结构力学习题集(含答案)

合集下载

《结构力学》习题集及答案(下册)第十章结构弹性稳定计算

《结构力学》习题集及答案(下册)第十章结构弹性稳定计算

第十章 结构弹性稳定计算一、判断题:1、稳定方程即是根据稳定平衡状态建立的平衡方程。

2、压弯杆件和承受非结点荷载作用的刚架丧失稳定都属于第一类失稳。

3、在稳定分析中,有n 个稳定自由度的结构具有n 个临界荷载。

4、两类稳定问题的主要区别是:荷载—位移曲线上是否出现分支点。

5、静力法确定临界荷载的依据是结构失稳时的静力平衡条件。

6、能量法确定临界荷载的依据是势能驻值原理。

二、计算题:7、用静力法推导求临界荷载cr P 的稳定方程。

PE I ,l8、写出图示体系失稳时的特征方程。

k lEIk AB P9、求刚架在反对称失稳时的稳定方程。

n 为常数。

l Pl P n E IEIEI A C BD10、求图示完善体系的临界荷载cr P 。

转动刚度kl k r 2=,k 为弹簧刚度。

P l k r kl kEIO O EI O O11、求图示刚架的临界荷载cr P 。

已知弹簧刚度l EI k 33= 。

PEIlA BC lO O 0EI k12、求图示中心受压杆的临界荷载cr P 。

PEI l13、用静力法求图示结构的临界荷载cr P ,欲使B 铰不发生水平移动,求弹性支承的最小刚度k 值。

PlEI A Bk14、用静力法确定图示具有下端固定铰,上端滑动支承压杆的临界荷载crP。

P PEI yxδly15、用能量法求图示结构的临界荷载参数crP。

设失稳时两柱的变形曲线均为余弦曲线:yxh=-δπ(cos).12提示:cos d sin22u u u uabab⎰=+⎡⎣⎢⎤⎦⎥214。

PEIP2EI h3EA16、用能量法求中心受压杆的临界荷载crP与计算长度,BC段为刚性杆,AB段失稳时变形曲线设为:()y x a xxl=-().32EIPllEIABCyx→∞17、用能量法求图示体系的临界荷载cr P 。

l PEIEI 1=H18、用能量法求图示中心压杆的临界荷载cr P ,设变形曲线为正弦曲线。

(完整版)结构力学_习题集(含答案)

(完整版)结构力学_习题集(含答案)

《结构力学》课程习题集一、单项选择题1. 弯矩图必定发生突变的截面是()。

A. 有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。

2. 图示梁中 C 截面的弯矩是()。

12kN . m 4kN 3kN / mC4m 4m 2mA.12kN.m( 下拉 );B.3kN.m( 上拉 );C.8kN.m( 下拉 );D.11kN.m( 下拉 )。

3. 静定结构有变温时,()。

A. 无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。

4. 图示桁架 a 杆的内力是()。

A.2P ;B. -2P;; D. - 3P。

P P Pda3 d5. 图示桁架,各杆EA 为常数,除支座链杆外,零杆数为()。

A. 四根;B. 二根;C.一根;D. 零根。

P PaP Pl = 6a6. 图示梁 A 点的竖向位移为(向下为正)()。

A. Pl 3 /( 24 EI ) ;B. Pl 3 /(16 EI ) ;C. 5Pl3/( 96EI );D. 5Pl3/(48 EI )。

P2 EI EIl/ 2 A l/ 27. 静定结构的内力计算与()。

A.EI 没关;B.EI 相对值相关;C.EI 绝对值相关;D.E 没关, I 相关。

8. 图示桁架,零杆的数量为:()。

A.5 ;;; D.20 。

9. 图示结构的零杆数量为()。

A.5 ;B.6 ;; D.8 。

10. 图示两结构及其受力状态,它们的内力切合()。

A. 弯矩同样,剪力不一样;B.弯矩同样,轴力不一样;C.弯矩不一样,剪力同样;D.弯矩不一样,轴力不一样。

P P P P2P 2PEI EI EI EIh 2EI EIl ll l11. 刚结点在结构发生变形时的主要特点是()。

A. 各杆能够绕结点结心自由转动;B.不变形;C.各杆之间的夹角可随意改变;D.各杆之间的夹角保持不变。

结构力学-习题集(含答案)

