DSP初学建议

合集下载

简单dsp设置方法

简单dsp设置方法

简单dsp设置方法简介数字信号处理(DSP)是指通过对信号进行数学运算和数字滤波等处理,改变信号的特性或提取信号中的有用信息的一种技术。

目前,DSP广泛应用于音频、图像、视频等领域。

本文将介绍一些简单的DSP 设置方法,帮助初学者更好地理解和使用DSP。

DSP 设置的基本步骤在开始介绍具体的DSP 设置方法之前,先了解一下DSP 设置的基本步骤:1. 设定DSP 硬件参数:包括采样率、量化位数、输入输出通道等,根据具体设备的功能进行设置。

2. 选择合适的DSP 算法:根据需要处理的信号类型和要实现的功能,选择适合的DSP 算法。

3. 设置算法参数:根据具体需求,设置相应的算法参数,如滤波器的截止频率、增益等。

4. 调试和优化:通过实时观察输出信号,并根据需要微调参数,直至满足预期要求。

DSP 设置方法1. 信号采样率设置选择合适的采样率对于DSP 处理非常重要。

通常情况下,采样率需要满足奈奎斯特采样定理,即采样率要大于信号中最高频率的两倍。

一般来说,音频信号的采样率为44.1kHz,视频信号的采样率为25Hz或30Hz。

2. 声音增强设置声音增强是DSP 中常见的应用之一,例如提高音量、音频均衡器等。

对于提高音量,可以通过调节增益参数实现。

对于音频均衡器,可以通过设置不同频段的增益来调节各频段的音量。

3. 滤波器设置滤波器是DSP 中常用的功能之一,它可以过滤掉不需要的频率分量或波形。

常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器等。

设置滤波器时需要注意截止频率和增益等参数的选择。

4. 噪声消除设置噪声消除是DSP 中常见的应用之一,它可以从输入信号中过滤掉噪声成分,使输出信号更加清晰。

常用的噪声消除方法包括降噪滤波器、自适应滤波器等。

设置噪声消除参数时需要注意选择合适的降噪程度和稳定性。

5. 实时音频处理设置实时音频处理是DSP 中非常常见的应用之一,例如实时音频特效、音频降噪等。

在进行实时音频处理时,需要注意控制延迟,否则会造成明显的声音延迟。

DSP该怎么学习

DSP该怎么学习

DSP该怎么学习?大家好,我是新新,研究生,而且是二年级的,在九月初依据老师的要求学习2812,现在马上就一个月了,却感觉无所适从,不知道该从那里下手!我的专业是信号处理,但是现在没办法只能坚持学习2812.当然很希望把它学得很精通我按照师兄的说法先看TI的例程,可是虽然基本看懂了,却不知道看它到底有什么用途. 老师说用示波器查看波形,我却不知道该看哪个管角的波形.觉得很郁闷学习2812,究竟该如何入门?我也是二年级时才开始学DSP的,当时比较着急,因为也感觉什么都不会,不知道从哪里下手。

还好的是我们一个同年级的也有同学在做2812,所以向他请教请教,有个人指点一下,比一个人琢磨效率会高很多。

我一开始也是看书,我觉得不错的有两本,一本是《DSP原理与开发》,除了有详细的理论说明之外,还会在每个章节之后配上一个例程,缺点就是错误也不少,估计时间太仓促,校对没做好。

另一本书是清华大学出版社的《TMS320C28X系列DSP的CPU与外设》,是从TI的英文的技术手册翻译过来的,分上、下两册,可以作为工具书,很实用,缺点是没有例子。

书看了一两遍,觉得还是一头雾水,就索性开始练习自己写写程序,刚开始都不知道怎么建PROJECT,后来问了同学,然后再看TI的例程,仿照它的程序框架,我还是比较喜欢这种框架的。

边看例程,边对着书,看得主要是如何初始化,需要对每个外设进行哪些寄存器的初始化,寄存器为什么这样设置,程序如何进中断,如何出中断等等。

边看书边做实验,效率会高很多,也就能慢慢理解了。

开始的时候,建议看最简单的例程,对外设一个一个的进行消化。

如果你都不知道看波形的时候该看哪个脚的话,说明两个问题,一是你可能程序还没看明白,都不知道是在EV中的哪些定时器或比较器产生波形,另一个可能就是你对板子不够熟悉,不知道对应的是哪个引脚。

前者需要你再看看程序,把它搞清楚了,是用到了哪个定时器,定时器的哪个比较单元,以什么样的方式产生PWM波,周期是多少,占空比是多少等等。

DSP入门必须掌握知识点

DSP入门必须掌握知识点

1.DSP选型:主要考虑处理速度、功耗、程序存储器和数据存储器的容量、片内的资源,如定时器的数量、I/O 口数量、中断数量、DMA通道数等。

DSP的主要供应商有TI,ADI,Motorola,Lucent和Zilog等,其中TI占有最大的市场份额。

选择DSP可以根据以下几方面决定:1)速度:DSP速度一般用MIPS或FLOPS表示,即百万次/秒钟。

根据您对处理速度的要求选择适合的器件。

一般选择处理速度不要过高,速度高的DSP,系统实现也较困难。

2)精度:DSP芯片分为定点、浮点处理器,对于运算精度要求很高的处理,可选择浮点处理器。

定点处理器也可完成浮点运算,但精度和速度会有影响。

3)寻址空间:不同系列DSP程序、数据、I/O 空间大小不一,与普通MCU不同,DSP在一个指令周期内能完成多个操作,所以DSP的指令效率很高,程序空间一般不会有问题,关键是数据空间是否满足。

数据空间的大小可以通过DMA的帮助,借助程序空间扩大。

4)成本:一般定点DSP的成本会比浮点DSP的要低,速度也较快。

要获得低成本的DSP系统,尽量用定点算法,用定点DSP。

5)实现方便:浮点DSP的结构实现DSP系统较容易,不用考虑寻址空间的问题,指令对C语言支持的效率也较高。

6)内部部件:根据应用要求,选择具有特殊部件的DSP。

如:C2000适合于电机控制;OMAP适合于多媒体等。

1)C5000系列(定点、低功耗):C54X,C54XX,C55X相比其它系列的主要特点是低功耗,所以最适合个人与便携式上网以及无线通信应用,如手机、PDA、GPS等应用。

