2020-2021福州文博中学初三数学上期中一模试卷含答案

合集下载

2020-2021福州市初三数学上期中模拟试卷附答案

2020-2021福州市初三数学上期中模拟试卷附答案

2020-2021福州市初三数学上期中模拟试卷附答案一、选择题1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x = 2.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( )A .(2,﹣1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,1) 3.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2)4.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m 2,道路的宽为xm ,则可列方程为( )A .32×20﹣2x 2=570 B .32×20﹣3x 2=570 C .(32﹣x )(20﹣2x )=570D .(32﹣2x )(20﹣x )=570 5.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为( )A .2020B .2019C .2018D .2017 6.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +< 7.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-8.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .9.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .10.如图,在Rt ABC V 中,90ACB ∠=o ,60B ∠=o ,1BC =,''A B C V 由ABC V 绕点C 顺时针旋转得到,其中点'A 与点A 、点'B 与点B 是对应点,连接'AB ,且A 、'B 、'A 在同一条直线上,则'AA 的长为( )A .3B .23C .4D . 4311.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B 的右侧).则下列命题中正确命题的是( )①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .A .①②③B .②③⑤C .②④⑤D .②③④⑤ 12.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( ) A .-41 B .-35C .39D .45 二、填空题 13.若关于x 的一元二次方程()22 26k x kx k --+=有实数根,则k 的最小整数值为__________.14.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.15.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.16.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .17.现有甲、乙两个盒子,甲盒子中有编号为4,5,6的3个球,乙盒子中有编号为7,8,9的3个球.小宇分别从这两个盒子中随机地拿出1个球,则拿出的2个球的编号之和大于12的概率为_____.18.一元二次方程()22x x x -=-的根是_____.19.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交»AB 于点E ,以点O 为圆心,OC 的长为半径作»CD交OB 于点D ,若OA=2,则阴影部分的面积为 .20.如图,将ABC V 绕点A 逆时针旋转150︒,得到ADE V ,这时点B C D 、、恰好在同一直线上,则B Ð的度数为______.三、解答题21.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?22.解方程:2220x x +-=.23.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如表所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.24.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ; (2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)25.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,∴抛物线的对称轴为直线x=2,则−2b a =−2b =2, 解得:b=−4, ∴x 2+bx=5即为x 2−4x−5=0,则(x−5)(x+1)=0,解得:x 1=5,x 2=−1.故选D.【点睛】本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.2.B 解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y =﹣x 2﹣4x ﹣3=﹣(x 2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B . 【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.3.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标.【详解】∵A (32,0),B (0,2), ∴OA =32,OB =2, ∴Rt △AOB 中,AB 22352()22+=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2,即B2018的坐标是(6054,2).故选D.【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.4.D解析:D【解析】【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【详解】解:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,故选D.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.5.B解析:B【解析】【分析】根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得.【详解】解:∵α,β是一元二次方程x2﹣x﹣2018=0的两个实数根,∴α+β=1、α2﹣α=2018,则原式=α2﹣α﹣2(α+β)+3=2018﹣2+3=2019,故选:B.【点睛】考查根与系数的关系,解题的关键是掌握韦达定理及方程的解的定义和整体代入思想的运用.6.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意; B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B .【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.D解析:D【解析】【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.故选D .【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.8.D解析:D【解析】【分析】Rt △AOB 中,AB ⊥OB ,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A ,即∠AOD=∠OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt △AOB 中,AB ⊥OB ,且AB=OB=3,∴∠AOB=∠A=45°,∵CD ⊥OB ,∴CD ∥AB ,∴∠OCD=∠A ,∴∠AOD=∠OCD=45°,∴OD=CD=t ,∴S △OCD =12×OD×CD=12t 2(0≤t≤3),即S=12t 2(0≤t≤3). 故S 与t 之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.9.C解析:C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.A解析:A【解析】【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′C A=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A、B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选:A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.11.B解析:B【解析】试题解析:∵抛物线开口向上,∴a>0.∵抛物线对称轴是x=1,∴b<0且b=-2a.∵抛物线与y轴交于正半轴,∴c>0.∴①abc>0错误;∵b=-2a,∴3a+b=3a-2a=a>0,∴②3a+b>0正确;∵b=-2a,∴4a+2b+c=4a-4a+c=c>0,∴④4a+2b+c<0错误;∵直线y=kx+c经过一、二、四象限,∴k<0.∵OA=OD,∴点A的坐标为(c,0).直线y=kx+c当x=c时,y>0,∴kc+c>0可得k>-1.∴③-1<k<0正确;∵直线y=kx+c与抛物线y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=kx+c,得x1=0,x2=k b a -由图象知x2>1,∴k ba->1∴k>a+b,∴⑤a+b<k正确,即正确命题的是②③⑤.故选B.12.C解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a 2-5a-1=0,a+b=5,ab=-1,把22a 3ab 8b 2a ++-变形为2(a 2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a ,b 为方程2x 5x 10--=的两个实数根,∴a 2-5a-1=0,a+b=5,ab=-1,∴22a 3ab 8b 2a ++-=2(a 2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2 =39.故选:C .【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a;熟练掌握韦达定理是解题关键. 二、填空题13.3【解析】【分析】根据二次项系数非零结合根的判别式△≥0即可得出关于k 的一元一次不等式组解之即可得出k 的取值范围【详解】(k-2)x2-2kx+k-6=0∵关于x 的一元二次方程(k-2)x2-2kx解析:3【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨----≥⎩V = , 解得:k≥32且k≠2. ∴k 的最小整数值为3.故答案为:3.此题考查一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.14.-1【解析】试题解析:把代入得解得:故答案为解析:-1【解析】试题解析:把1x =代入2230ax x -+=,得,230.a -+=解得: 1.a =-故答案为 1.-15.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形设A′D=x 根据题意阴影部分的面积为(12−x)×x 即x(12−x)当x(12−x)=32时解得:x=4或x=8所以AA′=8或AA′=4【解析:4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形,设A ′D=x ,根据题意阴影部分的面积为(12−x)×x ,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA ′=8或AA ′=4.【详解】设AA ′=x,AC 与A ′B ′相交于点E ,∵△ACD 是正方形ABCD 剪开得到的,∴△ACD 是等腰直角三角形,∴∠A=45∘,∴△AA ′E 是等腰直角三角形,∴A ′E=AA ′=x ,A ′D=AD−AA ′=12−x ,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x 2−12x+32=0,解得x 1=4,x 2=8,即移动的距离AA ′等4或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·. 16.【解析】【分析】连接OCODOC 与AD 交于点E 根据圆周角定理有根据垂径定理有:解直角即可【详解】连接OCODOC 与AD 交于点E 直尺的宽度:故答案为【点睛】考查垂径定理熟记垂径定理是解题的关键【分析】连接OC ,OD ,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC ,OD ,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-== 533【点睛】 考查垂径定理,熟记垂径定理是解题的关键.17.【解析】【分析】列举出所有情况找出取2个球的编号之和大于12的情况即可求出所求的概率【详解】列树状图得::共有9种等可能的情况其中编号之和大于12的有6种所以概率=故答案为:【点睛】此题主要考查了利解析:23【解析】【分析】列举出所有情况,找出取2个球的编号之和大于12的情况,即可求出所求的概率.【详解】列树状图得::共有9种等可能的情况,其中编号之和大于12的有6种,所以概率= 62 93 =,故答案为:23.【点睛】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题的关键.18.x1=1x2=2【解析】【分析】整体移项后利用因式分解法进行求解即可得【详解】x(x-2)-(x-2)=0x-1=0或x-2=0所以x1=1x2=2故答案为x1=1x2=2【点睛】本题考查了解一元二解析:x1=1, x2=2.【解析】【分析】整体移项后,利用因式分解法进行求解即可得.【详解】x(x-2)-(x-2)=0,()()120x x--=,x-1=0或x-2=0,所以x1=1,x2=2,故答案为x1=1,x2=2.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点熟练选择恰当的方法进行求解是关键.19.【解析】试题解析:连接OEAE∵点C为OA的中点∴∠CEO=30°∠EOC=60°∴△AEO为等边三角形∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===解析:3212π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=323 43ππ-+=3 122π+20.15【解析】分析:先判断出∠BAD=150°AD=AB再判断出△BAD是等腰三角形最后用三角形的内角和定理即可得出结论详解:∵将△ABC绕点A逆时针旋转150°得到△ADE∴∠BAD=150°AD=解析:15【解析】分析:先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.详解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°-∠BAD)=15°,故答案为15°.点睛:此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.三、解答题21.(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.【解析】【分析】(1)根据题意设平均增长率为未知数x ,再根据题意建立方程式求解.(2)根据题意设每碗售价为未知数y ,再根据题意建立方程式求解.【详解】(1)设平均增长率为x ,则2201)28.8x (+=解得:10.220%x == 2 2.2x =-(舍)·答:年平均增长率为20%(2)设每碗售价定为y 元时,每天利润为6300元()6y -[300+30(25-y )]=6300·解得:120y = 221y =·∵每碗售价不超过20元,所以20y =.【点睛】本题考查了在实际生活中对方程式的建立及求解,熟练掌握方程式的实际运用是本题解题关键.22.11=-x 21=-x .【解析】【分析】把常数项移到右边 ,然后利用配方法进行求解即可.【详解】2220x x +-=,222x x +=,22121x x ++=+,()213x +=,1x +=11=-x ,21=-x【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.配方法的步骤:先把常数项移到等号的右边,把二次项系数化1,然后方程两边同时加上一次项系数一半的平方,左边配成完全平方式,两边开平方进行求解.23.王老师购买该奖品的件数为40件.【解析】试题分析:根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.试题解析:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x 件,则每件商品的价格为:[40﹣(x ﹣30)×0.5]元,根据题意可得:x[40﹣(x ﹣30)×0.5]=1400,解得:x 1=40,x 2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.考点:一元二次方程的应用.24.(1)经过第一次传球后,篮球落在丙的手中的概率为12;(2)篮球传到乙的手中的概率为38. 【解析】【分析】(1)根据概率公式即可得出答案;(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案.【详解】(1)经过第一次传球后,篮球落在丙的手中的概率为12; 故答案为:12; (2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,∴篮球传到乙的手中的概率为38.【点睛】本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.25.(1)k <2(2)120,2x x ==-【解析】【分析】(1)根据一元二次方程根的判别式与根的关系列出不等式即可求出k 的取值范围;(2)根据(1)中的k 的取值范围和k 为正整数得出k 的值,再解方程即可,【详解】(1)∵关于x 的一元二次方程有两个不相等的实数根,∴()22410k ∆=-->, =8-4k >0.,∴2k <;(2)∵k 为正整数,∴k =1,解方程220x x +=得,120,2x x ==-.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程.利用一元二次方程根的判别式与根的关系列出不等式是解题的关键.。

2020-2021初三数学上期中一模试题含答案(1)

2020-2021初三数学上期中一模试题含答案(1)

2020-2021初三数学上期中一模试题含答案(1)一、选择题1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x =2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C .D .3.下列事件中,属于必然事件的是( )A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上4.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .5C .6D .8 5.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +< 6.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )A .252元/间B .256元/间C .258元/间D .260元/间7.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .98.一元二次方程2410x x --=配方后可化为( )A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -=9.将函数y=kx 2与y=kx+k 的图象画在同一个直角坐标系中,可能的是( ) A . B . C . D .10.若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >且k ≠1 B .12k > C .12k ≥且k ≠1 D .12k < 11.如图,△ABC 绕点A 旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A .DE=3B .AE=4C .∠ACB 是旋转角D .∠CAE 是旋转角 12.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .2二、填空题13.已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若1211+x x =﹣1,则k 的值为_____. 14.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .15.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是______.16.若关于x 的一元二次方程()22 26k x kx k --+=有实数根,则k 的最小整数值为__________.17.如图,五边形ABCD 内接于⊙O ,若AC=AD ,∠B+∠E=230°,则∠ACD 的度数是__________.18.已知圆锥的底面半径是2cm ,母线长是3cm ,则圆锥侧面积是_________.19.一元二次方程()22x x x -=-的根是_____.20.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有_____.(填序号)三、解答题21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分),A 组:75≤x <80;B 组:80≤x <85;C 组:85≤x <90;D 组:90≤x <95;E 组:95≤x <100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程总有两个不相等的实数根;(2)当p=2时,求该方程的根.23.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.()1求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;()2求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?()3如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本⨯每天的销售量)24.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.25.如图,Rt△ABC中,∠C=90o,BE是它的角平分线,D在AB边上,以DB为直径的半圆O经过点E.(1)试说明:AC 是圆O 的切线;(2)若∠A=30o ,圆O 的半径为4,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,∴抛物线的对称轴为直线x=2,则−2b a =−2b =2, 解得:b=−4, ∴x 2+bx=5即为x 2−4x−5=0,则(x−5)(x+1)=0,解得:x 1=5,x 2=−1.故选D.【点睛】本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.2.B解析:B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形.故选B.3.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.A解析:A【解析】【分析】根据根的判别式的意义得到16﹣4m >0,然后解不等式得到m <4,然后对各选项进行判断.【详解】根据题意得:△=16﹣4m >0,解得:m <4,所以m 可以取3,不能取5、6、8. 故选A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B .【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解析:B【解析】【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况.【详解】设每天的利润为W 元,根据题意,得:W=(x-28)(80-y )-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭ 2112984164x x =-+- ()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去,∴当x=256或x=260时,函数取得最大值,最大值为8224元,又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B .【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.7.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD 的弧长为6,然后利用扇形的面积公式:S 扇形DAB =1lr 2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD 的弧长=6,∴S 扇形DAB =11lr =22×6×3=9. 故选D .本题考查扇形面积的计算.8.D解析:D【解析】【分析】根据移项,配方,即可得出选项.【详解】解:x2-4x-1=0,x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D.【点睛】本题考查了解一元二次方程的应用,能正确配方是解题的关键.9.C解析:C【解析】【分析】根据题意,利用分类讨论的方法,讨论k>0和k<0,函数y=kx2与y=kx+k的图象,从而可以解答本题.【详解】当k>0时,函数y=kx2的图象是开口向上,顶点在原点的抛物线,y=kx+k的图象经过第一、二、三象限,是一条直线,故选项A、B均错误,当k<0时,函数y=kx2的图象是开口向下,顶点在原点的抛物线,y=kx+k的图象经过第二、三、四象限,是一条直线,故选项C正确,选项D错误,故选C.【点睛】本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.A解析:A【解析】【分析】由根的判别式求出k的取值范围,再结合一元二次方程的定义,即可得到答案.【详解】解:∵关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,∴224(1)(2)0k ∆=-⨯-⨯->, 解得:12k >, ∵10k -≠,则1k ≠, ∴k 的取值范围是12k >且k≠1; 故选:A .【点睛】本题考查了利用根的判别式求参数的取值范围,以及一元二次方程的定义,解题的关键是正确求出k 的取值范围.11.D解析:D【解析】【分析】根据旋转的定义和三角形的性质即可求解.【详解】∵△ABC 绕点A 旋转一定角度得到△ADE ,BC=4,AC=3.∴DE=BC=4;AE=AC=3;∠CAE 是旋转角.故答案选D.【点睛】本题考查的知识点是旋转的性质,解题的关键是熟练的掌握旋转的性质.12.C解析:C【解析】【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12b x a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12b x a=-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】 ∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12b x a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0,所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++, ∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12b x a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-,根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C .【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.二、填空题13.【解析】【分析】利用根与系数的关系结合=﹣1可得出关于k 的方程解之可得出k 的值由方程的系数结合根的判别式△>0可得出关于k 的不等式解之即可得出k 的取值范围进而可确定k 的值此题得解【详解】∵关于x 的一 解析:【解析】【分析】利用根与系数的关系结合1211+x x =﹣1可得出关于k 的方程,解之可得出k 的值,由方程的系数结合根的判别式△>0可得出关于k 的不等式,解之即可得出k 的取值范围,进而可确定k 的值,此题得解.【详解】∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0的两根为x 1,x 2,∴x 1+x 2=﹣(2k +3),x 1x 2=k 2, ∴1211+x x =1212x x x x +=﹣223k k +=﹣1, 解得:k 1=﹣1,k 2=3.∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根,∴△=(2k +3)2﹣4k 2>0,解得:k >﹣34, ∴k 1=﹣1舍去.∴k =3.故答案为:3.【点睛】 本题考查了一元二次方程根与系数的关系及根的判别式,熟练运用根与系数的关系及根的判别式是解决问题的关键.14.【解析】【分析】【详解】∵将△ABC 绕点B 顺时针旋转60°得到△BDE ∴△ABC ≌△BDE ∠CBD=60°∴BD=BC=12cm ∴△BCD 为等边三角形∴CD=BC=BD=12cm 在Rt △ACB 中AB解析:【解析】【分析】【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为42.考点:旋转的性质.15.P >Q 【解析】∵抛物线的开口向下∴a<0∵∴b>0∴2a -b <0∵∴b+2a=0x=-1时y=a-b+c <0∴∴3b -2c >0∵抛物线与y 轴的正半轴相交∴c>0∴3b+2c>0∴P=3b -2cQ=b解析:P >Q【解析】∵抛物线的开口向下,∴a <0, ∵02b a-> ∴b >0,∴2a-b <0, ∵02b a-= ∴b+2a=0, x=-1时,y=a-b+c <0. ∴102b bc --+< ∴3b-2c >0, ∵抛物线与y 轴的正半轴相交,∴c >0,∴3b+2c >0,∴P=3b-2c ,Q=b-2a-3b-2c=-2a-2b-2c ,∴Q-P=-2a-2b-2c-3b+2c=-2a-5b=-4b <0∴P >Q ,故答案是:P >Q .【点睛】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.16.3【解析】【分析】根据二次项系数非零结合根的判别式△≥0即可得出关于k 的一元一次不等式组解之即可得出k 的取值范围【详解】(k-2)x2-2kx+k-6=0∵关于x 的一元二次方程(k-2)x2-2kx解析:3【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨----≥⎩= , 解得:k≥32且k≠2. ∴k 的最小整数值为3.故答案为:3.【点睛】此题考查一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.17.65°【解析】【分析】连接OAOCOD 利用同弧所对的圆心角等于圆周角得2倍求出所求的角即可【详解】解:如图解:连接OAOCOD 在圆的内接五边形ABCDE 中∠B+∠E=230°∠B=(∠AOD+∠CO解析:65°【解析】【分析】连接OA,OC,OD,利用同弧所对的圆心角等于圆周角得2倍求出所求的角即可. 【详解】解:如图解:连接OA,OC,OD,在圆的内接五边形ABCDE 中, ∠B+∠E=230°, ∠B=12(∠AOD+∠COD), ∠E=12(∠AOC+∠COD),(圆周角定理) ∴12(∠AOD+∠COD)+ 12(∠AOC+∠COD)= 230°, 即:12(∠AOD+∠COD+∠AOC+∠COD )= 230°, 可得:∠C0D=o o 2230360⨯-=0100,可得:∠CAD=050,在△ACD 中,AC=AD ,∠CAD=050,可得∠ACD=065,故答案:065.【点睛】此题考查了圆心角、弧、弦的关系,以及圆周角定理,熟练掌握定 理及法则是解本题的关键.18.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=【详解】根据圆锥的侧面积公式:底面半径是2cm 母线长是3cm 的圆锥侧面积为故答案是:【点睛】本题考查圆锥的侧面积解题的关键是记住圆锥是侧面积公式解析:26cm π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=RL π.【详解】根据圆锥的侧面积公式:RL π底面半径是2cm ,母线长是3cm 的圆锥侧面积为 236ππ⨯⨯=故答案是:26cm π【点睛】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.19.x1=1x2=2【解析】【分析】整体移项后利用因式分解法进行求解即可得【详解】x(x-2)-(x-2)=0x-1=0或x-2=0所以x1=1x2=2故答案为x1=1x2=2【点睛】本题考查了解一元二解析:x 1=1, x 2=2.【解析】【分析】整体移项后,利用因式分解法进行求解即可得.【详解】x(x-2)-(x-2)=0,()()120x x --=,x-1=0或x-2=0,所以x 1=1, x 2=2,故答案为x 1=1, x 2=2.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点熟练选择恰当的方法进行求解是关键.20.③④【解析】【分析】【详解】由抛物线的开口向下可得a <0;由与y 轴的交点为在y 轴的正半轴上可得c >0;因对称轴为x==1得2a=-b 可得ab 异号即b >0即可得abc <0所以①错误;观察图象根据抛物线 解析:③④【解析】【分析】【详解】由抛物线的开口向下,可得a <0;由与y 轴的交点为在y 轴的正半轴上,可得c >0;因对称轴为x=2b a-=1,得2a=-b ,可得a 、b 异号,即b >0,即可得abc <0,所以①错误;观察图象,根据抛物线与x 轴的交点可得,当x=-1时,y <0,所以a-b+c <0,即b >a+c ,所以②错误;观察图象,抛物线与x 轴的一个交点的横坐标在-1和0之间,根据对称轴为x=2b a =1可得抛物线与x 轴的一个交点的横坐标在2和3之间,由此可得当x=2时,函数值是4a+2b+c >0,所以③正确;由抛物线与x 轴有两个交点,可得b 2-4ac >0,所以④正确.综上,正确的结论有③④.【点睛】本题考查了二次函数y=ax 2+bx+c (a≠0)的图象与系数的关系:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;a 还可以决定开口大小,a 越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异) ③常数项c 决定抛物线与y 轴交点, 抛物线与y 轴交于(0,c ).④抛物线与x 轴交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.三、解答题21.(1)40;画图见解析;(2)108°,15%;(3)23. 【解析】【分析】(1)用A 组人数除以A 组所占百分比得到参加初赛的选手总人数,用总人数乘以B 组所占百分比得到B 组人数,从而补全频数分布直方图;(2)用360度乘以C 组所占百分比得到C 组对应的圆心角度数,用E 组人数除以总人数得到E 组人数占参赛选手的百分比;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男生和一女生的情况,再利用概率公式即可求得答案.【详解】解:(1)参加初赛的选手共有:8÷20%=40(人),B 组有:40×25%=10(人). 频数分布直方图补充如下:故答案为40;(2)C 组对应的圆心角度数是:360°×1240=108°,E 组人数占参赛选手的百分比是:640×100%=15%; (3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为812=23. 22.(1)证明见解析(2)x 1517-,x 2517+ 【解析】【分析】(1)首先求出方程的根的判别式,然后得出根的判别式为非负数,得出答案;(2)将p=2代入方程,利用公式法求出方程的解.【详解】(1)证明:方程可变形为x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=1+4p 2.∵p 2≥0,∴4p 2+1>0,即△>0,∴这个方程总有两个不相等的实数根.(2)解:当p=2时,原方程为x 2﹣5x+2=0,∴△=25﹣4×2=17, ∴517±, ∴x 1517-x 2517+. 23.()()21y 5x 800x 2750050x 100=-+-≤≤;()2当x 80=时,y 4500=最大值;()3 销售单价应该控制在82元至90元之间.【解析】【分析】(1)根据每天销售利润=每件利润×每天销售量,可得出函数关系式;(2)将(1)的关系式整理为顶点式,根据二次函数的顶点,可得到答案;(3)先求出利润为4000元时的售价,再结合二次函数的增减性可得出答案.【详解】解:由题意得:()()y x 50505100x ⎡⎤=-+-⎣⎦()()x 505x 550=--+25x 800x 27500=-+-()2y 5x 800x 2750050x 100∴=-+-≤≤;()22y 5x 800x 27500=-+-25(x 80)4500=--+a 50=-<,∴抛物线开口向下.50x 100≤≤,对称轴是直线x 80=,∴当x 80=时,y 4500=最大值;()3当y 4000=时,25(x 80)45004000--+=,解得1x 70=,2x 90=.∴当70x 90≤≤时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得()505x 5507000-+≤,解得x 82≥.82x 90∴≤≤,50x 100≤≤,∴销售单价应该控制在82元至90元之间.【点睛】本题考查二次函数的应用,熟练掌握二次函数的图像与性质是解题的关键.24.(1)见解析;(2)BF =2.【解析】【分析】(1)由旋转的性质得到三角形ABC 与三角形ADE 全等,以及AB =AC ,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS 得到三角形AEC 与三角形ADB 全等即可;(2)根据∠BAC =45°,四边形ADFC 是菱形,得到∠DBA =∠BAC =45°,再由AB =AD ,得到三角形ABD 为等腰直角三角形,求出BD 的长,由BD ﹣DF 求出BF 的长即可.【详解】解:(1)由旋转的性质得:△ABC ≌△ADE ,且AB =AC ,∴AE =AD ,AC =AB ,∠BAC =∠DAE ,∴∠BAC+∠BAE =∠DAE+∠BAE ,即∠CAE =∠DAB ,在△AEC 和△ADB 中,AE AD CAE DAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△ADB (SAS );(2)∵四边形ADFC 是菱形,且∠BAC =45°,∴∠DBA =∠BAC =45°,由(1)得:AB =AD ,∴∠DBA =∠BDA =45°,∴△ABD 为直角边为2的等腰直角三角形,∴BD 2=2AB 2,即BD =22,∴AD =DF =FC =AC =AB =2,∴BF =BD ﹣DF =22﹣2.【点睛】此题考查了旋转的性质,全等三角形的判定与性质,以及菱形的性质,熟练掌握旋转的性质是解本题的关键.25.(1)见解析;(2)图中阴影部分的面积为8833-π. 【解析】【分析】(1)由OB=OE ,利用等边对等角得到一对角相等,再由BE 为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OE 与BC 平行,利用两直线平行同位角相等得到OE ⊥AC ,即可得证;(2)由∠A 的度数求出∠AOE 度数,利用30°直角三角形的性质求出OA 的长,利用勾股定理求出AE 的长,阴影部分面积=直角三角形AOE 面积-扇形OED 面积,求出即可.【详解】解:(1)∵OB=OE ,∴∠BEO=∠EBO ,∵BE 平分∠CBO ,∴∠EBO=∠CBE ,∴∠BEO=∠CBE ,∴EO ∥BC ,∵∠C=90°,∴∠AEO=∠C=90°,则AC 是圆O 的切线;(2)在Rt △AEO 中,∠A=30°,OE=4,∴OA=2OE=8,∠AOE=60°,根据勾股定理得:=则S 阴影=S △AOE -S 扇形EOD =2160484.23603ππ⨯⨯⨯= 【点睛】此题考查了切线的判定,以及扇形面积的计算,涉及的知识有:等腰三角形的性质,平行线的判定与性质,含30°直角三角形的性质,以及勾股定理,熟练掌握切线的判定方法是解本题的关键.。

2020-2021学年福建省福州某校九年级上学期期中数学试卷 (解析版)

2020-2021学年福建省福州某校九年级上学期期中数学试卷 (解析版)