结构力学-习题集(含答案)

《结构力教》课程习题集之阳早格格创做一、单选题1. 直矩图肯定爆收突变的截里是(D).A.有集结力效率的截里;B.剪力为整的截里;C.荷载为整的截里;D.有集结力奇效率的截里.2. 图示梁中C截里的直矩是(D).A.12kN.m(下推);B.3kN.m(上推);C.8kN.m(下推);D.11kN.m(下推).3. 静定结构有变温时,(C).A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力.4. 图示桁架a杆的内力是(D).A.2P;B.-2P;C.3P;D.-3P.5. 图示桁架,各杆EA 为常数,除收座链杆中,整杆数为( A ).A.四根;B.二根;C.一根;D.整根.6. 图示梁A 面的横背位移为(背下为正)( C ).A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl .7. 静定结构的内力估计与( A ).无关;相对付值有关;千万于值有关;无关,I 有关.8. 图示桁架,整杆的数目为:(C ).;;;.9. 图示结构的整杆数目为(C ).;;;.10. 图示二结构及其受力状态,它们的内力切合(B ).A.直矩相共,剪力分歧;B.直矩相共,轴力分歧;C.直矩分歧,剪力相共;D.直矩分歧,轴力分歧.11. 刚刚结面正在结构爆收变形时的主要特性是(D ).A.各杆不妨绕结面结心自由转化;B.稳定形;C.各杆之间的夹角可任性改变;D.各杆之间的夹角脆持稳定.12. 若荷载效率正在静定多跨梁的基础部分上,附属部分上无荷载效率,则(B).A.基础部分战附属部分均有内力;B.基础部分有内力,附属部分不内力;C.基础部分无内力,附属部分有内力;D.不通过估计,无法推断.13. 图示桁架C 杆的内力是(A).A.P;B.-P/2;C.P/2;.14. 用单位荷载法供二截里的相对付转角时,所设单位荷载应是(D).A.一对付大小相等目标好异的集结荷载;B.集结荷载;C.直矩;D.一对付大小相等目标好异的力奇.15. 用图乘法供位移的需要条件之一是:(B).A.单位荷载下的直矩图为背去线;B.结构可分为等截里直杆段;C.所有杆件EI为常数且相共;D.结构必须是静定的.16. 普遍正在画制效率线时,所施加的荷载是一个(B).A.集结力奇;B.指背稳定的单位移动集结力;C.单位力奇;D.集结力.17. 下图中各图乘截止精确的是(D).A. B. C. D.S=y0 S=1y1+2y2 S=y0 S=y018. 图示伸臂梁,B收座左侧截里'B的剪力效率线精确的是(A).A. B.C. D.19. 利用机动法做静定梁效率线的本理是(A).A.真功本理;B.叠加本理;C.仄稳条件;D.变形条件.20. 图示伸臂梁的效率线为哪个量值的效率线(C).A.QA F左;B.QA F;C.QA F右;D.RA F.21. 图示结构,超静定次数为( B ).A.9;B.12;C.15;D.20.22. 力法圆程中的系数δki表示的是基础结构由(B).A.X i爆收的沿X k目标的位移;B.X i=1爆收的沿X k目标的位移;C.X i=1爆收的沿X i目标的位移;D.X k=1爆收的沿X i目标的位移.23. 对付称结构正在对付称荷载效率下,其(A).A.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移对付称;B.直矩图战轴力图对付称,剪力图对付称;变形与位移阻挡付称;C.直矩图战轴力图对付称,剪力图对付称,变形与位移对付称;D.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移阻挡付称.24. 力法的基础已知力是通过变形协做条件决定的,而位移法基础已知量是通过( A )条件决定的.A.仄稳;B.物理;C.图乘法;D.变形协做.25. 图示结构,超静定次数为(A).A.4;B.5;C.6;D.7.26. 