处理速度在80MIPS--400MIPS之间。

C54XX和C55XX一般只具有McBSP同步串口、HPI并行接口、定时器、DMA等外设。

值得注意的是C55XX提供了EMIF外部存储器扩展接口,可以直接使用SDRAM,而C54XX则不能直接使用。

两个系列的数字IO 都只有两条。

2)C2000系列(定点、控制器):C20X,F20X,F24X,F24XX ,C28x该系芯片具有大量外设资源,如:A/D、定时器、各种串口(同步和异步),WATCHDOG、CAN总线/PWM 发生器、数字IO 脚等。

DSP开发入门之经验

DSP开发入门之经验

DSP开发入门之经验DSP是Digital Signal Processing(数字信号处理)或Digital Signal Processor(数字信号处理器)的缩写。

这一章中我们要讲的内容是,如何开始采用一个或多个数字信号处理芯片对输入信号(数字信号)进行分析、处理。

所以在你进行DSP开发之前,你应该明确以下几个问题:(1).你是否应该或需要使用DSP?(2).你应该选择哪个型号的DSP?(3).你熟悉你即将使用的DSP吗?包括它的硬件结构、外设控制、指令系统、寻址方式以及开发环境(工具)?1-1为什么要采用数字信号处理?(1)灵活性在模拟处理系统,当需要改变一个模拟系统的应用时,你可能不得不修改硬件设计,或调整硬件参数。

而在数字处理系统,你可以通过改变数字信号处理软件来修改设置,以适应不同的需要。

(2)精度在模拟处理系统,系统精度受元器件影响,同一批次产品可能有不同的性能。

而在数字处理系统中,精度仅与A/D的位数和计算机字长、算法有关,它们是在设计系统是就已经决定了的。

(3)可靠性和可重复性模拟系统易受环境温度、湿度、噪声、电磁场等的干扰和影响,而数字系统的可靠性和可重复性好。

(4)大规模集成模拟系统尽管已有一些模拟集成电路,但品种较少、集成度不高、价格较高。

而数字系统中DSP体积小、功能强、功耗小、一致性好、使用方便、性能/价格比高。

(5)虚拟特性与升级一套模拟系统系统只能对应一种功能,升级意味着新型号的系统的研制。

而数字系统中一套系统对应多种功能,只要装上不同的软件即可。

图1:软件使得数字系统更加灵活(6)特殊应用:有些应用只有数字系统才能实现例如:信息无失真压缩(LOSSLESS COMPRESSION)、V型滤波器(NOTCH FILTER)、线性相位滤波器(LINEAR PHASE FILTER)等等.但数字信号处理也有局限性:(1) 实时性模拟系统中除开电路引入的延时外,处理是实时的。

dsp学习注意问题

dsp学习注意问题

EDMA事件(2010-11-30 16:43:41)转载分类:DSP学习笔记DM642处理器片上带有一个EDMA控制器,如果把CPU的工作比喻为前台事务,那么EDMA的工作则视为后台事务,不占用CPU时间,这种机制提高了CPU的工作效率。

DM642的EDMA控制器具有64个EDMA通道,每个通道均与DM642的某个事件关联,EDMA事件触发和CPU中断触发类似,只要正确设置了EDMA通道,满足触发条件后在程序中便会自动进入相应的EDMA事件处理函数。

下面来分析一下,关于视频通道与EDMA通道的关联DM642的EDMA事件和EDMA通道之间的映射关系如下:EDMA通道EDMA事件名称事件描述16 VP0EVTYA 发生在VP0 A通道上与视频Y分量相关的事件17 VP0EVTUA 发生在VP0 A通道上与视频U分量相关的事件18 VP0EVTVA 发生在VP0 A通道上与视频V分量相关的事件24 VP0EVTYB 发生在VP0 B通道上与视频Y分量相关的事件25 VP0EVTUB 发生在VP0 B通道上与视频U分量相关的事件26 VP0EVTVB 发生在VP0 B通道上与视频V分量相关的事件38 VP1EVTYB 发生在VP1 B通道上与视频Y分量相关的事件39 VP1EVTUB 发生在VP1 B通道上与视频U分量相关的事件40 VP1EVTVB 发生在VP1 B通道上与视频V分量相关的事件41 VP2EVTYA 发生在VP2 B通道上与视频Y分量相关的事件42 VP2EVTUB 发生在VP2 B通道上与视频U分量相关的事件43 VP2EVTVB 发生在VP2 B通道上与视频V分量相关的事件56 VP1EVTYA 发生在VP1 A通道上与视频Y分量相关的事件57 VP1EVTUA 发生在VP1 A通道上与视频U分量相关的事件58 VP1EVTVA 发生在VP1 A通道上与视频V分量相关的事件59 VP2EVTYA 发生在VP2 A通道上与视频Y分量相关的事件60 VP2EVTUA 发生在VP2 A通道上与视频U分量相关的事件61 VP2EVTVA 发生在VP2 A通道上与视频V分量相关的事件EDMA是数字信号处理器用于快速数据交换的重要技术,具有独立于CPU的后台批量数据传输能力,能够满足实时图像处理中高速数据传输的要求。

DSP入门

DSP入门

一、时钟和电源1.问:DSP的电源设计和时钟设计应该特别注意哪些方面?外接晶振选用有源的好还是无源的好?答:时钟一般使用晶体,电源可用TI的配套电源。

外接晶振用无源的好。

2.问:TMS320LF2407的A/D转换精度保证措施。

答:参考电源和模拟电源要求干净。

3.问:系统调试时发现纹波太大,主要是哪方面的问题?答:如果是电源纹波大,加大电容滤波。

4.问:请问我用5V供电的有源晶振为DSP提供时钟,是否可以将其用两个电阻进行分压后再接到DSP的时钟输入端,这样做的话,时钟工作是否稳定?答:这样做不好,建议使用晶体。

