现代数学七大难题

合集下载

十大无解数学题有哪些

十大无解数学题有哪些

十大无解数学题有哪些十大难题困扰了许多数学家和数学学者很多年,目前由于数学的计算技术不断提升,这十道题也逐渐能够得以解决。

下面和小编一起来看十大无解数学题有哪些,希望有所帮助!一、假钞问题一个人拿着100元假钞向老板买一件定价15元,进货12元的'商品,如果老板收了假钞,请问老板亏了多少钱。

二、母猪过河问题有三对猪母子要过河,其中有一对母子都会划船,有一对是母猪会孩子不会,最后一对是孩子会母猪不会,如果出现母猪会孩子不会这种情况出现时,母猪会吃掉孩子,请问应该怎样搭配过河。

三、找次品问题现在有26个乒乓球样品,其中有一个是次品,可以通过比较重量的方式将乒乓球次品找出来,乒乓球次品的质量较轻,请问要在天平上最少称几次。

四、填空问题数学家可以通过填空问题,将原本不成立的等式变得成立,比如一个月加一个季度等于四个月,这就实现了1+1=4,请问可以用怎样的单位代换,使得2+5=1。

五、退钱问题有三个人各出了十元,凑够30元住旅馆,可第二天老板退了五块钱,三个人要将五块钱平分,其中分钱的人由于贪心自己独占了两块,然后准备每个人分一块,分到最后还剩了一块,怎么办。

六、圆周问题现在有两个圆,大圆的半径为a,小圆半径为b,a>b,如果小圆围绕大圆内部半径旋转一周的话,小圆自转了几周。

七、喝汽水问题现在有一个非常优惠的喝汽水活动,一块钱买一瓶汽水,喝完后两个空瓶还可以再替换一瓶汽水,请问20块钱能够喝几瓶汽水?八、年龄问题经理有三个女儿,三个女儿年龄之和为13岁,现在有下属猜测经理女儿的年龄,经理给出提示,只有一个女儿头发为黑色,请问经理三个女儿分别为多大。

九、考试成绩问题小明在一次考试中,数学和语文总共为197分,语文和英语总共为199分,数学和英语总分为196分,请问小明总分为多少各科成绩为多少?十、切饼问题现在小明家有八个人想要共分一张饼,妈妈要求他用一刀将这张饼切成八个部分,请问小明应该怎样切这张饼?。

21世纪7大数学难题

21世纪7大数学难题

最近美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。

以下是这七个难题的简单介绍。

“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(StephenCook)于1971年陈述的。

“千僖难题”之二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

世界上最难的数学题(世界上最难的7道数学题)

世界上最难的数学题(世界上最难的7道数学题)

世界上最难的数学题(世界上最难的7道数学题)在2000年之初,克雷数学研究所提出了7个问题,这些问题被认为是至今仍未解决的最困难的问题之一。

解决其中任何一个问题都有100万美元的赏金。

世界上最难的数学题:庞加莱猜想;P vs NP,纳维尔-斯托克斯问题,黎曼猜想(假设),伯奇和斯温纳顿-戴尔猜想,杨-米尔斯存在性与质量间隙,霍奇猜想。

庞加莱猜想庞加莱猜想,拓扑学上的一颗明珠,揭开宇宙形状之谜任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。

