = 50,解得t = 25。
因此,该汽车在25秒时速度能达到60 m/s。
一元一次方程应用题 一元一次方程应用题以及答案
一元一次方程运用题一元一次方程运用题以及答案一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。
难么,作者就给大家整理了一元一次方程运用题,期望对大家的学习有所帮助,欢迎浏览!一元一次方程运用题:1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75(a-1)=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比估计的时间晚了45min,求甲乙两地距离。
设原定时间为a小时45分钟=3/4小时根据题意40a=40 3+(40-10) (a-3+3/4)40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙距离40 21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队本来的人数?解:设乙队本来有a人,甲队有2a人那么根据题意2a-16=1/2 (a+16)-34a-32=a+16-63a=42a=14那么乙队本来有14人,甲队本来有14 2=28人现在乙队有14+16=30人,甲队有28-16=12人4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
解:设四月份的利润为x则 (1+10%)=13.2所以x=12设3月份的增长率为y则10x(1+y)=xy=0.2=20%所以3月份的增长率为20%5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人没法安排。
一元一次方程应用题——工程问题 (2)
1.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天2.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五4. 已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几(3)如果将两管同时打开,每小时的效果如何如何列式(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间5. 有一个水池,用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。
①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把水池注满②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三管同时开放,多少小时才能把一空池注满水6.检修某场区的自来水管,甲独做需14天完成,乙独做18天完成,丙独做12天完成。
前7天由甲乙两人一起合作,但乙中途离开了一段时间;后一部分甲乙合作2天完成,问乙中途离开了几天7.某项工程计划用300人在若干天内完成,为了缩短工期,实际施工时,实行了承包责任制,工作效率提高50%因此只用了250人,还提前20天完成任务,问原计划多少天完成这项工程8.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天9.一组割草人去割两块草地,大的一块比小的一块大一倍,上午全部人都在大的一块草地割草,下午一半人留在大草地上,到傍晚时把草割完,另一半人去割小草地的草,到傍晚还剩一块,这一块由一个割草人在用一天时间刚好割完,问,这组割草人共有多少人?(按习惯,从早晨到傍晚算一天工作,上午、下午各占一半)10.整理一批数据,由一个人做需80小时完成。
一元一次方程应用题测2
一元一次方程应用题测验(二)列方程解应用题:(每题10分)1.整理一批图书,由一个人做要40小时完成。
现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?2、我们的身边有一些股民,某股民将甲、乙两种股票卖出,甲种股票卖出1500元,盈利20%,乙种股票卖出1600元,但亏损20%,该股民在这次交易中是盈利还是亏损,盈利或亏损多少元?3、小明到书店买书,办会员卡是6.8折,办卡费是20元,不办卡打九折,小明应该怎么办?4、一商店将某种商品按成本价提高40%后标价,元旦期间打8折销售以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?5.初一级进行法律知识竞赛,共有30题,答对一题得4分,不答或答错一题倒扣2分。
(1)小明同学参加了竞赛,成绩是96分。
请问小明在竞赛中答对了多少题?(2)小王也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分。
”请问小王有没有可能拿到100分?试用方程的知识来说明理由。
6.在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?7、在一次数学竞赛中,共有60题选择题,答对一题得2分。
答错一题扣1分,不答题不得分也不扣分。
(1)小华在竞赛中有2题忘记回答,结果他得了92分。
问小华答对了多少题?(2)小胡放言:“我就算有3题没做也能拿100分。