2020-2021学年福建省某校九年级第一学期期中数学试卷一、选择题1.(3分)方程x2﹣4=0的两个根是()A.x1=2,x2=﹣2 B.x=﹣2 C.x=2 D.x1=2,x2=02.(3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A.B.C.D.4.(3分)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为()A.2:1 B.1:2 C.4:1 D.1:4 5.(3分)已知圆的半径为3,一点到圆心的距离是5,则这点在()A.圆内B.圆上C.圆外D.都有可能6.(3分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2C.y=3(x+1)2+2 D.y=3(x﹣1)2+2 7.(3分)已知点A(1,2),O是坐标原点,将线段OA 绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)8.(3分)如图,抛物线与两坐标轴的交点分别为(﹣1,0),(2,0),(0,2),则当y>2时,自变量x的取值范围是()A.B.0<x<1 C.D.﹣1<x<2 9.(3分)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.510.(3分)如图,AB=AC=AD,若∠DAC是∠CAB的k倍(k 为正数),那么∠DBC是∠BDC的()A.k倍B.2k倍C.3k倍D.k倍二.填空题(共6小题,每题4分,满分24分)11.(4分)关于x的方程x2﹣3x﹣k=0有两个不相等的实数根,则k的取值范围是.12.(4分)一个圆盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,且落在圆盘内,则飞镖落在白色区域的概率是.13.(4分)如图,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=.14.(4分)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=75t﹣1.5t2,则飞机着陆后从开始滑行到完全停止所用的时间是秒.15.(4分)在平面直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为时,使得△BOC∽△AOB.16.(4分)在△ABC中,AB=4,∠A=30°,AC=3,点O 是△ABC内一点,则点O到△ABC三个顶点的距离和的最小值是.三、解答(本题共9小题,86分)17.(8分)解方程:x2﹣2x=1.18.(8分)如图,△ABC的项点坐标分别为A(0,1),B (3,3),C(1,3).(1)画出△ABC关于点O的中心对称的△A1B1C1.(2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2.(3)写出A2,B2,C2的坐标.19.(8分)福州国际马拉松赛事设有“马拉松(42.195公里)”,“半程马拉松(21.0975公里)”,“迷你马拉松(5公里)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195公里)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.20.(8分)如图,A、B、C、P四点均在边长为1的小正方形网格格点上.(1)判断△PBA与△ABC是否相似,并说明理由;(2)求∠BAC的度数.21.(8分)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,求⊙O的直径.22.(10分)某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.23.(10分)(1)已如:如图,正方形ABCD中,∠EDF=45°,DE、DF分别交边AB、BC平点E、F,求证:EF=AE+CF.(2)在平面直角坐标系中、正方形OABC的两顶点A、C 分别在y轴、x轴的正半轴上,点O在原点,将正方形OABC 绕O点顺时针旋转,当A点第一次落在直线y=x上停止,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N.设△MBN的周长为P,在旋转正方形OABC的过程中,P 值是否有变化?请证明你的结论.24.(11分)如图,△ABC内接于⊙O,AB是⊙O的直径,AC=6,CB=8,CE平分∠ACB交⊙O于E,交AB于点D,过点E作MN∥AB 分别交CA、CB延长线于M,N.(1)补全图形,并证明MN是⊙O的切线.(2)分别求MN、CD的长.25.(13分)已知抛物线的对称轴是直线m,顶点为点M,若自变量x和函数值y1的部分对应值如下表所示:x﹣10123y1030(1)求y1与x之间的函数关系式.(2)若经过点T(0,t)作垂直于y轴的直线m′,A为直线m′上的动点,线段AM的垂直平分线交直线m′于点B,点B关于直线AM的对称点为P,记P(x,y2),①用含t与x的代数式示y2.②当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.参考答案一、选择题(共10小,每题3分,满分30分)1.(3分)方程x2﹣4=0的两个根是()A.x1=2,x2=﹣2 B.x=﹣2 C.x=2 D.x1=2,x2=0【分析】首先移项,再两边直接开平方即可.解:移项得:x2=4,两边直接开平方得:x=±2,则x1=2,x2=﹣2,故选:A.2.(3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】中心对称图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合;轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合;据此判断出既是轴对称图形,又是中心对称图形的是哪个即可.解:∵选项A中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项A不正确;∵选项B中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项B正确;∵选项C中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项C不正确;∵选项D中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形,∴选项D不正确.故选:B.3.(3分)一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A.B.C.D.【分析】让白球的个数除以球的总个数即为所求的概率.解:因为一共有6个球,白球有4个,所以从布袋里任意摸出1个球,摸到白球的概率为:.故选:D.4.(3分)若△ABC∽△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为()A.2:1 B.1:2 C.4:1 D.1:4 【分析】由△ABC∽△DEF与它们的面积比为4:1,根据相似三角形面积的比等于相似比的平方,即可求得△ABC 与△DEF的相似比.解:∵△ABC∽△DEF,它们的面积比为4:1,∴△ABC与△DEF的相似比为2:1.故选:A.5.(3分)已知圆的半径为3,一点到圆心的距离是5,则这点在()A.圆内B.圆上C.圆外D.都有可能【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,设点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.解:∵点到圆心的距离5,大于圆的半径3,∴点在圆外.故选C.6.(3分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2C.y=3(x+1)2+2 D.y=3(x﹣1)2+2【分析】根据图象向下平移减,向右平移减,可得答案.解:抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2,故选:A.7.(3分)已知点A(1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据题意画出图形利用旋转的性质即可解答.解:如图,根据旋转的性质可知,OB1=OB=1,A1B1=AB=2,可知点A1的坐标是(﹣2,1),故选:A.8.(3分)如图,抛物线与两坐标轴的交点分别为(﹣1,0),(2,0),(0,2),则当y>2时,自变量x的取值范围是()A.B.0<x<1 C.D.﹣1<x<2 【分析】先根据抛物线与x轴的交点求出其对称轴方程,再根据抛物线与y轴的交点坐标及抛物线的对称性即可进行解答.解:∵抛物线与x轴的交点坐标分别为(﹣1,0)、(2,0),∴其对称轴方程为:x==,∵抛物线与y轴的交点为(0,2),∴此点关于对称轴的对称点横坐标为:2×=1,∵0<x<1时函数的图象的纵坐标大于2,∴当y>2时,自变量x的取值范围是0<x<1.故选:B.9.(3分)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.5【分析】根据直角三角形斜边上中线是斜边的一半可得DF =AB=AD=BD=5且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=8,由EF=DE﹣DF 可得答案.解:∵AF⊥BF,∴∠AFB=90°,∵AB=10,D为AB中点,∴DF=AB=AD=BD=5,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴=,即,解得:DE=8,∴EF=DE﹣DF=3,故选:B.10.(3分)如图,AB=AC=AD,若∠DAC是∠CAB的k倍(k 为正数),那么∠DBC是∠BDC的()A.k倍B.2k倍C.3k倍D.k倍【分析】先证出点B、C、D在以A为圆心的圆上再根据圆周角定理解答即可.解:∵AB=AC=AD,∴点B、C、D在以A为圆心的圆上,∴∠BDC=∠CAB,∠DBC=∠DAC,∵∠DAC=k∠CAB,∴∠DBC=k∠CAB=k×2∠BDC=k∠BDC,故选:A.二.填空题(共6小题,每题4分,满分24分)11.(4分)关于x的方程x2﹣3x﹣k=0有两个不相等的实数根,则k的取值范围是﹣.【分析】由方程根的情况可得方程根的判别式△>0,得到关于k的不等式,解不等式即可求得k的范围.解:∵关于x的方程x2﹣3x﹣k=0有两个不相等的实数根,∴△>0,即(﹣3)2+4k>0,解得k>﹣,故答案为:﹣.12.(4分)一个圆盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,且落在圆盘内,则飞镖落在白色区域的概率是.【分析】根据一个圆盘被平均分成红、黄、蓝、白4个扇形区域,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的,再根据概率公式即可得出答案.解:∵一个圆盘被平均分成红、黄、蓝、白4个扇形区域,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的,∴飞镖落在白色区域的概率是;故答案为:.13.(4分)如图,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=80°.【分析】由∠P=50°,根据三角形内角和定理,可求得∠B+∠C的度数,又由OA=OB=OC=OD,即可求得∠OAB+∠ODC的度数,继而求得∠AOB+∠COD,则可求得答案.解:∵∠P=50°,∴∠B+∠C=180°﹣∠P=130°,∵OA=OB,OC=OD,∴∠OAB=∠B,∠ODC=∠C,∴∠OAB+∠ODC=∠B+∠C=130°,∴∠AOB+∠COD=360°﹣(∠B+∠OAB+∠C+∠ODC)=100°,∴∠AOD=180°﹣(∠AOB+∠COD)=80°.故答案为:80°.14.(4分)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=75t﹣1.5t2,则飞机着陆后从开始滑行到完全停止所用的时间是25 秒.【分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.解:由题意得,s=75t﹣1.5t2=﹣1.5(t2﹣50t+625﹣625)=﹣1.5(t﹣25)2+937.5,即当t=25秒时,飞机才能停下来.故答案是:25.15.(4分)在平面直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为(﹣1,0)或者(1,0)时,使得△BOC∽△AOB.【分析】根据相似三角形的性质列方程即可得到结论.解:∵点A为(4,0),∴AO=4;∵点B为(0,2),∴OB=2.若△BOC∽△AOB.则:=.即:=,∴OC=1.故点C为(﹣1,0)或者(1,0).故答案为:(﹣1,0)或者(1,0).16.(4分)在△ABC中,AB=4,∠A=30°,AC=3,点O 是△ABC内一点,则点O到△ABC三个顶点的距离和的最小值是 5 .【分析】分别以OA和AB边向外作等边三角形ABD和AOE,连接OC,OB,ED,CD,证明△AED≌△AOB可得DE=OB,当点C,O,E,D四点共线时,OE+DE+OC的值最小,此时OA+OB+OC=OE+DE+OC=CD,再根据勾股定理即可求得结论.解:如图,分别以OA和AB边向外作等边三角形ABD和AOE,连接OC,OB,ED,CD,∵△ABD和△AOE都是等边三角形,∴AE=AO,AD=AB,∠OAE=∠BAD=60°,∴∠DAE=∠BAO,在△AED和△AOB中,,∴△AED≌△AOB(SAS),∴DE=OB,∴OA+OB+OC=OE+DE+OC,当点C,O,E,D四点共线时,OE+DE+OC的值最小,此时OA+OB+OC=OE+DE+OC=CD,∵∠BAC=30°,∠BAD=60°,∴∠DAC=90°,又AB=4,AC=3,在Rt△ADC中,CD===5.故答案为:5.三、解答(本题共9小题,86分)17.(8分)解方程:x2﹣2x=1.【分析】方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.解:∵x2﹣2x=1,∴x2﹣2x+1=1+1,∴(x﹣1)2=2,∴x﹣1=±,∴x=1±∴x 1=1+,x2=1﹣.18.(8分)如图,△ABC的项点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称的△A1B1C1.(2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2.(3)写出A2,B2,C2的坐标.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2即可;(3)利用(2)中所画图形写出点A2、B2、C2的坐标.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)A2(1,0),B2(3,﹣3),C2(3,﹣1).19.(8分)福州国际马拉松赛事设有“马拉松(42.195公里)”,“半程马拉松(21.0975公里)”,“迷你马拉松(5公里)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195公里)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为A、B、C,画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.解:(1)小智被分配到“马拉松(42.195公里)”项目组的概率为,故答案为:;(2)记这三个项目分别为A、B、C,画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3,所以小智和小慧被分到同一个项目组进行志愿服务的概率为=.20.(8分)如图,A、B、C、P四点均在边长为1的小正方形网格格点上.(1)判断△PBA与△ABC是否相似,并说明理由;(2)求∠BAC的度数.【分析】(1)△PBA与△ABC相似,利用勾股定理计算出AB的长,利用由两边的比值和一个夹角相等的两个三角形相似可证明结论成立;(2)由(1)可知:∠BAC=∠BPA,因为∠BPA易求,问题得解.解:(1)△PBA与△ABC相似,理由如下:∵AB==,BC=5,BP=1,∴,∵∠PBA=∠ABC,∴△PBA∽△ABC;(2)∵△PBA∽△ABC∴∠BAC=∠BPA,∵∠BPA=90°+45°=135°,∴∠BAC=135°.21.(8分)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,求⊙O的直径.【分析】连接BO并延长交圆O与点D,连接AD,根据BD 是直径,易证△ABD为直角三角形;∠D=∠C=30°.则BD=2AB=8.解:连接BO并延长交圆O于点D,连接AD,∵∠BAC=120°,AB=AC=4,∴∠C=30°,∴∠BOA=60°.又∵OA=OB,∴△AOB是正三角形.∴OB=AB=4,∴BD=8.∴⊙O的直径为8.22.(10分)某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.【分析】(1)利用每件衬衫每降价1元,商场平均每天可多售出2件,即可得出每件衬衣降价x元,每天可以多销售2x件,进而得出y与x的函数关系式;再利用商场降价后每天盈利=每件的利润×卖出的件数=(50﹣降低的价格)×(40+增加的件数),把相关数值代入即可求解;(2)利用商场降价后每天盈利=每件的利润×卖出的件数=(50﹣降低的价格)×(40+增加的件数),利用二次函数最值求法得出即可.解:(1)设每件衬衫应降价x元,由题意得:(50﹣x)(40+2x)=2400,解得:x1=10,x2=20,因为尽量减少库存,x1=10舍去.答:每件衬衫应降价20元.(2)设每天盈利为W元,则W=(50﹣x)(40+2x)=﹣2(x﹣15)2+2450,当x=15时,W最大为2450.答:每件衬衫降价15元时,商场服装部每天盈利最多.23.(10分)(1)已如:如图,正方形ABCD中,∠EDF=45°,DE、DF分别交边AB、BC平点E、F,求证:EF=AE+CF.(2)在平面直角坐标系中、正方形OABC的两顶点A、C 分别在y轴、x轴的正半轴上,点O在原点,将正方形OABC 绕O点顺时针旋转,当A点第一次落在直线y=x上停止,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N.设△MBN的周长为P,在旋转正方形OABC的过程中,P 值是否有变化?请证明你的结论.【分析】(1)把△DAE绕点D逆时针旋转90°得到△DCG,如图1,根据旋转的性质得∠EDG=90°,DE=DG,AE=CG,∠DCG=∠A=90°,再证明△DFE≌△DFG得到EF=FG,则EF=FC+CG=FC+AE;(2)如图2,利用直线y=x为第一、三象限的角平分线得到∠MON=45°,根据(1)的结论得MN=AM+CN,然后利用等线段代换得到P=2AB,从而可判断P的值为定值.【解答】(1)证明:∵四边形ABCD为正方形,∴DA=DC,∠A=∠ADC=∠ACB=90°,把△DAE绕点D逆时针旋转90°得到△DCG,如图1,∴∠EDG=90°,DE=DG,AE=CG,∠DCG=∠A=90°,∵∠DCB+∠DCG=180°,∴B、C、G三点共线,∵∠EDF=45°,∴∠GDF=∠EDG﹣45°=45°,∴∠EDF=∠GDF,在△DFE和△DFG中,∴△DFE≌△DFG(SAS),∴EF=FG,∴EF=FC+CG=FC+AE;(2)解:在旋转正方形OABC的过程中,P值不变.理由如下:∵直线y=x为第一、三象限的角平分线,∴∠MON=45°,由(1)的结论得MN=AM+CN,∴P=BM+BN+MN=BM+AM+BN+CN=BA+BC=2AB,而AB为正方形的边长,∴P的值为定值.24.(11分)如图,△ABC内接于⊙O,AB是⊙O的直径,AC=6,CB=8,CE平分∠ACB交⊙O于E,交AB于点D,过点E作MN∥AB 分别交CA、CB延长线于M,N.(1)补全图形,并证明MN是⊙O的切线.(2)分别求MN、CD的长.【分析】(1)根据直径所对的圆周角是直角,再由角平分线的意义和圆周角定理可求出∠AOE=90°,得出OE⊥AB,最后由MN∥AB,得出OE⊥MN,进而得出结论;(2)根据等腰直角三角形的边角关系可求出AE=BE=5,再由相似三角形求出BN,CE,进而求出CD.【解答】证明:(1)补全图形如图所示,连接OE,∵AB是⊙O的直径,∴∠ACB=90°,又∵CE平分∠ACB,∴∠ACE=∠BCE=∠ACB=45°,∴∠AOE=2∠ACE=90°,∴OE⊥AB,又∵MN∥AB,∴OE⊥MN,∴MN是⊙O的切线;(2)过点C作CQ⊥MN,垂足为Q,交AB于点P,则CQ⊥AB,在Rt△ABC中,∵AC=6,BC=8,∴AB===10∴OE=PQ=OA=OB=5,由三角形的面积公式得,AC•BC=AB•CP,∴6×8=10CP,∴CP=4.8,∴CQ=4.8+5=9.8,∵AB∥MN,∴△CAB∽△CMN,∴=,即=,∴MN=,连接BE,则BE=AE,在Rt△ABE中,AE=BE=×AB=5,∵EN是⊙O的切线,∴∠BEN=∠BCE=∠ACE,∵ACBE是⊙O的内接四边形,∴∠EBN=∠CAB,∴△AEC∽△BNE,∴=,即=,∴BN=,∵∠ACE=∠ECN,∠CAE=∠CEN,∴△CAE∽△CEN,∴=,即=,解得,CE=7,又∵∠ACD=∠ECB,∠CAD=∠CEB,∴△ACD∽△ECB,∴=,即=,解得,CD=,∴MN=,CD=.25.(13分)已知抛物线的对称轴是直线m,顶点为点M,若自变量x和函数值y1的部分对应值如下表所示:x﹣10123y1030(1)求y1与x之间的函数关系式.(2)若经过点T(0,t)作垂直于y轴的直线m′,A为直线m′上的动点,线段AM的垂直平分线交直线m′于点B,点B关于直线AM的对称点为P,记P(x,y2),①用含t与x的代数式示y2.②当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.【分析】(1)用待定系数法即可求解;(2)先根据(1)中y1与x之间的函数关系式得出顶点M 的坐标.①记直线m与直线m′交于点C(1,t),当点A′与点C 不重合时,由已知得,AM与BP互相垂直平分,故可得出四边形ANMP为菱形,所以PA∥m,再由点P(x,y2)可知点A(x,t)(x≠1),所以PM=PA=|y2﹣t|,过点P作PQ⊥m于点Q,则点Q(1,y2),故QM=|y2﹣3|,PQ=AC =|x﹣1|,在Rt△PQM中,根据勾股定理即可得出y2与x 之间的函数关系式,再由当点A与点C重合时,点B与点P重合可得出P点坐标,故可得出y2与x之间的函数关系式;②根据题意,借助函数图象:当抛物线y2开口方向向上时,可知6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),由于3>,所以不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,求出y1﹣y2的值,进而求解.解:(1)∵抛物线经过点(0,),∴c=.∴y1=ax2+bx+,∵点(﹣1,0)、(3,0)在抛物线y1=ax2+bx+上,∴,解得,∴y1与x之间的函数关系式为:y1=﹣x2+x+;(2)∵y1=﹣x2+x+=﹣(x﹣1)2+3,∴直线m为x=1,顶点M(1,3).①由题意得,t≠3,如图,记直线m与直线m′交于点C(1,t),当点A与点C不重合时,∵由已知得,AM与BP互相垂直平分,∴四边形ABMP为菱形,∴PA∥m,又∵点P(x,y2),∴点A(x,t)(x≠1),∴PM=PA=|y2﹣t|,过点P作PQ⊥m于点Q,则点Q(1,y2),∴QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,∵PM2=QM2+PQ2,即(y2﹣t)2=(y2﹣3)2+(x﹣1)2,整理得,y2=(x﹣2)2+,即y2=x2﹣x+;∵当点A与点C重合时,点B与点P重合,∴P(1,),∴P点坐标也满足上式,∴y2与x之间的函数关系式为y2=x2﹣x+(t ≠3);②根据题意,借助函数图象:当抛物线y2开口方向向上时,6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),∵3>,∴不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,y1﹣y2=﹣(x﹣1)2+3﹣[(x﹣1)2+]=(x ﹣1)2+,若3t﹣11≠0,要使y1<y2恒成立,只要抛物线y=(x﹣1)2+开口方向向下,且顶点(1,)在x轴下方,∵3﹣t<0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.综上,可以使y1<y2恒成立的t的取值范围是t≥.。

2020-2021初三数学上期中一模试题(含答案)(1)

2020-2021初三数学上期中一模试题(含答案)(1)

2020-2021初三数学上期中一模试题(含答案)(1)一、选择题1.方程2(2)9x -=的解是( )A .1251x x ==-,B .1251x x =-=,C .12117x x ==-, D .12117x x =-=, 2.下列图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D .3.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为( )A .2020B .2019C .2018D .2017 4.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤- 5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120° 6.抛物线y =2(x -3)2+4的顶点坐标是( )A .(3,4)B .(-3,4)C .(3,-4)D .(2,4) 7.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=21 8.如图,已知二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于点A (﹣1,0),对称轴为直线x=1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x >3时,y <0;②3a+b <0; ③213a -≤≤-; ④248acb a ->;其中正确的结论是( )A.①③④B.①②③C.①②④D.①②③④9.下列事件中,属于必然事件的是()A.任意数的绝对值都是正数B.两直线被第三条直线所截,同位角相等C.如果a、b都是实数,那么a+b=b+a D.抛掷1个均匀的骰子,出现6点朝上10.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是().A.摸出的4个球中至少有一个球是白球B.摸出的4个球中至少有一个球是黑球C.摸出的4个球中至少有两个球是黑球D.摸出的4个球中至少有两个球是白球11.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A.1 B.2 C.3 D.412.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD二、填空题13.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=52,则BC的长为_____.14.若关于x的方程x2+2x+m=0没有实数根,则m的取值范围是_______.15.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.16.圆锥的底面半径为14cm ,母线长为21cm ,则该圆锥的侧面展开图的圆心角为_____ 度.17.如图,五边形ABCD 内接于⊙O ,若AC=AD ,∠B+∠E=230°,则∠ACD 的度数是__________.18.关于x 的方程ax²-(3a+1)x+2(a+1)=0有两个不相等的实数根x 1,x 2,且x 1-x 1x 2+x 2=1-a ,则a=19.母线长为2cm ,底面圆的半径为1cm 的圆锥的侧面积为__________ cm².20.两个全等的三角尺重叠放在△ACB 的位置,将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,AB 与CE 相交于点F .已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm ,则CF=______cm .三、解答题21.如图,AB 是O e 的直径,点C D 、在O e 上,且四边形AOCD 是平行四边形,过点D 作O e 的切线,分别交OA 的延长线与OC 的延长线于点E F 、,连接BF 。

2021-2022学年福建省福州市鼓楼区文博中学九年级(上)期中数学试卷(附答案详解)

2021-2022学年福建省福州市鼓楼区文博中学九年级(上)期中数学试卷(附答案详解)

2021-2022学年福建省福州市鼓楼区文博中学九年级(上)期中数学试卷1.抛物线y=−(x−2)2+3的顶点坐标是()A. (−2,3)B. (2,3)C. (2,−3)D. (−2,−3)2.二次函数y=3(x−2)2−5与y轴交点坐标为()A. (0,2)B. (0,−5)C. (0,7)D. (0,3)3.如图所示,△ABC与△A′B′C′关于点O成中心对称,则下列结论不一定成立的是()A. 点A与点A′是对称点B. BO=B′OC. ∠ACB=∠CA′B′D. AB//A′B′4.如图,将△ABC绕顶点C旋转得到△DEC,点A对应点D,点B对应点E,且点B刚好落在DE边上,∠A=24°,∠BCD=48°,则∠ABD等于()A. 30°B. 38°C. 36°D. 45°5.如图,Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点B逆时针旋转得△A′BC′,若点C′在AB上,则AA′的长为()A. √13B. 4C. 2√5D. 56.对于函数y=5x2,下列结论正确的是()A. y随x的增大而增大B. 图象开口向下C. 图象关于y轴对称D. 无论x取何值,y的值总是正的7.已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:x−10123 y51−1−11则二次函数图象的对称轴为()A. y轴B. 直线x=52C. 直线x=2 D. 直线x=328.如图,正方形ABCD的对角线AC与BD相交于点O.将∠COB绕点O顺时针旋转,设旋转角为α(0<α<90°),角的两边分别与BC,AB交于点M,N,连接DM,CN,MN,下列四个结论:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正确结论的个数是()A. 1B. 2C. 3D. 49.若点P(m−1,5)与点Q(3,2−n)关于原点成中心对称,则m+n的值是______.10.若抛物线y=x2−4x+c的顶点在x轴上,则c的值是______ .11.如图,已知点A(3,0),B(1,4),C(3,−2),D(7,0),连接AB,CD,将线段AB绕着某一点旋转一定角度,使A,B分别与C,D重合,则旋转中心的坐标为______ .12.如图,△ABC是等边三角形,点D为△ABC内一点,连接AD,BD,CD,∠ADB=150°,AD=2,CD=√13,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点D′,则CD′的长为______ .13.若二次函数y=x2+bx−5的对称轴为直线x=2,则关于x的方程x2+bx−5=2x−13的解为______.14.如图,点P为正方形ABCD对角线BD上的一个动点,若AB=2,则AP+BP+CP的最小值为______ .15.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.16.已知抛物线y=x2−kx−3k与x轴的一个交点为(−2,0)(1)求k的值;(2)求抛物线与x轴的另一个交点坐标.17.如图,△ABC中,∠BAC=120°,以BC为边向外作等边△BCD,把△ABD绕着D点按顺时针方向旋转60°后到△ECD的位置,且点A、C、E在同一直线上.若AB=6,AC=4,则AD=______.18.已知二次函数y=ax2+bx+c(a≠0)的图象的顶点为(2,−2),与x轴交于点(1,0)、(3,0),根据图象回答下列问题:(1)此二次函数的关系式为______.(2)方程ax2+bx+c=0的两个根是______.(3)当x______时,y随x的增大而减小;当x______时,y随x的增大而增大.19.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系y=ax2+bx−75.其图象如图(图象过(5,0)、(7,16)两点).(1)求a、b的值.(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(3)销售单价在什么范围时,该种商品每天的销售利润不低于16元?20.如图,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,作FG⊥BC于点G;(1)求证:BE=CG.(2)若BE=2、DN=3,求EN的长.答案和解析1.【答案】B【解析】解:∵抛物线的解析式为:y=−(x−2)2+3,∴其顶点坐标为(2,3).故选B.直接根据二次函数的顶点式进行解答即可.本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.2.【答案】C【解析】解:∵y=3(x−2)2−5∴当x=0时,y=7,即二次函数y=3(x−2)2−5与y轴交点坐标为(0,7),故选:C.根据题目中的函数解析式,令x=0,求出相应的y的值,即可解答本题.本题考查二次函数图象上点的坐标特征,解答本题的关键是明确二次函数与y轴交点的横坐标等于0.3.【答案】C【解析】解:∵△ABC与△A′B′C′关于点O成中心对称,∴点A与点A′是对称点,BO=B′O,AB//A′B′,∠ACB=∠A′C′B′,故选项A,B,D正确,C错误;故选C.利用中心对称的性质一一判断即可.本题考查中心对称,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.【答案】C【解析】解:∵△ABC绕顶点C旋转得到△DEC,∴∠D=∠A=24°,∠ACB=∠DCE,∵∠BCD=48°,∴∠CBE=48°+24°=72°,∵CE=CB,∴∠E=∠CBE=48°,∴∠ECB=180°−48°−48°=84°,∵∠CBA=∠E=48°,∴∠ABD=180°−48°−48°−48°=36°,故选:C.根据旋转的性质和等腰三角形的性质即可得到结论.本题考查了旋转的性质,等腰三角形的性质,熟练掌握旋转的性质即可得到结论.5.【答案】C【解析】解:根据旋转可知:∠A′C′B=∠C=90°,A′C′=AC=4,AB=A′B,根据勾股定理,得AB=√BC2+AC2=√32+42=5,∴A′B=AB=5,∴AC′=AB−BC′=2,在Rt△AA′C′中,根据勾股定理,得AA′=√AC′2+A′C′2=√22+42=2√5.故选:C.根据旋转可得∠A′C′B=∠C=90°,A′C′=AC=4,由勾股定理求出AB=A′B=5,进而可得AC′的值,再根据勾股定理可得AA′的长.本题考查了旋转的性质,勾股定理,解决本题的关键是掌握旋转的性质.6.【答案】C【解析】【分析】本题考查了二次函数的性质.根据二次函数解析式结合二次函数的性质,即可得出结论.【解答】解:∵二次函数解析式为y=5x2,∴二次函数图象开口向上,当x<0时,y随x增大而减小,当x>0时,y随x增大而增大,对称轴为y轴,无论x取何值,y的值总是非负.故选:C.7.【答案】D【解析】【分析】本题考查了二次函数的性质,主要利用了二次函数的对称性,比较简单.由于x=1、2时的函数值相等,然后根据二次函数的对称性列式计算即可得解.【解答】解:∵x=1和2时的函数值都是−1,∴对称轴为直线x=1+22=32.故选D.8.【答案】C【解析】【分析】本题主要考查了旋转的性质,正方形的性质、全等三角形的判定与性质,勾股定理的综合应用,熟练掌握正方形的性质,证明三角形全等是解题的关键.由“ASA”可证△OCM≌△OBN,可得CM=BN,ON=OM,再证明出可判断③,即可得到∠CDM=∠BCN,由余角的性质可判断②,由三角形内角和可判断①,根据△DCM≌△CNB,由勾股定理可判断④.【解答】解:∵四边形ABCD是正方形∴CD=BC,BO=CO,AC⊥BD,∠ACB=∠ABD=45°∵将∠COB绕点O顺时针旋转,∴∠COM=∠BON,且BO=CO,∠ACB=∠ABD∴△OCM≌△OBN(ASA)∴CM=BN,ON=OM,在Rt△DCM和Rt△CBN中,{CD=BC∠DCM=∠CBNCM=BN,故③正确;∴∠CDM=∠BCN,∵∠CDM+∠CMD=90°∴∠BCN+∠CMD=90°∴CN⊥DM,故②正确;∵∠MON=∠ABC=90°,ON=OM,∴∠ONM=∠OMN=45°,∴∠ONM=∠OBM,∵∠OPN=∠BPM∴∠BON=∠BMN=∠COM>∠BCN=∠CDM,故①错误;∵AB=BC,BN=CM,∴AN=BM,∵BN2+BM2=MN2,∴AN2+CM2=MN2;故④正确故选C.9.【答案】5【解析】解:∵点P(m−1,5)与点Q(3,2−n)关于原点成中心对称,∴m−1=−3,2−n=−5,解得:m=−2,n=7,故m+n=5.故答案为:5.直接利用关于原点对称点的性质得出m,n的值,进而得出答案.此题主要考查了关于原点对称点的性质,正确得出m,n的值是解题关键.10.【答案】4【解析】【分析】把抛物线化为顶点式可得出其顶点坐标,根据顶点在x轴上,可知顶点的纵坐标为0可求得c.本题主要考查二次函数的顶点坐标,掌握顶点在x轴上其纵坐标为0是解题的关键.【解答】解:∵y=x2−4x+c=(x−2)2+c−4,∴其顶点坐标为(2,c−4),∵顶点在x轴上,∴c−4=0,解得c=4,故答案为:4.11.【答案】(2,−1)【解析】解:如图,连接BD,作线段BD,AC的垂直平分线交于点M,点M即为旋转中心,M(2,−1).故答案为:(2,−1).对应点连线段的垂直平分线的交点即为旋转中心,作线段BD,AC的垂直平分线交于点M,点M即为旋转中心.本题考查坐标与图形变化−旋转,解题的关键是正确寻找旋转中心,属于中考常考题型.12.【答案】3【解析】解:如图,连接DD′,∵将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点D′,∴AD=AD′=2,∠DAD′=60°,∠ADB=∠AD′C,∴△ADD′为等边三角形,∴∠AD′D=60°,∠AD′C=150°,DD′=2,∴∠DD′C=∠AD′C−∠AD′D=150°−60°=90°,∵CD=√13,∴CD′=√CD2−DD′2=√(√13)2−22=3,故答案为:3.连接DD′,由旋转的性质得出AD=AD′=2,∠DAD′=60°,∠ADB=∠AD′C,得出△ADD′为等边三角形,求出∠DD′C=90°,由勾股定理可得出答案.本题考查了旋转的性质,等边三角形的判定与性质,勾股定理,熟练掌握旋转的性质是解题的关键.13.【答案】x1=2,x2=4【解析】【分析】本题主要考查的是二次函数与一元二次方程.利用抛物线的对称性求得b的值是解题的关键.根据对称轴方程求得b,再解一元二次方程即可得解.【解答】解:∵二次函数y=x2+bx−5的对称轴为直线x=2,∴−b=2,2得b=−4,则x2+bx−5=2x−13可化为:x2−4x−5=2x−13,即x2−6x+8=0,解得,x1=2,x2=4.故答案为:x1=2,x2=4.14.【答案】√2+√6【解析】解:将△BPC绕点B顺时针旋转60°,得到△BP′C′,∴BP=BP′,∠PBP′=60°,△BPC≌△BP′C′,∴△BPP′是等边三角形,PC=P′C′,∠PBC=∠P′BC′,BC=BC′=2,∴BP=PP′,∴PA+PB+PC=AP+PP′+P′C′,∴当AP,PP′,P′C′在一条直线上,PA+PB+PC有最小值,最小值是AC′的长,∵∠ABP+∠PBP′+∠P′BC′=60°+∠ABP+∠PBC=150°,∴∠EBC=30°,∴EC′=1,BE=√3EC′=√3,∴AE=2+√3,∴AC′=√AE2+C′E2=√(2+√3)2+1=√2+√6,∴AP+BP+CP的最小值√2+√6.故答案为:√2+√6.将△BPC绕点B顺时针旋转60°,得到△BP′C′,可得△PBP′为等边三角形,若PA+PB+PC=AP+PP′+P′C′,即AP,PP′,P′C′在一条直线上,PA+PB+PC有最小值,求出AC′的值即可本题考查旋转的性质,正方形的性质,全等三角形的性质,等边三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键15.【答案】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)根据图形可知:旋转中心的坐标为:(−3,0).【解析】本题考查了平移、中心对称、旋转作图,掌握相关的点的变换是解题关键.(1)根据平移的性质即可将△ABC向右平移6个单位长度得到△A1B1C1;(2)根据中心对称的定义即可画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)根据旋转的性质即可将△ABC绕某一点旋转可得到△A2B2C2,进而写出旋转中心的坐标.16.【答案】解:(1)根据题意得,4+2k−3k=0,所以k=4;得抛物线的解析式为y=x2−4x−12;(2)∵x2−4x−12=0,解得x1=−2,x2=6,∴抛物线与x轴的另一个交点坐标(6,0).【解析】①将点(−2,0)的坐标代入抛物线的解析式中,即可求得k的值;②确定出抛物线的解析式,令抛物线中y=0,可得出关于x的一元二次方程,即可求得抛物线与x轴的另一交点的坐标.本题考查了用待定系数法求函数解析式的方法及二次函数与一元二次方程的关系等知识.17.【答案】10【解析】解:∵将△ABD绕着D点按顺时针方向旋转60°后到△ECD的位置,∴AD=DE,∠ADE=60°,AB=CE,∵∠BDC+∠BAC=60°+120°=180°,∴∠ABD+∠ACD=180°,∵∠ABD=∠DCE,∴∠ACD+∠DCE=180°,∴A,C,E在同一条直线上,∴△ADE是等边三角形,∴AD=AE=AC+EC=AC+AB=10,故答案为:10.直接利用旋转的性质得出AD=DE,∠ADE=60°,AB=CE,再根据等边三角形的判定与性质得出答案.本题考查了旋转的性质,等边三角形的判定与性质,正确得出A,C,E在同一条直线上是解题的关键.18.【答案】y=2(x−2)2−2x1=3,x2=1x<2x>2【解析】解:(1)设该二次函数的解析式为y=a(x−2)2−2(a≠0),点(1,0)代入得0=a−2,解得a=2,∴二次函数的关系式为y=2(x−2)2−2,故答案为:y=2(x−2)2−2;(2)∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(3,0)、(1,0),∴ax 2+bx +c =0的根为:x 1=3,x 2=1,故答案为:x 1=3,x 2=1;(3)∵二次函数y =ax 2+bx +c(a ≠0)的图象的顶点为(2,−2),∴开口向上,对称轴为直线x =2,∴当x <2时,y 随x 的增大而减小;当x >2时,y 随x 的增大而增大,故答案为:x <2,x >2.(1)设该二次函数的解析式为y =a(x −2)2−2(a ≠0),把点(1,0)代入即可求得a 的值;(2)根据抛物线与x 轴的交点的横坐标就是二次方程的两个实数根,可直接得结论;(3)根据二次函数的性质即可得到结论.本题考查了抛物线与x 轴的交点,二次函数的性质及待定系数法求二次函数的解析式.会读图用图是解决本题的关键.19.【答案】解:(1)由图象可得出:图象过(5,0),(7,16)点,故{25a +5b −75=049a +7b −75=16, 解得:{a =−1b =20, ∴a =−1,b =20;(2)由(1)知,y =−x 2+20x −75=−(x −10)2+25,∵−1<0,∴当x =10时,y 有最大值,最大值为25,答:当销售单价为为10元时,种商品每天的销售利润最大,最大利润为25元;(3)∵函数y =−x 2+20x −75图象的对称轴为直线x =10,可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y =−x 2+20x −75图象开口向下,∴当7≤x ≤13时,y ≥16.答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.【解析】(1)利用待定系数法求二次函数解析式得出即可;(2)由(1)可得函数解析式,再根据函数的性质求最大值;(3)利用二次函数对称性得出每天的销售利润不低于16元时x 的取值范围即可此题主要考查了二次函数的应用以及待定系数法求二次函数解析式等知识,正确利用二次函数对称性得出是解题关键.20.【答案】(1)证明:∵EF⊥AE,FG⊥BC,四边形ABCD是正方形,∴∠AEF=∠ABE=∠EGF=90°,AB=BC,∴∠AEB+∠BAE=∠AEB+∠GEF=90°,∴∠BAE=∠GEF,∵AE=EF,∴△ABE≌△EGF(AAS),∴AB=EG=BC,∴BC−EC=EG−EC,即:BE=CG;(2)解:延长EB到到K,使得BK=DN,∵四边形ABCD是正方形,∴AD=AB,∠BAD=∠D=∠ABC=∠ABKF=90°,∵DN=BK,∴△ADN≌△ABK(SAS),∴AK=AN,∠DAN=∠BAK,∵EA=EF,∠AEF=90,∴∠EAF=45°,∴∠KAE=∠BAK十∠BAE=∠DAN十∠BAE=45°,∴∠EAK=∠EAN=45°,又∵AE=AE,∴△EAK≌△EAN(SAS),∴EK=EN,∵BE=2、DN=3,∴EN=EK=EB+BK=BE+DN=2+3=5.【解析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等即可解决问题.(2)延长EB到到K,使得BK=DN,证明△ADN≌△ABK(SAS),由全等三角形的性质得出AK=AN,∠DAN=∠BAK,证明△EAK≌△EAN(SAS),由全等三角形的性质得出EK=EN,则可得出结论.本题考查了全等三角形的判定与性质,正方形的性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.。