5.问:一个多DSP电路板的时钟,如何选择比较好?DSP电路板的硬件设计和系统调试时的时序问题?答:建议使用时钟芯片,以保证同步。

硬件设计要根据DSP芯片的时序,选择外围芯片,根据时序设定等待和硬件逻辑。

二、干扰与板的布局6.问:器件布局应重点考虑哪些因素?例如在集中抄表系统中?答:可用TMS320VC5402,成本不是很高。

器件布局重点应是存贮器与DSP的接口。

7.问:在设计DSP的PCB板时应注意哪些问题?答:1.电源的布置;2.时钟的布置;3.电容的布置;4.终端电路;5.数字同模拟的布置。

8.问:请问DSP在与前向通道(比如说AD)接口的时候,布线过程中要注意哪些问题,以保证AD采样的稳定性?答:模拟地和数字地分开,但在一点接地。

9.问:DSP主板设计的一般步骤是什么?需要特别注意的问题有哪些?答:1.选择芯片;2.设计时序;3.设计PCB。

最重要的是时序和布线。

10.问:在硬件设计阶段如何消除信号干扰(包括模拟信号及高频信号)?应该从那些方面着手?答:1.模拟和数字分开;2.多层板;3.电容滤波。

11.问:在电路板的设计上,如何很好的解决静电干扰问题。

答:一般情况下,机壳接大地,即能满足要求。

特殊情况下,电源输入、数字量输入串接专用的防静电器件。

12.问:DSP板的电磁兼容(EMC)设计应特别注意哪些问题?答:正确处理电源、地平面,高速的、关键的信号在源端串接端接电阻,避免信号反射。

DSP入门必看(精)

DSP入门必看(精)

DSP 入门必看1tryflying 发表于 2006-9-7 17:36:00如何选择外部时钟?DSP 的内部指令周期较高, 外部晶振的主频不够, 因此DSP 大多数片内均有PLL 。

但每个系列不尽相同。

1TMS320C2000系列:TMS320C20x :PLL 可以÷2,×1,×2和×4,因此外部时钟可以为5MHz -40MHz 。

TMS320F240:PLL 可以÷2,×1,×1.5,×2,×2.5,×3,×4,×4.5,×5和×9,因此外部时钟可以为2.22MHz -40MHz 。

TMS320F241/C242/F243:PLL 可以×4,因此外部时钟为5MHz 。

TMS320LF24xx:PLL 可以由RC 调节, 因此外部时钟为4MHz -20MHz 。

TMS320LF24xxA :PLL 可以由RC 调节, 因此外部时钟为4MHz -20MHz 。

2TMS320C3x 系列:TMS320C3x :没有PLL, 因此外部主频为工作频率的2倍。

TMS320VC33:PLL 可以÷2,×1,×5,因此外部主频可以为12MHz -100MHz 。

3TMS320C5000系列:TMS320VC54xx :PLL 可以÷4,÷2,×1-32, 因此外部主频可以为0.625MHz -50MHz 。

TMS320VC55xx :PLL 可以÷4,÷2,×1-32, 因此外部主频可以为6.25MHz -300MHz 。

4TMS320C6000系列:TMS320C62xx :PLL 可以×1,×4,×6,×7,×8,×9,×10和×11,因此外部主频可以为11.8MHz -300MHz 。

写给DSP初学者:轻松入门,快速精通

写给DSP初学者:轻松入门,快速精通

写给DSP初学者:轻松入门,快速精通随着ffice:smarttags" />3G技术的发展,要求处理器的速度越来越高,体积越来越小,DSP 的发展正好能满足这一发展的要求。

因为,传统的其它处理器都有不同的缺陷:MCU的速度较慢;CPU体积较大,功耗较高;嵌入CPU的成本较高。

DSP的发展,使得在许多速度要求较高,算法较复杂的场合,取代MCU或其它处理器,而成本有可能更低。

fficeffice" />数字化的时代已经来临,对DSP专业人才的需求也越来越大,如今DSP技术和DSP应用已经成为当今嵌入式系统应用领域中最热门的技术,是高校、科研院所和高新技术企业的DSP软件、硬件开发人员的新的课题。

很多高校开设了DSP专业,很多相关专业也增设了DSP课程,更有许多业内人士在准备给自己充电的时候选择了学习DSP。

在这里,笔者就根据个人的一些经验和体会向初学者介绍一些学习方法和途径:一、选择培训有条件的朋友可以选择参加培训班,聪明的学员会做好两手准备:一是带着问题听培训,这就要求你必须提前熟悉教材,以便在听课时与老师和其他学员交流。

二要珍惜老师和同学们的交流机会和以后的联系方式,一般的培训班讲师们和同学都会留下他们的联系方式,以后遇到了问题也能找行家求援了。

其实培训班的意义就在于解决问题和建立今后的交流平台。

在这里向大家推荐一些比较专业的培训中心:上海闻亭公司培训中心、飓风数字系统(北京)培训中心、浙江大学微系统专业技术培训中心、深圳爱华人才培训中心等等。

二、选对教材目前,跟DSP相关的教材充斥着电子图书市场,选对入门教材很关键。

在这里向大家推荐个人认为比较好的书目:江思敏主编的《TMS320LF240xDSP 硬件开发教程》、彭启琮等主编的《DSP 的发展与应用》、朱铭锆等主编的《DSP应用系统设计》、邬可军、朱铭锆等主编的《DSP实时多任务操作系统设计与实现》、刘和平等主编的《TMS320LF240xDSP C语言开发应用》、何苏勤主编的《TMS320C2000系列DSP原理与应用技术》等都是比较好的教材。

DSP入门教程

DSP入门教程

DSP入门教程DSP(Digital Signal Processing,数字信号处理)是一门与数字信号进行各种处理的技术与领域。

在现代科技的发展中,DSP扮演着非常重要的角色,它在通信、图像处理、音频处理、雷达系统等各个领域都有广泛的应用。

本文将为大家介绍DSP的基本概念和入门知识,并推荐一些经典的学习教材。

首先,DSP的基本原理是将信号转换为数字形式,然后利用计算机算法对数字信号进行处理。

数字信号是连续时间信号的离散化,可以通过采样和量化将连续时间信号转换为数字形式。

然后,通过各种算法对数字信号进行滤波、变换、压缩等处理,最后再将数字信号转换为模拟信号输出。

为了更好地理解DSP的原理和算法,有一些经典的教材是非常推荐的。

以下是一些经典的DSP学习教材:1.《数字信号处理(第四版)》这本教材是DSP领域里的权威之作,被广泛认为是DSP的入门经典。

书中介绍了数字信号处理的基本概念和原理,并涵盖了滤波、变换、解调等常见的DSP算法。

2.《信号与系统:连续与离散时间的综合》这本书是DSP的前身,信号与系统的经典教材之一、书中介绍了连续时间信号和离散时间信号的基本概念和特性,以及各种信号处理方法与算法。