图示结构的超静定次数为( C ).A.3;B.4;C.5;D.6.27. 挨启对接三个刚刚片的复铰,相称于去掉( C )个拘束?A.2;B.3;C.4;D.5.28. 图示结构C截里不为整的是( D ).A.横背位移;B.直矩;C.轴力;D.转角.29. 力法的基础已知量是( A ).A.多余已知力;B.收座反力;C.独力的结面线位移;D.角位移.30. 对付于下图所示结构,下列叙述精确的是( D ).A.A面线位移为整;B.AB杆无直矩;C. AB杆无剪力;D. AB杆无轴力.31. 位移法典范圆程中主系数一定( B ).A.等于整;B.大于整;C.小于整;D.大于等于整.32. 正在位移法中,将铰接端的角位移,滑动收撑端的线位移动做基础已知量( B ).A.千万于不可;B.不妨,但是不必;C.一定条件下不妨;D.必须.33. 估计刚刚架时,位移法的基础结构是( C ).A.单跨静定梁的集中体;B.静定刚刚架;C.单跨超静定梁的集中体;D.超静定铰结体.34. 正在位移法基础圆程中,k ij代表( A ).⊿j=1时,由于⊿j=1正在附加拘束i处爆收的拘束力;⊿i=1时,由于⊿i=1正在附加拘束j处爆收的拘束力;C.⊿j=1时,正在附加拘束j处爆收的拘束力;D.⊿i=1时,正在附加拘束i处爆收的拘束力.35. 位移法的基础已知量是( C ).A.收座反力;B.杆端直矩;C.独力的结面位移;D.多余已知力.二、推断题36. 有多余拘束的体系一定是几许稳定体系.(X)37. 形成二元体的链杆不妨是复链杆.(√)38. 每一个无铰启关框皆有3个多余拘束.(√)39. 如果体系的估计自由度等于其本量自由度,那么该体系不多余拘束.(√)40. 若体系的估计自由度小于大概等于整,则该体系一定是几许稳定体系.(X)41. 对付于静定结构,改变资料的本量大概者改变横截里的形状战尺寸,不会改变其内力分散,也不会改变其变形战位移.(X)42. 下图所示二相共的对付称刚刚架,启受的荷载分歧,但是二者的收座反力是相共的.(X)43. 温度改变,收座移动战制制缺面等果素正在静定结构中均引起内力.(X)44. 图示结构火仄杆件的轴力战直矩均为0.(X)45. 正在荷载效率下,刚刚架战梁的位移主假如由于各杆的蜿蜒变形引起.(√)46. 用机动法做得下图(a)所示结构Q左效率线如图(b)所示.b(X)47. 效率线的正背号仅表示本量的内力(大概反力)与假设的目标是可普遍.(√)48. 静定结构指定量值的效率线经常由直线段组成的合线,合面位于铰结面战欲供截里处.(√)49. 荷载的临界位子必定有一集结力效率正在效率线顶面,若有一集结力效率正在效率线顶面也必为一荷载的临界位子.(X)50. 一组集结移动荷载效率下,简收梁的千万于最大直矩不可能出当前跨中截里.(X)51. 力法的基础体系是不唯一的,且不妨是可变体系.(X)52. n次超静定结构,任性去掉n个多余拘束均可动做力法基础结构.(X)53. 图(a)对付称结构可简化为图(b)去估计.(X)54. 下图所示结构的超静定次数是n=8.(X)55. 超静定结构正在荷载效率下的内力估计与各杆刚刚度相对付值有关.(√)56. 超静定结构正在收座移动、温度变更效率下会爆收内力.(√)57. 超静定结构中的杆端力矩只与决于杆端位移.(X)58. 位移法的基础结构有多种采用.(X)59. 位移法是估计超静定结构的基础要领,不克不迭供解静定结构.(X)60. 位移法圆程的物理意思是结面位移的变形协做圆程.(X)三、估计题161. 供下图所示刚刚架的直矩图.62. 用结面法大概截里法供图示桁架各杆的轴力.63. 请用叠加法做下图所示静定梁的M 图.64. 做图示三铰刚刚架的直矩图.65. 做图示刚刚架的直矩图.四、估计题266. 用机动法做下图中E M 、L QB F 、R QB F 的效率线.67. 做图示结构F M 、QF F 的效率线.68. 用机动法做图示结构效率线L Q B F F M ,.69. 