2020-2021九年级数学上期中一模试题带答案(3)

2020-2021九年级数学上期中一模试题带答案(3)

2020-2021九年级数学上期中一模试题带答案(3)一、选择题1.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°2.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列说法正确的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0D.a<0,b<0,c>0 4.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴为直线l.则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④5.下列交通标志是中心对称图形的为()A.B.C.D.6.抛物线y=2(x-3)2+4的顶点坐标是( )A .(3,4)B .(-3,4)C .(3,-4)D .(2,4)7.如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .8.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( ) A .1B .1或4C .4D .09.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm10.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .11.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 A .4个B .3个C .2个D .1个12.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2yx B .2(12)y x =- C .(12)y x x =- D .2(12)y x =-二、填空题13.如图,矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8,四边形OCED 为菱形,若将菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M ,则线段ME 的长度可取的整数值为___________________.14.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是;15.已知圆锥的底面半径是2cm,母线长是3cm,则圆锥侧面积是_________.16.关于x的方程的260xx m-+=有两个相等的实数根,则m的值为________.17.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.18.已知x1,x2是方程x2﹣x﹣3=0的两根,则1211+x x=_____.19.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=______cm.20.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.三、解答题21.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据:抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率mn0.630.600.630.600.620.610.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.22.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.23.甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.(1)用列表法(或画树状图)求甲获胜的概率;(2)你认为这个游戏规则对双方公平吗?请简要说明理由.24.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).25.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价0.5元,其销量减少10件.(1)若涨价x 元,则每天的销量为____________件(用含x 的代数式表示); (2)要使每天获得700元的利润,请你帮忙确定售价.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:根据圆周的度数为360°,可知优弧AC 的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°. 故选D考点:圆周角定理2.B解析:B 【解析】分析:根据轴对称图形与中心对称图形的概念求解即可. 详解:A .是轴对称图形,不是中心对称图形; B .是轴对称图形,也是中心对称图形; C .是轴对称图形,不是中心对称图形; D .是轴对称图形,不是中心对称图形. 故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.3.B解析:B 【解析】 【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号. 【详解】∵抛物线开口向下, ∴a <0,∵抛物线的对称轴在y 轴的右侧, ∴x =﹣2ba>0,∴b >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0, 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.4.D解析:D 【解析】 【分析】 【详解】试题分析:①∵二次函数图象的开口向下, ∴a <0,∵二次函数图象的对称轴在y 轴右侧, ∴﹣2ba>0, ∴b >0,∵二次函数的图象与y 轴的交点在y 轴的正半轴上, ∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0), ∴a ﹣b+c=0,故②正确; ③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0, ∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确; ④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0, ∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确. 故选D .考点:二次函数图象与系数的关系.5.C解析:C 【解析】 【分析】根据中心对称图形的定义即可解答. 【详解】解:A 、属于轴对称图形,不是中心对称的图形,不合题意; B 、是中心对称的图形,但不是交通标志,不符合题意; C 、属于轴对称图形,属于中心对称的图形,符合题意; D 、不是中心对称的图形,不合题意. 故选C . 【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.6.A解析:A 【解析】根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是(3,4).故选A.7.D解析:D 【解析】 【分析】Rt △AOB 中,AB ⊥OB ,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A ,即∠AOD=∠OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象. 【详解】解:∵Rt △AOB 中,AB ⊥OB ,且AB=OB=3, ∴∠AOB=∠A=45°, ∵CD ⊥OB , ∴CD ∥AB , ∴∠OCD=∠A , ∴∠AOD=∠OCD=45°,∴OD=CD=t , ∴S △OCD =12×OD×CD=12t 2(0≤t≤3),即S=12t 2(0≤t≤3). 故S 与t 之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象; 故选D . 【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.8.C解析:C 【解析】 【分析】先把x =0代入方程求出m 的值,然后根据一元二次方程的定义确定满足条件的m 的值. 【详解】解:把x =0代入方程得m²−5m +4=0,解得m ₁=4,m ₂=1, 而a−1≠0, 所以m =4. 故选C . 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.9.A解析:A 【解析】 【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r . 【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠==,=, 30A B ︒∴∠∠==, 1452OE OA cm ∴==,∴弧CD 的长1204530180ππ⨯==,设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选:A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.10.C解析:C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.12.C解析:C【解析】【分析】根据周长关系求出另一边的长,再用面积公式即可表示y与x的函数.【详解】x cm,∵长方形的周长为24cm,其中一边长为()∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =-故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.二、填空题13.345【解析】【分析】连接OE 交CD 与点M 根据矩形与菱形的性质由勾股定理求出OE 的长在旋转过程中求出OM 的取值范围进而得出ME 的取值范围进而求解【详解】如图连接OE 交CD 与点M ∵矩形ABCD 对角线A解析:3,4,5 【解析】 【分析】连接OE 交CD 与点M ,根据矩形与菱形的性质,由勾股定理求出OE 的长,在旋转过程中,求出OM 的取值范围,进而得出ME 的取值范围,进而求解. 【详解】如图,连接OE 交CD 与点M ,∵矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8, ∴90BAD ︒∠=,OA OB OC OD ===, ∴由勾股定理知,10BD =, ∴5OA OB OC OD ====, ∵四边形OCED 为菱形, ∴OE CD ⊥,132DM CD ==, ∴由勾股定理知,4OM =,即8OE =,∵菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M , ∴当OE AD ⊥或OE BC ⊥时,OM 取得最小值3, 当OE 与OA 或OB 或OC 或OD 重合时,OM 取得最大值5, ∴35OM ≤≤, ∵8OE =, ∴35ME ≤≤,∴线段ME 的长度可取的整数值为3,4,5, 故答案为:3,4,5.【点睛】本题考查矩形与菱形的性质,勾股定理,旋转的性质,将求ME 的取值范围转化为求OM 的取值范围是解题的关键.14.20%【解析】【分析】此题可设每次降价的百分率为x 第一次降价后价格变为100(1-x )元第二次在第一次降价后的基础上再降变为100(1-x )(1-x )即100(1-x )2元从而列出方程求出答案【详解解析:20% 【解析】 【分析】此题可设每次降价的百分率为x ,第一次降价后价格变为100(1-x )元,第二次在第一次降价后的基础上再降,变为100(1-x )(1-x ),即100(1-x )2元,从而列出方程,求出答案. 【详解】设每次降价的百分率为x ,第二次降价后价格变为100(1-x )2元. 根据题意,得100(1-x )2=64, 即(1-x )2=0.64, 解得x 1=1.8,x 2=0.2. 因为x=1.8不合题意,故舍去, 所以x=0.2.即每次降价的百分率为0.2,即20%. 故答案为20%.15.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=【详解】根据圆锥的侧面积公式:底面半径是2cm 母线长是3cm 的圆锥侧面积为故答案是:【点睛】本题考查圆锥的侧面积解题的关键是记住圆锥是侧面积公式 解析:26cm π【解析】 【分析】圆锥的侧面积=底面周长×母线长÷2=RL π. 【详解】根据圆锥的侧面积公式:RL π底面半径是2cm ,母线长是3cm 的圆锥侧面积为 236ππ⨯⨯= 故答案是:26cm π 【点睛】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.16.9【解析】【分析】因为一元二次方程有两个相等的实数根所以△=b2-4ac=0根据判别式列出方程求解即可【详解】∵关于x 的方程x2-6x+m=0有两个相等的实数根∴△=b2-4ac=0即(-6)2-4解析:9 【解析】【分析】因为一元二次方程有两个相等的实数根,所以△=b 2-4ac=0,根据判别式列出方程求解即可. 【详解】∵关于x 的方程x 2-6x+m=0有两个相等的实数根, ∴△=b 2-4ac=0, 即(-6)2-4×1×m=0, 解得m=9 故答案为:9 【点睛】总结:一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.17.m 【解析】【分析】利用勾股定理易得扇形的半径那么就能求得扇形的弧长除以2π即为圆锥的底面半径【详解】解:易得扇形的圆心角所对的弦是直径∴扇形的半径为:m∴扇形的弧长为:=πm∴圆锥的底面半径为:π÷m . 【解析】 【分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径. 【详解】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:2m ,∴扇形的弧长为:902180π⨯m ,∴圆锥的底面半径为:4π÷2πm .【点睛】本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.18.-【解析】【分析】利用根与系数的关系可得出x1+x2=1x1•x2=-3将其代入=中即可得出结论【详解】∵x1x2是方程x2﹣x ﹣3=0的两根∴x1+x2=1x1•x2=﹣3∴===﹣故答案为:﹣【解析:-13【解析】 【分析】利用根与系数的关系可得出x 1+x 2=1,x 1•x 2=-3,将其代入1211+x x =1212x x x x +⋅中即可得出结论. 【详解】∵x 1,x 2是方程x 2﹣x ﹣3=0的两根, ∴x 1+x 2=1,x 1•x 2=﹣3, ∴1211+x x =1212x x x x +⋅=13-=﹣13. 故答案为:﹣13. 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于ca”是解题的关键. 19.【解析】试题解析∵将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置使点A 恰好落在边DE 上∴DC=AC∠D=∠CAB∴∠D=∠DAC∵∠ACB=∠DCE=90°∠B=30°∴∠D=∠CAB=6解析: 【解析】试题解析∵将其中一个三角尺绕着点C 按逆时针方向旋转至△DCE 的位置,使点A 恰好落在边DE 上,∴DC =AC ,∠D =∠CAB , ∴∠D =∠DAC ,∵∠ACB =∠DCE =90°,∠B =30°, ∴∠D =∠CAB =60°, ∴∠DCA =60°, ∴∠ACF =30°, 可得∠AFC =90°, ∵AB =8cm , ∴AC =4cm ,∴FC =4cos30°. 【点睛】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC 的度数是解题关键.20.【解析】试题分析:设小道进出口的宽度为x 米依题意得(30-2x )(20-x )=532整理得x2-35x+34=0解得x1=1x2=34∵34>30(不合题意舍去)∴x=1答:小道进出口的宽度应为1米解析:【解析】试题分析:设小道进出口的宽度为x米,依题意得(30-2x)(20-x)=532,整理,得x2-35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.考点:一元二次方程的应用.三、解答题21.(1)见表格解析;(2)见解析;(3)0.39.【解析】【分析】(1)先由频率=频数÷试验次数算出频率;(2)根据表格作出折线统计图即可;(3)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率.【详解】解:(1)抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率0.630.600.620.630.620.600.620.610.610.61(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.【点睛】考核知识点:用频率表示概率.求出频率是关键.22.60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】【分析】根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1;(2)代入271,列方程,方程有解则存在这样的点阵.【详解】解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=61个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为61,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.【点睛】本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.23.(1) 12;(2)公平,理由见解析【解析】【分析】本题考查了概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.【详解】方法一画树状图:由上图可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结 果有6种.∴P (和为奇数)= 12. 方法二列表如下:由上表可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结 果有6种.∴P (和为奇数)= 12; (2)∵P (和为奇数)= 12,∴P (和为偶数)= 12,∴这个游戏规则对双方是公平的. 【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)()04A ,、()31C ,(2)见解析(3)32【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:,则901801802n r l ππ⨯===. 考点:图形的旋转、扇形的弧长计算公式. 25.(1)200-20x ;(2)15元. 【解析】试题分析:(1)如果设每件商品提高x 元,即可用x 表示出每天的销售量; (2)根据总利润=单价利润×销售量列出关于x 的方程,进而求出未知数的值. 试题解析:解:(1)200-20x ;(2)根据题意,得 (10-8+x )(200-20x )=700, 整理得 x 2-8x +15=0, 解得 x 1=5,x 2=3,因为要采取提高售价,减少售货量的方法增加利润, 所以取x =5.所以售价为10+5=15(元), 答:售价为15元.点睛:此题考查了一元二次方程在实际生活中的应用.解题的关键是理解题意,找到等量关系,列出方程.。

2020-2021福州市九年级数学上期中第一次模拟试卷(附答案)

2020-2021福州市九年级数学上期中第一次模拟试卷(附答案)

2020-2021福州市九年级数学上期中第一次模拟试卷(附答案)一、选择题1.若关于x 的一元二次方程4x 2-4x+c=0有两个相等实数根,则c 的值是( ) A .-1B .1C .-4D .4 2.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°3.﹣3的绝对值是( ) A .﹣3B .3C .-13D .134.用配方法解方程2410x x -+=,配方后的方程是 ( ) A .2(2)3x +=B .2(2)3x -=C .2(2)5x -=D .2(2)5x +=5.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m 2,道路的宽为xm ,则可列方程为( )A .32×20﹣2x 2=570 B .32×20﹣3x 2=570 C .(32﹣x )(20﹣2x )=570 D .(32﹣2x )(20﹣x )=5706.若α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根,则α2﹣3α﹣2β+3的值为( ) A .2020B .2019C .2018D .20177.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( ) A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 8.若关于x 的一元二次方程ax 2+bx ﹣1=0(a ≠0)有一根为x =2019,则一元二次方程a (x ﹣1)2+b (x ﹣1)=1必有一根为( ) A .12019B .2020C .2019D .20189.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h10.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧¼AMB 上一点,则∠APB 的度数为( )A .45°B .30°C .75°D .60°11.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ). A .摸出的4个球中至少有一个球是白球 B .摸出的4个球中至少有一个球是黑球 C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球12.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .二、填空题13.已知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.若1211+x x =﹣1,则k 的值为_____. 14.圆锥的底面半径为14cm ,母线长为21cm ,则该圆锥的侧面展开图的圆心角为_____ 度.15.如图,将正六边形ABCDEF 放置在直角坐标系内,A(﹣2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C 的坐标是_____.16.请你写出一个二次函数,其图象满足条件:①开口向下;②与y轴的交点坐标为(0,3).此二次函数的解析式可以是______________17.小明同学测量一个光盘的直径,他只有一把直尺和一块三角尺,他将直尺、光盘和三角尺按图所示方法放置于桌面上,并量出AB=3 cm,则此光盘的直径是________cm.18.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.19.Rt△ABC中,∠C=90°,若直角边AC=5,BC=12,则此三角形的内切圆半径为________.20.如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为_____.三、解答题21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据:抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率mn0.630.600.630.600.620.610.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.23.已知在△ABC中,∠B=90o,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.(1)求证:AC·AD=AB·AE;(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.24.如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.(1)求证:CD 是⊙O 的切线; (2)若半径OB=2,求AD 的长.25.如图,AB 为⊙O 的直径,AC 、DC 为弦,∠ACD=60°,P 为AB 延长线上的点,∠APD=30°.(1)求证:DP 是⊙O 的切线;(2)若⊙O 的半径为3cm ,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据一元二次方程根的判别式可得:当△=0时,方程有两个相等的实数根;当△>0时,方程有两个不相等的实数根;当△<0时,方程没有实数根. 【详解】解:根据题意可得: △=2(4) -4×4c=0,解得:c=1 故选:B . 【点睛】本题考查一元二次方程根的判别式.2.D解析:D 【解析】试题分析:根据圆周的度数为360°,可知优弧AC 的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理3.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 4.B解析:B【解析】【分析】根据配方法可以解答本题.【详解】x2−4x+1=0,(x−2)2−4+1=0,(x−2)2=3,故选:B.【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.5.D解析:D【解析】【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【详解】解:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,故选D.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.6.B解析:B【分析】根据方程的解的定义及韦达定理得出α+β=1、α2-α=2018,据此代入原式=α2-α-2(α+β)+3计算可得. 【详解】解:∵α,β是一元二次方程x 2﹣x ﹣2018=0的两个实数根, ∴α+β=1、α2﹣α=2018, 则原式=α2﹣α﹣2(α+β)+3 =2018﹣2+3 =2019, 故选:B . 【点睛】考查根与系数的关系,解题的关键是掌握韦达定理及方程的解的定义和整体代入思想的运用.7.B解析:B 【解析】 【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决. 【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯…,解得:116k …,此时116k …且0k ≠; 综上,116k ….故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.8.B解析:B 【解析】 【分析】对于一元二次方程a (x-1)2+b (x-1)-1=0,设t=x-1得到at 2+bt-1=0,利用at 2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a (x-1)2+b (x-1)=1必有一根为x=2020. 【详解】对于一元二次方程a (x-1)2+b (x-1)-1=0,所以at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2019, 所以at 2+bt-1=0有一个根为t=2019, 则x-1=2019, 解得x=2020,所以一元二次方程a (x-1)2+b (x-1)=1必有一根为x=2020. 故选B . 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.D解析:D 【解析】 【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案. 【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D. 【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.10.D解析:D 【解析】 【分析】 【详解】作半径OC ⊥AB 于点D ,连结OA ,OB , ∵将O 沿弦AB 折叠,圆弧较好经过圆心O ,∴OD=CD,OD=12OC=12OA,∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB=120°,∴∠APB=12∠AOB=60°.(圆周角等于圆心角的一半)故选D.11.B解析:B【解析】【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选B.【点睛】本题考查随机事件.12.B解析:B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误. 故选B .点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y =ax ﹣a 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、填空题13.【解析】【分析】利用根与系数的关系结合=﹣1可得出关于k 的方程解之可得出k 的值由方程的系数结合根的判别式△>0可得出关于k 的不等式解之即可得出k 的取值范围进而可确定k 的值此题得解【详解】∵关于x 的一解析:【解析】 【分析】利用根与系数的关系结合1211+x x =﹣1可得出关于k 的方程,解之可得出k 的值,由方程的系数结合根的判别式△>0可得出关于k 的不等式,解之即可得出k 的取值范围,进而可确定k 的值,此题得解. 【详解】∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0的两根为x 1,x 2, ∴x 1+x 2=﹣(2k +3),x 1x 2=k 2, ∴1211+x x =1212x x x x +=﹣223k k +=﹣1,解得:k 1=﹣1,k 2=3.∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根, ∴△=(2k +3)2﹣4k 2>0,解得:k >﹣34, ∴k 1=﹣1舍去. ∴k =3.故答案为:3. 【点睛】本题考查了一元二次方程根与系数的关系及根的判别式,熟练运用根与系数的关系及根的判别式是解决问题的关键.14.240【解析】【分析】根据弧长=圆锥底面周长=28πcm 圆心角=弧长180母线长π计算【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm 扇形的圆心角=弧长×180÷母线长÷π=28π×解析:240 【解析】 【分析】根据弧长=圆锥底面周长=28πcm,圆心角=弧长⨯180÷母线长÷π计算.【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm,扇形的圆心角=弧长×180÷母线长÷π=28π×180÷21π=240°.故答案为:240.【点睛】此题主要考查弧长=圆锥底面周长及弧长与圆心角的关系,熟练掌握公式及关系是解题关键.15.(40382)【解析】【分析】先求出开始时点C的横坐标为OC=1根据正六边形的特点每6次翻转为一个循环组循环用2020除以6根据商和余数的情况确定出点C的位置然后求出翻转B前进的距离连接CE过点D作解析:(4038,【解析】【分析】先求出开始时点C的横坐标为12OC=1,根据正六边形的特点,每6次翻转为一个循环组循环,用2020除以6,根据商和余数的情况确定出点C的位置,然后求出翻转B前进的距离,连接CE,过点D作DH⊥CE于H,则CE⊥EF,∠CDH=∠EDH=60°,CH=EH,求出CE=2CH=2×CDsin60°=C的坐标.【详解】∵六边形ABCDEF为正六边形,∴∠AOC=120°,∴∠DOC=120°﹣90°=30°,∴开始时点C的横坐标为:12OC=12×2=1,∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵2020÷6=336…4,∴为第336循环组的第4次翻转,点C在开始时点E的位置,如图所示:∵A(﹣2,0),∴AB=2,∴翻转B前进的距离=2×2020=4040,∴翻转后点C的横坐标为:4040﹣2=4038,连接CE,过点D作DH⊥CE于H,则CE⊥EF,∠CDH=∠EDH=60°,CH=EH,∴CE =2CH =2×CDsin60°=2×2×33, ∴点C 的坐标为(4038,3), 故答案为:(4038,3 【点睛】本题考查了正六边形的性质、坐标与图形、翻转的性质、含30°角直角三角形的性质、三角函数等知识;根据每6次翻转为一个循环组,确定出翻转最后点C 所在的位置是解题的关键.16.【解析】【分析】根据二次函数图像和性质得a0c=3即可设出解析式【详解】解:根据题意可知a0c=3故二次函数解析式可以是【点睛】本题考查了二次函数的性质属于简单题熟悉概念是解题关键 解析:223,y x =-+【解析】 【分析】根据二次函数图像和性质得a <0,c=3,即可设出解析式. 【详解】解:根据题意可知a <0,c=3,故二次函数解析式可以是2y 2x 3,=-+ 【点睛】本题考查了二次函数的性质,属于简单题,熟悉概念是解题关键.17.【解析】【分析】先画图根据题意求出∠OAB=60°再根据直角三角形的性质和勾股定理即可求得结果【详解】解:∵∠CAD=60°∴∠CAB=120°∵AB 和AC 与⊙O 相切∴∠OAB=∠OAC=∠CAB= 3【解析】 【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理即可求得结果. 【详解】解:∵∠CAD=60°, ∴∠CAB=120°, ∵AB 和AC 与⊙O 相切,∴∠OAB=∠OAC=∠12CAB=60°,∴∠AOB=30°,∵AB=3cm,∴OA=6cm,∴2233cmOB OA AB=-=所以直径为2OB=63cm故答案为:63.【点睛】本题考查了切线长定理,勾股定理,解答本题的关键是熟练掌握切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.18.45【解析】【分析】【详解】试题分析:根据概率的意义用符合条件的数量除以总数即可即10-210=45考点:概率解析:【解析】【分析】【详解】试题分析:根据概率的意义,用符合条件的数量除以总数即可,即.考点:概率19.2【解析】【分析】设ABBCAC与⊙O的切点分别为DFE;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB)由此可求出r的长【详解】解:如图;在Rt△ABC∠解析:2【解析】【分析】设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB),由此可求出r的长.【详解】解:如图;在Rt△ABC,∠C=90°,AC=5,BC=12;根据勾股定理AB=四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AE,BD=BF,CE=CF;∴CE=CF=(AC+BC-AB);即:r=(5+12-13)=2.故答案为2.20.18°【解析】【分析】设圆心为O连接OCODBD根据已知条件得到∠COD==72°根据圆周角定理即可得到结论【详解】设圆心为O连接OCODBD∵五边形ABCDE为正五边形∴∠COD==72°∴∠CB解析:18°【解析】【分析】设圆心为O,连接OC,OD,BD,根据已知条件得到∠COD=3605︒=72°,根据圆周角定理即可得到结论.【详解】设圆心为O,连接OC,OD,BD.∵五边形ABCDE为正五边形,∴∠COD=3605︒=72°,∴∠CBD=12∠COD=36°.∵F是CD弧的中点,∴∠CBF=∠DBF=12∠CBD=18°.故答案为:18°.【点睛】本题考查了正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系是解题的关键.三、解答题21.(1)40;画图见解析;(2)108°,15%;(3)23. 【解析】 【分析】(1)用A 组人数除以A 组所占百分比得到参加初赛的选手总人数,用总人数乘以B 组所占百分比得到B 组人数,从而补全频数分布直方图;(2)用360度乘以C 组所占百分比得到C 组对应的圆心角度数,用E 组人数除以总人数得到E 组人数占参赛选手的百分比;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男生和一女生的情况,再利用概率公式即可求得答案. 【详解】解:(1)参加初赛的选手共有:8÷20%=40(人),B 组有:40×25%=10(人). 频数分布直方图补充如下:故答案为40;(2)C 组对应的圆心角度数是:360°×1240=108°,E 组人数占参赛选手的百分比是:640×100%=15%; (3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为812=23.22.(1)见表格解析;(2)见解析;(3)0.39.【解析】【分析】(1)先由频率=频数÷试验次数算出频率;(2)根据表格作出折线统计图即可;(3)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率.【详解】解:(1)抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率0.630.600.620.630.620.600.620.610.610.61(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.【点睛】考核知识点:用频率表示概率.求出频率是关键.23.(1)证明见解析;(2)AC=4.【解析】【分析】(1)连接DE,由题意可得∠ADE=90°,∠ABC=90°,又∠A是公共角,从而可得△ADE ∽△ABC,由相似比即可得;(2)连接OB,由BD是切线,得OD⊥BD,有E为OB中点,则可得OE=BE=OD,从而可得∠OBD=∠BAC=30°,所以AC=2BC=4;【详解】(1)连接DE,∵AE是直径,∴∠ADE=90o,∴∠ADE=∠ABC,在Rt△ADE和Rt△ABC 中,∠A是公共角,∴△ADE∽△ABC,∴,即AC·AD=AB·AE(2)连接OD,∵BD是圆O的切线,则OD⊥BD,在Rt△OBD中,OE=BE=OD∴OB=2OD,∴∠OBD=30°,同理∠BAC=30°,在Rt△ABC中,AC=2BC=2×2=4.考点:1.圆周角定理;2.相似三角形的判定与性质;3.切线的性质;4.30°的直角三角形的性质.24.(1)见解析;(2)23【解析】【分析】(1)由于BO=BD=BC,根据等边三角形的判定和性质,三角形外角性质可得∠ODC=90°,从而根据切线的判定方法即可得到结论.(2)由AB为⊙O的直径得∠BDA=90°,而BO=BD=2, AB=2BO=4,根据勾股定理可求出AD.【详解】解:(1)证明:如图,连接OD,∵BO=BD=DO,∴△OBD是等边三角形.∴∠OBD=∠ODB=60°.∵BD=BC,∴∠BDC=12∠OBD=30°.∴∠ODC=90°.∴OD⊥CD.∵OD为⊙O的半径,∴CD是⊙O的切线.(2)∵AB为⊙O的直径,∴∠BDA=90°.∵BO=BD=2,∴AB=2BO=4.∴2223AD AB BD =-=.25.(1)证明见解析;(2)2933()22cm p -. 【解析】 【分析】(1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可. (2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案. 【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°. ∴∠DOP=180°﹣120°=60°. ∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°. ∴OD ⊥DP . ∵OD 为半径, ∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm , ∴OP=6cm ,由勾股定理得:3. ∴图中阴影部分的面积221603933333()236022ODP DOB S S S cm p p 创=-=创=V 扇形。

