同轴线的阻抗为什么一般为50或75欧(详解)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是典型的电缆阻抗?

同轴电缆使用的最典型阻抗值为50欧姆和75欧姆。50欧姆同轴电缆大概是使用中最常见的,一般使用在无线电发射接收器,实验室设备,以太等环境下。另一种常用的电缆类型是75欧姆的同轴电缆,一般用在视频传输,有限电视网络,天线馈线,长途电讯应用等场合。

电报和电话使用的裸露平行导线也是典型的阻抗为600欧姆。一对线径标准22的双绞线,使用合适的绝缘体,因为机械加工的限制,平均阻抗大约在120欧姆左右,这是另一种具有自己特有特性阻抗的传输线。

某些天线系统中使用300欧姆的双引线,以匹配折合半波阵子在自由空间阻抗。(但当折合阵子处于八木天线中的时候,阻抗通常会下降很多,一般在100-200欧姆左右)

(注:加反射板也会改变阵子的阻抗值,一般会降低,而且反射板越近则阻抗降低越多。)

为什么是50欧姆的同轴电缆?

在美国,用作射频功率传输的标准同轴电缆的阻抗几乎无一例外地都是50欧姆。为什么选用这个数值,在伯德电子公司出示的一篇论文中有解释。

不的的参数都对应一个最佳的阻抗值。内外导体直径比为1.65时导线有最大功率传输能力,对应阻抗为30欧姆(注:lg1.65*138=30欧姆,要使用空气为绝缘介质,因为这个时候介电常数最小,如果使用介电常数为2.3的固体聚乙烯,则阻抗只有不到20欧姆)。最合适电压渗透的直径比为2.7,对应阻抗大约是6 0欧姆。(顺带一提,这个是很多欧洲国家使用的标准阻抗)

当发生击穿时,对功率传输能力的考量是忽略了渗透电流的,而在阻抗很低,3 0欧姆时,渗透电流会很高。衰减只源自导体的损失,此时的衰减大约比最小衰减阻抗(直径比3.5911)77欧姆的时候上升了50%,而在这个比率下(D/d=3. 5911),最大功率的上限为30欧姆电缆最大功率的一半。

以前,很少使用微波功率,电缆也无法应付大容量传输。因此减少衰减是最重要的因素,导致了选择77(75欧姆)为标准。同时也确立了硬件的规格。当低耗的绝缘材料在实际中应用到柔性电缆上,电缆的尺寸规格必须保持不变,才能和现存的设备接口吻合。

聚乙烯的介电常数为2.3,以空气(介电常数为1)为绝缘层的导线的阻抗为77欧姆,如果以聚乙烯来填充绝缘空间的话,阻抗将减少为51欧姆。虽然精确的标准是50欧姆,51欧姆的电缆在今天仍然在使用。

在77欧姆点的衰减最小,60欧姆点的击穿电压为最大,而30欧姆点的功率输送量是最大的。(注:洋人的思维也如此混乱,这些性能指标明明不是由阻抗决定的。前面说过,这些由D/d比决定的。闲扯这些只让人产生误解)

另外一个可以导致50欧姆同轴电缆的事情,如果您使用一个合适直径的中心导体,并将绝缘体注入中心倒替周围,再在外围装上屏蔽层,选好所有的尺寸以便别人使用并顾及到外观的美观,结果其阻抗都落在50欧姆左右。如果想提高阻抗,中心导体的直径和导线的总径相比的话太细了;如果想降低阻抗,则内外导体之间的绝缘体厚度要做的很薄。几乎任何同轴电缆由于机械美观度的原因,都会接近50欧姆,这使50欧姆成为标准化的一种自然趋向。

如果在需要75欧姆的视频应用中使用了50欧姆的电缆会怎样?

如果50欧姆的电缆连接了75欧姆的负载(接收器),会有相当一部分的信号反射向发射设备。因为发射设备也是75欧姆的,这个反射信号会有部分再反射向接受设备。因为信号比正常信号有所延迟,在显示时表现为鬼影一样的图象,大量此类的鬼影象回声一样反复。同时,反射在某些频率引起部分信号损失。

如何转换电缆的阻抗值?

阻抗本身是不能转换的,除非您更换整一条具有其他阻抗的电缆,如果您必须要使用现存的电缆,那有一个方法可行:进行阻抗转换。由于有种转换器可以使用,两端都安装该转换器的的电缆好象具有了不同阻抗。

有些地方是可以用电阻转接器来转换电缆阻抗的,转接器比转换器简单,但使用中一般有很显著的信号损失。(75欧姆转换到50欧姆典型的损失有6dB左右)

同轴线的阻抗为什么一般为50或75欧

只是一个选择,和电路可实现性有点关系。大家在长期的工作中已经形成了一个规范,上升到国家标准或国际标准。有了标准,大家都以标准为参数去设计制作器件等,那么后人在设计电路的时候就要遵循这个标准了。比如你设计一个不是50欧姆或不是75欧姆的电路,你就买不到与其匹配的电缆,或其它零件,你怎么实现你的电路?所以要遵循标准。这个50欧姆肯定和制造有关,如介质的介电常数,尺寸等。

同轴线材的阻抗主要是用于减少噪声的干扰,例如视频线材设置为75欧姆的阻抗,这个大小的阻抗的线材可以很好地减弱外界和内部电磁波对这个频段的视频信号的干扰。

1.同轴视频线为什么要叫75欧姆馈线.

75欧姆是指馈线的阻抗匹配值,因为馈线会有信号衰减,阻抗匹配的目的就是让微波信号尽可能的以最大值传输到终端。具体你可以详细了解阻抗匹配的相关资料。

2.什么叫阻抗匹配

阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。

大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。

要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。

改变阻抗力

把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。

调整传输线

由负载点至来源点加长传输线,在图表上的圆点会沿着图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配

阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便.

阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。

阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。

一.阻抗匹配的研究

在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。

例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配;

1、串联终端匹配

串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射.

相关文档
最新文档