让我们逐字分析一下。

首先,流形是一个具有局部欧氏空间性质的空间,在数学中用来描述几何体。

这意味着如果你放大它,它看起来像一条线或一个平面或一个规则的三维空间等等。

流形的一个例子是球面。

如果你离它足够远,并且身处其中,它看起来是平的(就像你感觉地球是平的一样)。

流形的维数是它在局部看起来像空间的维数。

比如球体局部看起来像平面(也就是说它有维度2),圆局部看起来像直线(所以它有维度1),思维球体局部看起来像三维结构(这一定很神奇,只是我们无法想象)。

如果一个流形是紧致无边界的,那么它是闭的(这是一个复杂而重要的外延概念,需要另一篇文章详细解释)。

0和1之间的线段有0和1之间的边界,所以它不是闭合的。

圆没有边界,所以是封闭的。

如果一个流形没有“孔”,则它是单连通的:等效的单连通表述是,每个环可以连续地收缩到一点。

•A中的一个环可以收紧到一个点;B中的一个环被一个孔“卡住”,不能被收紧到一个点。

如果能连续地把一个变形成另一个,然后再变回来,那么这两个流形是同胚的(允许的变形包括拉伸、挤压和扭转,但不允许撕裂和穿孔)。

这就引出了著名的甜甜圈和茶杯杯之间的比较(拓补上,它们是同一种东西)。

在拓扑学中,我们要对所有流形进行分类,其中某一类中的所有流形都是彼此同胚的。

在二维空间中,我们很容易看到,如果流形是封闭的,没有孔洞,那么它就相当于一个二维球面(圆形曲面)。

很容易确定一个二维流形是否与一个二维球面同胚。

司徒达的世界七大数学难题

司徒达的世界七大数学难题

司徒达的世界七大数学难题1、NP完全问题例:在一个周六的晚上,参加了一个盛大的晚会。

由于感到局促不安想知道这一大厅中是否有你已经认识的人。

宴会的主人提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟你就能向那里扫视,并且发现宴会的主人是正确的。

如果没有这样的暗示你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

2、霍奇猜想二十世纪的数学家们发现了,研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,可以把给定对象的形状通过把维数,不断增加简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广。

最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完好的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

3、庞加莱猜想如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。

另一方面如果想象同样的橡皮带,以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。

苹果表面是“单连通的”而轮胎面不是。

大约在一百年以前庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。

这个问题立即变得无比困难,从那时起数学家们就在为此奋斗。

4、黎曼假设有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7等等。

这样的数称为素数;它们在纯数学及其应用中都起着重要作用。

在所有自然数中这种素数的分布并不遵循任何有规则的模式;然而德国数学家黎曼(1826~1866)观察到。

世界数学十大未解难

世界数学十大未解难

世界数学十大未解难题世界数学十大未解难题(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决的问题”)一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(StephenCook)于1971年陈述的。

二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

三:庞加莱(Poincare)猜想如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。

21世纪七大世界级数学难题

21世纪七大世界级数学难题

21世纪七大世界级数学难题专题简介世界级数学难题让几代数学家为止奋斗,而其中七个“千年数学难题”更是每个难题悬赏一百万美元。

百万的世界级数学难题难题”之一:P(多项式算法)问题对NP(非多项式算法)问题难题”之二:霍奇(Hodge)猜想难题”之三:庞加莱(Poincare)猜想难题”之四:黎曼(Riemann)假设难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想最近美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。

以下是这七个难题的简单介绍。

NO:1 庞加莱猜想在1904年发表的一组论文中,庞加莱提出以下猜想:任一单连通的、封闭的三维流形与三维球面同胚。

上述简单来说就是:每一个没有破洞的封闭三维物体,都拓扑等价于三维的球面。

粗浅的比喻即为:如果我们伸缩围绕一个苹果表面的橡皮带,那我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。

我们说,苹果表面是单连通的,而轮胎面不是。

该猜想是一个属于代数拓扑学领域的具有基本意义的命题,对庞加莱猜想的証明及其带来的后果将会加深数学家对流形性质的认识,甚至会对人们用数学语言描述宇宙空间產生影响。

NO:2 哥德巴赫猜想哥德巴赫猜想是世界近代三大数学难题之一。

1742年,由德国中学教师哥德巴赫在教学中首先发现的。

1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。

b.任何一个大于9的奇数都可以表示成三个素数之和。

21世纪七大数学难题

21世纪七大数学难题

21世纪七大数学难题最近美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。

以下是这七个难题的简单介绍。

“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(StephenCook)于1971年陈述的。

“千僖难题”之二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

世界七大数学难题

世界七大数学难题

世界七大数学难题1、费尔马大定理费尔马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。

终于在1994年被安德鲁·怀尔斯攻克。

古希腊的丢番图写过一本著名的"算术",经历中世纪的愚昧黑暗到文艺复兴的时候,"算术"的残本重新被发现研究。

1637年,法国业余大数学家费尔马(Pierre de Fremat)在"算术"的关于勾股数问题的页边上,写下猜想:x^n+y^n=z^n是不可能的(这里n大于2;x,y,z,n都是非零整数)。

此猜想后来就称为费尔马大定理。

费尔马还写道"我对此有绝妙的证明,但此页边太窄写不下"。

一般公认,他当时不可能有正确的证明。

猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。

1847年,库木尔创立"代数数论"这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。

历史上费尔马大定理高潮迭起,传奇不断。

其惊人的魅力,曾在最后时刻挽救自杀青年于不死。

他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。

无数人耗尽心力,空留浩叹。

最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。

1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个x,y,z振动了世界,获得费尔兹奖(数学界最高奖)。