”请问小胡这个说法正不正确?说明理由8.某校有住宿生若干人,若每间宿舍住8人,则有5人无处住;若每间宿舍增加1人,则还空35张床位,求共有多少间宿舍?有多少住宿生?(9分)9.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为?10.我国民间流传着许多趣味算题,它们多以顺口溜的形式表述,请大家看这样的一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一个,一人两个少俩梨,请问君子知道否,几个老头几个梨?请你猜想一下:几个老头几个梨?11.某商店进了一批商品,提高进价的30%后标价,又以8折卖出,结果仍获利200元,这种商品的进价为多少元?(9分)12.在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?。
五年级一元一次方程应用题及答案50题
五年级一元一次方程应用题及答案50题1、某人乘车行121千米的路程,一共用了3小时。
第一段路程每小时行42千米,第二段每小时行38千米,第三段每小时行40千米。
第三段路程为20千米,第一段和第二段路程各有多少千米?2、某果园用硫磺、石灰、水制成一种杀虫药水,其中硫磺2份,石灰1份,水10份,要制成这种药水520千克,需要硫磺多少千克?3、从每千克0。
8元的苹果中取出一部分,又从每千克0。
5元的苹果中取出一部分混合后共15千克,每千克要卖0。
6元,问需从两种苹果中各取出多少千克?4、某人骑自行车以每小时10千米的速度从甲地到乙地,返回时因事绕道而行,比去时多走8千米的路。
虽然行车的速度增加到每小时12千米,但比去时还多用了10分钟。
求甲、乙两地的距离。
5、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程。
已知甲队单独做所需天数是乙队单独做所需天数的多少天?问甲、乙两队单独做,各需多少天?6、甲、乙两个仓库共有20吨货物,从甲仓库调出1到乙仓库后,甲仓库中的货物比乙仓库10中的货物多16吨。
问甲、乙两仓库中原来各有多少吨货物?答:甲库20吨,乙0吨7、一班打草600千克,二班比一班多打150千克,二班比三班多打100千克,把三班打的草按9:11分给一、二两个生产队,各应分多少千克?答:一292。
5二357。
58、一项工程300人共做,需要40天,如果要求提前10天完成,问需要增多少人?答:100人9、一个两位数,个位上的数字是十位上的数字的2倍。
先将这个两位数的两个数字对调,得到第二个两位数,再将第二个两位数的十位数字加上1,个位数字减去1,得到第三个两位数。
若第三个两位数恰好是原来两位数的2倍,求原来两位数的大小。
答:3610、小王骑车从A地到B地共用了4小时。
从B地返回A地,他先以去时的速度骑车行2小时,后因车出了毛病,修车耽误了半小时,接着他用比原速度每小时快6千米的速度回到A地,结果返程比去时少用了10分钟。
一元一次方程的应用题(含解析)
一元一次方程的应用题(一)考试要求:内容基本要求略高要求较高要求一元一了解一元一次方会根据具体问题列出一元一次方能运用整式的加减运算次方程程的有关概念程对多项式进行变形,进一步解决有关问题一元一理解一元一次方能熟练掌握一元一次方程的解会运用一元一次方程解次方程程解法中的各个法;会求含有字母系数(无需讨论)决简单的实际问题的解法步骤的一元一次方程的解例题精讲:应用题是中学数学中的一类重要问题,一般通过对问题中量的关系进行分析,适当的设未知数,找出等量关系列出方程加以解决.很多同学见到应用题就发怵,觉得题目长,文字多,关系复杂,难以把握.其实应用题关键在于读题,弄懂题意.一些常见的问题,比如行程问题、工程问题、利率问题、浓度问题等等,其中的基本关系一定要深刻理解.设未知数的方法一般来讲,有以下几种:直接设未知数解应用题:直接设未知数指题目问什么就设什么,它多适用于要求的未知数只有一个的情况;间接设未知数解应用题:设间接未知数,是指所设的不是所求的,而解得的间接未知数对确定所求的量起中介作用;引入辅助未知数解应用题:设辅助未知数,就是为了使题目中的数量关系更加明确,可以引进辅助未知数帮助建立方程.辅助未知数往往不需要求出,可以在解题时消去.解应用题的方法多种多样,除此之外,还有运用逆推法解应用题、运用整体思想解应用题、运用图形图表法解应用题等等,单纯的背这些方法是没有意义的,关键还在于提高理解能力,大量练习,从而学会快速读懂题意,综合运用各种方法去求解问题.列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为 x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)模块一和差倍分问题【例1】玻璃缸里养了三个品种的金鱼,分别是“水泡”“朝天龙”“珍珠”.“水泡”的条数是“珍珠”的 3 倍;“朝天龙”的条数是“珍珠”的 2 倍,且“朝天龙”比“水泡”少 1 条,这三种金鱼各有几条呢?【解析】设“珍珠”的条数为x条,则“水泡”“朝天龙”的条数分别为3x条、2x条.依题意得:3x2x1,x1,从而3x3,2x2.【答案】3,2,1x【巩固】甲队有 32 人,乙队有 28 人,现从乙队抽人到甲队,使甲队是乙队人数的 2 倍,依题意,列出方程为【解析】略【答案】32 2(28 ).x x 【巩固】汽车若干辆装运货物一批,若每辆汽车装3.5吨货物,这批货物就有 2 吨运不走;若每辆汽车装 4 吨货物,那么装完这批货物后,还可以装其他货物 1 吨,问汽车有 多少辆?这批货物有多少吨?【解析】设有汽车 辆.依题意得:3.5 2 4 1,解之得: 6 ,41 23,故汽车 x x x x x 有 6 辆,货物有 23 吨.【答案】6 ; 23【例2】 ⑴ 甲仓库有粮120吨.乙仓库有粮90 吨.从甲仓库调运剂后甲仓库存粮是乙仓库的一半.