2021年福州市九年级数学上期中一模试题及答案

2021年福州市九年级数学上期中一模试题及答案

一、选择题1.如图,已知平行四边形ABCD 中,AE BC ⊥于点,E 以点B 为中心,取旋转角等于,ABC ∠把BAE △顺时针旋转,得到BA E '',连接DA '.若60,50ADC ADA '∠=︒∠=︒,则DA E ''∠的大小为( )A .130︒B .150︒C .160︒D .170︒ 2.“保护生态,人人有责”.下列生态环保标志中,是中心对称图形的是( ) A . B .C .D .3.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .84.如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为 ( )A .90°B .95°C .100°D .105°5.如图,已知△ABC 与△CDA 关于点O 成中心对称,过点O 任作直线EF 分别交AD,BC 于点E,F,则下则结论:①点E 和点F,点B 和点D 是关于中心O 的对称点;②直线BD 必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC 与四边形BFOA 的面积必相等;⑤△AOE 与△COF 成中心对称.其中正确的个数为 ( )A .2B .3C .4D .5 6.若点A (3-m ,n+2)关于原点的对称点B 的坐标是(-3,2),则m ,n 的值为( )A .m=-6,n=-4B .m=O ,n=-4C .m=6,n=4D .m=6,n=-4 7.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个 8.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D . 9.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>11.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17 12.当分式2369x x x --+的值为0时,则x 等于( ) A .3 B .0 C .3± D .-313.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x 的方程2100x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( ).A .6B .3532C .532D .535 14.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14- 二、填空题15.如图,在喷水池的中心A 处竖直安装一个水管AB ,水管的顶端B 处有一个喷水孔,喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,则水管AB 的长为_____m .16.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.17.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).18.写出有一个根为1的一元二次方程是______.19.已知实数a ,b 是方程210x x --=的两根,则11a b +的值为______. 20.若()22214x y +-=,则22x y +=________. 三、解答题21.在Rt ACB △中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连结CD ,将CD 绕C 点逆时针旋转90°至CE ,连结DE ,过C 作CF DE ⊥交AB 于F ,连结BE .(1)求证:AD BE =.(2)试探索线段AD ,BF ,DF 之间满足的等量关系,并证明你的结论.(3)若15ACD =︒∠,31CD =,求BF .(注:在直角三角形中,30°所对的直角边等于斜边的一半)22.如图,己知点()2,4A ,()1,1B ,()3,2C .(1)将MBC 绕点O 逆时针旋转90°得111A B C △,画出111A B C △,并写出点C 的对应点1C 的坐标为_____;(2)画出ABC 关于原点成中心对称的图形222A B C △,并写出点A 的对称点2A 的坐标为______.23.已知抛物线 ()21y x m x m =-+-+经过点()23, (1)求m 的值及抛物线的顶点坐标;(2)当x 取什么值时,y 随着x 的增大而减小?24.某公司销售一种进价为20元/个的计算器,其销售量y (万个)与销售价格x (元/个)的变化满足1810y x =-+;同时,销售过程中的其他开支(不含进价)总计40万元.(1)求出该公司销售这种计算器的净得利润z (万元)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(2)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?25.已知关于x 的方程()220x mx m -+=-. (1)求证:不论m 为何值,该方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值以及方程的另一个根.26.解方程:2410y y --=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据平行四边形的性质可得60,//AD BC ABC ∠=︒,再根据平行线的性质可得130DA B '∠=︒,然后根据直角三角形的性质、旋转的性质可得30BA E BAE ''∠=∠=︒,最后根据角的和差即可得.【详解】四边形ABCD 是平行四边形,60ADC ∠=︒,60,//AD BC ABC ∴∠=︒,50ADA '∠=︒,180130DA B ADA ''∴∠=︒-∠=︒,AE BC ⊥,9030BAE ABC ∴∠=︒-∠=︒,由旋转的性质得:30BA E BAE ''∠=∠=︒,13030160DA E DA B BA E '''''∴∠=∠+∠=︒+︒=︒,故选:C .【点睛】本题考查了平行四边形的性质、旋转的性质、平行线的性质等知识点,熟练掌握平行四边形与旋转的性质是解题关键.2.D解析:D【分析】根据中心对称图形的定义对各选项分析判断即可得解.【详解】A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选:D .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C解析:C【分析】由于将线段OP 绕点O 逆时针旋转60°得到线段OD ,当点D 恰好落在BC 上时,易得:△ODP 是等边三角形,根据旋转的性质可以得到△AOP ≌△CDO ,由此可以求出AP 的长.【详解】解:当点D 恰好落在BC 上时,OP=OD ,∠A=∠C=60°,如图.∵∠POD=60°∴∠AOP+∠COD=∠COD+∠CDO=120°,∴∠AOP=∠CDO,∴△AOP≌△CDO,∴AP=CO=6.故选:C.【点睛】此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.4.C解析:C【分析】直接根据四边形AEHB的四个内角和为360°即可求解.【详解】解:∵将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,∴∠BAE=35°,∠E=90°,∠ABD=45°,∴∠ABH=135°,∴∠DHE=360°-∠E-∠BAE-∠ABH=360°-90°-35°-135°=100°.故选C.【点睛】此题考查了正方形的性质、旋转角、多边形的内角和定理,正确找出旋转角是解题关键.5.D解析:D【分析】由于△ABC与△CDA关于点O对称,那么可得到AB=CD、AD=BC,即四边形ABCD是平行四边形,由于平行四边形是中心对称图形,且对称中心是对角线交点,可根据上述特点对各结论进行判断.【详解】△ABC与△CDA关于点O对称,则AB=CD、AD=BC,所以四边形ABCD是平行四边形,因此点O就是▱ABCD的对称中心,则有:(1)点E和点F;B和D是关于中心O的对称点,正确;(2)直线BD 必经过点O ,正确;(3)四边形ABCD 是中心对称图形,正确;(4)四边形DEOC 与四边形BFOA 的面积必相等,正确;(5)△AOE 与△COF 成中心对称,正确;其中正确的个数为5个,故选D .【点睛】熟练掌握平行四边形的性质和中心对称图形的性质是解决此题的关键.6.B解析:B【解析】试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4.考点:原点对称7.B解析:B【分析】根据△=24b ac -与零的关系即可判断出二次函数的图象与x 轴的交点问题;【详解】∵ ()()22356y x x x x =--=-+, ∴ △=24b ac -=25-24=1>0∴二次函数()()23y x x =--与x 轴有两个交点;故选:B .【点睛】本题考查了二次函数与x 轴的交点问题,熟练掌握判别式△=24b ac -是解题的关键; 8.D解析:D【分析】先根据运动速度和AB 、BC 的长可得t 的取值范围,再根据运动速度可得,2AP tcm BQ tcm ==,然后利用直角三角形的面积公式可得S 与t 之间的函数关系式,最后根据二次函数的图象特点即可得.【详解】设运动时间为ts ,点P 到达点B 所需时间为31AB s =,点Q 到达点C 所需时间为32BC s =, ∴点P 、Q 同时停止运动,且t 的取值范围为03t ≤≤, 由题意,,2AP tcm BQ tcm ==,3AB cm =,()3BP AB AP t cm ∴=-=-,()21132322S BP BQ t t t t ∴=⋅=-⋅=-+, 则S 与t 之间的函数图象是抛物线在03t ≤≤的部分,且开口向下,观察四个选项可知,只有选项D 符合,故选:D .【点睛】本题考查了二次函数的图象,正确求出S 与t 之间的函数关系式是解题关键. 9.C解析:C【分析】根据图像判断二次函数的系数a 、b 、c 的正负性,即可求得.【详解】∵二次函数图像开口向下∴a <0又∵二次函数图形与y 轴交点在y 正半轴上∴c >0∵对称轴在y 轴左侧 ∴02b a-< ∴b <0 ∴ac <0,bc <0∴点(,)A ac bc 在第三象限故选C【点睛】本题考查二次函数的图像与性质,掌握二次函数图像与系数的关系是解题关键. 10.C解析:C【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小.【详解】∵222(1)1y x x m x m =++=++-,∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上,∴231y y y >>.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 11.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.12.D解析:D【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可.【详解】 依题意得:230690x x x ⎧-⎨-+≠⎩=,解得x =−3.故选:D【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.13.D解析:D【分析】 仿照题目中的做法可得空白部分小正方形的边长为52,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可.【详解】解:如图2,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为255045025752⎛⎫+⨯=+= ⎪⎝⎭, ∴5252⨯=. 故选:D .【点睛】本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.14.B解析:B【分析】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x 2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0, m 1-4≥, 关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m 的取值范围是m 1-4≥且m≠2. 故选:B .【点睛】本题考查关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x 的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.二、填空题15.【分析】以喷水池中心A 为原点竖直安装的水管AB 所在直线为y 轴与水管垂直的AD 所在直线为x 轴建立直角坐标系设抛物线的解析式为y =a (x ﹣1)2+3(0≤x≤3)将(30)代入求得a 值则x =0时得的y 值 解析:94【分析】以喷水池中心A 为原点,竖直安装的水管AB 所在直线为y 轴,与水管垂直的AD 所在直线为x轴建立直角坐标系,设抛物线的解析式为y=a(x﹣1)2+3(0≤x≤3),将(3,0)代入求得a值,则x=0时得的y值即为水管的长.【详解】以喷水池中心A为原点,竖直安装的水管AB所在直线为y轴,与水管垂直的AD所在直线为x轴建立直角坐标系,由于喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,所以设抛物线的解析式为:y=a(x﹣1)2+3(0≤x≤3),代入(3,0),得:0=a(3-1)2+3,解得:a=34 -.将a值代入得到抛物线的解析式为:y=34-(x﹣1)2+3(0≤x≤3),令x=0,则y=94.即水管AB的长为94 m,故答案为:94.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.16.②③【分析】根据抛物线开口方向对称轴的位置以及与y轴的交点可对①减小判断;利用抛物线与x轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断【详解】解:∵抛物线开口解析:②③【分析】根据抛物线开口方向,对称轴的位置以及与y轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断.【详解】解:∵抛物线开口向下,交y 轴的正半轴,∴a <0,c >0,∵-2b a =12, ∴b =-a >0, ∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,即b2>4ac ,所以②正确;∵抛物线y =ax 2+bx +c 经过点(-2,0),而抛物线的对称轴为直线x=12, ∴点(-2,0)关于直线x =12的对称点(3,0)在抛物线上, ∴关于x 的一元二次方程ax 2+bx +c =0的两根是x 1=-2,x 2=3,所以③正确.由图象可知当-2<x <3时,y >0,∴不等式ax 2+bx +c >0的解集是-2<x <3,所以④错误;故答案为②③.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.17.>【分析】根据抛物线y =﹣(x+1)2+3得到开口向下对称轴为直线x =﹣1然后根据二次函数的性质判断函数值的大小【详解】解:∵抛物线y =﹣(x+1)2+3的开口向下对称轴为直线x =﹣1∴当x >﹣1时解析:>【分析】根据抛物线y =﹣(x +1)2+3得到开口向下,对称轴为直线x =﹣1,然后根据二次函数的性质判断函数值的大小.【详解】解:∵抛物线y =﹣(x +1)2+3的开口向下,对称轴为直线x =﹣1,∴当x >﹣1时,y 随x 的增大而减小,∵1<2,∴y1>y2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的性质是解题的关键.18.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考解析:20x x-=(答案不唯一)【分析】有一个根是1的一元二次方程有无数个,只要含有因式x-1的一元二次方程都有一个根是1.【详解】可以用因式分解法写出原始方程,然后化为一般形式即可,如()10x x-=,化为一般形式为:20x x-=故答案为:20x x-=.【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.19.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a,b是方程210x x--=的两根,∴a+b=1,ab=-1,∴11a b+=a b ab +=1 1-=-1,故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.20.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.三、解答题21.(1)证明见解析;(2)222AD BF DF +=,证明见解析;(3)BF =【分析】(1)将CD 绕C 点逆时针旋转90°至CE ,可得△DCE 是等腰直角三角形,再判定△ACD ≌△BCE (SAS ),即可得出AD =BE ;(2)连接FE ,根据CF 是DE 的垂直平分线,可得DF =EF ,再根据Rt △BEF 中,BE2+BF2=EF2,即可得出AD2+BF2=DF2;(3)根据∠BDE =15°=∠DEF ,可得∠BFE =30°,设BE =x,则BF =,2EF x DF ==,利用在Rt BDE △中,()2222x x +=,即可解得1x =,故可求出BF .【详解】(1)将CD 绕C 点逆时针旋转90°至CE ,可得DCE 是等腰直角三角形, 90DCE ACB ∴∠=∠=︒,DC EC =,ACD BCE ∠∠∴=,在ACD △和BCE 中,AC BC ACD BCE DC EC =⎧⎪∠=∠⎨⎪=⎩,()SAS ACD BCE ∴△≌△,AD BE ∴=.(2)222AD BF DF +=.CF DE ⊥,DCE 是等腰直角三角形,连接FE ,如图所示,CF ∴是DE 的垂直平分线,DF EF ∴=,又ACD BCE ≌,45ABC ∠=︒,45CBF A ABC ∴∠=∠=︒=∠,90EBF ∴∠=︒,∴在Rt BEF △中,222BE BF EF +=,222AD BF DF ∴+=.(3)31CD =,DCE 是等腰直角三角形,62DE ∴= 15ACD ∠=︒,45A CDE ∠=∠=︒,15BDE DEF ∴∠=︒=∠,30BFE ∴∠=︒,设BE x =,则3BF x =,2EF x DF ==,∴在Rt BDE △中,()2222362x x x ++=,解得1x =, 3BF ∴=【点睛】本题主要考查了旋转的性质,勾股定理,等腰直角三角形的性质以及全等三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造直角三角形,运用勾股定理进行计算求解.22.(1)如图见解析, 1C (-2,3);(2)如图见解析, 2A (-2,-4).【分析】(1)依据△ABC 绕点O 按逆时针方向旋转90°,即可得到111A B C △;(2)依据中心对称的性质,即可画出△ABC 关于原点成中心对称的图形222A B C △.【详解】(1)如图,111A B C △即为所求,点1C 的坐标为(-2,3);(2)如图,222A B C △即为所求,点2A 的坐标为(-2,-4).【点睛】本题主要考查了利用旋转变换作图,解决本题的关键是掌握旋转的性质.旋转作图有自己独特的特点,旋转角度、旋转方向、旋转中心不同,位置就不同,但得到的图形全等. 23.(1)m=3,(1,4);(2)当x >1时,y 随x 的增大而减小.【分析】(1)将已知点的坐标代入函数解析式,建立关于m 的方程,解方程求出m 的值,再将函数解析式转化为顶点式,可得到抛物线的顶点坐标.(2)利用函数解析式可知a=-1<0,结合对称轴可得到y 随x 的增大而减小时自变量x 的取值范围.【详解】(1)解:由题意得-4+2(m-1)+m=3解之:m=3,∴抛物线的解析式为y=-x 2+2x+3∴y= -(x-1)2+4∴抛物线的顶点坐标为(1,4);(2)解:∵a=-1<0,∴当x >1时,y 随x 的增大而减小.【点睛】本题考查了二次函数的性质以及求二次函数的顶点坐标、二次函数的增减性,熟练掌握二次函数的性质是解题的关键.24.(1)211020010z x x =-+-,当销售价格50元/个时,最大利润为50万元;(2)4060x ≤≤,40.【分析】 (1)总净利润=单件利润×销售量-40,首先求出单件利润(x-20),然后乘以销售量y ,将解析式化为顶点式即可求解;(2)令(1)中解析式的值为40,然后作出函数图像示意图,根据示意图即可求解x 的取值范围,然后结合销售量和销售价的关系即可判断x 的值.【详解】(1)根据题意得:()2040z x y =--=()12084010x x ⎛⎫--+- ⎪⎝⎭ =211020010x x -+- 将其化为顶点式:211020010x x -+- =()2110020010x x --- =()2150250020010x ⎡⎤----⎣⎦ =()21505010x --+ ∴销售价格定为50元/个时净得利润最大,最大值是50万元. (2)当公司要求净得利润为40万元时,即()21x 50504010--+= 解得:x 1=40,x 2=60如图,通过观察函数y =()21505010x --+的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60 而y 与x 的函数关系式为:1810y x =-+,y 随x 的增大而减少, 因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.【点睛】 本题考查了二次函数的实际应用,在本类题型中,将二次函数的一般式化为顶点式是解题的关键.25.(1)见解析;(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到△=(m-2)2+4,然后根据判别式的意义得到结论;(2)设方程的另一个为t ,利用根与系数的关系得到2+t=m ,2t=m-2,然后解方程组即可.【详解】(1)证明:∵1a =,b m =-,2c m =-∴()()()222244124824-=--⨯⨯-=-+=-+b ac m m m m m ∵()220m -≥,∴()2240m -+>. ∴无论m 为何值,该方程总有两个不相等的实数根. (2)根据题意:()22220-+-=m m ,∴2m = 则220x x -=,∴10x =,22x =. ∴m 的值为2,另一个根为0.【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a,也考查了判别式的意义.26.12y =,22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键.。

2020-2021初三数学上期中一模试卷(含答案)(3)

2020-2021初三数学上期中一模试卷(含答案)(3)

2020-2021初三数学上期中一模试卷(含答案)(3)一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°2.下列事件中,属于必然事件的是( ) A .随时打开电视机,正在播新闻 B .优秀射击运动员射击一次,命中靶心 C .抛掷一枚质地均匀的骰子,出现4点朝上D .长度分别是3cm ,5cm ,6cm 的三根木条首尾相接,组成一个三角形 3.下列图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D .4.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m 2,道路的宽为xm ,则可列方程为( )A .32×20﹣2x 2=570 B .32×20﹣3x 2=570 C .(32﹣x )(20﹣2x )=570 D .(32﹣2x )(20﹣x )=5705.如果关于x 的方程240x x m -+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( ) A .3B .5C .6D .86.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y (间)与定价x (元/间)之间满足y =14x ﹣42(x ≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )A .252元/间B .256元/间C .258元/间D .260元/间 7.抛物线y =2(x -3)2+4的顶点坐标是( )A .(3,4)B .(-3,4)C .(3,-4)D .(2,4)8.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .199.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 A .4个B .3个C .2个D .1个 10.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=11.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( ) A .-41B .-35C .39D .4512.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,»»»AC CDDB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.若关于x 的方程x 2+2x +m =0没有实数根,则m 的取值范围是_______. 14.如图,在扇形CAB 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为__.15.关于x 的方程ax²-(3a+1)x+2(a+1)=0有两个不相等的实数根x 1,x 2,且x 1-x 1x 2+x 2=1-a ,则a=16.如图,Rt ABC ∆中,已知90C =o ∠,55B ∠=o ,点D 在边BC 上,2BD CD =.把线段BD 绕着点D 逆时针旋转α(0180α<<o o )度后,如果点B 恰好落在Rt ABC ∆的边上,那么α=__________.17.已知点C 在以AB 为直径的半圆上,连结AC 、BC ,AB =10,BC :AC =3:4,阴影部分的面积为_____.18.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________ 19.如图,已知△ABC 内接于⊙O ,∠C =45°,AB =4,则⊙O 的半径为_____.20.如图所示过原点的抛物线是二次函数2231y ax ax a =-+-的图象,那么a 的值是_____.三、解答题21.如图,已知AB 为⊙O 的直径,点E 在⊙O 上,∠EAB 的平分线交⊙O 于点C ,过点C 作AE 的垂线,垂足为D ,直线DC 与AB 的延长线交于点P .(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P=34,AD=6,求线段AE的长.22.为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.23.某公司委托旅行社组织一批员工去某风景区旅游,旅行社收费标准为:如果人数不超过30人,人均旅游费用为800元;如果人数多于30人,那么每增加一人,人均旅游费降低10元;但人均旅游费不低于550元,公司支付给旅行社30000元,求该公司参加旅游的员工人数.24.如图,在中,,是的外接圆,点P在直径BD的延长线上,且.求证:PA是的切线;若,求图中阴影部分的面积结果保留和根号25.甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.D解析:D【解析】分析:根据事件发生的可能性大小判断相应事件的类型即可.详解:A.是随机事件,故A不符合题意;B.是随机事件,故B不符合题意;C.是随机事件,故C不符合题意;D.是必然事件,故D符合题意.故选D.点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.3.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念逐一判断即可得答案.【详解】A.不是中心对称图形,是轴对称图形,不符合题意,B.是中心对称图形,不是轴对称图形,符合题意,C.不是中心对称图形,是轴对称图形,不符合题意,D.是中心对称图形,也是轴对称图形,不符合题意.故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D解析:D【解析】【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程. 【详解】解:设道路的宽为xm ,根据题意得:(32-2x )(20-x )=570, 故选D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题关键是利用平移把不规则的图形变为规则图形,进而即可列出方程.5.A解析:A 【解析】 【分析】根据根的判别式的意义得到16﹣4m >0,然后解不等式得到m <4,然后对各选项进行判断. 【详解】根据题意得:△=16﹣4m >0,解得:m <4,所以m 可以取3,不能取5、6、8. 故选A . 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6.B解析:B 【解析】 【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况. 【详解】设每天的利润为W 元,根据题意,得: W=(x-28)(80-y )-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭2112984164x x =-+-()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去,∴当x=256或x=260时,函数取得最大值,最大值为8224元,又∵想让客人得到实惠, ∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B . 【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.7.A解析:A 【解析】根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是(3,4).故选A.8.A解析:A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 【详解】 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49, 故选A . 【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.9.B解析:B 【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.10.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289+=-,x x222++=-+,x x8494x+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.11.C解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a2-5a-1=0,a+b=5,ab=-1,把22a3ab8b2a++-变形为2(a2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】--=的两个实数根,∵a,b为方程2x5x10∴a2-5a-1=0,a+b=5,ab=-1,++-∴22a3ab8b2a=2(a2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2=39.故选:C.【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1、x2,则x1+x2=ba,x1·x2=ca;熟练掌握韦达定理是解题关键.12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB为直径,且点E是点D关于AB的对称点∴∠E=∠ODE,AB⊥DE∴∠CED =30°=12∠DOB,故②正确;∵M和A重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM⊥CE故③不正确;根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,∵∠DOB=∠COD=∠BOE=60°∴CE为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大.二、填空题13.【解析】【分析】根据方程没有实数根得出判别式小于0列出关于m的不等式求解即可【详解】∵关于x的方程x2+2x+m=0没有实数根∴解得:故填:【点睛】本题主要考查根的判别式和解一元一次不等式熟练运用根解析:1m>【解析】【分析】根据方程没有实数根得出判别式小于0,列出关于m的不等式求解即可.【详解】∵关于x 的方程x 2+2x +m =0没有实数根 ∴2=240m ∆-< 解得:1m > 故填:1m >. 【点睛】本题主要考查根的判别式和解一元一次不等式,熟练运用根的判别式进行根的情况的判断是关键.14.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC ≌△EAB 即可解决问题详解:如图连接EC ∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△解析:135°. 【解析】分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中,AE AEEAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△EAC ≌△EAB , ∴∠AEB=∠AEC=135°, 故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.15.-1【解析】试题分析:根据根与系数的关系得出x1+x2=-bax1x2=ca 整理原式即可得出关于a 的方程求出即可试题解析:∵关于x 的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1解析:-1【解析】试题分析:根据根与系数的关系得出x 1+x 2=-,x 1x 2=,整理原式即可得出关于a 的方程求出即可.试题解析:∵关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2, ∴x 1+x 2=,x 1x 2=,依题意△>0,即(3a+1)2-8a (a+1)>0,即a 2-2a+1>0,(a-1)2>0,a≠1,∵关于x 的方程ax 2-(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1-x 1x 2+x 2=1-a ,∴x 1-x 1x 2+x 2=1-a ,∴x 1+x 2-x 1x 2=1-a , ∴-=1-a ,解得:a=±1,又a≠1,∴a=-1.考点:1.根与系数的关系;2.根的判别式.16.或【解析】【分析】分两种情况:①当点落在AB 边上时②当点落在AB 边上时分别求出的值即可【详解】①当点落在AB 边上时如图1∴DB=DB′∴∠B=∠DB′B=55°∴∠BDB′=180°-55°-55°解析:70o 或120o【解析】【分析】分两种情况:①当点B 落在AB 边上时,②当点B 落在AB 边上时,分别求出α的值,即可.【详解】①当点B 落在AB 边上时,如图1,∴DB=DB ′,∴∠B=∠DB ′B=55°,∴α=∠BDB ′=180°-55°-55°=70°;②当点B 落在AB 边上时,如图2,∴DB=DB ′=2CD ,∵90C =o ∠,∴∠CB ′D=30°,∴α=∠BDB ′=30°+90°=120°.故答案是:70o 或120o .【点睛】本题主要考查等腰三角形的性质和直角三角形的性质定理,画出图形分类讨论,是解题的关键.17.π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积根据AB=10BC:AC=3:4可以求得ACBC的长再根据半圆的面积公式和直角三角形的面积公式进行计算【详解】∵AB为直径解析:252π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积,根据AB=10,BC:AC=3:4,可以求得AC,BC的长,再根据半圆的面积公式和直角三角形的面积公式进行计算.【详解】∵AB为直径,∴∠ACB=90°,∵BC:AC=3:4,∴sin∠BAC=35,又∵sin∠BAC=BCAB,AB=10,∴BC=35×10=6,AC=43×BC=43×6=8,∴S阴影=S半圆﹣S△ABC=12×π×52﹣12×8×6=252π﹣24.故答案为:252π﹣24.【点睛】本题考查求阴影部分的面积,解题关键在于能找到阴影部分的面积与半圆的面积、直角三角形的面积,三者的关系.18.x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y 随x 的增大而增大当时y 随x 的增大而减小∵∴当函数值y >0时x 的取值范围是x <-1或x >3故答案为解析:x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3故答案为:x <-1或x >3.【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.19.【解析】【分析】连接OAOB 根据一条弧所对的圆周角等于它所对的圆心角的一半得∠AOB=90°又OA =OBAB =4根据勾股定理得圆的半径是2【详解】解:连接OAOB∵∠C=45°∴∠AOB=90°又∵ 解析:22.【解析】【分析】连接OA ,OB ,根据一条弧所对的圆周角等于它所对的圆心角的一半,得∠AOB =90°,又OA =OB ,AB =4,根据勾股定理,得圆的半径是22.【详解】解:连接OA ,OB∵∠C =45°∴∠AOB =90°又∵OA =OB ,AB =4∴2224OA OB +=∴OA =22.【点睛】本题主要考查了圆周角定理以及勾股定理根据圆周角定理得出∠AOB =90°是解题的关键.20.-1【解析】∵抛物线过原点∴解得又∵抛物线开口向下∴解析:-1【解析】∵抛物线2231y ax ax a =-+-过原点,∴210a -=,解得1a =±,又∵抛物线开口向下,∴1a =-.三、解答题21.(1)PC 是⊙O 的切线;(2)92 【解析】 试题分析:(1)结论:PC 是⊙O 的切线.只要证明OC ∥AD ,推出∠OCP =∠D =90°,即可. (2)由OC ∥AD ,推出OC OP AD AP =,即10610r r -=,解得r =154,由BE ∥PD ,AE =AB •sin ∠ABE =AB •sin ∠P ,由此计算即可.试题解析:解:(1)结论:PC 是⊙O 的切线.理由如下: 连接OC .∵AC 平分∠EAB ,∴∠EAC =∠CAB .又∵∠CAB =∠ACO ,∴∠EAC =∠OCA ,∴OC ∥AD .∵AD ⊥PD ,∴∠OCP =∠D =90°,∴PC 是⊙O 的切线.(2)连接BE .在Rt △ADP 中,∠ADP =90°,AD =6,tan ∠P =34,∴PD =8,AP =10,设半径为r .∵OC ∥AD ,∴OC OP AD AP =,即10610r r -=,解得r =154.∵AB 是直径,∴∠AEB =∠D =90°,∴BE ∥PD ,∴AE =AB •sin ∠ABE =AB •sin ∠P =152×35=92.点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.22.(1)1440人;(2)20%【解析】【分析】(1)5月份借阅了名著类书籍的人数是1000(1+10%),则6月份借阅了名著类书籍的人数为:5月份借阅了名著类书籍的人数+340人;(2)根据增长后的量=增长前的量×(1+增长率).设平均每年的增长率是x ,列出方程求解即可.【详解】解:(1)由题意,得5月份借阅了名著类书籍的人数是:1000×(1+10%)=1100(人),则6月份借阅了名著类书籍的人数为:1100+340=1440(人);(2)设平均增长率为x .1000(1+x )2=1440,解得:x=0.2.答:从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%.【点睛】本题是一道数学应用题中的增长率问题的实际问题,考查了列一元二次方程解实际问题的运用及一元二次方程的解法的运用,解答中对结果验根是否符合题意是解答的关键.23.该公司有50人参加旅游.【解析】【分析】设该公司有x 人参加旅游,由308002400030000⨯=<,可得出x 30>,分30x 55<≤及x 55>两种情况考虑,由总价=单价⨯数量,可得出关于x 的一元二次方程(一元一次方程),解之即可得出结论.【详解】设该公司有x 人参加旅游.308002400030000⨯=<Q ,x 30∴>.()308005501055(+-÷=人).根据题意得:当30x 55<≤时,有()x 80010x 3030000⎡⎤--=⎣⎦,化简得:2x 110x 30000-+=,解得:1x 50=,2x 60(=舍去);当x 55>时,有550x 30000=, 解得:600x (11=舍去). 答:该公司有50人参加旅游.【点睛】本题考查了一元二次方程的应用以及一元一次方程的应用,分30x 55<≤及x 55>两种情况,列出关于x 的方程是解题的关键.24.(1)证明见解析(2)【解析】【分析】(1)如图,连接OA;证明∠OAP=90°,即可解决问题.(2)如图,作辅助线;求出OM=1,OA=2;求出△AOB、扇形AOB的面积,即可解决问题.【详解】如图,连接OA;,;而,;而,;,,是的切线.如图,过点O作,则,,,,;,,图中阴影部分的面积.【点睛】本题考查了切线的判定与扇形面积的计算,解题的关键是熟练的掌握切线的判定与扇形面积公式.25.(1)12;(2)13【解析】【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:21 42 =;故答案为:1 2 .(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率) =41 123=.【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.。