用机动法做图示结构R Q B C F M ,的效率线.70. 做图示结构QB F 、E M 、QE F 的效率线.五、估计题371. 用力法做下图所示刚刚架的直矩图.72. 用力法供做下图所示刚刚架的M 图.73. 利用力法估计图示结构,做直矩图.74. 用力法供做下图所示结构的M 图,EI=常数.75. 用力法估计下图所示刚刚架,做M 图.六、几许构制分解 76.77.78.79.80.81.82.83.84.85.七、估计题4(略)……问案一、单选题1. D2. D3. C4. D5. A6. C7. A8. C9. C10. B11. D12. B14. D15. B16. B17. D18. A19. A20. C21. B22. B23. A24. A25. A26. C27. C28. D29. A30. D31. B32. B34. A35. C二、推断题36. Х37.√38.√39.√40. Х41. Х42. Х43. Х44. Х45.Ö46. Х47.√48.√49. Х50. Х51. Х53. Х54. Х55.√56.√57. Х58. Х59. Х60. Х三、估计题161. 解:与完齐为钻研对付象,由0A M =∑,得2220yB xB aF aF qa +-= (1)(2分)与BC 部分为钻研对付象,由0C M =∑,得yB xB aF aF =,即yB xB F F =(2)(2分)由(1)、(2)联坐解得23xB yB F F qa ==(2分) 由0x F =∑有 20xA xB F qa F +-= 解得 43xA F qa =-(1分)由0y F =∑有 0yA yB F F += 解得 23yA yB F F qa =-=-(1分) 则2224222333D yB xB M aF aF qa qa qa =-=-=()(2分)直矩图(3分)62. 解:(1)推断整杆(12根).(4分)(2)节面法举止内力估计,截止如图.每个内力3分(3×3=9分)63. 解:(7分)(6分)64. 解:由0B M=∑,626P RA F F =⨯,即2P RA F F =(↓)(2分) 由0y F =∑,2P RB RA F F F ==(↑)(1分)与BE 部分为断绝体0E M =∑,66yB RBF F =即2P yB F F =(←)(2分) 由0x F =∑得2PyA F F =(←)(1分)故63DE DA yA PM M F F ===(内侧受推)(2分) 63CB CE yB P M M F F ===(中侧受推)(2分)(3分)65. 解:(1)供收座反力.对付完齐,由0x F =∑,xA F qa =(←)(2分)0A M =∑,22308RC F a qa qa ⨯--=,178RC F qa =(↑)(2分)(2)供杆端直矩.0AB DC M M ==(2分)2BA BC xA M M F a qa ==⨯=(内侧受推)(2分)2248CB CD a a qa M M q ==⨯⨯=(中侧受推)(2分) (3分)四、估计题266. 解:(1)C M 的效率线(4分)(2)L QB F 的效率线(4分)(2)R QB F 的效率线(4分)67. 解:(1)F M 的效率线(6分)(2)QF F 的效率线(6分)68. 解:F M 效率线(6分)L Q B F 效率线(6分)69. 解:Q Bc F M ,效率线(6分) R Q B c F M ,效率线(6分)70. 解:(1)QB F 的效率线.(4分)E M 的效率线.(4分)QE F 的效率线.(4分)五、估计题371. 解:(1)本结构为一次超静定结构,与基础体系如图(a )所示.(2分)(2)典型圆程11110P X δ+∆=(2分)(3)画制P M 、1M 分别如图(b )、(c )所示.