吨到乙仓库,调 ⑵ 甲乙两个圆柱体容器,底面积比为5∶3,甲容器水深20c m ,乙容器水深10c m , 再往两个容器注入同样多的水,使两个容器的水深相等,这时水深多少厘米?1【解析】⑴ 从甲仓库调运 吨到乙仓库,依题意得120 (90) ,解得 x 50 . x x x 2⑵ 设这时水深 cm ,依题意得 5( 20) 3( 10),解得 35 .若学生不好理x x x x 解,不妨多设一个底面积比为5 ∶3 .方程为5 (20) 3 ( 10) 即可. a a a x a x 【答案】50 ;352【巩固】某公司有甲乙两个工程队,甲队人数比乙队人数的 多 28 人.现因任务需要,从3乙队调走 20 人到甲队,这时甲队人数是乙队人数的 2 倍,则甲乙两队原来的人数 分别是多少人?2【解析】设乙队原来有 x 人,则甲队有 28 人.依题意可列:x 32 2 x 20 x 28 20 ,解得: 66x 3【答案】72,66【巩固】甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2 倍少189千米,乙铁路长比丙铁路少8 千米,求甲铁路的长. 【解析】设丙铁路长为 千米,则乙铁路长x 8 千米,甲铁路长2 x 8 189 千x 米.依题意可列: x x 8 2 x 8189 1191【答案】499,344,352【巩固】如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长1 1度是它的 ,另一根露出水面的长度是它的 .两根铁棒长度之和为55 ,此时cm 3 木桶中水的深度是5. cm1【解析】设此时木桶中水的深度为 c m ,依题意得,两根铁棒的长度为 [ (1 )]cm 和x x 31 1 1[x (1 )]cm ,故[x (1 )] [x (1 )] 55,解得 20.x 5 3 5【答案】20【例3】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有 100 只吧!”牧羊人答道:“如果这群 羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只 羊也算进去,才刚好凑满 100 只.”问牧羊人的这群羊共有多少只?1 2 14【解析】设这群羊共有 只,依题意,有2 1100 ,解之得 36 .x x x x x 【答案】36模块二 行程问题追击问题解决追击问题的一个最基本的公式:追击时间 速度差 追击的路程.于此相关 的问题都可以应用这一公式进行解答.【例4】 敌我两军相距 32 千米,敌军以每小时 6 千米的速度逃窜,我军同时以每小时 16 千米的速度追击在相距 2 千米的地方发生战斗,问战斗是从 开始追击后几小时发生的?【解析】根据追击问题的基本公式:追击时间 速度差 追击的路程.设战斗是从开始追击后 小时发生的.则依题意可列:166 x 32 2 , x 解得: 3. x 【答案】3【巩固】环城自行车赛,最快的人在开始 48 分钟后遇到最慢的人,已知最快的人的速度是3最慢的人速度的 倍,环城一周是 20 千米,求两个人的速度。
列一元一次方程或二元一次方程组解应用题
实用标准文案文档列一元一次方程或二元一次方程组解应用题:(二)班级 姓名 座号1、 白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?3、某年级学生外出参观,如果每辆汽车坐45人,那么有15个学生没有坐位;如果每辆汽车坐60人,那么空出一辆汽车,问有几辆汽车?有多少个学生?4、某班学生参加运土劳动,一部分同学抬土,另一部分同学挑土,已知全班共用土筐59个,扁担36根,求抬土与挑土的各有多少人?2、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车情况如下表:第一次第二次甲种货车辆数(单位:辆) 2 5乙种货车辆数(单位:辆) 3 6累计运货吨数(单位:吨) 15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费30元计算,问:货主应付运费多少元?5、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元,已知这两种储蓄的年利率的和为3.24%,问这两种储蓄的年利率各是几分之几?(注:公民应交利息所得税=利息金额×20%)6、保护环境,某校环保小组成员小明收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460g;第二天收集1号电池2节,5号电池3节,总重量为240g。
求1号和5号电池每节分别重多少克?7、一只船的载重量为380t,容积为2000m3,有甲、乙两种货物,甲货物4m3/t,乙货物6m3/t,现要最大限度地利用船的载重量和容积,问两种货物各应装多少吨?8、某市按以下规定收取每月水费;若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费,如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水。
列一元一次方程解应用题(分段收费, 行程问题等)
• 某音乐厅五月初决定在暑假期间举办学生 专场音乐会,入场券分为团体票和零售票, 其中团体票占总票数的,若提前购票,则 给予不同程度的优惠,在五月份内,团体 票每张12元,共售出团体票数的;零售票 每张16元,共售出零售票数的一半,如果 在六月份内,团体票按每张16元出售,并 计划在六月份内售出全部余票,那么零售 票应按每张多少元定价才能使这两个月的 票款收入持平?