2020-2021初三数学上期中一模试题附答案(6)

2020-2021初三数学上期中一模试题附答案(6)

2020-2021初三数学上期中一模试题附答案(6)一、选择题1.﹣3的绝对值是()A.﹣3B.3C.-13D.132.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.43.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是()A.1B.2C.3D.44.如图在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…若点A(32,0),B(0,2),则点B2018的坐标为()A.(6048,0)B.(6054,0)C.(6048,2)D.(6054,2)5.在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣46.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -=7.如图,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O→C→D→O 的路线匀速运动.设∠APB=y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( )A .AB .BC .CD .D8.如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .9.一元二次方程2410x x --=配方后可化为( )A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -=10.若关于x 的一元二次方程ax 2+bx ﹣1=0(a ≠0)有一根为x =2019,则一元二次方程a (x ﹣1)2+b (x ﹣1)=1必有一根为( )A .12019B .2020C .2019D .201811.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CD B .AB=BC C .AC ⊥BD D .AC=BD12.如图,在⊙O中,AB是⊙O的直径,AB=10,AC CD DB==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=12∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A.1B.2C.3D.4二、填空题13.若关于x的方程x2+2x+m=0没有实数根,则m的取值范围是_______.14.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为__.15.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论是________.16.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.17.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.18.已知点C在以AB为直径的半圆上,连结AC、BC,AB=10,BC:AC=3:4,阴影部分的面积为_____.19.若抛物线的顶点坐标为(2,9),且它在x轴截得的线段长为6,则该抛物线的表达式为________.20.已知圆锥的母线长为5cm,高为4cm,则该圆锥的侧面积为_____ cm²(结果保留π).三、解答题21.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?22.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.23.如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.(1)求证:CD是⊙O的切线;(2)若半径OB=2,求AD的长.24.甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.(1)用列表法(或画树状图)求甲获胜的概率;(2)你认为这个游戏规则对双方公平吗?请简要说明理由.25.如图,△ABC的顶点坐标分别为A(0,1)、B(3,3)、C(1,3).(1) 画出△ABC关于点O的中心对称图形△A1B1C1(2) 画出△ABC绕原点O逆时针旋转90°的△A2B2C2,直接写出点C2的坐标为______.(3) 若△ABC内一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为______.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.2.B解析:B【解析】【分析】设QP 的中点为F ,圆F 与AB 的切点为D ,连接FD ,连接CF ,CD ,则有FD ⊥AB ;由勾股定理的逆定理知,△ABC 是直角三角形,FC+FD=PQ ,由三角形的三边关系知,FC+FD >CD ;只有当点F 在CD 上时,FC+FD=PQ 有最小值,最小值为CD 的长,即当点F 在直角三角形ABC 的斜边AB 的高CD 上时,PQ=CD 有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【详解】如图,设QP 的中点为F ,圆F 与AB 的切点为D ,连接FD 、CF 、CD ,则FD ⊥AB . ∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ ,∴FC+FD >CD ,∵当点F 在直角三角形ABC 的斜边AB 的高CD 上时,PQ=CD 有最小值,∴CD=BC•AC÷AB=4.8.故选B .【点睛】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.3.C解析:C【解析】【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.4.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标.【详解】∵A (32,0),B (0,2), ∴OA =32,OB =2,∴Rt △AOB 中,AB 52=, ∴OA +AB 1+B 1C 2=32+2+52=6, ∴B 2的横坐标为:6,且B 2C 2=2,即B 2(6,2),∴B 4的横坐标为:2×6=12, ∴点B 2018的横坐标为:2018÷2×6=6054,点B 2018的纵坐标为:2, 即B 2018的坐标是(6054,2).故选D .【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B 点之间的关系是解决本题的关键.5.D解析:D【解析】试题分析:抛物线y=x 2+2x ﹣3与x 轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项B ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项C ,y 的最小值是﹣4,该选项错误;选项D ,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.6.A解析:A【解析】【分析】利用配方法把方程2680x x --=变形即可.【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17,故选A .【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.7.B解析:B【解析】试题分析:(1)当点P 沿O→C 运动时,当点P 在点O 的位置时,y=90°,当点P 在点C 的位置时,∵OA=OC ,∴y=45°,∴y 由90°逐渐减小到45°;(2)当点P 沿C→D 运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P 沿D→O 运动时,当点P 在点D 的位置时,y=45°,当点P 在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选B.考点:动点问题的函数图象.8.D解析:D【解析】【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.9.D解析:D【解析】【分析】根据移项,配方,即可得出选项.【详解】解:x2-4x-1=0,x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D.【点睛】本题考查了解一元二次方程的应用,能正确配方是解题的关键.10.B解析:B【解析】【分析】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1得到at2+bt-1=0,利用at2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a(x-1)2+b(x-1)=1必有一根为x=2020.【详解】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1,所以at2+bt-1=0,而关于x的一元二次方程ax2+bx-1=0(a≠0)有一根为x=2019,所以at2+bt-1=0有一个根为t=2019,则x-1=2019,解得x=2020,所以一元二次方程a(x-1)2+b(x-1)=1必有一根为x=2020.故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.D解析:D【解析】【分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.12.C解析:C【解析】【分析】解:∵弧AC=弧CD=弧DB ,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB 为直径,且点E 是点D 关于AB 的对称点∴∠E=∠ODE ,AB ⊥DE∴∠CED =30°=12∠DOB , 故②正确;∵M 和A 重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM ⊥CE故③不正确;根据轴对称的性质,可知D 与E 对称,连接CE ,根据两点之间线段最短,可知这时的CM+DM 最短,∵∠DOB=∠COD=∠BOE=60°∴CE 为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大. 二、填空题13.【解析】【分析】根据方程没有实数根得出判别式小于0列出关于m 的不等式求解即可【详解】∵关于x 的方程x2+2x +m =0没有实数根∴解得:故填:【点睛】本题主要考查根的判别式和解一元一次不等式熟练运用根 解析:1m【解析】【分析】根据方程没有实数根得出判别式小于0,列出关于m 的不等式求解即可.【详解】∵关于x 的方程x 2+2x +m =0没有实数根∴2=240m ∆-<解得:1m故填:1m .【点睛】本题主要考查根的判别式和解一元一次不等式,熟练运用根的判别式进行根的情况的判断14.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC ≌△EAB 即可解决问题详解:如图连接EC ∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△解析:135°.【解析】分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中, AE AE EAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△EAB ,∴∠AEB=∠AEC=135°,故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.15.②③④【解析】【分析】由抛物线与x 轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(00)和(10)之间所以当x=解析:②③④【解析】【分析】由抛物线与x 轴有两个交点得到b 2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1,则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D (-1,2)得a-b+c=2,由抛物线的对称轴为直线x=-2b a=-1得b=2a ,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,所以说方程ax 2+bx+c-2=0有两个相等的实数根.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x 轴的一个交点A 在点(−3,0)和(−2,0)之间,∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−2b a =−1, ∴b=2a ,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时, ax 2+bx+c=2,∴方程ax 2+bx+c−2=0有两个相等的实数根,所以④正确【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次函数与x 轴交点的意义. 16.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形设A′D=x 根据题意阴影部分的面积为(12−x)×x 即x(12−x)当x(12−x)=32时解得:x=4或x=8所以A A′=8或AA′=4【解析:4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形,设A ′D=x ,根据题意阴影部分的面积为(12−x)×x ,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA ′=8或AA ′=4.【详解】设AA ′=x,AC 与A ′B ′相交于点E ,∵△ACD 是正方形ABCD 剪开得到的,∴△ACD 是等腰直角三角形,∴∠A=45∘,∴△AA ′E 是等腰直角三角形,∴A ′E=AA ′=x ,A ′D=AD−AA ′=12−x ,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x2−12x+32=0,解得x1=4,x2=8,即移动的距离AA′等4或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.17.15【解析】试题分析:利用圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=•2π•3•5=15π故答案为15π考点:圆锥的计算解析:15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π.故答案为15π.考点:圆锥的计算.18.π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积根据AB=10BC:AC=3:4可以求得ACBC的长再根据半圆的面积公式和直角三角形的面积公式进行计算【详解】∵AB为直径解析:252π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积,根据AB=10,BC:AC=3:4,可以求得AC,BC的长,再根据半圆的面积公式和直角三角形的面积公式进行计算.【详解】∵AB为直径,∴∠ACB=90°,∵BC:AC=3:4,∴sin∠BAC=35,又∵sin∠BAC=BCAB,AB=10,∴BC=35×10=6,AC=43×BC=43×6=8,∴S 阴影=S 半圆﹣S △ABC =12×π×52﹣12×8×6=252π﹣24. 故答案为:252π﹣24. 【点睛】 本题考查求阴影部分的面积,解题关键在于能找到阴影部分的面积与半圆的面积、直角三角形的面积,三者的关系.19.【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k 由已知条件可得h=2k=9再由条件:它在x 轴上截得的线段长为6求出a 的值即可【详解】解:由题意设此抛物线的解析式为:y=a (x-2)2+9解析:2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a (x-2)2+9,即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2,∴x 1+x 2=4,x 1•x 2=49a a+ ,∴|x 1-x 26=即16-4×49a a+=36 解得:a=-1,y=-(x-2)2+9, 故答案为:y=-(x-2)2+9.【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根.20.15π【解析】【分析】【详解】解:由图可知圆锥的高是4cm 母线长5cm 根据勾股定理得圆锥的底面半径为3cm 所以圆锥的侧面积=π×3×5=15πcm²故答案为:15π【点睛】本题考查圆锥的计算解析:15π.【解析】【分析】【详解】解:由图可知,圆锥的高是4cm ,母线长5cm ,根据勾股定理得圆锥的底面半径为3cm ,所以圆锥的侧面积=π×3×5=15πcm ².故答案为:15π.【点睛】本题考查圆锥的计算.三、解答题21.(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.【解析】【分析】(1)根据题意设平均增长率为未知数x ,再根据题意建立方程式求解.(2)根据题意设每碗售价为未知数y ,再根据题意建立方程式求解.【详解】(1)设平均增长率为x ,则2201)28.8x (+=解得:10.220%x == 2 2.2x =-(舍)·答:年平均增长率为20%(2)设每碗售价定为y 元时,每天利润为6300元()6y -[300+30(25-y )]=6300·解得:120y = 221y =·∵每碗售价不超过20元,所以20y =.【点睛】本题考查了在实际生活中对方程式的建立及求解,熟练掌握方程式的实际运用是本题解题关键.22.(1)14;(2) 14【解析】【分析】 (1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.【详解】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C .“园艺小清新之旅”的概率是14; (2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为41 164=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)见解析;(2)23【解析】【分析】(1)由于BO=BD=BC,根据等边三角形的判定和性质,三角形外角性质可得∠ODC=90°,从而根据切线的判定方法即可得到结论.(2)由AB为⊙O的直径得∠BDA=90°,而BO=BD=2, AB=2BO=4,根据勾股定理可求出AD.【详解】解:(1)证明:如图,连接OD,∵BO=BD=DO,∴△OBD是等边三角形.∴∠OBD=∠ODB=60°.∵BD=BC,∴∠BDC=12∠OBD=30°.∴∠ODC=90°.∴OD⊥CD.∵OD为⊙O的半径,∴CD是⊙O的切线.(2)∵AB为⊙O的直径,∴∠BDA=90°.∵BO=BD=2,∴AB=2BO=4.∴2223AD AB BD-=24.(1) 12;(2)公平,理由见解析【解析】【分析】本题考查了概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.【详解】方法一画树状图:由上图可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种.∴P(和为奇数)= 12.方法二列表如下:由上表可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结果有6种.∴P(和为奇数)= 12;(2)∵P(和为奇数)= 12,∴P(和为偶数)=12,∴这个游戏规则对双方是公平的.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)作图见解析;(2)作图见解析,(﹣3,1);(3)(﹣n,m).【解析】【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点连线即可;(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到点C2的坐标;(3)利用(2)中对应点的规律写出Q的坐标.【详解】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点C2的坐标为(﹣3,1);(3)若△ABC内一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为(﹣n,m).故答案为:(﹣3,1),(﹣n,m).【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。

2020-2021初三数学上期中一模试卷(含答案)

2020-2021初三数学上期中一模试卷(含答案)

2020-2021初三数学上期中一模试卷(含答案)一、选择题1.若关于x 的一元二次方程4x 2-4x+c=0有两个相等实数根,则c 的值是( ) A .-1 B .1 C .-4 D .42.在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣43.下列交通标志是中心对称图形的为( )A .B .C .D . 4.用配方法解方程210x x +-=,配方后所得方程是( )A .213()24x -=B .213()24x +=C .215()24x += D .215()24x -= 5.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( ) A .1 B .3 C .5 D .76.如图所示的暗礁区,两灯塔A ,B 之间的距离恰好等于圆的半径,为了使航船(S )不进入暗礁区,那么S 对两灯塔A ,B 的视角∠ASB 必须( )A .大于60°B .小于60°C .大于30°D .小于30° 7.抛物线y =2(x -3)2+4的顶点坐标是( ) A .(3,4) B .(-3,4)C .(3,-4)D .(2,4) 8.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=219.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60︒,90︒,210︒.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.16B.14C.13D.71210.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是()A.(1,1)B.(0,1)C.(﹣1,1)D.(2,0)11.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是()A.B.C.D.12.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A.1 B.2 C.3 D.4二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是______.15.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________.16.如图,四边形ABCD 是⊙O 的内接四边形,∠B=135°,则∠AOC 的度数为_____.17.a 、b 、c 是实数,点A (a+1、b )、B (a+2,c )在二次函数y=x 2﹣2ax+3的图象上,则b 、c 的大小关系是b ____c (用“>”或“<”号填空)18.Rt △ABC 中,∠C =90°,若直角边AC =5,BC =12,则此三角形的内切圆半径为________.19.如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为 米.20.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.三、解答题21.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.22.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.23.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:(1)若商场每件衬衫降价4元,则商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(3)要使商场平均每天盈利1600元,可能吗?请说明理由.24.小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n 个路口,则小明在每个路口都没有遇到红灯的概率是 .25.如图,Rt △ABC 中,∠C=90o ,BE 是它的角平分线,D 在AB 边上,以DB 为直径的半圆O 经过点E .(1)试说明:AC 是圆O 的切线;(2)若∠A=30o ,圆O 的半径为4,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程根的判别式可得:当△=0时,方程有两个相等的实数根;当△>0时,方程有两个不相等的实数根;当△<0时,方程没有实数根.【详解】解:根据题意可得:△=2(4) -4×4c=0,解得:c=1 故选:B .【点睛】本题考查一元二次方程根的判别式. 2.D解析:D【解析】试题分析:抛物线y=x 2+2x ﹣3与x 轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项B ,无法确定点A 、B 离对称轴x=﹣1的远近,无法判断y 1与y 2的大小,该选项错误;选项C ,y 的最小值是﹣4,该选项错误;选项D ,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.3.C解析:C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A 、属于轴对称图形,不是中心对称的图形,不合题意;B 、是中心对称的图形,但不是交通标志,不符合题意;C 、属于轴对称图形,属于中心对称的图形,符合题意;D 、不是中心对称的图形,不合题意.故选C .【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.4.C解析:C【解析】【分析】本题根据配方的基本方法进行就可以得到答案.配方首先将常数项移到方程的右边,将二次项系数化为1,然后左右两边同时加上一次项系数一半的平方.【详解】解:2x +x=12x +x+14=1+14 215()24x +=. 故选C【点睛】 考点:配方的方法.5.C解析:C【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.6.D解析:D【解析】试题解析:连接OA ,OB ,AB ,BC ,如图:∵AB=OA=OB ,即△AOB 为等边三角形,∴∠AOB=60°,∵∠ACB 与∠AOB 所对的弧都为AB ,∴∠ACB=12∠AOB=30°, 又∠ACB 为△SCB 的外角, ∴∠ACB >∠ASB ,即∠ASB <30°.故选D7.A解析:A【解析】根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是(3,4).故选A.8.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x 2-8x=5,∴x 2-8x+16=5+16,即(x-4)2=21,故选D .【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.9.B解析:B【解析】【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为901= 3604,即转动圆盘一次,指针停在黄区域的概率是14,故选B.【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.10.B解析:B【解析】根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故选B..11.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.B解析:B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误。

2020-2021九年级数学上期中一模试卷及答案(4)

2020-2021九年级数学上期中一模试卷及答案(4)

2020-2021九年级数学上期中一模试卷及答案(4)一、选择题1.方程x 2+x-12=0的两个根为( )A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=32.如图,BC 是半圆O 的直径,D ,E 是BC 上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70° 3.若x 1是方程ax 2+2x+c =0(a≠0)的一个根,设M =(ax 1+1)2,N =2﹣ac ,则M 与N 的大小关系为( )A .M >NB .M =NC .M <ND .不能确定4.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .345.如图,AB 为⊙O 的直径,点C 为⊙O 上的一点,过点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠A =25°,则∠D 的度数是( )A .25°B .40°C .50°D .65° 6.方程2(2)9x -=的解是( )A .1251x x ==-,B .1251x x =-=,C .12117x x ==-, D .12117x x =-=, 7.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c >0;②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0; ④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .48.下列交通标志是中心对称图形的为( )A .B .C .D .9.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .10.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣311.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ).A .摸出的4个球中至少有一个球是白球B .摸出的4个球中至少有一个球是黑球C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球 12.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=- B .()247x +=- C .()2425x += D .()247x += 二、填空题13.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.14.如图,二次函数y =ax 2+bx+c 的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab <0;②方程ax 2+bx+c =0的根为x 1=﹣1,x 2=3;③4a+2b+c <0;④当x >1时,y 随x 值的增大而增大;⑤当y >0时,﹣1<x <3;⑥3a+2c <0.其中不正确的有_____.15.写出一个二次函数的解析式,且它的图像开口向下,顶点在y轴上______________ 16.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.17.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为__.18.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.19.已知圆锥的底面半径是2cm,母线长是3cm,则圆锥侧面积是_________.20.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为__.三、解答题21.某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?22.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?23.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.24.如图,已知抛物线y=2x +mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.25.如图,ABO与CDO关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.【参考答案】***试卷处理标记,请不要删除一、选择题1.D【解析】试题分析:将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.x2+x﹣12=(x+4)(x﹣3)=0,则x+4=0,或x﹣3=0,解得:x1=﹣4,x2=3.考点:解一元二次方程-因式分解法2.D解析:D【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.3.C解析:C【解析】【分析】把x1代入方程ax2+2x+c=0得ax12+2x1=-c,作差法比较可得.【详解】∵x1是方程ax2+2x+c=0(a≠0)的一个根,∴ax12+2x1+c=0,即ax12+2x1=-c,则M-N=(ax1+1)2-(2-ac)=a2x12+2ax1+1-2+ac=a(ax12+2x1)+ac-1=-ac+ac-1=-1,∴M-N<0,∴M<N.故选C.【点睛】本题主要考查一元二次方程的解的概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.4.D解析:D【解析】过B作⊙O的直径BM,连接AM,则有:∠MAB=∠CDB=90°,∠M=∠C,∴∠MBA=∠CBD,过O作OE⊥AB于E,Rt△OEB中,BE=12AB=4,OB=5,由勾股定理,得:OE=3,∴tan∠MBA=OEBE=34,因此tan∠CBD=tan∠MBA=34,故选D.5.B解析:B【解析】连接OC,∵CD是切线,∴∠OCD=90°,∵OA=OC,∴∠ACO=∠BAC=25°,∴∠COD=∠ACO+∠BAC=50°,∴∠D=90°-∠COD=40°,故选B.6.A解析:A【分析】此方程已经配方,根据解一元二次方程的步骤解方程即可.【详解】()229x -=,故x -2=3或x -2=-3,解得:x 1=5,x 2=-1,故答案选A.【点睛】本题主要考查了解一元二次方程的基本解法,这是很简单的解方程,难度不大.7.B解析:B【解析】【分析】【详解】∵抛物线与y 轴交于正半轴,∴c >0,①正确;∵对称轴为直线x=﹣1,∴x <﹣1时,y 随x 的增大而增大,∴y 1>y 2②错误;∵对称轴为直线x=﹣1, ∴﹣2b a=﹣1, 则2a ﹣b=0,③正确;∵抛物线的顶点在x 轴的上方, ∴244ac b a->0,④错误; 故选B.8.C解析:C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A 、属于轴对称图形,不是中心对称的图形,不合题意;B 、是中心对称的图形,但不是交通标志,不符合题意;C 、属于轴对称图形,属于中心对称的图形,符合题意;D 、不是中心对称的图形,不合题意.故选C .【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.9.B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.B解析:B【解析】【分析】根据“关于y轴对称的点,横坐标互为相反数,纵坐标相同”解答.【详解】∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.B解析:B【解析】【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件,故A选项错误;B、是必然事件,故B选项正确;C、是随机事件,故C选项错误;D、是随机事件,故D选项错误.故选B.本题考查随机事件.12.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x++=,289x x+=-,2228494x x++=-+,所以()247x+=,故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.二、填空题13.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.14.⑤【解析】【分析】①由图象可知a>0b<0则问题可解;②根据图象与x轴交点问题可解;③由图象可知当x=2时对应的点在x轴下方x=2时函数值为负;④由图象可知抛物线对称轴为直线x=1当x>1时y随x值解析:⑤【解析】【分析】①由图象可知,a>0,b<0,则问题可解;②根据图象与x 轴交点,问题可解;③由图象可知,当x=2时,对应的点在x 轴下方,x=2时,函数值为负;④由图象可知,抛物线对称轴为直线x=1,当x>1时,y 随x 值的增大而增大;⑤由图象可知,当y>0时,对应x>3或x<-1;⑥根据对称轴找到ab 之间关系,再代入a ﹣b+c =0,问题可解.综上即可得出结论.【详解】解:①∵抛物线开口向上,对称轴在y 轴右侧,与y 轴交于负半轴,∴a >0,﹣2b a >0,c <0, ∴b <0,∴ab <0,说法①正确;②二次函数y =ax 2+bx+c 的图象经过(﹣1,0)(3,0)两点,∴方程ax 2+bx+c =0的根为x 1=﹣1,x 2=3,说法②正确;③∵当x =2时,函数y <0,∴4a+2b+c <0,说法③正确;④∵抛物线与x 轴交于(﹣1,0)、(3,0)两点,∴抛物线的对称轴为直线x =1,∵图象开口向上,∴当x >1时,y 随x 值的增大而增大,说法④正确;⑤∵抛物线与x 轴交于(﹣1,0)、(3,0)两点,且图象开口向上,∴当y <0时,﹣1<x <3,说法⑤错误;⑥∵当x =﹣1时,y =0,∴a ﹣b+c =0,∴抛物线的对称轴为直线x =1=﹣2b a, ∴b =﹣2a ,∴3a+c =0,∵c <0,∴3a+2c <0,说法⑥正确.故答案为⑤.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数图象上点的坐标特征,解答关键是根据二次函数性质结合函数图象解答问题. 15.【解析】【分析】由题意可知:写出的函数解析式满足由此举例得出答案即可【详解】解:设所求二次函数解析式为:∵图象开口向下∴∴可取∵顶点在轴上∴对称轴为∴∵顶点的纵坐标可取任意实数∴取任意实数∴可取∴二 解析:2y x =-【解析】【分析】由题意可知:写出的函数解析式满足0a <、02b a-=,由此举例得出答案即可. 【详解】 解:设所求二次函数解析式为:2y ax bx c =++∵图象开口向下∴0a <∴可取1a =-∵顶点在y 轴上 ∴对称轴为02b x a =-= ∴0b =∵顶点的纵坐标可取任意实数∴c 取任意实数∴c 可取0∴二次函数解析式可以为:2y x =-.故答案是:2y x =-【点睛】本题考查了二次函数图象的性质,涉及到的知识点有:二次函数2y ax bx c =++的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭;对称轴为2b x a =-;当0a >时,抛物线开口向上、当0a <时,抛物线开口向下;二次函数的图象与y 轴交于()0,c .16.3【解析】【分析】设横向的甬路宽为3x 米则纵向的甬路宽为2x 米由剩余部分的面积为144米2即可得出关于x 的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x 米则纵向的甬路宽为2x 米根解析:3【解析】【分析】设横向的甬路宽为3x 米,则纵向的甬路宽为2x 米,由剩余部分的面积为144米2,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】设横向的甬路宽为3x 米,则纵向的甬路宽为2x 米,根据题意得:(20﹣2×2x )(12﹣3x )=144整理得:x 2﹣9x +8=0,解得:x 1=1,x 2=8.∵当x =8时,12﹣3x =﹣12,∴x =8不合题意,舍去,∴x =1,∴3x =3.故答案为3.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.135°【解析】分析:如图连接EC 首先证明∠AEC=135°再证明△EAC ≌△EAB 即可解决问题详解:如图连接EC ∵E 是△ADC 的内心∴∠AEC=90°+∠ADC=135°在△AEC 和△AEB 中∴△解析:135°.【解析】分析:如图,连接EC .首先证明∠AEC=135°,再证明△EAC ≌△EAB 即可解决问题. 详解:如图,连接EC .∵E 是△ADC 的内心,∴∠AEC=90°+12∠ADC=135°, 在△AEC 和△AEB 中, AE AE EAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△EAB ,∴∠AEB=∠AEC=135°,故答案为135°.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.18.40°【解析】:在△QOC 中OC=OQ∴∠OQC=∠OCQ 在△OPQ 中QP=QO∴∠QOP=∠QPO 又∵∠QPO=∠OCQ+∠AOC∠AOC=30°∠QOP+∠QPO+∠OQC=180°∴3∠OCP 解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°19.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=【详解】根据圆锥的侧面积公式:底面半径是2cm 母线长是3cm 的圆锥侧面积为故答案是:【点睛】本题考查圆锥的侧面积解题的关键是记住圆锥是侧面积公式解析:26cm π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=RL π.【详解】根据圆锥的侧面积公式:RL π底面半径是2cm ,母线长是3cm 的圆锥侧面积为 236ππ⨯⨯=故答案是:26cm π【点睛】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.20.3【解析】连接OB∵六边形ABCDEF 是⊙O 内接正六边形∴∠BOM==30°∴OM=OB•cos∠BOM=6×=3故答案为:3解析:33 【解析】 连接OB ,∵六边形ABCDEF 是⊙O 内接正六边形,∴∠BOM=36062︒⨯ =30°, ∴OM=OB•cos∠BOM=6×3 =33, 故答案为:33.三、解答题21.(1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克【解析】【分析】(1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x 元,根据这个等量关系列出方程,解方程即可.【详解】(1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.22.(1)当x=3时,B同学获胜可能性大(2)当x=4时,游戏对双方是公平的【解析】【分析】(1)比较A、B两位同学的概率解答即可.(2)根据游戏的公平性,列出方程解答即可.【详解】(1)A同学获胜可能性为,B同学获胜可能性为,因为<,当x=3时,B同学获胜可能性大.(2)游戏对双方公平必须有:,解得x=4,所以当x=4时,游戏对双方是公平的.【点睛】本题主要考查随机事件的概率的概念.23.60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】【分析】根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1;(2)代入271,列方程,方程有解则存在这样的点阵.【详解】解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个, 第3个点阵中有:3×6+1=17个, 第4个点阵中有:4×9+1=37个, 第5个点阵中有:5×12+1=61个, …第n 个点阵中有:n×3(n ﹣1)+1=3n 2﹣3n+1, 故答案为61,3n 2﹣3n+1;(2)3n 2﹣3n+1=271,n 2﹣n ﹣90=0,(n ﹣10)(n+9)=0,n 1=10,n 2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.【点睛】本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.24.(1)m=2,顶点为(1,4);(2)(1,2).【解析】【分析】(1)首先把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3,利用待定系数法即可求得m 的值,继而求得抛物线的顶点坐标;(2)首先连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【详解】解:(1)把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3得:0=23-+3m+3, 解得:m=2,∴y=2x -+2x+3=()214x --+,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0), ∴033k b b =+⎧⎨=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).考点:二次函数的性质.25.详见解析【解析】【分析】根据中心对称得出OB=OD,OA=OC,求出OF=OE,根据SAS推出△DOF≌△BOE即可.【详解】证明:∵△ABO与△CDO关于O点中心对称,∴OB=OD,OA=OC.∵AF=CE,∴OF=OE.∵在△DOF和△BOE中,OB ODDOF BOEOF OE=⎧⎪∠=∠⎨⎪=⎩,∴△DOF≌△BOE(SAS).∴FD=BE.。