3.《数字信号处理:实用解决方案》这本书是一本非常实践的DSP教材,通俗易懂地介绍了数字信号处理的基本理论和应用。

书中还提供了大量的MATLAB实验和示例代码,非常适合初学者上手和实践。

4.《数字信号处理和滤波》这本书介绍了数字信号处理和滤波的基本概念和原理,并通过实验和示例演示了各种滤波方法的应用。

书中的内容结构清晰,适合初学者系统地学习和理解DSP。

此外,如果你喜欢在线学习,一些在线学习平台也提供了优质的DSP 课程,如Coursera、edX、Udemy等。

这些平台上的DSP课程涵盖了从入门到高级的知识内容,配有视频讲解和练习项目,非常适合自学和深入学习。

总结起来,DSP是一门应用广泛的技术与领域,学习DSP需要掌握信号采样与量化、滤波、变换等基本概念和算法。

dsp学习心得

dsp学习心得

dsp学习心得近年来,随着科技的快速发展,数字信号处理(Digital Signal Processing,DSP)作为一门应用广泛的技术应运而生。

作为一名对DSP有兴趣的学习者,我在学习过程中积累了一些心得,现在与大家分享。

一、认识DSPDSP是一种处理数字信号的技术,通过对信号进行采样、转换、分析和处理,从而实现信号的改善、修复、增强以及提取等操作。

DSP广泛应用于通信、音频、视频、图像处理等领域,其优点在于精度高、速度快、适应性强。

二、DSP学习方法1.建立坚实的数学基础,精通基本的信号与系统理论。

DSP涉及到线性代数、概率论、拓扑学等多个数学学科,只有建立好数学基础,才能更好地理解和应用DSP算法。

2.深入理解离散系统和连续系统的区别。

离散信号与连续信号有着本质的区别,了解二者的差异,才能正确理解和操作离散系统的特性。

3.学会使用合适的工具和软件。

Matlab、Python等工具和软件在DSP学习中起到了至关重要的作用,拥有熟练的操作技能,可以更高效地进行信号分析和算法实现。

4.多动手实践,多做项目实践。

通过实际的项目实践,对所学的知识进行巩固和应用,真正理解实际应用场景中DSP的作用和影响。

三、DSP的应用领域1.通信领域。

通信系统离不开DSP技术的支持,例如数字调制解调、频谱分析、信道估计等都需要借助DSP的算法和方法。

2.音频处理。

音频编解码、音频增强、语音识别等方面都需要用到DSP技术,为音频处理带来更好的效果和体验。

3.视频处理。

视频压缩编码、视频降噪、视频增强等方面都离不开DSP的应用,使得视频的质量和稳定性得到提升。

4.图像处理。

图像滤波、图像识别、图像分割等都需要运用到DSP技术,提高图像的质量和分析的准确性。

四、未来发展趋势随着人工智能、物联网等领域的迅速发展,DSP技术将会越来越重要和广泛应用。

例如,基于DSP的语音识别和人脸识别技术,在智能手机、智能家居等领域的应用将会更加普及。

初学DSP,你得知道的那些事儿

初学DSP,你得知道的那些事儿

初学DSP,你得知道的那些事儿DSP是嵌入式开发处理器的三大巨头之一,很多刚刚接触DSP的朋友大都会有这些疑问,为什么要用DSP?DSP是什么、能干嘛?有没有前途,或者有没有“钱途”?好不好学?该怎么学?今天就和大家聊下学习DSP得知道的那些事儿。

一、为什么要用DSP?3G通信技术的发展,要求处理器的速度越来越高,体积越来越小,MCU的速度较慢;CPU体积大、功耗高;嵌入CPU的成本较高。

DSP的发展正好能满足这一发展的要求,使其在许多速度要求较高、算法较复杂的场合取代MCU或其它处理器,而且综合成本有可能更低。

二、DSP是什么、能干嘛?想了解这些,就得一个概念讲起,DSP首先是Digital Signal Processing(数字信号处理),然后才是Digital Singnal Processor(数字信号处理器)。

具体关于DSP的介绍,请参考小弟的《三国杀之FPGA与ASIC、DSP全面大比拼!》,你能找到你想要的知识,也能找到学习DSP的动力。

三、DSP有没有前途(“钱途”)?很多人都觉得做技术就是苦逼,哪来的什么前途,一定要转做技术管理或销售。

以前我也这般认为,但现在越来越多的事实证明,这就是一个谬论,DSP相当有钱途!举两个例子:其一,某位DSP的资深AE,可以算是中国区该领域的专家,年薪不菲(60万以上),走遍世界,工作也很轻松;其二,某知名电信公司晋升年限一样的技术专家比同级的经理薪酬要高,如Expert(专家级)与管理大概50个人的经理相比,前者的薪酬要更高。

肯定有人说哪这么多高端人士,大家都是正常人类。

好吧,那来个正常的数据,京沪深的DSP工程师起薪基本上是10K/月,就是1万现大洋,满意了吧。

四、DSP好不好学?不管你喜不喜欢,学习DSP就必须得面对她:算法。

算法是DSP 的精华,可以说摆平了算法就搞定了80%,如果你又懂单片机编程,那么恭喜你有成为DSP专家的潜力。

肯定有童鞋问算法到底好不好学呢?算法,听上去是很高深的东西,但其原理也不过就是一些加减乘而已,连除都很少。

HELLO一如何开始DSP的学习dsp2812

HELLO一如何开始DSP的学习dsp2812

HELLO一:如何开始DSP的学习以下为各网友学习DSP的一些经验fxw451:大家先大体上看一遍书,把大体的知识了解一下。

其次就是看例子了,例子是关键,例子里有你学的所有的东西,这次你再拿出一本书来看,这次是有针对性的看,比如你做的spi的,你就直接看spi那张,一边看例子一边看书,这样你就可以把一些重要的寄存器给记住了。

对于初学者来说,一直好奇的就是ccs的使用,拿我第一次使用ccs来说,当我把ccs和板子连载一起时,我相当高兴,成功感油然升起,接下来就是用ccs里的看自带的例子了,看完后你就会发现,这些是什么东东哦,什么都不会,这就对了,你要是看一开始看会了你就是神仙了,dsp不像单片机那么容易上手,所以你要花费点功夫吃透它,好东西不是那么容易就可以搞定的。