• 一队学生去校外进行训练,他们以5千米/时 的速度行进,走了18分的时候,学校要将 一个紧急通知传给队长,通讯员从学校出 发,骑自行车以14千米/时的速度按原路追 上去,通讯员需多少时间可以追上学生队 伍?
• 小张和父亲预定搭乘家门口的公共汽车赶 往火车,去家乡看望爷爷。在行驶了一半 路程时,小张向司机询问到达火车站的时 间,司机估计继续乘公共汽车到火车站时 火车将正好开出,根据司机的建议,小张 和父亲随即下车改乘出租车,车速提高了 一倍,结果赶在火车开车前15分钟到达火 车站。已知公共汽车的平均速度是30千米/ 时,问小张家到火车站有多远?
食宿
30%
路费 购物
• 下图是某校七年级360名同学购买不同品牌 计算器人数的扇形统计图,每位同学购买 一只计算器,试回答下列问题: • (1)分别求出购买各种品牌计算器的人 数。 • (2)请你画出购买不同品牌计算器人数分 布的条形统计图。
• • • • • • •
某中学进行体育教学改革,同时开设篮球、排球、足球、体 操课、学生可根据自己的爱好任选其一,体育老师根据七年级学生的 报名情况进行了统计,并绘制成尚未完成的条形统计图和扇形统计 图,请根据统计图解答下列问题。 (1)该校七年级共有多少名学生? (2)将两个统计图补充完整; (3)从统计图中你还能得到哪些信息?(写出两条即可)
一元一次方程应用题典型例题答案
一元一次方程解应用题典型例题1、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?设这个班有x个学生,则3x+20=4x-25x=45变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?解:设X人挖土,运土的则有(48-X)人,则:5X=3×(48-X)5X=144-3X8X=144X=1848-X=30答:应安排18人挖土,30人运土变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?解:设租x辆45做客车45x=60(x-1) -3045x=60x-9015x=90x=66X45=270人2、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设x名工人生产螺钉,则有(22-x)人生产螺母,可得:2x1200x=2000(22-x)x=10所以生产螺母的人数为:22-10=12(人)变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解:设安排生产甲零件的天数为x天,则安排生产乙零件的天数为(30-x)天,根据题意可得:2×120x=3×100(30-x),解得:x=50/3,则30-50/3=40/3(天),答:安排生产甲零件的天数为15天,安排生产乙零件的天数为12天变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解:设用x张做盒身,则做盒底为(100-x)张则:2×10x=30(100-x),x=60.100-x=100-60=40.答:用60张做盒身,40张做盒底.3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?解:设这种商品每件标价是x元,则x×90%-250=250×15.2%x=320变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?解:设成本为X元,则售价为X(1+50%)×80%,(获利28元,即售价-成本=28元),则X(1+50%)×80%-X=28解得X=140元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇
2.甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇.两地间的水路长多少千米
3.一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米.8小时后两车相距多少千米
4.甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时.两车出发后多少小时相遇
5.王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米.如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去.这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米
6.甲乙两队学生从相隔18千米的两地同时出发相向而行.一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米
7. A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米.一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去.这样一直飞下去,燕子飞了多少千米,两车才能相遇
8.甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米.一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米
9.甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米
10.甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米
11.甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行.经过3小时后,两人相隔60千米.南北两庄相距多少千米
12.东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少
13.甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米.几小时后甲可以追上乙
14.甲乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米.几小时后甲可追上乙
15.解放军某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络.多长时间后,通讯员能赶上队伍
16.小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米.3分钟后两人相距多少米
17.甲、乙两沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米.如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙
18.一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间小强第一次追上小星
19.光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起跑.亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米
20.甲、乙两人绕周长1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍.现在甲在乙后面250米,乙追上甲需要多少分钟。