(3分)(a ) (b )(c ) (d )(4)用图乘法供系数战自由项.333111433l l l EI EI δ=+=(2分)232112217()22336P l Pl Pl Pl l Pl EI EI-⨯∆=++⨯=-(2分) (5)解圆程得1178P X =(1分) (6)利用11P M M X M =+画制直矩图如图(d )所示.(2分)72. 解:1)采用基础体系(2分)那是一次超静定刚刚架,可去掉B 端火仄拘束,得到如下图所示的基础体系.2)列力法圆程(2分)3)画制基础体系的Mp 图战单位直矩图,估计系数、自由项(6分,Mp 图战单位直矩图各2分,系数每个1分,截止过失得一半分)解圆程得: 1128ql X =(1分) 做M 图:11PX MM M =+(3分) 73. 解:(2分) (3分)(1分)(2*4=8分)74. 解:与基础体系如图(2分)列力法基础圆程:11110p X δ+∆=(2分)1M 图(1.5分) p M 图(1.5分)3113l EI δ= (2分) 418p ql EI ∆=-(2分)代进力法圆程得 138ql X =(1分) M 图(2分)75. 解:(1)采用基础体系如图(a )所示(2分)(a )(2)列力法圆程.11112210P X X δδ++∆=(1分)21122220P X X δδ++∆=(1分) (3)分别做P M 、1M 战2M 图(1*3=3分) (4)供系数战自由项.2241111315()32428Pqa a qa a a a qa EI EI ∆=-⋅⋅⋅+⋅⋅=-⋅(1分) 422111()224P qa qa a a EI EI ∆=-⋅⋅⋅=-(1分)3111124()233a a a a a a a EI EIδ=⋅⋅⋅+⋅⋅=(1分) 322112()233a a a a EI EI δ=⋅⋅⋅=(分)3122111()22a a a a EI EI δδ==⋅⋅⋅=(分)将上述数据代进基础圆程得137X qa =,2328X qa =(1分)(5)利用叠加法做直矩图如图.(2分)六、几许构制分解76. 图中,刚刚片AB、BE、DC由不共线的三个铰B、D、E对接,组成一个大刚刚片,再战天基前提用不相接也不齐仄止的三链杆贯串,组成不多余拘束的几许稳定体系(5分).77. 如图所示的三个刚刚片通过不正在共背去线上的A、B、C三个铰二二贯串形成无多余拘束的夸大刚刚片,正在此前提上依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)组成无多余拘束的几许稳定体系.(5分)78. 如图所示的三个刚刚片通过共背去线上的A、B、C三个铰二二贯串形成了瞬变体系.(5分)79. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)80. 如图依次裁撤二元体(1,2)、(3,4)、剩下刚刚片Ⅰ战天里刚刚片Ⅱ通过一铰战不过该铰的链杆组成了几许稳定体系,故本量系是无多余拘束的几许稳定体系.(5分)81. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)82. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)83. 如图以铰接三角形ABC为基础刚刚片,并依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)产死夸大刚刚片,其战天里刚刚片通过铰A战节面B 处链杆组成了几许稳定体系,11杆为多余拘束,故本量系为含有1个多余拘束的几许稳定体系.(5分)84. 如图依次裁撤二元体(1,2)、(3,4)、(5,6),刚刚片Ⅱ战天里刚刚片Ⅰ通过相接于共一面的三根链杆组成了瞬变体系.(5分)85. 如图依次裁撤二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)、(11,12)后只剩下天里刚刚片,故本量系是无多余拘束的几许稳定体系.(5分)七、估计题4(略)……。