到了自己编程的时候了,这个时候不要要求自己能编一个什么样的程序,你要仿着例子里的东西全部搞定就可以了,这就是你编程的第一步,当然也是成功的一步,在这成功下,我相信你的积极性肯定被调到起来,对dsp越来越热爱了。

wsppike:DSP相比于单片机,它的很多架构都是一个全新的概念,所以我们得花时间去熟悉它。

suary:1)把存储器映射结构搞清楚----说的具体点就是dsp内到底有那些存储器(ram,ro m,flash,etc),这些存储器到底是如何分配的,这个可以参考相关的.cmd文件的写法,它定义了存储器映射和输入输出段的位置2)编译器的堆栈操作---有关这点我还是没有具体弄清楚,就是中断或是子程序调用时,系统自己的堆栈操作。

2407有一个8级硬件堆栈,而2812没有,这个区别比较大,所以在编一边针对堆栈操作的程序(eg. rtos)时就要特别注意了。

3)中断系统----每个mcu的中断系统搞清楚了,会给编程带来很大的便利,所以一定要对所用的mcu的中断过程了解的清清楚楚。

4)数据结构---设计好的,适合的数据结构会使自己的程序编写变得结构清楚而且“容易”。

DSP入门必看(非常好的DSP扫盲文章)

DSP入门必看(非常好的DSP扫盲文章)

DSP入门必看(非常好的DSP扫盲文章)(ZZ)(7)如何设置硬件断点?在profiler ->profile point -> break pointc54x的外部中断是电平响应还是沿响应?是沿响应,准确的说,它要检测到100(一个clk的高和两个clk的低)的变化才可以。

参考程序,里面好象都要dISAble wachdog,不知道为什么?watchdog是一个计数器,溢出时会复位你的DSP,不dISAble的话,你的系统会动不动就reset。

时钟电路选择原则1,系统中要求多个不同频率的时钟信号时,首选可编程时钟芯片;2,单一时钟信号时,选择晶体时钟电路;3,多个同频时钟信号时,选择晶振;4,尽量使用DSP片内的PLL,降低片外时钟频率,提高系统的稳定性;5,C6000、C5510、C5409A、C5416、C5420、C5421和C5441等DSP片内无振荡电路,不能用晶体时钟电路;6,VC5401、VC5402、VC5409和F281x等DSP时钟信号的电平为1.8V,建议采用晶体时钟电路C程序的代码和数据如何定位1,系统定义:.cinit 存放C程序中的变量初值和常量;.const 存放C程序中的字符常量、浮点常量和用const声明的常量;.switch 存放C程序中switch语句的跳针表;.text 存放C程序的代码;.bss 为C程序中的全局和静态变量保留存储空间;.far 为C程序中用far声明的全局和静态变量保留空间;.stack 为C程序系统堆栈保留存储空间,用于保存返回地址、函数间的参数传递、存储局部变量和保存中间结果;.sysmem 用于C程序中malloc、calloc和realloc函数动态分配存储空间2,用户定义:#pragma CODE_SECTION (symbol, "section name");#pragma DATA_SECTION (symbol, "section name")cmd文件由3部分组成:1)输入/输出定义:.obj文件:链接器要链接的目标文件;.lib文件:链接器要链接的库文件;.map文件:链接器生成的交叉索引文件;.out文件:链接器生成的可执行代码;链接器选项2)MEMORY命令:描述系统实际的硬件资源3)SECTIONS命令:描述“段”如何定位为什么要设计CSL?1,DSP片上外设种类及其应用日趋复杂2,提供一组标准的方法用于访问和控制片上外设3,免除用户编写配置和控制片上外设所必需的定义和代码什么是CSL?1,用于配置、控制和管理DSP数字信号处理片上外设2,已为C6000和C5000系列DSP设计了各自的CSL库3,CSL库函数大多数是用C语言编写的,并已对代码的大小和速度进行了优化4,CSL库是可裁剪的:即只有被使用的CSL模块才会包含进应用程序中5,CSL库是可扩展的:每个片上外设的API相互独立,增加新的API,对其他片上外设没有影响CSL的特点1,片上外设编程的标准协议:定义一组标准的APIs:函数、数据类型、宏;2,对硬件进行抽象,提取符号化的片上外设描述:定义一组宏,用于访问和建立寄存器及其域值3,基本的资源管理:对多资源的片上外设进行管理;4,已集成到DSP/BIOS中:通过图形用户接口GUI对CSL进行配置;5,使片上外设容易使用:缩短开发时间,增加可移植.为什么需要电平变换?1) DSP系统中难免存在5V/3.3V混合供电现象;2)I/O为3.3V供电的DSP,其输入信号电平不允许超过电源电压3.3V;3)5V器件输出信号高电平可达4.4V;4)长时间超常工作会损坏DSP器件;5)输出信号电平一般无需变换电平变换的方法1,总线收发器(Bus Transceiver):常用器件:SN74LVTH245A(8位)、SN74LVTH16245A(16位)特点:3.3V供电,需进行方向控制,延迟:3.5ns,驱动:-32/64mA,输入容限:5V应用:数据、地址和控制总线的驱动2,总线开关(Bus Switch)常用器件:SN74CBTD3384(10位)、SN74CBTD16210(20位)特点:5V供电,无需方向控制延迟:0.25ns,驱动能力不增加应用:适用于信号方向灵活、且负载单一的应用,如McBSP等外设信号的电平变换3,2选1切换器(1 of 2 Multiplexer)常用器件:SN74CBT3257(4位)、SN74CBT16292(12位)特点:实现2选1,5V供电,无需方向控制延迟:0.25ns,驱动能力不增加应用:适用于多路切换信号、且要进行电平变换的应用,如双路复用的McBSP4,CPLD3.3V供电,但输入容限为5V,并且延迟较大:>7ns,适用于少量的对延迟要求不高的输入信号5,电阻分压10KΩ和20KΩ串联分压,5V×20÷(10+20)≈3.3V未用的输入/输出引脚的处理1,未用的输入引脚不能悬空不接,而应将它们上拉活下拉为固定的电平1)关键的控制输入引脚,如Ready、Hold等,应固定接为适当的状态,Ready引脚应固定接为有效状态,Hold引脚应固定接为无效状态2)无连接(NC)和保留(RSV)引脚,NC 引脚:除非特殊说明,这些引脚悬空不接,RSV引脚:应根据数据手册具体决定接还是不接3)非关键的输入引脚,将它们上拉或下拉为固定的电平,以降低功耗2,未用的输出引脚可以悬空不接3,未用的I/O引脚:如果确省状态为输入引脚,则作为非关键的输入引脚处理,上拉或下拉为固定的电平;如果确省状态为输出引脚,则可以悬空不接。