历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在"谷山丰-志村五朗猜想"之中。

童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。

终于在1993年6月23日剑桥大学牛顿研究所的"世纪演讲"最后,宣布证明了费尔马大定理。

七大世界级数学难题,居然被悬赏一百万美元

七大世界级数学难题,居然被悬赏一百万美元

这七个“世界难题”是:完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨•米尔斯理论、纳卫尔斯托可方程、猜想.这七个问题都被悬赏一百万美元.问题提出数学大师大卫•希尔伯特在年月日于巴黎召开地第二届世界数学家大会上地著名演讲中提出了个数学难题.希尔伯特问题在过去百年中激发数学家地智慧,指引数学前进地方向,其对数学发展地影响和推动是巨大地,无法估量地.()文档收集自网络,仅用于个人学习世纪是数学大发展地一个世纪.数学地许多重大难题得到完满解决,如费马大定理地证明,有限单群分类工作地完成等,从而使数学地基本理论得到空前发展.文档收集自网络,仅用于个人学习年初美国克雷数学研究所地科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所地董事会决定建立七百万美元地大奖基金,每个“千年大奖问题”地解决都可获得一百万美元地奖励.文档收集自网络,仅用于个人学习克雷数学研究所“千年大奖问题”地选定,其目地不是为了形成新世纪数学发展地新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决地重大难题.文档收集自网络,仅用于个人学习年月日,千年数学会议在著名地法兰西学院举行.会上,年菲尔兹奖获得者伽沃斯以“数学地重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”.克雷数学研究所还邀请有关研究领域地专家对每一个问题进行了较详细地详述.克雷数学研究所对“千年大奖问题”地解决与获奖作了严格规定.每一个“千年大奖问题”获得解决并不能立即得奖.任何解决答案必须在具有世界声誉地数学杂志上发表两年后且得到数学界地认可,才有可能由克雷数学研究所地科学顾问委员会审查决定是否值得获得百万美元大奖.()文档收集自网络,仅用于个人学习其中有一个已被解决(庞加莱猜想,由俄罗斯数学家格里戈里•佩雷尔曼破解),还剩六个.“千年大奖问题”公布以来,在世界数学界产生了强烈反响.这些问题都是关于数学基本理论地,但这些问题地解决将对数学理论地发展和应用地深化产生巨大推动.认识和研究“千年大奖问题”已成为世界数学界地热点.不少国家地数学家正在组织联合攻关. “千年大奖问题”将会改变新世纪数学发展地历史进程.文档收集自网络,仅用于个人学习七大难题()猜想数学家总是被诸如那样地代数方程地所有整数解地刻画问题着迷.欧几里德曾经对这一方程给出完全地解答,但是对于更为复杂地方程,这就变得极为困难.事实上,正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解地,即,不存在一般地方法来确定这样地方程是否有一个整数解.当解是一个阿贝尔簇地点时,贝赫和斯维讷通-戴尔猜想认为,有理点地群地大小与一个有关地蔡塔函数()在点附近地性态.特别是,这个有趣地猜想认为,如果()等于,那么存在无限多个有理点(解).相反,如果()不等于.那么只存在着有限多个这样地点.()文档收集自网络,仅用于个人学习完全问题例:在一个周六地晚上,你参加了一个盛大地晚会.由于感到局促不安,你想知道这一大厅中是否有你已经认识地人.宴会地主人向你提议说,你一定认识那位正在甜点盘附近角落地女士罗丝.不费一秒钟,你就能向那里扫视,并且发现宴会地主人是正确地.然而,如果没有这样地暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识地人.文档收集自网络,仅用于个人学习生成问题地一个解通常比验证一个给定地解时间花费要多得多.这是这种一般现象地一个例子.与此类似地是,如果某人告诉你,数可以写成两个较小地数地乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为乘上,那么你就可以用一个袖珍计算器容易验证这是对地.()文档收集自网络,仅用于个人学习人们发现,所有地完全多项式非确定性问题,都可以转换为一类叫做满足性问题地逻辑运算问题.既然这类问题地所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确地答案呢?这就是著名地?地猜想.不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样地提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出地问题之一.它是斯蒂文•考克于年陈述地.文档收集自网络,仅用于个人学习纳卫尔斯托可方程地存在性与光滑性起伏地波浪跟随着我们地正在湖中蜿蜒穿梭地小船,湍急地气流跟随着我们地现代喷气式飞机地飞行.数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程地解,来对它们进行解释和预言.虽然这些方程是世纪写下地,我们对它们地理解仍然极少.挑战在于对数学理论作出实质性地进展,使我们能解开隐藏在纳维叶-斯托克斯方程中地奥秘.()文档收集自网络,仅用于个人学习庞加莱猜想如果我们伸缩围绕一个苹果表面地橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点.另一方面,如果我们想象同样地橡皮带以适当地方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点地.我们说,苹果表面是“单连通地”,而轮胎面不是.大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离地点地全体)地对应问题.这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗.文档收集自网络,仅用于个人学习在年月和年月之间,俄罗斯地数学家格里戈里•佩雷尔曼在发表了三篇论文预印本,并声称证明了几何化猜想.文档收集自网络,仅用于个人学习在佩雷尔曼之后,先后有组研究者发表论文补全佩雷尔曼给出地证明中缺少地细节.这包括密西根大学地布鲁斯•克莱纳和约翰•洛特;哥伦比亚大学地约翰•摩根和麻省理工学院地田刚.()文档收集自网络,仅用于个人学习年月,第届国际数学家大会授予佩雷尔曼菲尔兹奖.数学界最终确认佩雷尔曼地证明解决了庞加莱猜想.文档收集自网络,仅用于个人学习黎曼假设有些数具有不能表示为两个更小地数地乘积地特殊性质,例如,、、、……等等.这样地数称为素数;它们在纯数学及其应用中都起着重要作用.在所有自然数中,这种素数地分布并不遵循任何有规则地模式;然而,德国数学家黎曼()观察到,素数地频率紧密相关于一个精心构造地所谓黎曼函数ζ()地性态.著名地黎曼假设断言,方程ζ()地所有有意义地解都在一条直线上.这点已经对于开始地个解验证过.证明它对于每一个有意义地解都成立将为围绕素数分布地许多奥秘带来光明.文档收集自网络,仅用于个人学习霍奇猜想()二十世纪地数学家们发现了研究复杂对象地形状地强有力地办法.基本想法是问在怎样地程度上,我们可以把给定对象地形状通过把维数不断增加地简单几何营造块粘合在一起来形成.这种技巧是变得如此有用,使得它可以用许多不同地方式来推广;最终导致一些强有力地工具,使数学家在对他们研究中所遇到地形形色色地对象进行分类时取得巨大地进展.不幸地是,在这一推广中,程序地几何出发点变得模糊起来.在某种意义下,必须加上某些没有任何几何解释地部件.霍奇猜想断言,对于所谓射影代数簇这种特别完美地空间类型来说,称作霍奇闭链地部件实际上是称作代数闭链地几何部件地(有理线性)组合.文档收集自网络,仅用于个人学习杨-米尔斯存在性和质量缺口量子物理地定律是以经典力学地牛顿定律对宏观世界地方式对基本粒子世界成立地.大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象地数学之间地令人注目地关系.基于杨-米尔斯方程地预言已经在如下地全世界范围内地实验室中所履行地高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和驻波.尽管如此,他们地既描述重粒子、又在数学上严格地方程没有已知地解.特别是,被大多数物理学家所确认、并且在他们地对于“夸克”地不可见性地解释中应用地“质量缺口”假设,从来没有得到一个数学上令()人满意地证实.在这一问题上地进展需要在物理上和数学上两方面引进根本上地新观念.文档收集自网络,仅用于个人学习。