《结构力学习题集及标准答案》(下)-2a

《结构力学习题集及标准答案》(下)-2a

第九章 结构的动力计算一、判断题:1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。

2、仅在恢复力作用下的振动称为自由振动。

3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。

4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。

5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。

6、图示组合结构,不计杆件的质量,其动力自由度为5个。

7、忽略直杆的轴向变形,图示结构的动力自由度为4个。

8、由于阻尼的存在,任何振动都不会长期继续下去。

9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。

二、计算题:10、图示梁自重不计,求自振频率ω。

l l /411、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。

l /2l /212、求图示体系的自振频率ω。

l l0.5l 0.513、求图示体系的自振频率ω。

EI = 常数。

ll 0.514、求图示结构的自振频率ω。

l l15、求图示体系的自振频率ω。

EI =常数,杆长均为l 。

16、求图示体系的自振频率ω。

杆长均为l 。

17、求图示结构的自振频率和振型。

l /2l /2l /18、图示梁自重不计,W EI ==⨯⋅2002104kN kN m 2,,求自振圆频率ω。

B2m2m19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。

EIEIW20、图示刚架横梁∞=EI 且重量W 集中于横梁上。

求自振周期T 。

EIEIWEI 221、求图示体系的自振频率ω。

各杆EI = 常数。

a aa22、图示两种支承情况的梁,不计梁的自重。

求图a 与图b 的自振频率之比。

l /2l/2(a)l /2l /2(b)23、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。

求水平自振周期T 。

《结构力学习题集》平面体系的几何组成分析附答案

《结构力学习题集》平面体系的几何组成分析附答案

平面体系的几何组成分析一、判断题:1、在任意荷载下,仅用静力平衡方程即可确定全部反力和内力的体系是几何不变体系。

2、图中链杆1和2的交点O 可视为虚铰。

O二、分析题:对下列平面体系进行几何组成分析。

3、 4、CDBCDB5、 6、A CDBEABCDE7、 8、ABCD GE FA BCDEFGHK11、 12、1234513、 14、15、 16、17、 18、1245321、 22、123456781234523、 24、12345625、 26、27、 28、31、32、33、BA CFDE三、在下列体系中添加支承链杆,使之成为无多余约束的几何不变体系。

34、35、平面体系的几何组成分析(参考答案)1、(O)2、(X)3、7、9、10、11、13、14、17、18、19、20、22、23、25、27、28、30、31、32、33、均是无多余约束的几何不变体系。

4、8、12、29、均是几何瞬变体系。

5、15、均是几何可变体系。

6、21、24、26、均是有一个多余约束的几何不变体系。

16、是有两个多余约束的几何不变体系。

结构力学习题集

结构力学习题集

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M kM p21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