给DSP初学者的一点建议和教材推荐

给DSP初学者的一点建议和教材推荐

给DSP初学者的一点建议和教材推荐自己从事DSP开发也有6-7个年头了,自己也总结了一些经验,今天可以和大家一起分享一下,互相学习,特别需要说明的是,以下所说的都是个人自己的看法,仅供参考,毕竟每个人的条件不一样,包括经济条件,学习能力和专业基础,以及智商水平等等,所以建议大家选择适合自己的经验和教材。

首先,我觉得初级者应该边看书边实践,可以从最简单的软件编程学起,先写最简单的C程序,然后SIMULATOR,接下来学习汇编,用你所学习的系列的汇编指令写代码(注意,不同公司的DSP甚至相同公司的DSP不同系列指令系统和开发流程有些不一样),一切都可以从简到难,再接下来,应该开始学写C和汇编混合编程,主义C调汇编和汇编调C之间的参数传递过程。

可以通过单步跟踪调试和学习,这样整个的软件流程就清楚了。

第二,simulator掌握了之后,有能力的可以买块板和仿真器,现在TI系列的板子和仿真器很便宜,适合学生入门,ADI的太贵,单仿真器都要好几千。

不建议使用。

有了硬件环境后,可以学习写配置文件(linker文件,学习bios以及bootloader等等)。

然后在板子上跑以前的simulator 跑的工程或者新写的代码。

注意有中断的情况,已经中断嵌套等等,可以通过单步跟踪调试和学习,此时要注意有中断的情况,单步跟踪可能有意外的情况。

第三,如果没有条件,但自己又想学硬件或者想从事硬件相关的,可以自己设计一个板子,可以从最简单的开始,这样一步一步的,基础就将打的很牢靠了,最开始可以画一个最小系统的就行,选一个最便宜的芯片,用作学习而已嘛!最后给推荐以下基本觉得还算可以的教材、在入门时教材的选择也很重要。

特别是现在的书五花八门的,而且很大一部分书都是为了嫌书稿费而出的。

写的水平很差,甚至出书作者没有过任何的DSP经验和基础,而是从这里抄一点,那里拷贝一点,这样的书太多,本人不敢恭维。

甚至有些书还是某某院士所推荐的或者所写的,其实这些出书的初级者水平都不能达到。

DSP入门

DSP入门

学习日志:1、看电路图,把整体结构看懂,然后找出对应的芯片的用的功能。

2、看实验箱上面的电路图,知道DSP每个脚所连接的线的作用。

3、把实验箱玩转,就是怎么接线的。

4、会根据已知的程序写进去,此处应该用到USB仿真器,此处要对相应的ccs学习。

5、ccs的学习,首先要学会配置,即先要进入Setup CCS 2 ('C2000)进行配置,此时最好亲自装一下ccs学会怎么配置,不然实验箱不会正常工作的,此处是在仿真模式下进行的。

配置之前先要clear,然后选择ICETEK-5100 EMULATOR for,也就是最后一个,这种模式下,是在外设相连的情况下的仿真,如果选择F2812 Device Simulator是纯仿真模式,不与外设相连接,在此情况下,一般只会用到这两种情况下的仿真。

6、对ccs的学习,在编写程序时,只需要编写.c程序和.cmd程序,其它的全部都从别的地方调进来的,不用编写,但是要理解相应程序的功能。

7、事件管理器的学习:GpioMuxRegs.GPAMUX.all=0x0000 GPIOA的I/O模式和第二功能模式0时I/O模式1时第二功能模式。

GpioMuxRegs.GPADIR.all=0x00bf GPIOA I/O模式的输入输出。

0输入1输出(p110 *p95)。

GpioMuxRegs.GPADIR.all此东东暂时没有什么用,编程时可以带上,令其=0x0000即可。

事件管理器分为EV A(起始地址7400H)和EVB(起始地址7500H),功能基本相同,只是模块的外部接口和信号有所不同。

(*p14) 8、通用定时器的比较器用作比较功能时可以产生PWM波形。

GP1为比较器和PWM电路提供基准时钟,GP2为捕获单元和正交脉冲计数操作提供基准时钟。

定时器包括:增减寄存器TxCNT比较寄存器TxCMPR周期寄存器TxPR控制寄存器TxCON通用定时器比较输出引脚TxCMP全局控制寄存器GPCONA/B定时器的四种模式:停止保持模式、连续增计数模式、定向的增减计数模式、连续的增减计数模式。

DSP入门(献给初学者)

DSP入门(献给初学者)

DSP入门(献给初学者)DSP的特点对于没有使用过DSP的初学者来说,第一个困惑就是DSP其他的嵌入式处理器究竟有什么不同,它和单片机,ARM有什么区别。

事实上,DSP也是一种嵌入式处理器,它完全可以完成单片机的功能。

唯一的重要的区别在于DSP支持单时钟周期的“乘-加”运算。

这几乎是所有厂家的DSP芯片的一个共有特征。

几乎所有的DSP处理器的指令集中都会有一条MAC指令,这条指令可以把两个操作数从RAM 中取出相乘,然后加到一个累加器中,所有这些操作都在一个时钟周期内完成。

拥有这样一条指令的处理器就具备了DSP功能具有这条指令就称之为数字信号处理器的原因在于,所有的数字信号处理算法中最为常见的算术操作就是“乘-加”。

这是因为数字信号处理中大量使用了内积,或称“点积”的运算。

无论是FIR滤波,FFT,信号相关,数字混频,下变频。

所有这些数字信号处理的运算经常是将输入信号与一个系数表或者与一个本地参考信号相乘然后积分(累加),这就表现为将两个向量(或称序列)进行点积,在编程上就变成将输入的采样放在一个循环buffer里,本地的系数表或参考信号也放在一个buffer里,然后使用两个指针指向这两个buffer。

这样就可以在一个loop里面使用一个MAC指令将二者进行点积运算。

这样的点积运算对与处理器来说是最快的,因为仅需一个始终周期就可以完成一次乘加。

了解DSP的这一特点后,当我们设计一个嵌入式系统时,首先要考虑处理器所实现的算法中是否有点积运算,即是否要经常进行两个数组的乘加,(记住数字滤波,相关等都表现为两个数组的点积)如果有的话,每秒要做多少次,这样就能够决定是否采用DSP,采用多高性能的DSP了。