福建省福州市鼓楼区文博中学九年级(上)期中数学试卷(解析版)

福建省福州市鼓楼区文博中学九年级(上)期中数学试卷(解析版)

福建省福州市鼓楼区文博中学九年级(上)期中数学试卷一、选择题(本题10小题,每小题4分,共40分)1.下列图形是中心对称图形的是()A. B. C.D.2.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为()A.6 B.13 C. D.3.下列说法正确的是()A.可能性很大的事件必然发生B.可能性很小的事件也可能发生C.如果一件事情可能不发生,那么它就是必然事件D.如果一件事情发生的机会只有百分之一,那么它就不可能发生4.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣15.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使C到A、B两点均可直接到达,测量找到AC和BC的中点D、E,测得DE的长为1100m,则隧道AB的长度为()A.3300 m B.2200 m C.1100 m D.550 m6.如图,四边形ABCD内接于⊙O,E为DC延长线上一点,∠A=50°,则∠BCE 的度数为()A.40°B.50°C.60°D.130°7.已知P(x1,1),Q(x2,2)是一个函数图象上的两个点,其中x1<x2<0,则这个函数图象可能是()A.B.C.D.8.如图,△ABC内接于⊙O,若⊙O的半径为6,∠A=60°,则的长为()A.2πB.4πC.6πD.12π9.以正方形ABCD的对角线AC、BD所在直线为坐标轴,建立平面直角坐标系,如图所示,已知点A的坐标是(﹣,0),现将正方形ABCD绕原点O顺时针旋转45°,则旋转后点C的对应点坐标是()A.(,)B.(,﹣)C.(﹣1,1)D.(1,﹣1)10.如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C 重合,H是AC边上一点,且∠AGH=30°.设BG=x,图中某条线段长为y,y与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH二、填空题(本题6小题,每小题4分,共24分)11.若函数y=(m2+m)是二次函数,则m=.12.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是.13.半径为6cm,圆心角为40°的扇形的面积为cm2.14.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.15.观察算式+,计算它得到的结果是.16.已知边长为a的正三角形ABC,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC的长的最大值是.三、解答题(本题9小题,共86分)17.解方程:x2+2x=0.18.在平面直角坐标xOy中,直线y=x+b与双曲线y=的一个交点为A(2,4),与y轴交于点B.(1)求m的值和点B的坐标;(2)点P在双曲线y=上,△OBP的面积为8,直接写出点P的坐标.19.如图,P为等边△ABC的中心.(1)画出将△ABP绕A逆时针旋转60°的图形;(不写画法,保留作图痕迹)(2)经过什么样的图形变换,可以把△ABP变换到右边的△CMN,请写出简要的文字说明.20.如图,已知四边形ABCD是平行四边形.(1)求证:△MEF∽△MBA;(2)若AF、BE分别是∠DAB,∠CBA的平分线,求证:DF=EC.21.在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,5.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出球的标号为y.小明和小强在此基础上共同协商一个游戏规则:当x与y的积为偶数时,小明获胜;否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏公平吗?请说明理由.22.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是5元.信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元.信息3:按零售单价购买甲商品3件和乙商品2件,共付了19元.请根据以上信息,解答下列问题:(Ⅰ)甲、乙两种商品的进货单价各是多少元?(Ⅱ)该商品平均每天卖出甲商品500件和乙商品300件,经调查发现,甲、乙两种商品零售单价分别降0.1元,这两种商品每天可各多销售100件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?23.如图,Rt△ABC中,∠C=90°,O为AB上一点,以O为圆心,OB长为半径的圆,交BC边于点D,与AC边相切于点E.(1)求证:BE平分∠ABC;(2)若CD:BD=1:2,AC=3,求CD的长.24.已知矩形ABCD中,AD=2AB,AB=6,E为AD中点,M为CD上一点,PE⊥EM交CB于点P,EN平分∠PEM交BC于点N.(1)若△PEN为等腰三角形,请直接写出∠DEM所有可能的值;(2)判断BP2、PN2、NC2三者的数量关系,并加以证明;(3)过点P作PG⊥EN于点G,K为EM中点,连接DK、KG,求DK+KG+PG的最小值.25.在平面直角坐标系xOy中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.(1)求证:该二次函数的图象与x轴必有两个交点;(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.福建省福州市鼓楼区文博中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题10小题,每小题4分,共40分)1.下列图形是中心对称图形的是()A. B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.2.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6.则⊙O的半径为()A.6 B.13 C. D.【考点】垂径定理;垂线;三角形内角和定理;等腰三角形的判定与性质;勾股定理;等腰直角三角形.【分析】延长AO交BC于D,接OB,根据AB=AC,O是等腰Rt△ABC的内心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.【解答】解:过点A作等腰直角三角形BC边上的高AD,垂足为D,所以点D也为BC的中点.根据垂径定理可知OD垂直于BC.所以点A、O、D共线.∵⊙O过B、C,∴O在BC的垂直平分线上,∵AB=AC,圆心O在等腰Rt△ABC的内部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3﹣1=2,由勾股定理得:OB==.故选C.3.下列说法正确的是()A.可能性很大的事件必然发生B.可能性很小的事件也可能发生C.如果一件事情可能不发生,那么它就是必然事件D.如果一件事情发生的机会只有百分之一,那么它就不可能发生【考点】可能性的大小.【分析】事件的可能性主要看事件的类型,事件的类型决定了可能性及可能性的大小.【解答】解:A、可能性很大的事件不是必然事件,不一定发生,故错误;B、可能性很小的事件也可能发生,很可能不发生,故正确;C、如果一件事情可能不发生,那么它就是随机事件,故错误;D、如果一件事情发生的机会只有百分之一,那么它也可能发生,很可能不发生,故错误.故选B.4.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【考点】解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.5.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使C到A、B两点均可直接到达,测量找到AC和BC的中点D、E,测得DE的长为1100m,则隧道AB的长度为()A.3300 m B.2200 m C.1100 m D.550 m【考点】三角形中位线定理.【分析】由D为AC的中点、E为BC的中点,可得出DE为△ABC的中位线,根据DE的长度结合三角形中位线定理即可得出AB的长度.【解答】解:∵D为AC的中点,E为BC的中点,∵DE为△ABC的中位线,又∵DE=1100m,∴AB=2DE=2200m.故选B.6.如图,四边形ABCD内接于⊙O,E为DC延长线上一点,∠A=50°,则∠BCE 的度数为()A.40°B.50°C.60°D.130°【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的任意一个外角等于它的内对角求解.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCE=∠A=50°.故选B.7.已知P(x1,1),Q(x2,2)是一个函数图象上的两个点,其中x1<x2<0,则这个函数图象可能是()A.B.C.D.【考点】函数的图象.【分析】根据反比例函数的性质,可判断A、B,根据二次函数的性质,可判断C、D.【解答】解:A、在第二象限y随x的增大而增大,故A正确;B、函数图象不在第二象限,故B错误;C、函数图象不在第二象限,故C错误;D、在第二象限y随x的增大而减小,故D错误;故选:A.8.如图,△ABC内接于⊙O,若⊙O的半径为6,∠A=60°,则的长为()A.2πB.4πC.6πD.12π【考点】三角形的外接圆与外心;弧长的计算.【分析】连接OB,OC,根据圆周角定理求出∠BOC度数,再由弧长公式即可得出结论.【解答】解:连接OB,OC,∵∠A=60°,∴∠BOC=2∠A=120°,∴==4π.故选B.9.以正方形ABCD的对角线AC、BD所在直线为坐标轴,建立平面直角坐标系,如图所示,已知点A的坐标是(﹣,0),现将正方形ABCD绕原点O顺时针旋转45°,则旋转后点C的对应点坐标是()A.(,)B.(,﹣)C.(﹣1,1)D.(1,﹣1)【考点】坐标与图形变化﹣旋转.【分析】利用旋转的性质结合正方形的性质得出EO=FO=1,进而得出旋转后点C 的对应点坐标.【解答】解:如图所示:将正方形ABCD绕原点O顺时针旋转45°,得到如图所示图形,∵点A的坐标是(﹣,0),∴AO=CO=,则OC′=,EO=FO,故EO=FO=1,则旋转后点C的对应点坐标是:(1,﹣1).故选:D.10.如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C 重合,H是AC边上一点,且∠AGH=30°.设BG=x,图中某条线段长为y,y与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH【考点】动点问题的函数图象.【分析】根据选项中的各线段,可以分别得到它们各自随x的变化如何变化,从而可以得到哪个选项是正确的.【解答】解:若线段CG=y,由题意可得,y随x的增大减小,故选项A错误;若线段AG=y,由题意可得,y随x的增大先增大再减小,并且左右对称,故选项B错误;若线段AH=y,由题意可得,y随x的增大先减小再增大,故选项C错误;若线段CH=y,由题意可得,y随x的增大先增大再减小,故选项D正确;故选D.二、填空题(本题6小题,每小题4分,共24分)11.若函数y=(m2+m)是二次函数,则m=.【考点】二次函数的定义.【分析】根据二次函数的定义,要求自变量的指数等于2,系数不为0.【解答】解:∵函数y=(m2+m)是二次函数,∴m2﹣1=2,解得m=±;且m2+m≠0,即m≠0或m≠﹣1.∴m=±.12.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是.【考点】概率公式.【分析】找到小易抽到杀手牌的个数除以9张卡牌是小易抽到杀手牌的概率.【解答】解:从9张牌中抽取1张共有9种等可能结果,其中抽到杀手牌的有2种可能,∴小易抽到杀手牌的概率是,故答案为:.13.半径为6cm,圆心角为40°的扇形的面积为4πcm2.【考点】扇形面积的计算.【分析】将所给数据直接代入扇形面积公式S扇形=进行计算即可得出答案.【解答】解:由题意得,n=40°,R=6cm,故=4πcm2.故答案为:4π.14.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【考点】反比例函数系数k的几何意义.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴矩形ABCD的面积为3﹣1=2.故答案为:2.15.观察算式+,计算它得到的结果是﹣.【考点】二次根式的化简求值.【分析】直接将原式分子相加减,进而化简求出即可.【解答】解: +==﹣.故答案为:﹣.16.已知边长为a的正三角形ABC,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC的长的最大值是.【考点】坐标与图形性质;等边三角形的性质;勾股定理.【分析】根据题意可知,当AB的中点D、O、C三点共线时OC最长,再结合等边三角形的性质即可得出本题的答案.【解答】解:取AB中点D,连OD,DC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD.∵△ABC为等边三角形,∴AB=BC=AC=a,根据三角形的性质可知:OD=a,CD==a.∴OC=a故答案为:a.三、解答题(本题9小题,共86分)17.解方程:x2+2x=0.【考点】解一元二次方程﹣因式分解法.【分析】首先提取公因式x把原方程转化为x(x+2)=0,然后令每个因式的值为0,得到两个一元一次方程,解这两个一元一次方程即可求出原方程的解.【解答】解:∵x2+2x=0,∴x(x+2)=0,∴x=0或x+2=0,∴x1=0,x2=﹣2.18.在平面直角坐标xOy中,直线y=x+b与双曲线y=的一个交点为A(2,4),与y轴交于点B.(1)求m的值和点B的坐标;(2)点P在双曲线y=上,△OBP的面积为8,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A坐标分别代入两个函数的解析式中即可解决问题.(2)设点P(m,),由题意得×2×|m|=8,解方程即可.【解答】解:(1)∵双曲线y=经过点A(2,4),∴m=8,∵直线y=x+b经过点A(2,4),∴4=2+b,∴b=2,∴此直线与y轴的交点B坐标为(0,2).∴m=8,点B(0,2).(2)设点P(m,),由题意×2×|m|=8,∴m=±8,∴点P坐标(8,1),(﹣8,﹣1).19.如图,P为等边△ABC的中心.(1)画出将△ABP绕A逆时针旋转60°的图形;(不写画法,保留作图痕迹)(2)经过什么样的图形变换,可以把△ABP变换到右边的△CMN,请写出简要的文字说明.【考点】作图﹣旋转变换.【分析】(1)易得AB边将旋转到AC,那么向右做∠PAP′=60°,且AP′=AP,连接P′C,△AP′C就是将△ABP绕A逆时针旋转60°的图形;(2)易得转到(1)后再顺时针旋转90°后即可得到△CMN.【解答】解:(1);(2)先将△ABP绕A逆时针旋转60°,然后再将△ACP绕C顺时针旋转90°;本题也可以先旋转,后平移,方法略.20.如图,已知四边形ABCD是平行四边形.(1)求证:△MEF∽△MBA;(2)若AF、BE分别是∠DAB,∠CBA的平分线,求证:DF=EC.【考点】相似三角形的判定;平行四边形的性质.【分析】(1)由平行四边形的性质得出角相等,再根据相似三角形的判定得出答案;(2)由AB∥CD,得∠DFA=∠FAB,再由角平分线的定义得出∠DAF=∠FAB,从而得出∠DAF=∠DFA,即DA=DF,同理得出CE=CB,由平行四边形的性质得出DF=EC.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EFM=∠MAB,∠FEM=∠MBA,∴△MEF∽△MBA;(2)∵AB∥CD,∴∠DFA=∠FAB,∵AF、BE分别是∠DAB,∠CBA的平分线,∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DA=DF,同理得出CE=CB,∴DF=EC.21.在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,5.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出球的标号为y.小明和小强在此基础上共同协商一个游戏规则:当x与y的积为偶数时,小明获胜;否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)先画树状图展示所有12种等可能的结果数,找出积为偶数的结果数,然后根据概率公式计算;(2)先画树状图展示所有16种等可能的结果数,找出积为偶数和奇数的结果数,然后根据概率公式计算小明和小强获胜的概率,再比较概率的大小即可判断游戏的公平性.【解答】解:(1)画树状图如下:由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中x与y的积为偶数有6种,所以小明获胜的概率P(x与y的积为偶数)==;(2)列树状图如下:,由树状图可知,所有可能出现的结果共16种情况,并且每种情况出现的可能性相等.其中x与y的积为偶数有7种,所以小明获胜的概率P(x与y的积为偶数)=,小强获胜的概率P(x与y的积为偶数)=,而<,所以游戏规则不公平.22.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是5元.信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元.信息3:按零售单价购买甲商品3件和乙商品2件,共付了19元.请根据以上信息,解答下列问题:(Ⅰ)甲、乙两种商品的进货单价各是多少元?(Ⅱ)该商品平均每天卖出甲商品500件和乙商品300件,经调查发现,甲、乙两种商品零售单价分别降0.1元,这两种商品每天可各多销售100件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?【考点】二次函数的应用;二元一次方程组的应用.【分析】(1)设出甲、乙两种商品的进货单价,表示出零售单价,列出二元一次方程组成方程组即可;(2)根据总利润=每一件商品的利润×所卖商品的件数列出关于m的二次函数,求出最大值即可.【解答】解:(1)设甲种商品的进货单价为x元,乙种商品的进货单价为y元,由题意得解得2答:甲种商品的进货单价为2元,乙种商品的进货单价为3元.(2)设商店每天销售甲、乙两种商品获取的利润为W元,由题意得W=(2+1﹣2﹣m)+(2×3﹣1﹣3﹣m)=﹣2000m2+2200m+1100=﹣2000(m﹣0.55)2+1705;答:当m定为0.55时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1705元.23.如图,Rt△ABC中,∠C=90°,O为AB上一点,以O为圆心,OB长为半径的圆,交BC边于点D,与AC边相切于点E.(1)求证:BE平分∠ABC;(2)若CD:BD=1:2,AC=3,求CD的长.【考点】切线的性质.【分析】(1)连接OE,可证得OE∥BC,结合平行线的性质和圆的特性可求得∠OBE=∠CBE,可得出结论;(2)设AB交⊙O于点F,连接FD,可知FD∥AC,利用平行线分线段成比例可求得AF=OB=OF,可得AE:AC=2:3,可得到OE与BC的关系,在Rt△DEB中利用勾股定理可求得CD的长.【解答】(1)证明:如图1,连接OE,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠OEB=∠CBE=∠OBE,∴BE平分∠ABC;(2)解:如图2,设AB交⊙O于点F,连接FD,设CD=x,OB=OF=OE=r,则BD=2x,BC=3x,∵BF为直径,∴∠FDB=∠C=90°,∴DF∥AC,∴==2,∴AF=r,AB=3r,∴==,即=,∴FD=2,又∵OE∥BC,∴=,即=,∴r=2x,∴BF=4x,在Rt△BDF中,由勾股定理可得BF2=DF2+BD2,即(4x)2=(2)2+(2x)2,解得x=1,∴CD的长为1.24.已知矩形ABCD中,AD=2AB,AB=6,E为AD中点,M为CD上一点,PE⊥EM交CB于点P,EN平分∠PEM交BC于点N.(1)若△PEN为等腰三角形,请直接写出∠DEM所有可能的值;(2)判断BP2、PN2、NC2三者的数量关系,并加以证明;(3)过点P作PG⊥EN于点G,K为EM中点,连接DK、KG,求DK+KG+PG的最小值.【考点】四边形综合题.【分析】(1)根据题意,分三种情况:①当M和D重合时;②当M不和D、C 重合时;③当M和C重合时;然后根据△PEN为等腰三角形,写出∠DEM所有可能的值即可.(2)三者的数量关系是:BP2+NC2=PN2.然后分三种情况:①当点N与点C重合时,P为BC的中点,显然BP2+NC2=PN2成立;②当点P与点B重合时,N为BC 的中点,显然BP2+NC2=PN2成立;③当点N与点C不重合,点P与点B不重合时;证明BP2+NC2=PN2成立即可.(3)首先判断出P、G、M三点共线,且G为PM的中点,然后判断出△PEM为等腰直角三角形,根据勾股定理,可得PG=GM=ME,最后判断出当ME取得最小值时,DK+GK+PG取得最小值,即当ME=DE=6时,DK+GK+PG有最小值,并求出最小值是多少即可.【解答】解:(1)①如图1,当M和D重合时,,∵AD=2AB,E为AD中点,∴四边形PCDE是正方形,∴EC平分∠PEM,N和C重合,∴∠DEM=0°.②如图2,,∵PE⊥EM,∴∠PEM=90°,∵EN平分∠PEM,∴∠PEN=∠MEN=90°÷2=45°,∵AD∥BC,∴∠ENP=∠DEN=∠DEM+∠MEN=∠DEM+45°>45°,∵AD=2AB,E为AD中点,∴DE=CD,∴DE>DM,∴∠DEM<45°,∴∠AEP>45°,∴∠EPN>45°,∵△PEN为等腰三角形,∴PE=NE,∴∠PNE=÷2=67.5°,∵AD∥BC,∴∠DEN=∠PNE=67.5°,∴∠DEM=67.5°﹣45°=22.5°.③如图3,当M和C重合时,P和B重合,,∵EN平分∠PEM,∴N是BC的中点,∵AD=2AB,E为AD中点,∴四边形NCDE是正方形,∴∠DEM=45°.综上,可得∠DEM=0°,∠DEM=22.5°或∠DEM=45°.(2)三者的数量关系是:BP2+NC2=PN2.①点N与点C重合时,P为BC的中点,显然BP2+NC2=PN2成立;②点P与点B重合时,N为BC的中点,显然BP2+NC2=PN2成立;③证明:如图4,连接BE、CE,,∵四边形ABCD为矩形,AD=2AB,E为AD中点,∴∠A=∠B=90°,AB=CD=AE=DE,∴∠AEB=45°,∠DEC=45°,在△ABE和△DCE中,∴△ABE≌△DCE,∠BEC=90°,∴BE=CE,∴∠EBC=∠ECB=45°,∴∠EBC=∠ECD,又∵∠BEC=∠PEM=90°,∴∠BEP=∠MEC,在△BEP和△CEM中,∴△BEP≌△CEM,∴BP=MC,PE=ME,∵EN平分∠PEM,∴∠PEN=∠MEN==45°,在△EPN和△EMN中,∴△EPN≌△EMN,∴PN=MN,在Rt△MNC中有:MC2+NC2=MN2,∴BP2+NC2=PN2.(3)如图5,连接PM,由(2),可得PN=MN,PE=ME,∴EN垂直平分PM,PG⊥EN,∴P、G、M三点共线,且G为PM的中点,∵K为EM中点,∴GK=ME,又∵∠D=90°,∴,由(2),可得△PEM为等腰直角三角形,根据勾股定理,可得PG=GM=ME,∴DK+GK+PG==(1)ME,∴当ME取得最小值时,DK+GK+PG取得最小值,即当ME=DE=6时,DK+GK+PG有最小值,最小值为:(1+)×6=6.25.在平面直角坐标系xOy中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.(1)求证:该二次函数的图象与x轴必有两个交点;(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.【考点】二次函数综合题.【分析】(1)直接利用根的判别式,结合完全平方公式求出△的符号进而得出答案;(2)首先求出B,A点坐标,进而求出直线AB的解析式,再利用平移规律得出答案;(3)根据当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)<2,即可得出m的取值范围.【解答】解:(1)令mx2﹣(m+n)x+n=0,则△=(m+n)2﹣4mn=(m﹣n)2,∵二次函数图象与y轴正半轴交于A点,∴A(0,n),且n>0,又∵m<0,∴m﹣n<0,∴△=(m﹣n)2>0,∴该二次函数的图象与轴必有两个交点;(2)令mx2﹣(m+n)x+n=0,解得:x1=1,x2=,由(1)得<0,故B的坐标为(1,0),又因为∠ABO=45°,所以A(0,1),即n=1,则可求得直线AB的解析式为:y=﹣x+1.再向下平移2个单位可得到直线l:y=﹣x﹣1;(3)由(2)得二次函数的解析式为:y=mx2﹣(m+1)x+1.∵M(p,q)为二次函数图象上的一个动点,∴q=mp2﹣(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,﹣q).∴M′点在二次函数y=﹣m2+(m+1)x﹣1上.∵当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=﹣3时,q=12m+4;结合图象可知:﹣(12m+4)<2,解得:m>﹣.∴m的取值范围为:﹣<m<0.2017年5月3日第31页(共31页)。

2020-2021学年福建省福州市鼓楼区文博中学九年级上学期月考数学试卷 (Word版 含解析)

2020-2021学年福建省福州市鼓楼区文博中学九年级上学期月考数学试卷 (Word版 含解析)