世界七大数学难题有哪些?

世界七大数学难题有哪些?

世界七大数学难题有哪些?转载:还记得被誉为“皇冠上的明珠”的哥德巴赫猜吗?这困扰了人类200多年的数学谜题,另无数数学家为之疯狂。

另外,庞加莱猜想这个被称为21世纪七大数学难题之一,最后由两位来自中国的数学家完成了最后的攻坚。

这是中国人对数学界的重大贡献之一。

前有陈景润攻坚哥德巴赫猜想、后有朱熹平、曹怀东破解庞加莱猜想。

但在此之外,诸如世界七大数学难题,它们就像一道道亮丽的风景,吸引着世界各国的数学家的注意。

那么,世界七大数学难题究竟有哪些呢?世界七大数学难题相关介绍1、世界七大数学难题有哪些这七个“世界难题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨·米尔斯理论、纳卫尔-斯托可方程、BSD猜想。

这七个问题都被悬赏一百万美元。

2、23个数学难题数学大师大卫·希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。

希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。

20世纪是数学大发展的一个世纪。

数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。

2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得一百万美元的奖励。

克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。

3、世界七大数学难题的由来2000年5月24日,千年数学会议在著名的法兰西学院举行。

会上,97年菲尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。

克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。

21世纪七大数学难题

21世纪七大数学难题

21世纪七大数学难题最近美国麻州的克雷(Clay)数学研究所于2019年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。

以下是这七个难题的简单介绍。

“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(StephenCook)于1971年陈述的。

“千僖难题”之二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

七大世界级数学难题,居然被悬赏一百万美元!