浮点与定点浮点与定点也是经常是初学者困惑的问题,在选择DSP器件的时候,是采用浮点还是采用定点,如果用定点是16位还是32位?其实这个问题和你的算法所要求的信号的动态范围有关。

定点的计算不过是把一个数据当作整数来处理,通常AD采样来的都是整数,这个数相对于真实的模拟信号有一个刻度因子,大家都知道用一个16位的AD去采样一个0到5V的信号,那么AD输出的整数除以2^16再乘以5V就是对应的电压。

dsp学习心得

dsp学习心得

dsp学习心得最近,我开始学习DSP技术,这是一项专业的数字信号处理技术。

虽然这项技术对于许多人来说可能还相对陌生,但我认为它具有巨大的潜力和前途。

在学习过程中,我克服了许多挑战,但我也获得了很多宝贵的经验。

下面是我个人的DSP学习心得与大家分享,希望对大家有所帮助。

一、DSP技术概述DSP技术是一种专业的数字信号处理技术,它主要应用于音频、视频、雷达、通信、医疗、军事等领域。

该技术基于数学算法,通过数字计算对采集到的模拟信号进行处理,提取出所需的信息。

DSP技术的优点包括处理速度快、精度高、可靠性强等。

二、DSP学习要点1.数学基础学习DSP技术需要较好的数学基础,特别是离散数学和信号与系统的相关知识。

需要了解傅里叶级数、离散傅里叶变换、卷积等概念和应用。

同时,也需要掌握线性代数和微积分等数学基础知识。

2.编程语言DSP技术的应用离不开编程语言,如C语言、MATLAB等。

其中,C语言是最常用的编程语言,掌握好C语言对于学习DSP 非常重要,能够帮助我们深入了解DSP技术的实现原理。

3.实践经验学习DSP技术需要有实践经验。

通过实际操作,能够更好地理解理论知识,并加深对DSP技术的认识。

需要有耐心和恒心,多进行实践操作,多总结不同的处理方法和技巧。

三、常见DSP应用场景1.音频处理DSP技术在音频处理中具有广泛应用,其主要任务是对音频信号进行数字处理,以提高音频品质或减少噪声等。

2.图像处理DSP技术在图像处理中也具有广泛应用,例如对图像进行滤波、检测等操作,可以提高图像的质量和清晰度,应用在运动目标识别、人脸识别等方面。

3.通信处理通信领域是DSP技术的重要应用领域之一。

DSP技术可以对电话、移动通信等进行数字信号处理,可以实现音频压缩、语音识别等功用。

四、学习中的关键困难点1.数学知识的差距DSP技术需要掌握较高级别的数学知识,这也是学习中的一个关键困难点。

如果数学基础比较弱,需要花费更多的时间来学习相关知识。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、TI DSP的选型主要考虑处理速度、功耗、程序存储器和数据存储器的容量、片内的资源,如定时器的数量、I/O口数量、中断数量、DMA通道数等。

DSP的主要供应商有TI,ADI,Motorola,Lucent和Zilog等,其中TI占有最大的市场份额。

TI公司现在主推四大系列DSP1)C5000系列(定点、低功耗):C54X,C54XX,C55X 相比其它系列的主要特点是低功耗,所以最适合个人与便携式上网以及无线通信应用,如手机、PDA、GPS等应用。

处理速度在80MIPS--400MIPS之间。

C54XX和C55XX 一般只具有McBSP同步串口、HPI并行接口、定时器、DMA等外设。

值得注意的是C55XX提供了EMIF外部存储器扩展接口,可以直接使用SDRAM,而C54XX 则不能直接使用。

两个系列的数字IO都只有两条。

2)C2000系列(定点、控制器):C20X,F20X,F24X,F24XX ,C28x该系芯片具有大量外设资源,如:A/D、定时器、各种串口(同步和异步),WATCHDOG、CAN总线/PWM发生器、数字IO脚等。

是针对控制应用最佳化的DSP,在TI所有的DSP中,只有C2000有FLASH,也只有该系列有异步串口可以和PC的UART相连。

3)C6000系列:C62XX,C67XX,C64X 该系列以高性能著称,最适合宽带网络和数字影像应用。

32bit,其中:C62XX和C64X是定点系列,C67XX 是浮点系列。

该系列提供EMIF扩展存储器接口。

该系列只提供BGA封装,只能制作多层PCB。

且功耗较大。

同为浮点系列的C3X中的VC33现在虽非主流产品,但也仍在广泛使用,但其速度较低,最高在150MIPS。

4)OMAP系列:OMAP处理器集成ARM的命令及控制功能,另外还提供DSP 的低功耗实时信号处理能力,最适合移动上网设备和多媒体家电。

其他系列的DSP曾经有过风光,但现在都非TI主推产品了,除了C3X系列外,其他基本处于淘汰阶段,如:C3X的浮点系列:C30,C31,C32 C2X和C5X系列:C20,C25,C50每个系列的DSP都有其主要应用领域.2、设计中如何得到技术参考资料以及如何得到相关源码原则是碰到问题就去1)在TI网站的搜索中用keyword搜索资料,主要要注意的就是Application Notes,user guides 比如不知道怎样进行VC5402的McBSP编程,搜McBSP 和VC5402 如果不知道如何设计VC5402和TLV320AIC23的接口以及编程,搜TLV320AIC23和VC5402; 这样可以搜到一堆的资料,这些资料一般均有PDF文档说明和相应的源程序包提供,download后做少许改动即可2)来DSP交流网,HELLODSP真诚欢迎每一位有需要的朋友3)google搜4)再不济,找技术支持,碰运气了3、如何看待TI DSP庞杂的技术文档新手进行DSP开发学习之时,常常感觉技术文档太多,哪本都有用,哪本都想看,无从下手。

此时原则是只看入门必须的、只看和芯片相关的。

根据经验,如下的资料必看不可:1)讲述DSP的CPU,memory,program memory addressing,data memory addressing的资料都需要看、外设资源的资料可以只看自己用到的部分;2)C和汇编的编程指南需要看3)汇编指令和C语言的运行时间支持库、DSPLIB等资料需要看其他的如:Applications Guide,Optimizing CC++ Compiler User's Guide,Assembly Language Tools User's Guide等资料留待入门之后再去看体会会更深一些。