2020-2021学年福建省福州市鼓楼区文博中学九年级第一学期月考数学试卷一、选择题(共10小题).1.已知反比例函数,下列说法中正确的是()A.该函数的图象分布在第一、三象限B.点(﹣4,﹣3)在函数图象上C.y随x的增大而增大D.若点(﹣2,y1)和(﹣1,y2)在该函数图象上,则y1<y22.关于二次函数y=(x+1)2,下列说法正确的是()A.当x<1时,y值随x值的增大而增大B.当x<1时,y值随x值的增大而减小C.当x<﹣1时,y值随x值的增大而增大D.当x<﹣1时,y值随x值的增大而减小3.已知⊙O的直径为10,点P到点O的距离大于8,那么点P的位置()A.一定在⊙O的内部B.一定在⊙O的外部C.一定在⊙O上D.不能确定4.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.5.定义:在平面直角坐标系中,过一点P分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P叫作和谐点,所围成的矩形叫作和谐矩形.已知点P是抛物线y=x2+k上的和谐点,所围成的和谐矩形的面积为16,则k的值可以是()A.16B.4C.﹣12D.﹣186.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.a<0B.b<0C.c<0D.a<b7.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°8.如图,已知正方形ABCD的边长为4,点M和N分别从B、C同时出发,以相同的速度沿BC、CD向终点C、D运动,连接AM、BN,交于点P,连接PC,则PC长的最小值为()A.2﹣2B.2C.3﹣1D.29.如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD.现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120°.其中正确的结论有()A.4个B.3个C.2个D.1个10.如图,已知在平面直角坐标系xOy中,反比例函数在第一象限经过△ABO 的顶点A,且点B在x轴上,过点B作x轴的垂线交反比例函数图象于点C,连结OC 交AB于点D,已知,,则k的值为()A.6B.8C.D.二、填空题(共6小题).11.关于x的函数y=(m﹣2)x|m|﹣4是二次函数,则m=.12.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,S△PAB=.13.下列说法中正确的序号是.①在函数y=﹣x2中,当x=0时,y有最大值0;②在函数y=2x2中,当x>0时,y随x的增大而增大;③抛物线y=2x2,y=﹣x2,y=﹣中,抛物线y=2x2的开口最小,抛物线y=﹣x2的开口最大;④不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点.14.分别以矩形OABC的边OA,OC所在的直线为x轴,y轴建立平面直角坐标系,点B 的坐标是(4,2),将矩形OABC折叠使点B落在G(3,0)上,折痕为EF,若反比例函数的图象恰好经过点E,则k的值为.15.如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM ⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是.16.如图,点A在双曲线y=的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE 的面积为,则k的值为.三、解答题17.(8分)解方程:(1)x2﹣4x﹣1=0(配方法);(2)3x(x﹣1)=2﹣2x.18.(8分)已知关于x的方程x2﹣(3k+3)x+2k2+4k+2=0(1)求证:无论k为何值,原方程都有实数根;(2)若该方程的两实数根x1、x2为一菱形的两条对角线之长,且x1x2+2x1+2x2=36,求k 值及该菱形的面积.19.(8分)如图,已知AB是⊙O的弦,半径OA=2,OA和AB的长度是关于x的一元二次方程x2﹣4x+a=0的两个实数根.(1)求弦AB的长度;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动一周,当S△POA=S△AOB时,求P 点所经过的弧长(不考虑点P与点B重合的情形).20.(8分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.21.(8分)如图,AB是⊙O的直径,射线AM经过⊙O上的点E,弦AC平分∠MAB,过点C作CD⊥AM,垂足为D.(1)请用尺规作图将图形补充完整,不写作法,保留痕迹,并证明:CD是⊙O的切线;(2)若AB=8,CD=2,求弦AE的长.22.(10分)某水产品养殖企业为指导该企业某种产品的养殖和销售,对历年市场行情和水产品的养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式+36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示:(1)试确定b、c的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)几月份出售这种水产品每千克利润最大?最大利润是多少?23.(10分)如图,反比例函数y=(x>0)过点A(4,3),直线AC与x轴交于点C (6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试直接写出符合条件的所有D点的坐标.24.(12分)如图,在⊙O中,AB是直径,P为AB上一点,过点P作弦MN,∠NPB=45°.(1)若AP=2,BP=6,求MN的长;(2)若MP=3,NP=5,求AB的长;(3)当P在AB上运动时(∠NPB=45°不变),的值是否发生变化?若不变,请求出其值;若变化,请求出其范围.25.(14分)已知点(4,0)、(﹣2,3)为二次函数图象抛物线上两点,且抛物线的对称轴为直线x=2.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点M(m,﹣1),点A、B为抛物线上不重合的两点(B在A的左侧),且直线MA与抛物线仅有一个公共点.①如图1,当点M在y轴上时,过点A、B分别作AP⊥y轴于点P,BQ⊥x轴于点Q.若△APM与△BQO相似,求直线AB的解析式;②如图2,当直线MB与抛物线也只有一个公共点时,记A、B两点的横坐标分别为a、b.当点M在y轴上时,直接写出的值为;当点M不在y轴上时,求证:为一个定值,并求出这个值.参考答案一、选择题1.已知反比例函数,下列说法中正确的是()A.该函数的图象分布在第一、三象限B.点(﹣4,﹣3)在函数图象上C.y随x的增大而增大D.若点(﹣2,y1)和(﹣1,y2)在该函数图象上,则y1<y2解:A、k=﹣6<0,函数的图象在第二、四象限,故说法错误;B、因为﹣3×(﹣4)=12≠﹣6,所以点(﹣4,﹣3)不在函数图象上,故说法错误C、k=﹣6<0,在每个象限内,y随着x的增大而增大,故说法错误;D、k=﹣6<0,在每个象限内,y随着x的增大而增大,因为﹣2<﹣1<0,则y1<y2,故说法正确;故选:D.2.关于二次函数y=(x+1)2,下列说法正确的是()A.当x<1时,y值随x值的增大而增大B.当x<1时,y值随x值的增大而减小C.当x<﹣1时,y值随x值的增大而增大D.当x<﹣1时,y值随x值的增大而减小【解答】解;如图,由图象可得:当x<1时,y值随x值的增大先减少后增大,故A错误;当x<1时,y值随x值的增大先减少后增大,故B错误;当x<﹣1时,y值随x值的增大而减少,故C错误;当x<﹣1时,y值随x值的增大而减小,故D正确;故选:D.3.已知⊙O的直径为10,点P到点O的距离大于8,那么点P的位置()A.一定在⊙O的内部B.一定在⊙O的外部C.一定在⊙O上D.不能确定解:r=×10=5,d=8>r,点P一定在⊙O的外部.故选:B.4.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故A错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.5.定义:在平面直角坐标系中,过一点P分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P叫作和谐点,所围成的矩形叫作和谐矩形.已知点P是抛物线y=x2+k上的和谐点,所围成的和谐矩形的面积为16,则k的值可以是()A.16B.4C.﹣12D.﹣18解:∵点P(m,n)是抛物线y=x2+k上的点,∴n=m2+k,∴k=n﹣m2,∴点P(m,n)是和谐点,对应的和谐矩形的面积为16,∴2|m|+2|n|=|mn|=16,∴|m|=4,|n|=4,当n≥0时,k=n﹣m2=4﹣16=﹣12;当n<0时,k=n﹣m2=﹣4﹣16=﹣20;故选:C.6.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.a<0B.b<0C.c<0D.a<b解:∵开口向下,且对称轴位于y轴左侧、抛物线与y轴的交点位于y轴的负半轴,∴a<0、b<0,c<0,故此选项A、B、C正确;∵当x=﹣1时,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,即a>b,故选项D错误;故选:D.7.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°解:∵OA⊥BC,∴∠AOB=∠AOC=90°,∴∠DBC=90°﹣∠BEO=90°﹣∠AED=90°﹣α,∴∠COD=2∠DBC=180°﹣2α,∵∠AOD+∠COD=90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D.8.如图,已知正方形ABCD的边长为4,点M和N分别从B、C同时出发,以相同的速度沿BC、CD向终点C、D运动,连接AM、BN,交于点P,连接PC,则PC长的最小值为()A.2﹣2B.2C.3﹣1D.2解:由题意得:BM=CN,∵四边形ABCD是正方形,∴∠ABM=∠BCN=90°,AB=BC=4,在△ABM和△BCN中,AB=BC,∠ABM=∠BCN,MB=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠ABP+∠CBN=90°,∴∠ABP+∠BAM=90°,∴∠APB=90°,∴点P在以AB为直径的圆上运动,设圆心为O,运动路径一条弧,是这个圆的,如图所示:连接OC交圆O于P,此时PC最小,∵AB=4,∴OP=OB=2,由勾股定理得:OC==2,∴PC=OC﹣OP=2﹣2;故选:A.9.如图,在⊙O中,AB为直径,点M为AB延长线上的一点,MC与⊙O相切于点C,圆周上有一点D与点C分居直径AB两侧,且使得MC=MD=AC,连接AD.现有下列结论:①MD与⊙O相切;②四边形ACMD是菱形;③AB=MO;④∠ADM=120°.其中正确的结论有()A.4个B.3个C.2个D.1个解:连接OC,OD,∵OC=OD,CM=DM,OM=OM,∴△CMO≌△DMO(SSS),∴∠ODM=∠OCM,∵MC与⊙O相切于点C,∴∠OCM=90°,∴∠ODM=90°,∴MD与⊙O相切;故①正确;∵△CMO≌△DMO,∴∠COM=∠DOM,∴∠AOC=∠AOD,∵OA=OA,∴△AOC≌△AOD(SAS),∴AC=AD,∴AC=AD=CM=DM,∴四边形ACMD是菱形,故②正确;∵AC=CM,∴∠CAM=∠CMA,∵∠COM=2∠CAM,∴∠COM=2∠CMO,∴∠CMO=30°,∴OC=OM,∵OC=AB,∴AB=OM,故③正确;∵四边形ACMD是菱形,∴∠DAM=∠DMA=∠AMC=∠CAM=30°,∴∠ADM=120°,故④正确;故选:A.10.如图,已知在平面直角坐标系xOy中,反比例函数在第一象限经过△ABO 的顶点A,且点B在x轴上,过点B作x轴的垂线交反比例函数图象于点C,连结OC 交AB于点D,已知,,则k的值为()A.6B.8C.D.解:如图,过A作AF垂直OB于F点,交OC于E点,∴AF∥BC,∴△AED∽△BCD,∴,∴,设,则AF=tBC,∴,又OF×AF=OB×BC,∴,又EF∥BC,∴△OEF∽△OCB∴,∴,解得t1=2,t2=﹣(舍去),∴AF=2BC,OB=2OF,又∵,∴,∴OA=3OF,在Rt△AOF中,勾股定理可得AF=,∴,在Rt△OBC中,OB2+BC2=OC2,∴,解得OF=或﹣(舍去),∴AF==4,∴k=OF×AF=,故选:C.二、填空题11.关于x的函数y=(m﹣2)x|m|﹣4是二次函数,则m=﹣2.解:由题意得:|m|=2,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.12.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△PAB的周长最小时,S△PAB=.解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△PAB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△PAB的面积是:=,故答案为:.13.下列说法中正确的序号是①②④.①在函数y=﹣x2中,当x=0时,y有最大值0;②在函数y=2x2中,当x>0时,y随x的增大而增大;③抛物线y=2x2,y=﹣x2,y=﹣中,抛物线y=2x2的开口最小,抛物线y=﹣x2的开口最大;④不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点.解:由函数的解析式y=﹣x2,可知a=﹣1<0,得到函数的开口向下,有最大值y=0,故①正确;由函数的解析式y=2x2,可知其对称轴为y轴,对称轴的左边(x<0),y随x增大而减小,对称轴的右边(x>0),y随x增大而增大,故②正确;根据二次函数的性质,系数a决定抛物线的开口方向和开口大小,且|a|越大开口越小,可知抛物线y=2x2的开口最小,抛物线y=﹣x2的开口第二小,而y=开口最大,故③不正确;不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点,故④正确.综上,正确的结论是:①②④.故答案为:①②④.14.分别以矩形OABC的边OA,OC所在的直线为x轴,y轴建立平面直角坐标系,点B 的坐标是(4,2),将矩形OABC折叠使点B落在G(3,0)上,折痕为EF,若反比例函数的图象恰好经过点E,则k的值为3.解:过G作GD⊥BC于D,则点D(3,2),设CE的长为a,根据折叠的性质知:EG=BE=4﹣a,ED=3﹣a,在Rt△EGD中,EG2=ED2+DG2,∴(4﹣a)2=(3﹣a)2+22,解得:,∴点E的坐标为(,2),∵反比例函数的图象恰好经过点E,∴,故答案为:3.15.如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠DOB;③DM ⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是3.解:∵==,点E是点D关于AB的对称点,∴=,∴∠DOB=∠BOE=∠COD=×180°=60°,∴①正确;∠CED=∠COD==30°=∠DOB,∴②正确;∵的度数是60°,∴的度数是120°,∴只有当M和A重合时,∠MDE=60°,∵∠CED=30°,∴只有M和A重合时,DM⊥CE,∴③错误;做C关于AB的对称点F,连接CF,交AB于N,连接DF交AB于M,此时CM+DM的值最短,等于DF长,连接CD,∵===,并且弧的度数都是60°,∴∠D=×120°=60°,∠CFD==30°,∴∠FCD=180°﹣60°﹣30°=90°,∴DF是⊙O的直径,即DF=AB=10,∴CM+DM的最小值是10,∴④正确;综上所述,正确的个数是3个.故答案是:3.16.如图,点A在双曲线y=的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE 的面积为,则k的值为.解:连CD,如图,∵AE=3EC,△ADE的面积为,∴△CDE的面积为,∴△ADC的面积为2,设A点坐标为(a,b),则AB=a,OC=2AB=2a,∵点D为OB的中点,∴BD=OD=b,∵S梯形OBAC=S△ABD+S△ADC+S△ODC,∴(a+2a)×b=a×b+2+×2a×b,∴ab=,把A(a,b)代入双曲线y=得,∴k=ab=.故答案为:.三、解答题17.(8分)解方程:(1)x2﹣4x﹣1=0(配方法);(2)3x(x﹣1)=2﹣2x.解:(1)∵x2﹣4x=1,∴x2﹣4x+4=1+4,即(x﹣2)2=5,∴x﹣2=,∴x1=2+,x2=2﹣;(2)∵3x(x﹣1)=﹣2(x﹣1),∴3x(x﹣1)+2(x﹣1)=0,则(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,解得x1=1,x2=﹣.18.(8分)已知关于x的方程x2﹣(3k+3)x+2k2+4k+2=0(1)求证:无论k为何值,原方程都有实数根;(2)若该方程的两实数根x1、x2为一菱形的两条对角线之长,且x1x2+2x1+2x2=36,求k 值及该菱形的面积.【解答】(1)证明:根据题意得:△=[﹣(3k+3)]2﹣4(2k2+4k+2)=(k+1)2.∵无论k为何值,总有(k+1)2≥0,∴无论k为何值,原方程都有实数根;(2)∵关于x的方程x2﹣(3k+3)x+2k2+4k+2=0的两实数根是x1、x2,∴x1+x2=3k+3,x1x2=2k2+4k+2,∴由x1x2+2x1+2x2=36,得2k2+4k+2+2(3k+3)=36,整理,得(k+7)(k﹣2)=0.解得k1=﹣7(舍去),k2=2.∴x1x2=×2(k+1)2=(2+1)2=9.即菱形的面积是9.19.(8分)如图,已知AB是⊙O的弦,半径OA=2,OA和AB的长度是关于x的一元二次方程x2﹣4x+a=0的两个实数根.(1)求弦AB的长度;(2)计算S△AOB;(3)⊙O上一动点P从A点出发,沿逆时针方向运动一周,当S△POA=S△AOB时,求P 点所经过的弧长(不考虑点P与点B重合的情形).解:(1)由题意知:OA和AB的长度是x2﹣4x+a=0的两个实数根,∴OA+AB=﹣=4,∵OA=2,∴AB=2;(2)过点C作OC⊥AB于点C,∵OA=AB=OB=2,∴△AOB是等边三角形,∴AC=AB=1在Rt△ACO中,由勾股定理可得:OC=∴S△AOB=AB•OC=×2×=(3)延长AO交⊙O于点D,由于△AOB与△POA有公共边OA,当S△POA=S△AOB时,∴△AOB与△POA高相等,由(2)可知:等边△AOB的高为,∴点P到直线OA的距离为,这样点共有3个①过点B作BP1∥OA交⊙O于点P1,∴∠BOP1=60°,∴此时点P经过的弧长为:=,②作点P2,使得P1与P2关于直线OA对称,∴∠P2OD=60°,∴此时点P经过的弧长为:=π,③作点P3,使得B与P3关于直线OA对称,∴∠P3OP2=60°,∴此时P经过的弧长为:=,综上所述:当S△POA=S△AOB时,P点所经过的弧长分别是、、.20.(8分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:连接AD,∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.21.(8分)如图,AB是⊙O的直径,射线AM经过⊙O上的点E,弦AC平分∠MAB,过点C作CD⊥AM,垂足为D.(1)请用尺规作图将图形补充完整,不写作法,保留痕迹,并证明:CD是⊙O的切线;(2)若AB=8,CD=2,求弦AE的长.【解答】(1)作图如图1所示:证明:连接OC,则OA=OC,∴∠OAC=∠OCA∵AC平分∠MAB,∴∠OAC=∠MAC∴∠OCA=∠MAC,∴AM∥OC,∵CD⊥AM,垂足为D,∴∠CDM=90°∴∠OCD=∠CDM=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)解:作OF⊥AM,垂足为F,则AF=EF,四边形OCDF是矩形,∴,在Rt△AOF中,∵AF2+OF2=OA2∴,∴AE=2AF=4.22.(10分)某水产品养殖企业为指导该企业某种产品的养殖和销售,对历年市场行情和水产品的养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式+36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示:(1)试确定b、c的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)几月份出售这种水产品每千克利润最大?最大利润是多少?解:(1)根据图象,将(3,25)和(4,24)分别代入解析式得:,解得:,;(2)由题意得:y=y1﹣y2,∴y=(﹣x+36)﹣(x2﹣+)=﹣x2+x+;(3)将y=﹣x2+x+化为顶点式得:,∵,∴抛物线开口向下,∴当x=6时,二次函数取得最大值,此时y=11,所以6月份出售这种水产品每千克利润最大,最大利润是每千克11元.23.(10分)如图,反比例函数y=(x>0)过点A(4,3),直线AC与x轴交于点C (6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试直接写出符合条件的所有D点的坐标.解:(1)把A(4,3)代入y=得:k=12,当x=6时,y=12÷6=2,∴点B(6,2),答:k的值为12,点B的坐标为(6,2).(2)A(4,3),B(6,2)、C(6,0),BC=2,①过A作BC的平行线,在这条平行线上截取AD1=BC,AD2=BC,此时D1(4,1),D2(4,5),②过点C作AB的平行线与过B作AC的平行线相交于D3,过点A作AM⊥BC,垂足为M,过D3作D3N⊥BC,垂足为N,∵ABCD3是平行四边形,∴AC=BD3,∠ACM=∠DBN,∴△ACM≌△D3BN(AAS)∴D3N=AM=6﹣4=2,CM=BN=3,∴D3的横坐标为6+2=8,CN=3﹣2=1∴D3(8,﹣1)答:符合条件的所有D点的坐标为(4,1),(4,5),(8,﹣1).24.(12分)如图,在⊙O中,AB是直径,P为AB上一点,过点P作弦MN,∠NPB=45°.(1)若AP=2,BP=6,求MN的长;(2)若MP=3,NP=5,求AB的长;(3)当P在AB上运动时(∠NPB=45°不变),的值是否发生变化?若不变,请求出其值;若变化,请求出其范围.解:(1)作OH⊥MN于H,连接ON,∵AP=2,BP=6,∴AB=8,∴OA=4,OP=2,在Rt△POH中,∵∠OPH=45°,∴OH=OP=,在Rt△OHN中,∵ON=4,OH=,∴NH===,∵OH⊥MN,∴HM=HN,∴MN=2NH=2;(2)作OH⊥MN于H,连接ON,则HM=HN,∵MP=3,NP=5,∴MN=8,∴HM=HN=4,∴PH=1,在Rt△POH中,∵∠OPH=45°,∴OH=1,在Rt△OHN中,∵HN=4,OH=1,∴ON==,∴AB=2ON=2;(3)的值不发生变化,为定值,作OH⊥MN于H,连接ON,则HM=HN,设圆的半径为R,在Rt△OHN中,OH2+NH2=ON2=R2,在Rt△POH中,∵∠OPH=45°,∴OH=PH,∴PH2+NH2=R2,∵PM2+PN2=(HM﹣PH)2+(NH+PH)2=(NH﹣PH)2+(NH+PH)2=2(PH2+NH2)=2R2.又AB2=4R2,∴==∴的值不发生变化,为定值.25.(14分)已知点(4,0)、(﹣2,3)为二次函数图象抛物线上两点,且抛物线的对称轴为直线x=2.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点M(m,﹣1),点A、B为抛物线上不重合的两点(B在A的左侧),且直线MA与抛物线仅有一个公共点.①如图1,当点M在y轴上时,过点A、B分别作AP⊥y轴于点P,BQ⊥x轴于点Q.若△APM与△BQO相似,求直线AB的解析式;②如图2,当直线MB与抛物线也只有一个公共点时,记A、B两点的横坐标分别为a、b.当点M在y轴上时,直接写出的值为1;当点M不在y轴上时,求证:为一个定值,并求出这个值.解:(1)设y=ax2+bx+c(a≠0),由题意得,解得,∴抛物线解析式;(2)①M(0,﹣1),平移后抛物线,设MA:y=kx﹣1,则联立,整理得:,则△=k2﹣1=0,∴k=±1,又由图,A在y轴右侧,故k=1,A(2,1),∴AP=PM=2,△APM为等腰直角三角形,又△APM与△BQO相似,∴△BQO为等腰直角三角形,设B(﹣x,x),代入抛物线解析式得:,解得x=4或x=0(舍去),∴B(﹣4,4),设AB:y=mx+n,把A(2,1),B(﹣4,4)代入得:,解得:,∴AB解析式为:;②(i)∵关于y轴对称,M在y轴上,且MA,MB与抛物线只有一个交点,∴A、B两点关于y轴对称,∴a=﹣b,∴==1,故答案是:1;(ii)设MA:y=k1x﹣k1m﹣1,则联立,整理得:x2﹣4k1x+4k1m+4=0,∵此方程仅一个根,故,且,同理设MB:y=k2x﹣k2m﹣1,亦有b=2k2,,故k1,k2为方程x2﹣mx﹣1=0不相等两个实数根,k1+k2=m,∴,即为一定值1,∴当点M不在y轴上时,为一个定值1.。

2020-2021初三数学上期中一模试卷(含答案)(6)

2020-2021初三数学上期中一模试卷(含答案)(6)

2020-2021初三数学上期中一模试卷(含答案)(6)一、选择题1.﹣3的绝对值是()A.﹣3B.3C.-13D.132.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°3.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A.25°B.40°C.50°D.65°4.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)5.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按逆时针方向转动一个角度到△A1BC1的位置,使得点A1、B、C在同一条直线上,那么旋转角等于()A.30°B.60°C.90°D.120°6.某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y(间)与定价x(元/间)之间满足y=14x﹣42(x≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为()A .252元/间B .256元/间C .258元/间D .260元/间 7.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A .45°B .60°C .45° 或135°D .60° 或120°8.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=21 9.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B 的右侧).则下列命题中正确命题的是( )①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .A .①②③B .②③⑤C .②④⑤D .②③④⑤10.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个11.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .12.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18 D .x 2+3x+16=0 二、填空题13.已知、是方程的两个根,则代数式的值为______.14.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为__________.15.若关于x 的一元二次方程()22 26k x kx k --+=有实数根,则k 的最小整数值为__________.16.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C (0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标:_____.17.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________ .18.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .19.用半径为12cm ,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_______cm . 20.若3是关于x 的方程x 2-x +c =0的一个根,则方程的另一个根等于____.三、解答题21.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.22.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少? (3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)23.三辆汽车经过某收费站下高速时,在2个收费通道A ,B 中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A 通道通过的概率是 ;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B 通道通过的概率.24.已知,关于x 的一元二次方程2210x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)如果m 为非负整数,且该方程的根都是整数,求m 的值.25.如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA=∠CBD , (1)求证:CD 是⊙O 的切线;(2)若BC=6,tan ∠CDA=23,求CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B .【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.2.C解析:C【解析】【分析】根据圆周角定理求出∠AOD 即可解决问题.【详解】解:∵∠AOD=2∠ACD ,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C .【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,3.B解析:B【解析】连接OC ,∵CD 是切线,∴∠OCD=90°,∵OA=OC ,∴∠ACO=∠BAC=25°,∴∠COD=∠ACO+∠BAC=50°,∴∠D=90°-∠COD=40°,故选B.4.C解析:C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质.5.D解析:D【解析】根据题意旋转角为∠ABA 1,由∠ABC=60°,∠C=90°,A 、B 、C 1在同一条直线上,得到∠ABA 1=180°-∠A 1BC 1=180°-60°=120°解:旋转角为∠ABA 1,∵∠ABC=60°,∠C=90°,∴∠ABA 1=180°-∠A 1BC 1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R 180π,其中l 表示弧长,n 表示弧所对的圆心角的度数. 6.B解析:B【解析】【分析】根据:总利润=每个房间的利润×入住房间的数量-每日的运营成本,列出函数关系式,配方成顶点式后依据二次函数性质可得最值情况.【详解】设每天的利润为W 元,根据题意,得:W=(x-28)(80-y )-5000()128804245000x x ⎛⎫=--- ⎪⎝⎡⎤-⎢⎥⎣⎦⎭ 2112984164x x =-+- ()2125882254x =--+, ∵当x=258时,12584222.54y =⨯-=,不是整数, ∴x=258舍去,∴当x=256或x=260时,函数取得最大值,最大值为8224元,又∵想让客人得到实惠,∴x=260(舍去)∴宾馆应将房间定价确定为256元时,才能获得最大利润,最大利润为8224元. 故选:B .【点睛】本题考查二次函数的实际应用,利用数学知识解决实际问题,解题的关键是建立函数模型,利用配方法求最值.7.C解析:C【解析】【分析】首先连接OA ,OB ,由⊙O 是正方形ABCD 的外接圆,即可求得∠AOB 的度数,又由圆周角定理,即可求得∠APB 的度数.【详解】连接OA ,OB ,∵⊙O 是正方形ABCD 的外接圆,∴∠AOB=90°,若点P在优弧ADB上,则∠APB=12∠AOB=45°;若点P在劣弧AB上,则∠APB=180°-45°=135°.∴∠APB=45°或135°.故选C.8.D解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x2-8x=5,∴x2-8x+16=5+16,即(x-4)2=21,故选D.【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.9.B解析:B【解析】试题解析:∵抛物线开口向上,∴a>0.∵抛物线对称轴是x=1,∴b<0且b=-2a.∵抛物线与y轴交于正半轴,∴c>0.∴①abc>0错误;∵b=-2a,∴3a+b=3a-2a=a>0,∴②3a+b>0正确;∵b=-2a,∴4a+2b+c=4a-4a+c=c>0,∴④4a+2b+c<0错误;∵直线y=kx+c经过一、二、四象限,∴k<0.∵OA=OD,∴点A的坐标为(c,0).直线y=kx+c当x=c时,y>0,∴kc+c>0可得k>-1.∴③-1<k<0正确;∵直线y=kx+c与抛物线y=ax2+bx+c的图象有两个交点,∴ax2+bx+c=kx+c,得x1=0,x2=k b a -由图象知x2>1,∴k ba->1∴k>a+b,∴⑤a+b<k正确,即正确命题的是②③⑤.故选B.10.B解析:B【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选B.11.B解析:B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0.故选项正确;C .由一次函数y =ax ﹣a 的图象可得:a >0,此时二次函数y =ax 2﹣2x +1的图象应该开口向上,对称轴x =﹣22a->0,和x 轴的正半轴相交.故选项错误; D .由一次函数y =ax ﹣a 的图象可得:a >0,此时二次函数y =ax 2﹣2x +1的图象应该开口向上.故选项错误.故选B .点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y =ax ﹣a 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.12.C解析:C【解析】【分析】【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.二、填空题13.【解析】【分析】根据一元二次方程解的定义得到a2-a-3=0b2-b-3=0即a2=a+3b2=b+3则2a3+b2+3a2-11a-b+5=2a (a+3)+b+3+3(a+3)-11a-b+5整理 解析:【解析】【分析】根据一元二次方程解的定义得到a 2-a-3=0,b 2-b-3=0,即a 2=a+3,b 2=b+3,则2a 3+b 2+3a 2-11a-b+5=2a (a+3)+b+3+3(a+3)-11a-b+5,整理得2a 2-2a+17,然后再把a 2=a+3代入后合并即可.【详解】∵a ,b 是方程x 2-x-3=0的两个根,∴a 2-a-3=0,b 2-b-3=0,即a 2=a+3,b 2=b+3,∴2a 3+b 2+3a 2-11a-b+5=2a (a+3)+b+3+3(a+3)-11a-b+5=2a 2-2a+17=2(a+3)-2a+17=2a+6-2a+17=23.14.2【解析】【分析】把x=1代入已知方程列出关于k 的新方程通过解新方程来求k 的值【详解】∵方程x2+kx −3=0的一个根为1∴把x=1代入得12+k×1−3=0解得k=2故答案是:2【点睛】本题考查了解析:2【解析】【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】∵方程x 2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用. 15.3【解析】【分析】根据二次项系数非零结合根的判别式△≥0即可得出关于k 的一元一次不等式组解之即可得出k 的取值范围【详解】(k-2)x2-2kx+k-6=0∵关于x 的一元二次方程(k-2)x2-2kx解析:3【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨----≥⎩V = , 解得:k≥32且k≠2. ∴k 的最小整数值为3.故答案为:3.【点睛】此题考查一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.16.(42)【解析】【分析】利用图象旋转和平移可以得到结果【详解】解:∵△CDO 绕点C 逆时针旋转90°得到△CBD′则BD′=OD=2∴点D 坐标为(46);当将点C 与点O 重合时点C 向下平移4个单位得到△解析:(4,2).【解析】【分析】利用图象旋转和平移可以得到结果.【详解】解:∵△CDO 绕点C 逆时针旋转90°,得到△CBD′,则BD′=OD =2,∴点D 坐标为(4,6);当将点C 与点O 重合时,点C 向下平移4个单位,得到△OAD ′′,∴点D 向下平移4个单位.故点D′′坐标为(4,2),故答案为(4,2).【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.17.【解析】【分析】先确定出原抛物线的顶点坐标为(00)然后根据向左平移横坐标加向下平移纵坐标减求出新抛物线的顶点坐标然后写出即可【详解】抛物线的顶点坐标为(00)∵向左平移1个单位长度后向下平移2个单 解析:25(1)1y x =-+-【解析】【分析】先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标加,向下平移纵坐标减,求出新抛物线的顶点坐标,然后写出即可.【详解】抛物线251y x =-+的顶点坐标为(0,0),∵向左平移1个单位长度后,向下平移2个单位长度,∴新抛物线的顶点坐标为(-1,-2),∴所得抛物线的解析式是()2511y x =-+-.故答案为:()2511y x =-+-.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.18.45【解析】【分析】【详解】试题分析:根据概率的意义用符合条件的数量除以总数即可即10-210=45考点:概率解析:【解析】【分析】【详解】试题分析:根据概率的意义,用符合条件的数量除以总数即可,即.考点:概率19.【解析】【分析】根据扇形的弧长等于圆锥的底面周长利用扇形的弧长公式即可求得圆锥的底面周长然后根据圆的周长公式即可求解【详解】解:圆锥的底面周长是:=6π设圆锥底面圆的半径是r则2πr=6π则r=3故解析:【解析】【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.【详解】解:圆锥的底面周长是:9012180π⨯=6π,设圆锥底面圆的半径是r,则2πr=6π,则r=3.故答案为:3.【点睛】本题考查圆锥的计算.20.-2【解析】已知3是关于x的方程x2-5x+c=0的一个根代入可得9-3+c=0解得c=-6;所以由原方程为x2-5x-6=0即(x+2)(x-3)=0解得x=-2或x=3即可得方程的另一个根是x=解析:-2【解析】已知3是关于x的方程x2-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x2-5x-6=0,即(x+2)(x-3)=0,解得,x=-2或x=3,即可得方程的另一个根是x=-2.三、解答题21.(1);(2)的值是,该方程的另一根为.【解析】试题分析:(1)利用根的判别式列出不等式求解即可;(2)利用根与系数的关系列出有关的方程(组)求解即可.试题解析:(1)∵b2﹣4ac=22﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3,∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:111x 21x 2a +=-⎧⎨⋅=-⎩,解得:11x 3a =-⎧⎨=-⎩, 则a 的值是﹣1,该方程的另一根为﹣3.22.(1)21070010000w x x =-+-(20≤x≤32);(2)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元;(3)3600.【解析】【分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;(3)根据抛物线的性质和图象,求出每月的成本.【详解】解:(1)由题意,得:w=(x ﹣20)•y=(x ﹣20)•(﹣10x+500)=21070010000x x -+-,即21070010000w x x =-+-(20≤x≤32);(2)对于函数21070010000w x x =-+-的图象的对称轴是直线x=7002(10)-⨯-=35. 又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W 随着X 的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,210700100002000x x -+-=解这个方程得:1x =30,2x =40.∵a=﹣10<0,抛物线开口向下,∴当30≤x≤40时,w≥2000.∵20≤x≤32,∴当30≤x≤32时,w≥2000.设每月的成本为P (元),由题意,得:P=20(﹣10x+500)=﹣200x+10000∵k=﹣200<0,∴P 随x 的增大而减小,∴当x=32时,P 的值最小,P 最小值=3600.答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.考点:1.二次函数的应用;2.最值问题;3.二次函数的最值.23.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A 通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B 通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A 通道通过的情况数有1种,所以都选择A 通道通过的概率为18, 故答案为:18; (2)∵共有8种等可能的情况,其中至少有两辆汽车选择B 通道通过的有4种情况, ∴至少有两辆汽车选择B 通道通过的概率为4182=. 【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.24.(1) 2m <;(2) m 的值是1.【解析】【分析】(1)根据方程有两个不相等的实数根知△>0,据此列出关于m 的不等式,解之可得; (2)由(1)中m 的范围且m 为非负整数得出m 的值,代入方程,解之可得.【详解】解:(1)根据题意得:()()22410m --->,解得:2m <.故m 的取值范围为2m <;(2)由(1)得:2m <m Q 为非负整数, 0m ∴=或1,把0m =代入原方程得:2210x x --=, 解得:112x =212x =,0m =不合题意舍去;把1m =代入原方程得:220x x -=,解得:10x =,22x =.故m 的值是1.【点睛】此题考查根的判别式及一元二次方程的解,熟练掌握根的判别式及一元二次方程的解的定义是解题关键.25.(1)证明见解析;(2)4.【解析】分析:(1)连接OD ,如图,先证明∠CDA=∠ODB ,再根据圆周角定理得∠ADO+∠ODB=90°,则∠ADO+∠CDA=90°,即∠CDO=90°,于是根据切线的判定定理即可得到结论;(2)由于∠CDA=∠ODB ,则tan ∠CDA=tan ∠ABD=23,根据正切的定义得到tan ∠ABD=23AD BD =,接着证明△CAD ∽△CDB ,由相似的性质得23CD AD BC BD ==,然后根据比例的性质可计算出CD 的长.详(1)证明:连接OD ,如图,∵OB=OD ,∴∠OBD=∠BDO ,∵∠CDA=∠CBD ,∴∠CDA=∠ODB ,∵AB 是⊙O 的直径,∴∠ADB=90°,即∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD ⊥CD ,∴CD 是⊙O 的切线;(2)∵∠CDA=∠ODB ,∴tan ∠CDA=tan ∠ABD=23, 在Rt △ABD 中,tan ∠ABD=23AD BD =, ∵∠DAC=∠BDC ,∠CDA=∠CBD ,∴△CAD ∽△CDB ,∴23 CD ADBC BD==,∴CD=23×6=4.点睛:本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质.。

2020-2021初三数学上期中一模试卷(带答案)(1)

2020-2021初三数学上期中一模试卷(带答案)(1)