aa9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A两侧截面的相对转角ϕA,EI = 常数。

ql l l/211、求图示静定梁D端的竖向位移∆DV。

EI = 常数,a = 2m 。

10kN/ma a a14、求图示刚架B端的竖向位移。

q15、求图示刚架结点C的转角和水平位移,EI = 常数。

q17、求图示刚架横梁中D点的竖向位移。

EI=常数。

21、求图示结构B点的竖向位移,EI = 常数。

l l23、求图示刚架C点的水平位移 CH,各杆EI = 常数。

4m4m3m2kN/m27、求图示桁架中D点的水平位移,各杆EA 相同。

aD30、求图示结构D点的竖向位移,杆AD的截面抗弯刚度为EI,杆BC的截面抗拉(压)刚度为EA。

a331、求图示结构D点的竖向位移,杆ACD的截面抗弯刚度为EI,杆BC抗拉刚度为EA 。

39、图示刚架杆件截面为矩形,截面厚度为h , h/l = 1/ 20 ,材料线膨胀系数为 α,求C 点的竖向位移。

CA-3-3+t+t ttl40、求图示结构B 点的水平位移。

结构力学习题集答案

结构力学习题集答案

结构力学习题集答案结构力学习题集答案结构力学是工程力学的一个重要分支,主要研究物体在受力作用下的变形和破坏行为。

学习结构力学需要掌握一定的理论知识,并通过解决一系列习题来加深对知识的理解和应用。

下面是一些典型的结构力学习题及其答案,供大家参考。

题目一:一根长为L,截面为矩形的梁,在两端受到相等的力F,求梁的弯曲半径。

解答一:根据梁的受力分析,可以得到梁上各点的弯矩M为-F*x,其中x为距离左端点的位置。

根据弯曲半径的定义R=M/σ,其中σ为截面上的应力,可以得到弯曲半径R=-F*x/σ。

由于梁的截面为矩形,应力σ=M/S,其中S为截面的面积,可以得到弯曲半径R=-F*x/(M/S)=-S*x/F。

由于梁的截面为矩形,面积S=b*h,其中b为矩形的宽度,h为矩形的高度,可以得到弯曲半径R=-b*h*x/F。

由于梁的长度为L,可以得到弯曲半径R=-b*h*L/F。

题目二:一根长为L,截面为圆形的梁,在两端受到相等的力F,求梁的最大弯曲应力。

解答二:根据梁的受力分析,可以得到梁上各点的弯矩M为-F*x,其中x为距离左端点的位置。

根据弯曲应力的定义σ=M/S,其中S为截面的面积,可以得到弯曲应力σ=-F*x/S。

由于梁的截面为圆形,面积S=π*r^2,其中r为圆的半径,可以得到弯曲应力σ=-F*x/(π*r^2)。

由于梁的长度为L,可以得到弯曲应力σ=-F*x/(π*r^2*L)。

题目三:一根长为L,截面为矩形的梁,在两端受到相等的力F,求梁的最大挠度。

解答三:根据梁的受力分析,可以得到梁上各点的弯矩M为-F*x,其中x为距离左端点的位置。

根据梁的挠度定义y=M/(E*I),其中E为梁的弹性模量,I为梁的截面惯性矩,可以得到挠度y=-F*x/(E*I)。

由于梁的截面为矩形,惯性矩I=b*h^3/12,其中b为矩形的宽度,h为矩形的高度,可以得到挠度y=-F*x/(E*b*h^3/12)。

由于梁的长度为L,可以得到挠度y=-12*F*x/(E*b*h^3*L)。

结构力学习题及答案

结构力学习题及答案

构造力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进展几何组成分析。

假设是具有多余约束的几何不变体系,那么需指明多余约束的数目。

题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-11=W2-1 9-W=2-3 3-W=2-4 2-W=2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。

〔a〕〔b〕(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。

〔a〕〔b〕(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。

习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定构造的弯矩图是否正确。

(a)(b)(c)(d)局部习题答案3-1〔a 〕m kN M B ⋅=80〔上侧受拉〕,kN F RQB 60=,kN F L QB 60-=〔b 〕m kN M A ⋅=20〔上侧受拉〕,m kN M B ⋅=40〔上侧受拉〕,kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c)4Fl M C =〔下侧受拉〕,θcos 2F F L QC =3-2 (a)0=E M ,m kN M F ⋅-=40〔上侧受拉〕,m kN M B ⋅-=120〔上侧受拉〕〔b 〕m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11〔下侧受拉〕〔c 〕m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10〔左侧受拉〕,m kN M DF ⋅=8〔上侧受拉〕,m kN M DE ⋅=20〔右侧受拉〕 3-4 m kN M BA ⋅=120〔左侧受拉〕3-5 m kN M F ⋅=40〔左侧受拉〕,m kN M DC ⋅=160〔上侧受拉〕,m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60〔右侧受拉〕,m kN M BD ⋅=45〔上侧受拉〕,kN F QBD 46.28=3-7 m kN M C ⋅=70下〔左侧受拉〕,m kN M DE ⋅=150〔上侧受拉〕,m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0〔上侧受拉〕,m kN M BA ⋅=36.0〔右侧受拉〕 3-9 m kN M AB ⋅=10〔左侧受拉〕,m kN M BC ⋅=10〔上侧受拉〕 3-10 〔a 〕错误 〔b 〕错误 〔c 〕错误 〔d 〕正确第4章 静定平面桁架和组合构造的内力分析4-1 试判别习题4-1图所示桁架中的零杆。