4、如何高效开始TI DSP的硬件开发1)根据应用领域选择TI推荐的DSP类型2)参考选定的DSP之EVM板,DSK等原理图,完成DSP最小系统的搭建(包括外扩内存空间、电源复位系统、各控制信号管脚的连接、JTAG口的连接等); 3)根据具体应用需要,选择外围电路的扩展,一般如语音、视频、控制等领域均有成熟的电路可以从TI网站得到。

外围电路与DSP的接口可参看EVM或DSK,以及所选外围电路芯片的典型接口设计原理图;最好外围电路芯片也选择TI的,这样的话不管硬件接口有现成原理图、很多连DSP与其接口的基本控制源码都有。

4)地址译码、IO扩展等用CPLD或者FPGA来做,将DSP的地址线、数据线、控制信号线如IS/PS/DS等都引进去有利于调试5、如何高效开始TI DSP的软件开发如果你不是纯做算法,而是在一个目标版上进行开发,需要使用DSP的片上外设,需要控制片外接口电路,那么建议在写程序前先好好将这个目标版的电路设计搞清楚。

最重要的是程序、数据、I/O空间的译码。

不管是否纯做算法还是软硬结合,DSP的CPU,memory,program memory addressing, data mem.ory addressing的资料都需要看.1)看CCS的使用指南2)明白CMD文件的编写3)明白中断向量表文件的编写,并定位在正确的地方4)运行一个纯simulator的程序,了解CCS的各个操作5)到TI网站下相关的源码,参考源码的结构进行编程6)不论是C编程还是ASM编程,模块化是必须的6、选择C还是选择ASM进行编程记住一条原则,TI的工程师在不断改进CCS的C程序优化编译器,现在C优化的效率可达到手工汇编的90%甚至更高。

当然有的时候如果计算能力和内存资源是瓶颈,ASM还是有优势,比如G.729编解码。

但是针对一般的应用开发,C是最好的选择。

新手编程则选择C和汇编混合编程更有利一些7、选择什么仿真器一般来说,买个并口的EPP就够了,价格便宜又稳定,现在用的比较多的是USB 接口的仿真器8、关于TI 54X系列DSP的bootloader过程请详细阅读TI文档SPRA618A、SPRA571,这些文档对boot的机制进行了详细说明同时说明了利用hex500将*.out文件转化为*.hex文件时,需要编写的cmd文件的写法。

9。

如何选择外部时钟?DSP的内部指令周期较高,外部晶振的主频不够,因此DSP大多数片内均有PLL。

但每个系列不尽相同。

1)TMS320C2000系列:TMS320C20x:PLL可以÷2,×1,×2和×4,因此外部时钟可以为5MHz-40MHz。

TMS320F240:PLL可以÷2,×1,×1.5,×2,×2.5,×3,×4,×4.5,×5和×9,因此外部时钟可以为2.22MHz-40MHz。

TMS320F241/C242/F243:PLL可以×4,因此外部时钟为5MHz。

TMS320LF24xx:PLL可以由RC调节,因此外部时钟为4MHz-20MHz。

TMS320LF24xxA:PLL可以由RC调节,因此外部时钟为4MHz-20MHz。

2)TMS320C3x系列:TMS320C3x:没有PLL,因此外部主频为工作频率的2倍。

TMS320VC33:PLL可以÷2,×1,×5,因此外部主频可以为12MHz-100MHz。

3)TMS320C5000系列:TMS320VC54xx:PLL可以÷4,÷2,×1-32,因此外部主频可以为0.625MHz -50MHz。

TMS320VC55xx:PLL可以÷4,÷2,×1-32,因此外部主频可以为6.25MHz -300MHz。

4)TMS320C6000系列:TMS320C62xx:PLL可以×1,×4,×6,×7,×8,×9,×10和×11,因此外部主频可以为11.8MHz-300MHz。

TMS320C67xx:PLL可以×1和×4,因此外部主频可以为12.5MHz-230MHz。

TMS320C64xx:PLL可以×1,×6和×12,因此外部主频可以为30MHz-720MHz10。

软件等待的如何使用?DSP的指令周期较快,访问慢速存储器或外设时需加入等待。

等待分硬件等待和软件等待,每一个系列的等待不完全相同。

1)对于C2000系列:硬件等待信号为READY,高电平时不等待。

软件等待由WSGR寄存器决定,可以加入最多7个等待。

其中程序存储器和数据存储器及I/O可以分别设置。

2)对于C3x系列:硬件等待信号为/RDY,低电平是不等待。

软件等待由总线控制寄存器中的SWW和WTCNY决定,可以加入最多7个等待,但等待是不分段的,除了片内之外全空间有效。

3)对于C5000系列:硬件等待信号为READY,高电平时不等待。

软件等待由SWWCR和SWWSR寄存器决定,可以加入最多14个等待。

其中程序存储器、控制程序存储器和数据存储器及I/O可以分别设置。

4)对于C6000系列(只限于非同步存储器或外设):硬件等待信号为ARDY,高电平时不等待。

软件等待由外部存储器接口控制寄存器决定,总线访问外部存储器或设备的时序可以设置,可以方便的同异步的存储器或外设接口。

11。

仿真工作正常对于DSP的基本要求1)DSP电源和地连接正确。

2)DSP时钟正确。

3)DSP的主要控制信号,如RS和HOLD信号接高电平。

4)C2000的watchdog关掉。

5)不可屏蔽中断NMI上拉高电平。

CCS或Emurst运行时提示“Can't Initialize T arget DSP”1)仿真器连接是否正常?2)仿真器的I/O设置是否正确?3)XDSPP仿真器的电源是否正确?4)目标系统是否正确?5)仿真器是否正常?6)DSP工作的基本条件是否具备。

建议使用目标板测试。

12。

为什么CCS需要安装Driver?CCS是开放的软件平台,它可以支持不同的硬件接口,因此不同的硬件接口必须通过标准的Driver同CCS连接。

Driver安装的常见问题?请认真阅读“安装手册”和Driver盘中的Readme。

1)对于SEED-XDS,安装Readme中的步骤,将I/O口设为240/280/320/340。

2)对于SEED-XDSPP,安装Readme中的步骤,将I/O口设为378或278。

3)对于SEED-XDSUSB,必须连接目标板,安装Readme中的步骤,将I/O口设为A,USB连接后,主机将自动激活相应的Driver。

相关文档
最新文档