2020-2021初三数学上期中一模试卷(带答案)(1)一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°2.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .343.用配方法解方程2410x x -+=,配方后的方程是 ( )A .2(2)3x +=B .2(2)3x -=C .2(2)5x -=D .2(2)5x +=4.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2) 5.抛物线y=﹣(x +2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是( ) A .(﹣5,﹣3) B .(﹣2,0) C .(﹣1,﹣3) D .(1,﹣3)6.下列事件中,属于必然事件的是( )A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上7.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤- 8.已知实数x 满足(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,那么x 2﹣2x +1的值为( )A .﹣1或3B .﹣3或1C .3D .1 9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .1910.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18 D .x 2+3x+16=0 11.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =12.如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上,则∠C 的度数是( )A .30ºB .35ºC .25ºD .60º二、填空题13.写出一个二次函数的解析式,且它的图像开口向下,顶点在y 轴上______________14.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,若∠D =20°,则∠CBA 的度数是__.15.关于x的一元二次方程kx2﹣4x+3=0有实数根,则k应满足的条件是_____.16.某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是;17.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.18.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.19.小蕾有某文学名著上、中、下各1册,她随机将它们叠放在一起,从上到下的顺序恰好为“上册、中册、下册”的概率是____________.20.如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.三、解答题21.在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)22.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O 的半径.23.解方程:2411231x x x -=+-- 24.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式. (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?25.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且∠CDB=∠OBD=30°,DB=63cm .(1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC 的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.D解析:D【解析】过B作⊙O的直径BM,连接AM,则有:∠MAB=∠CDB=90°,∠M=∠C,∴∠MBA=∠CBD,过O作OE⊥AB于E,Rt△OEB中,BE=12AB=4,OB=5,由勾股定理,得:OE=3,∴tan∠MBA=OEBE=34,因此tan∠CBD=tan∠MBA=34,故选D.3.B解析:B【解析】【分析】根据配方法可以解答本题.【详解】x2−4x+1=0,(x−2)2−4+1=0,(x−2)2=3,故选:B.【点睛】本题考查解一元二次方程−配方法,解答本题的关键是解一元二次方程的方法.4.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.【详解】∵A(32,0),B(0,2),∴OA=32,OB=2,∴Rt△AOB中,AB52 =,∴OA+AB1+B1C2=32+2+52=6,∴B2的横坐标为:6,且B2C2=2,即B2(6,2),∴B4的横坐标为:2×6=12,∴点B2018的横坐标为:2018÷2×6=6054,点B2018的纵坐标为:2,即B2018的坐标是(6054,2).故选D.【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.5.D解析:D【解析】试题分析:原抛物线的顶点坐标为(-2,-3),向右平移三个单位后顶点纵坐标不变,横坐标加3,所以平移后抛物线的顶点坐标是(1,-3)。

2020-2021学年福建省福州市九年级上学期期中考试数学模拟试卷及答案解析

2020-2021学年福建省福州市九年级上学期期中考试数学模拟试卷及答案解析

第 1 页 共 25 页 2020-2021学年福建省福州市九年级上学期期中考试
数学模拟试卷
一.选择题(共10小题,满分40分,每小题4分)
1.(4分)下列图形中,中心对称图形有( )
A .1个
B .2个
C .3个
D .4个
2.(4分)关于x 的一元二次方程x 2+(k ﹣3)x +1﹣k =0根的情况,下列说法正确的是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .无实数根
D .无法确定
3.(4分)已知⊙O 的直径为12cm ,圆心到直线L 的距离5cm ,则直线L 与⊙O 的公共点
的个数为( )
A .2
B .1
C .0
D .不确定
4.(4分)在一只不透明的口袋中放入只有颜色不同的白球6个,黑球8个,黄球n 个,搅
匀后随机从中摸取一个恰好是黄球的概率为13,则放入的黄球个数n =( ) A .4 B .5 C .6 D .7
5.(4分)如图,在⊙O 中,弦AB 为8mm ,圆心O 到AB 的距离为3mm ,则⊙O 的半径等
于( )
A .3mm
B .4mm
C .5mm
D .8mm
6.(4分)将抛物线y =2(x ﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,
得到抛物线的解析式是( )
A .y =2(x ﹣6)2
B .y =2(x ﹣6)2+4。

福建省福州文博中学2021届九年级数学上学期期中试题

福建省福州文博中学2021届九年级数学上学期期中试题

福建省福州文博中学2021届九年级数学上学期期中试题(完卷时刻:120分钟,总分:150分)注意事项:一、全卷共三大题,26小题。

二、所有答案都必需填涂在答题卡的相应位置上,答在本试卷一概无效.一、选择题(共10小题,每题4分,总分值40分)1.以下图案中,既是轴对称图形又是中心对称图形的是()2.以下一元二次方程中,没有实数根的是()A.(x+1)(x-2)=0 B.2x2=0 C.(x+1)2=0 D.(x+1)2+1=03.如图,点D是等边△AB C内一点,如果△ABD绕点A逆时针旋转后能与△ACE 重合,那么∠DAE的度数是()A、450B、600C、900D、12004.一个质地均匀的正方体骰子的六个面上别离刻有“观看、实验、猜想、计算、推理、验证”六个词,若是掷一次那个骰子,骰子向上的一面显现“观看”一词的概率是()A.112B.18C.16D.145.在⊙O中,假设圆心角∠AOB=100°,C是AÂ上一点,那么∠ACB等于( ).A.80° B.100° C.130°D.140°6.一个小组有假设干人,新年互送拜年卡,已知全组共送出72张,那么那个小组有( )A.12人B.18人C.9人D.10人7.如图,△ABC中,AB=AC,以AB为直径的⊙O别离交BC、AC于点D、E,假设AE=BE,那么∠EBC的度数是()A.15°B.30°C.22.5°D.45°8.将一张圆形纸片沿着它的一条直径翻折,直径双侧的部份相互重合.这说明()AD第3题图AB DE O第7题图A.圆是中心对称图形,圆心是它的对称中心;B.圆是轴对称图形,直径所在的直线是它的对称轴;C.圆的直径相互平分;D.垂直于弦的直径平分弦及弦所对的弧.9.二次函数y=ax2+bx+c中,变量x与y部份对应值如下表:那么这条抛物线的对称轴是()A.直线x=1 B.直线x=-2 C.直线x=2 D.直线x=-810.在平面直角坐标系中,已知点C (0,3)、D (1,6),将线段绕点M (3,3)旋转180°后,取得线段AB ,那么线段AB 所在直线的函数解析式是( )A .y =3x +15B .y =3x -15C .y =15x -3D .y =-15x +3二、填空题(共10小题,每题4分,总分值40分)11.如图,自行车的两个车轮看做两个圆,那么这两个圆的位置关系是 .12.将抛物线y =2x 2向上平移3单位,取得的抛物线的解析式是_______. 13.方程(A +2)(A −3)=0的根是 .14.坐标平面内点(,2)P m 与点(3,2)Q -关于原点对称,那么m =__________.15.已知一元二次方程有一个根为1,那么那个方程能够是______________(只需写出一个方程)16.如图是一个圆锥型纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为 _________ cm 2.(结果保留π)17.如下图,某公园里有一块圆形地面被黑白石子铺成了面积相等的八部份,阴影部份是黑色石子,小华随意向其内部抛一个小球,那么小球落点在黑色石子区域内概率是_____________.18.已知二次函数y =ax 2+bx +c(a ≠0)的图象如下图,给出以下结论: ①a >0.②该函数的图象关于直线1x =对称. ③当13x x =-=或时,函数y 的值都等于0. 其中正确结论是_____________.C DO Mxy第10题图1 2 3 4 5 6 7 12 3 4 5 6第11题图第17题图第18题图第16题图19.已知a、b是方程2250++的值为___________.a ab a+-=的两个实数根,那么22x x20.如下图,小华从一个圆形场地的A点动身,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走。

2020-2021福州市初三数学上期中模拟试卷带答案

2020-2021福州市初三数学上期中模拟试卷带答案

2020-2021福州市初三数学上期中模拟试卷带答案一、选择题1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x =2.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .3.下列事件中,属于必然事件的是( )A .随时打开电视机,正在播新闻B .优秀射击运动员射击一次,命中靶心C .抛掷一枚质地均匀的骰子,出现4点朝上D .长度分别是3cm ,5cm ,6cm 的三根木条首尾相接,组成一个三角形4.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( )A .(2,﹣1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,1) 5.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c >0;②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0; ④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .46.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( ) A .(1,-5) B .(3,-13) C .(2,-8) D .(4,-20)7.在Rt ABC ∆中,90ABC ∠=︒,:BC 23=AB , 5AC =,则AB =( ).A .52B .10C .5D .15 8.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( ) A .2017 B .2018 C .2019D .2020 9.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B 的右侧).则下列命题中正确命题的是( )①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .A .①②③B .②③⑤C .②④⑤D .②③④⑤10.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=0 11.若a ,b 为方程2x 5x 10--=的两个实数根,则22a 3ab 8b 2a ++-的值为( ) A .-41 B .-35 C .39 D .4512.如果反比例函数2a y x -=(a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A .a<0B .a>0C .a<2D .a>2 二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.抛物线y=ax 2+bx+c 的顶点为D(﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;②a+b+c <0;③c ﹣a=2;④方程ax 2+bx+c ﹣2=0有两个相等的实数根.其中正确结论是________.15.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.16.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值y >0时,x 的取值范围是____________17.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是_______.18.Rt △ABC 中,∠C =90°,若直角边AC =5,BC =12,则此三角形的内切圆半径为________.19.如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A'B′C',其中点B 的运动路径为¼BB',则图中阴影部分的面积为_____.20.已知圆锥的母线长为5cm ,高为4cm ,则该圆锥的侧面积为_____ cm ²(结果保留π).三、解答题21.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.22.某商场销售某种型号防护面罩,进货价为40元/个.经市场销售发现:售价为50元/个时,每周可以售出100个,若每涨价1元,就会少售出5个.供货厂家规定市场售价不得低于50元/个,且商场每周销售数量不得少于80个.(1)确定商场每周销售这种型号防护面罩所得的利润w (元)与售价x (元/个)之间的函数关系式.(2)当售价x (元/个)定为多少时,商场每周销售这种防护面罩所得的利润w (元)最大?最大利润是多少?23.已知关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根1x ,2x .(1)若a 为正整数,求a 的值;(2)若1x ,2x 满足221212-16x x x x +=,求a 的值.24.已知关于x 的方程2(31)30mx m x +++=.(1)求证:不论m 为任何实数,此方程总有实数根;(2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式.25.如图,Rt △ABC 中,∠C=90o ,BE 是它的角平分线,D 在AB 边上,以DB 为直径的半圆O 经过点E .(1)试说明:AC 是圆O 的切线;(2)若∠A=30o ,圆O 的半径为4,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,∴抛物线的对称轴为直线x=2,则−2b a =−2b =2, 解得:b=−4, ∴x 2+bx=5即为x 2−4x−5=0,则(x−5)(x+1)=0,解得:x 1=5,x 2=−1.故选D.【点睛】本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.2.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.3.D解析:D【解析】分析:根据事件发生的可能性大小判断相应事件的类型即可.详解:A.是随机事件,故A不符合题意;B.是随机事件,故B不符合题意;C.是随机事件,故C不符合题意;D.是必然事件,故D符合题意.故选D.点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.4.B解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.5.B解析:B【解析】【分析】【详解】∵抛物线与y轴交于正半轴,∴c>0,①正确;∵对称轴为直线x=﹣1,∴x<﹣1时,y随x的增大而增大,∴y1>y2②错误;∵对称轴为直线x=﹣1, ∴﹣2b a =﹣1, 则2a ﹣b=0,③正确;∵抛物线的顶点在x 轴的上方,∴244ac b a->0,④错误; 故选B.6.C解析:C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质. 7.B解析:B【解析】【分析】依题意可设2=AB x ,3BC x =,根据勾股定理列出关于x 的方程,解方程求出x 的值,进而可得答案.【详解】解:如图,设2=AB x ,3BC x =,根据勾股定理,得:222325+=x x ,解得5x =,∴10AB =.故选B.【点睛】本题考查了勾股定理和简单的一元二次方程的解法,属于基础题型,熟练掌握勾股定理是解题的关键.8.B解析:B【解析】【分析】根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到1a b +=-,即可得到答案.【详解】解:∵设a b ,是方程220190x x +-=的两个实数根,∴把x a =代入方程,得:22019a a +=,由根与系数的关系,得:1a b +=-,∴222()201912018a a b a a a b ++=+++=-=;故选:B .【点睛】本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值. 9.B解析:B【解析】试题解析:∵抛物线开口向上,∴a >0.∵抛物线对称轴是x=1,∴b <0且b=-2a .∵抛物线与y 轴交于正半轴,∴c >0.∴①abc >0错误;∵b=-2a ,∴3a+b=3a-2a=a >0,∴②3a+b >0正确;∵b=-2a ,∴4a+2b+c=4a-4a+c=c >0,∴④4a+2b+c <0错误;∵直线y=kx+c 经过一、二、四象限,∴k <0.∵OA=OD ,∴点A 的坐标为(c ,0).直线y=kx+c 当x=c 时,y >0,∴kc+c >0可得k >-1.∴③-1<k <0正确;∵直线y=kx+c 与抛物线y=ax 2+bx+c 的图象有两个交点,∴ax 2+bx+c=kx+c ,得x 1=0,x 2=k b a- 由图象知x 2>1, ∴k b a->1 ∴k >a+b , ∴⑤a+b <k 正确,即正确命题的是②③⑤.故选B .10.C解析:C【解析】【分析】【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.11.C解析:C【解析】【分析】根据一元二次方程的解的定义及一元二次方程根与系数的关系可得a 2-5a-1=0,a+b=5,ab=-1,把22a 3ab 8b 2a ++-变形为2(a 2-5a-1)+3ab+8(a+b)+2,即可得答案.【详解】∵a ,b 为方程2x 5x 10--=的两个实数根,∴a 2-5a-1=0,a+b=5,ab=-1,∴22a 3ab 8b 2a ++-=2(a 2-5a-1)+3ab+8(a+b)+2=2×0+3×(-1)+8×5+2 =39.故选:C .【点睛】本题主要考查一元二次方程的解的定义及一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a;熟练掌握韦达定理是解题关键. 12.D解析:D 【解析】【分析】反比例函数kyx=图象在一、三象限,可得>0k.【详解】解:Q反比例函数2ayx-=(a是常数)的图象在第一、三象限,20 a∴->,2a∴>.故选:D.【点睛】本题运用了反比例函数kyx=图象的性质,解题关键要知道k的决定性作用.二、填空题13.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f (x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a <0, ∴a <−32, 且有f (-1)<0,f (0)<0,即f (-1)=a×(-1)2-3×(-1)-1<0,f (0)=-1<0,解得:a <-2,∴−94<a <-2, 故答案为−94<a <-2. 14.②③④【解析】【分析】由抛物线与x 轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(00)和(10)之间所以当x=解析:②③④【解析】【分析】由抛物线与x 轴有两个交点得到b 2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=-1,则根据抛物线的对称性得抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D (-1,2)得a-b+c=2,由抛物线的对称轴为直线x=-2b a=-1得b=2a ,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,所以说方程ax 2+bx+c-2=0有两个相等的实数根.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x 轴的一个交点A 在点(−3,0)和(−2,0)之间,∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−2b a=−1, ∴b=2a ,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时, ax 2+bx+c=2,∴方程ax 2+bx+c−2=0有两个相等的实数根,所以④正确【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次函数与x 轴交点的意义. 15.40°【解析】:在△QOC 中OC=OQ ∴∠OQC=∠OCQ 在△OPQ 中QP=QO ∴∠Q OP=∠QPO 又∵∠QPO=∠OCQ+∠AOC ∠AOC=30°∠QOP+∠QPO+∠OQC=180°∴3∠OCP解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°16.x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y 随x 的增大而增大当时y 随x 的增大而减小∵∴当函数值y >0时x 的取值范围是x <-1或x >3故答案为解析:x <-1或x >3【解析】【分析】根据二次函数的增减性求解即可.【详解】由题意得,二次函数的对称轴为1x =故当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,∵()()1,0,3,0-∴当函数值y >0时,x 的取值范围是x <-1或x >3故答案为:x <-1或x >3.【点睛】本题考查了二次函数的问题,掌握二次函数的增减性是解题的关键.17.2【解析】【分析】连接BC 由圆周角定理和垂径定理得出由直角三角形的性质得出得出求出即可【详解】解:连接BC 如图所示:∵AB 是⊙O 的直径弦于H 在中即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理解析:2【解析】【分析】连接BC ,由圆周角定理和垂径定理得出190,32ACB CH DH CD ︒∠====,由直角三角形的性质得出223,323,2AC CH AC BC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】 解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H ,19032ACB CH DH CD ∴∠︒=,=== 30A ∠︒Q =,223AC CH ∴==,在Rt ABC ∆中,30A ∠︒=,3232AC BC AB BC ∴==,=,24BC AB ∴=,=,2OA ∴=,即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.18.2【解析】【分析】设ABBCAC 与⊙O 的切点分别为DFE ;易证得四边形OECF 是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB )由此可求出r 的长【详解】解:如图;在Rt△ABC∠解析:2【解析】【分析】设AB 、BC 、AC 与⊙O 的切点分别为D 、F 、E ;易证得四边形OECF 是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB ),由此可求出r 的长.【详解】解:如图;在Rt△ABC,∠C=90°,AC=5,BC=12;根据勾股定理AB=四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AE,BD=BF,CE=CF;∴CE=CF=(AC+BC-AB);即:r=(5+12-13)=2.故答案为2.19.【解析】分析:连接DBDB′先利用勾股定理求出DB′=A′B′=再根据S阴=S扇形BDB′-S△DBC-S△DB′C计算即可详解:△ABC绕AC的中点D逆时针旋转90°得到△AB′C此时点A′在斜边解析:3 2π【解析】分析:连接DB、DB′,先利用勾股定理求出DB′=2212=5+,A′B′=2222=22+,再根据S阴=S扇形BDB′-S△DBC-S△DB′C,计算即可.详解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,连接DB、DB′,则2212=5+,2222=22+∴S阴=905253 1222222=36042()ππ⨯-⨯÷-÷-.故答案为53 42π-.点睛:本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.15π【解析】【分析】【详解】解:由图可知圆锥的高是4cm母线长5cm根据勾股定理得圆锥的底面半径为3cm 所以圆锥的侧面积=π×3×5=15πcm²故答案为:15π【点睛】本题考查圆锥的计算解析:15π.【解析】【分析】【详解】解:由图可知,圆锥的高是4cm ,母线长5cm ,根据勾股定理得圆锥的底面半径为3cm ,所以圆锥的侧面积=π×3×5=15πcm ².故答案为:15π.【点睛】本题考查圆锥的计算.三、解答题21.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.22.(1)2w x x=-+-;(2)当售价定为54元时,每周获得的利润最大,最555014000大利润为1120元.【解析】【分析】(1)根据所得利润=每件利润×销售量,可以列出w与x之间的函数关系式并化简为二次函数一般形式;(2)由市场售价不得低于50元/个,且商场每周销售数量不得少于80个的销售任务可以确定x的取值范围,然后结合二次函数图像性质可以解答本题.【详解】解:(1)根据题意,得()()()()2=---=--=-+-40100550403505555014000w x x x x x x⎡⎤⎣⎦,因此,利润与售价之间的函数关系式为2=-+-w x x555014000(2)∵销售量不得少于80个,∴100-5(x-50)≥80,∴x≤54,∵x≥50,∴50≤x≤54,2w x x=-+-555014000()2=---x x511014000()222=--+--5110555514000x x2=--+5(55)1125x∵a=-5<0,开口向下,对称轴为直线x=55,∴当50≤x≤54时,w随着x的增大而增大,∴当x=54时,w最大值=()2--+,554551125=1120因此,当售价定为54元时,每周获得的利润最大,最大利润为1120元.【点睛】本题考查二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.23.(1)1a =,2;(2)1a =-【解析】【分析】(1)根据关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根,得到()22[2(1)]420a a a ∆=----->,于是得到结论;(2)由根与系数的关系可得122(1)x x a +=-,2122x x a a =--,代入22121216x x x x +-=,解方程即可得到结论.【详解】(1)∵关于x 的一元二次方程222(1)20x a x a a --+--=有两个不相等的实数根, ∴()22[2(1)]420a a a ∆=----->,解得:3a <,∵a 为正整数,∴1a =,2;(2)∵122(1)x x a +=-,2122x x a a =--,∵22121216x x x x +-=, ∴()2121216x x x x +-=,∴()22[2(1)]2163a a a -----=,解得:11a =-,26a =,∵3a <,∴1a =-.【点睛】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a 的取值范围,再由根与系数的关系得出方程组是解答此题的关键.24.(1)证明见解析;(2)y=x 2+4x+3.【解析】【分析】(1)分别讨论当m=0和m≠0的两种情况,分别对一元一次方程和一元二次方程的根进行判断;(2)令y=0,则 mx 2+(3m+1)x+3=0,求出两根,再根据抛物线y=mx 2+(3m+1)x+3与x 轴交于两个不同的整数点,且m 为正整数,求出m 的值.【详解】解:(1)当m=0时,原方程化为x+3=0,此时方程有实数根x=-3.当m≠0时,原方程为一元二次方程.∵△=(3m+1)2-12m=9m2-6m+1=(3m-1)2≥0.∴此时方程有两个实数根.综上,不论m为任何实数时,方程mx2+(3m+1)x+3=0总有实数根.(2)∵令y=0,则mx2+(3m+1)x+3=0解得x1=-3,x2=-1m.∵抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,∴m=1.∴抛物线的解析式为y=x2+4x+3.考点:二次函数综合题.25.(1)见解析;(2)图中阴影部分的面积为8833-π.【解析】【分析】(1)由OB=OE,利用等边对等角得到一对角相等,再由BE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OE与BC平行,利用两直线平行同位角相等得到OE⊥AC,即可得证;(2)由∠A的度数求出∠AOE度数,利用30°直角三角形的性质求出OA的长,利用勾股定理求出AE的长,阴影部分面积=直角三角形AOE面积-扇形OED面积,求出即可.【详解】解:(1)∵OB=OE,∴∠BEO=∠EBO,∵BE平分∠CBO,∴∠EBO=∠CBE,∴∠BEO=∠CBE,∴EO∥BC,∵∠C=90°,∴∠AEO=∠C=90°,则AC是圆O的切线;(2)在Rt△AEO中,∠A=30°,OE=4,∴OA=2OE=8,∠AOE=60°,根据勾股定理得:2243,OA OE-=则S 阴影=S △AOE -S 扇形EOD =2160484.23603ππ⨯⨯⨯= 【点睛】此题考查了切线的判定,以及扇形面积的计算,涉及的知识有:等腰三角形的性质,平行线的判定与性质,含30°直角三角形的性质,以及勾股定理,熟练掌握切线的判定方法是解本题的关键.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等级
成绩(s)
频数(人数)
A
90<s≤100
4
B
80<s≤90
x
C
70<s≤80
16
D
s≤70
6
根据以上信息,解答以下问题:
(1)表中的 x=

(2)扇形统计图中 m=
,n=
,C 等级对应的扇形的圆心角为
度;
(3)该校准备从上述获得 A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,
已知这四人中有两名男生(用 a1,a2 表示)和两名女生(用 b1,b2 表示),请用列表或画 树状图的方法求恰好选取的是 a1 和 b1 的概率.
C.②④
D.②③④
4.用配方法解方程 x2 6x 8 0 时,配方结果正确的是( )
A. (x 3)2 17
B. (x 3)2 14
C. (x 6)2 44
D. (x 3)2 1
5.用配方法解方程 x2 x 1 0 ,配方后所得方程是( )
A. (x 1)2 3 24
B. (x 1 )2 3 24
一元二次方程 ax2+bx+c=n-1 有两个不等的实数根.其中正确结论的个数是( )
A.1
B.2
C.3
D.4
3.如图,抛物线 y=ax2+bx+c 经过点(-1,0),对称轴为直线 l.则下列结论:①abc>0;
②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是( )
A.①③
B.②③
9.D
解析:D 【解析】 根据题意旋转角为∠ABA1,由∠ABC=60°,∠C=90°,A、B、C1 在同一条直线上,得到∠ ABA1=180°-∠A1BC1=180°-60°=120° 解:旋转角为∠ABA1,∵∠ABC=60°,∠C=90°, ∴∠ABA1=180°-∠A1BC1=180°-60°=120°; 故答案为 D
14.已知 、 是方程
的两个根,则代数式
的值为
______. 15.圆锥的底面半径为 14cm,母线长为 21cm,则该圆锥的侧面展开图的圆心角为_____
度.
16.有 4 根细木棒,长度分别为 2cm、3cm、4cm、5cm,从中任选 3 根,恰好能搭成一个
三角形的概率是__________.
17.现有甲、乙两个盒子,甲盒子中有编号为 4,5,6 的 3 个球,乙盒子中有编号为 7,
A. 1 3
B. 1 4
C. 1 5
D. 1 6
12.函数 y=x2+bx+c 与 y=x 的图象如图所示,有以下结论:
①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当 1<x<3 时,x2+(b﹣1)x+c<0.
其中正确的个数为
A.1
B.2
C.3
D.4
二、填空题
13.已知圆锥的底面圆半径为 3cm,高为 4cm,则圆锥的侧面积是________cm2.
考点:二次函数图象与系数的关系.
4.A
解析:A 【解析】 【分析】
利用配方法把方程 x2 6x 8 0 变形即可.
【详解】 用配方法解方程 x2﹣6x﹣8=0 时,配方结果为(x﹣3)2=17, 故选 A. 【点睛】 本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本 题的关键.
()
A. 3 10
B. 9 25
C. 4 25
D. 1 10
8.若 2a2 4a 5 x ,则不论 取何值,一定有( )
A. x 5
B. x 5
C. x 3
D. x 3
9.如图,将三角尺 ABC(其中∠ABC=60°,∠C=90°)绕点 B 按逆时针方向转动一个角度到
△A1BC1 的位置,使得点 A1、B、C 在同一条直线上,那么旋转角等于( )
5.C
解析:C 【解析】 【分析】 本题根据配方的基本方法进行就可以得到答案.配方首先将常数项移到方程的右边,将二次 项系数化为 1,然后左右两边同时加上一次项系数一半的平方. 【详解】
解: x2 +x=1 x2 +x+ 1 =1+ 1
44 (x 1)2 5 .
24
故选 C 【点睛】 考点:配方的方法.
∵抛物线的对称轴为直线 x=- b =1,即 b=-2a, 2a
∴3a+b=3a-2a=a,所以②错误; ∵抛物线的顶点坐标为(1,n),
∴ 4ac b2 =n, 4a
∴b2=4ac-4an=4a(c-n),所以③正确; ∵抛物线与直线 y=n 有一个公共点, ∴抛物线与直线 y=n-1 有 2 个公共点, ∴一元二次方程 ax2+bx+c=n-1 有两个不相等的实数根,所以④正确. 故选 C. 【点睛】 本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.
判断;由于抛物线与直线 y=n 有一个公共点,则抛物线与直线 y=n-1 有 2 个公共点,于是 可对④进行判断. 【详解】 ∵抛物线与 x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线 x=1, ∴抛物线与 x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当 x=-1 时,y>0, 即 a-b+c>0,所以①正确;
8,9 的 3 个球.小宇分别从这两个盒子中随机地拿出 1 个球,则拿出的 2 个球的编号之和
大于 12 的概率为_____. 18.将抛物线 y=﹣5x2+1 向左平移 1 个单位长度,再向下平移 2 个单位长度,所得到的抛 物线的函数关系式为_____________ . 19.如图,已知△ABC 内接于⊙O,∠C=45°,AB=4,则⊙O 的半径为_____.
【参考答案】***试卷处理标 【分析】 将函数解析式化为顶点式,即可得到顶点坐标. 【详解】 解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1 ∴顶点坐 标为(﹣2,1); 故选:B. 【点睛】 本题考查了二次函数,解题关键是能将一般式化为顶点式.
共有 20 种等可能的结果数,其中从中随机抽取 2 本都是小说的结果数为 6,
∴从中随机抽取 2 本都是小说的概率= 6 = 3 . 20 10
故选:A. 【点睛】 本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.
8.D
解析:D 【解析】 【分析】 由﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3 可得:x≤﹣3. 【详解】 ∵x=﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3≤﹣3,∴不论 a 取何值,x≤﹣3. 故选 D. 【点睛】 本题考查了配方法的应用,熟练运用配方法解答本题的关键.
A.30°
B.60°
C.90°
D.120°
10.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸
出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的
概率是( )
A. 4 9
B. 1 3
C. 2 9
D. 1 9
11.用 1、2、3 三个数字组成一个三位数,则组成的数是偶数的概率是( )
6.D
解析:D 【解析】 【分析】 方程移项变形后,利用完全平方公式化简得到结果,即可做出判断. 【详解】
方程移项得: x2 6x 10, 配方得: x2 6x 9 19 , 即 (x 3)2 19 ,
故选 D.
7.A
解析:A 【解析】 【分析】 画树状图(用 A、B、C 表示三本小说,a、b 表示两本散文)展示所有 20 种等可能的结果 数,找出从中随机抽取 2 本都是小说的结果数,然后根据概率公式求解. 【详解】 画树状图为:(用 A、B、C 表示三本小说,a、b 表示两本散文)
2.C
解析:C 【解析】 【分析】 利用抛物线的对称性得到抛物线与 x 轴的另一个交点在点(-2,0)和(-1,0)之间,则
当 x=-1 时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线 x=- b =1,即 b=2a
2a,则可对②进行判断;利用抛物线的顶点的纵坐标为 n 得到 4ac b2 =n,则可对③进行 4a
2020-2021 福州文博中学初三数学上期中一模试卷含答案
一、选择题
1.函数 y=﹣x2﹣4x﹣3 图象顶点坐标是( )
A.(2,﹣1)
B.(﹣2,1)
C.(﹣2,﹣1) D.(2,1)
2.如图是抛物线 y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与 x 的一个交点
在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④
24.某中学对本校初 2018 届 500 名学生中中考参加体育加试测试情况进行调查,根据男生 1000 米及女生 800 米测试成绩整理,绘制成不完整的统计图,(图①,图②),根据统计图 提供的信息,回答问题:
(1)该校毕业生中男生有_______人;扇形统计图中 a ______;
(2)扇形统计图中,成绩为 10 分的所在扇形的圆心角是多少度?并补全条形统计图; (3)若 500 名学生中随机抽取一名学生,这名学生该项成绩在 8 分及 8 分以下的概率是多 少? 25.今年 5 月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部 分参赛学生的成绩,按得分划分为 A,B,C,D 四个等级,并绘制了如下不完整的频数分布 表和扇形统计图:
20.如图,AB 是⊙O 的直径,BD,CD 分别是过⊙O 上点 B,C 的切线,且∠BDC=110°.连 接 AC,则∠A 的度数是_____°.
相关文档
最新文档