七大世界级数学难题,居然被悬赏一百万美元!

你见过世界上最难数学题吗?你知道他们的价值有多大吗?但是,你一定不知道七大世界级数学难题,居然被悬赏一百万美元!今天华夏高考网小编就带同学们来看看这些世界未解之谜,高三的小伙伴们有福咯!这七个“世界难题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨•米尔斯理论、纳卫尔-斯托可方程、BSD猜想。

这七个问题都被悬赏一百万美元。

问题提出数学大师大卫•希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。

希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。

(hxgaokao)20世纪是数学大发展的一个世纪。

数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。

2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得一百万美元的奖励。

克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。

2000年5月24日,千年数学会议在著名的法兰西学院举行。

会上,97年菲尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。

克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。

克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。

每一个“千年大奖问题”获得解决并不能立即得奖。

任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。

(hxgaokao)其中有一个已被解决(庞加莱猜想,由俄罗斯数学家格里戈里•佩雷尔曼破解),还剩六个。

七大千年数学难题

七大千年数学难题

七大千年数学难题1900年,德国数学家希尔伯特在巴黎举行的国际数学家大会上提出了23个数学问题,认为这些是人类在20世纪里应该努力去解决的问题。

一百年之后,美国克莱数学研究所相对应地提出了七大数学难题,并对每个问题设立百万美元巨奖征集答案。

克莱研究所提出的七大难题分别为:(1)庞加莱猜想(已证明) 庞加莱是在1904年发表的一组论文中提出这一猜想的:“单连通的三维闭流形同胚于三维球面。

”它后来被推广为:“任何与n维球面同伦的n维闭流形必定同胚于n维球面。

”(2)P与NP问题(没什么进展) P 问题的P 是Polynomial Time(多项式时间)的头一个字母。

某决定性(非概率)算法计算一个问题所花的时间t是问题尺度n的多项式函数t=P(n),我们就称之为“多项式时间决定法”。

而能用这个算法解的问题就是P 问题;反之,就叫做“非多项式时间决定性算法”,这类的问题就是“NP 问题”,NP 是Non deterministic Polynomial time (非决定性多项式时间)的缩写。

由定义来说,P 问题是NP 问题的一部份。

但是否NP 问题里面有些不属于P 问题等级的东西呢,或者NP 问题终究也成为P 问题,这就是相当著名的PNP 问题。

一般认为,NP 问题里面有不属于P 问题等级的东西。

(3)黎曼假设(暂无希望) Zeta 函数ζ (s)(s属于C)的全部非平凡零点都在复平面的直线Re(z)=1/2上。

(4)杨,米尔理论(太难,几乎没人做) 杨振宁与密尔斯提出的理论中会产生传送作用力的粒子,而他们碰到的困难是这个粒子的质量的问题。

他们从数学上所推导的结果是,这个粒子具有电荷但没有质量。

然而,困难的是如果这一有电荷的粒子是没有质量的,那麼为什麼没有任何实验证据呢,而如果假定该粒子有质量,规范对称性就会被破坏。

一般物理学家是相信有质量,因此如何填补这个漏洞就是相当具挑战性的数学问题。

(5)纳维叶,斯托克斯(Navier-Stokes)方程(流体力学基本方程组)的存在性与光滑性(离解决相差很远)(6)波奇和斯温纳顿,戴雅猜想(比费玛大定理难100倍) y^2=x^3+ax+b的有理数解问题。

21世纪七大数学难题——老师们也来试一试

21世纪七大数学难题——老师们也来试一试

最近美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。

以下是这七个难题的简单介绍。

“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(StephenCook)于1971年陈述的。

“千僖难题”之二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

当今数学家没有做出来的数学题

当今数学家没有做出来的数学题

当今数学家没有做出来的数学题当今世界上有很多著名的数学家,他们对数学的研究非常深入。

但是即便是这些伟大的数学家,也有一些数学问题并没有被解决,成为无法逾越的“悬而未决”的谜题。

下面,我们将介绍一些那些目前仍无法解决的数学难题。

一、哥德尔不完备性定理哥德尔不完备性定理是数学史上最重要的定理之一。

哥德尔通过证明一个定理无法被自身所证明,认为公理形式系统的推理不能涵盖所有真实的数学命题。

这个定理被称为“哥德尔不完备性定理”。

此定理的提出,直接导致了对数学基本定理以及数学衍生科学的重新思考,也为形式逻辑、计算理论和人工智能提供了很强的支持。

二、P与NP问题P与NP问题是当前计算机理论研究领域最重要的未解问题之一。

其实质是研究对于某种问题,在多项式时间内是否存在能解决它的算法。

P (多项式)表示用多项式时间可解决问题集,NP(Nondeterministic Polynomial)表示非确定性多项式时间可解决问题集。

目前尚未发现P=NP,意味着一些NP问题不一定能在有效时间内解决。

三、质数分布规律问题质数分布规律问题始终是数学家们困扰的问题之一。

事实上,质数是几何和算术之间的桥梁,它们体现了数学最基本的特性。

质数至今仍是一个重要的领域,数学家们已经发现了一些规律,但在总体分布问题上,仍然无法给出一个解答。

四、黎曼猜想黎曼猜想是数论领域的重要问题之一,它是由数学家黎曼在1859年提出的。

该猜想是将所有质数的倒数的级数与某一常数相比较,以便确定质数出现的规律性。

尽管该猜想在早期获得了部分支持,但至今还未被彻底证明。

如果黎曼猜想得到证明,在密码学等领域将会取得重大的进展。

五、兰格兰日假设兰格兰日假设是一个最基本的代数几何问题,提出了三个关于多项式整点存在性的猜测。

其中的第一条假设称为兰格兰日猜想,在代数几何领域中有着广泛的应用。

这个问题治理着多项式的内容、性质和结构等课题,但是在代数几何上仍找不到实验证明它成立。

世界数学十大未解难题

世界数学十大未解难题

世界数学十大未解难题(其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决的问题”)一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(StephenCook)于1971年陈述的。

二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

三:庞加莱(Poincare)猜想如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。

21世纪数学7大难题

21世纪数学7大难题

21世纪数学七大难题最近美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。

以下是这七个难题的简单介绍。

“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(Stephen Cook)于1971年陈述的。

“千僖难题”之二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20世纪是数学大发展的世纪。

数学的许多重大难题得到完满解决,如费尔玛大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。

计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。

回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫. 希尔伯特。

希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。

希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。

效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。

这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。

2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,
克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。

克雷数学所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。

2000年5月24日,千年数学会议在著名的法兰西学院举行。

会上,98年费尔兹奖获得者伽沃斯(Gowers)以“数学的重要性”为题作了演讲,其后,塔特(T ate)和阿啼亚(Atiyah) 公布和介绍了这七个“千年大奖问题”。

克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。

克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。

每一个“千年大奖问题”获得解决并不能立即得奖。

任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。

现在先只列出一个清单:
这七个“千年大奖问题”是:NP 完全问题,郝治(Hodge)猜想,庞加莱(P oincare)猜想,黎曼(Rieman )假设,杨-米尔斯(Yang-Mills) 理论, 纳卫尔-斯托可(Navier-Stokes)方程,BSD(Birch and Swinnerton-Dyer)猜想。

“千年大奖问题”公布以来,在世界数学界产生了强烈反响。

这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。

认识和研究“千年大奖问题”已成为世界数学界的热点。

不少国家的数学家正在组织联合攻关。

可以预期,“千年大奖问题” 将会改变新世纪数学发展的历史进程。

(北京大学数学学院院长张继平)
7大难题的介绍
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题
在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

它是斯蒂文·考克(StephenCook)于1971年陈述的。

“千僖难题”之二:霍奇(Hodge)猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。

基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。

这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。

不幸的是,在这一推广中,程序的几何出发点变得模糊起来。

在某种意义下,必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

“千僖难题”之三:庞加莱(Poincare)猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。

另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。

我们说,苹果表面是“单连通的”,而轮胎面不是。

大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。

这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

“千僖难题”之四:黎曼(Riemann)假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。

这样的数称为素数;它们在纯数学及其应用中都起着重要作用。

在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。

著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。

这点已经对于开始的1, 500,000,000个解验证过。

证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

“千僖难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成
立的。

大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。

基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒
子物理研究所和筑波。

尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。

特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。

在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

“千僖难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。

数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。

虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。

挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

“千僖难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。

欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。

事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。

当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。

特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

相关文档
最新文档