《结构力学习题集》(下)-结构的动力计算习题及答案

《结构力学习题集》(下)-结构的动力计算习题及答案

《结构⼒学习题集》(下)-结构的动⼒计算习题及答案第九章结构的动⼒计算⼀、判断题:1、结构计算中,⼤⼩、⽅向随时间变化的荷载必须按动荷载考虑。

2、仅在恢复⼒作⽤下的振动称为⾃由振动。

3、单⾃由度体系其它参数不变,只有刚度EI 增⼤到原来的2倍,则周期⽐原来的周期减⼩1/2。

4、结构在动⼒荷载作⽤下,其动内⼒与动位移仅与动⼒荷载的变化规律有关。

5、图⽰刚架不计分布质量和直杆轴向变形,图a 刚架的振动⾃由度为2,图b 刚架的振动⾃由度也为2。

6、图⽰组合结构,不计杆件的质量,其动⼒⾃由度为5个。

7、忽略直杆的轴向变形,图⽰结构的动⼒⾃由度为4个。

8、由于阻尼的存在,任何振动都不会长期继续下去。

9、设ωω,D 分别为同⼀体系在不考虑阻尼和考虑阻尼时的⾃振频率,ω与ωD 的关系为ωω=D 。

⼆、计算题:10、图⽰梁⾃重不计,求⾃振频率ω。

l l /411、图⽰梁⾃重不计,杆件⽆弯曲变形,弹性⽀座刚度为k ,求⾃振频率ω。

12、求图⽰体系的⾃振频率ω。

l l0.5l 0.513、求图⽰体系的⾃振频率ω。

EI = 常数。

ll 0.514、求图⽰结构的⾃振频率ω。

l l15、求图⽰体系的⾃振频率ω。

EI =常数,杆长均为l 。

16、求图⽰体系的⾃振频率ω。

杆长均为l 。

17、求图⽰结构的⾃振频率和振型。

l /218、图⽰梁⾃重不计,W EI ==??2002104kN kN m 2,,求⾃振圆频率ω。

B2m2m19、图⽰排架重量W 集中于横梁上,横梁EA =∞,求⾃振周期ω。

EIEIW20、图⽰刚架横梁∞=EI 且重量W 集中于横梁上。

求⾃振周期T 。

EIEIWEI 221、求图⽰体系的⾃振频率ω。

各杆EI = 常数。

a aa22、图⽰两种⽀承情况的梁,不计梁的⾃重。

求图a 与图b 的⾃振频率之⽐。

l /2ll /2l /2(b)23、图⽰桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。

求⽔平⾃振周期T 。

结构力学-习题集(含答案)

结构力学-习题集(含答案)

《结构力学》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《结构力学》(编号为06014)共有单选题,判断题,计算题1,计算题2,计算题3,计算题4,几何构造分析等多种试题类型,其中,本习题集中有[计算题4]等试题类型未进入。

一、单选题1.弯矩图肯定发生突变的截面是()。

A.有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。

2.图示梁中C截面的弯矩是()。

4m2m4mA.12kN.m(下拉);B.3kN.m(上拉);C.8kN.m(下拉);D.11kN.m(下拉)。

3.静定结构有变温时,()。

A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。

4.图示桁架a杆的内力是()。

A.2P;B.-2P;C.3P;D.-3P。

5.图示桁架,各杆EA为常数,除支座链杆外,零杆数为()。

A.四根;B.二根;C.一根;D.零根。

Pal = a P PP66. 图示梁A 点的竖向位移为(向下为正)( )。

A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl 。

PEI EI A l/l/2227. 静定结构的内力计算与( )。

A.EI 无关;B.EI 相对值有关;C.EI 绝对值有关;D.E 无关,I 有关。

8. 图示桁架,零杆的数目为:( )。

A.5;B.10;C.15;D.20。

9. 图示结构的零杆数目为( )。

A.5;B.6;C.7;D.8。

10. 图示两结构及其受力状态,它们的内力符合( )。

A.弯矩相同,剪力不同;B.弯矩相同,轴力不同;C.弯矩不同,剪力相同;D.弯矩不同,轴力不同。

PPll11. 刚结点在结构发生变形时的主要特征是( )。

A.各杆可以绕结点结心自由转动;B.不变形;C.各杆之间的夹角可任意改变;D.各杆之间的夹角保持不变。

结构力学习题集答案

结构力学习题集答案

结构力学习题集答案结构力学是土木工程和机械工程中的一个重要分支,它主要研究结构在外力作用下的内力、变形和稳定性问题。

结构力学习题集通常包含了各种类型的题目,旨在帮助学生更好地理解和掌握结构力学的基本概念和计算方法。

以下是一些结构力学习题集的典型答案示例:# 结构力学习题集答案题目1:单跨梁的弯矩和剪力计算解答:对于一个简单的单跨梁,当受到集中荷载或均布荷载时,我们可以通过静力平衡方程来计算其弯矩和剪力。

例如,对于一个跨度为\( L \)的单跨简支梁,在中点施加一个集中荷载\( P \),其最大弯矩为\( M_{max} = \frac{PL}{4} \),剪力为\( V = -P \)(负号表示方向)。

题目2:桁架结构的内力分析解答:桁架结构的内力分析通常采用节点法或截面法。

以节点法为例,首先列出所有节点的平衡方程,然后解这些方程来求得节点处的反力。

接着,利用这些反力计算各杆件的内力。

题目3:框架结构的侧移和弯矩图解答:对于框架结构,侧移可以通过虚功原理或能量方法来计算。

弯矩图的绘制则需要考虑荷载作用下各层的弯矩分布。

例如,对于一个多层框架结构,在顶层施加一个均布荷载,其侧移和弯矩图会随着层数的增加而逐渐减小。

题目4:稳定性分析解答:稳定性分析主要关注结构在临界荷载作用下的失稳行为。

对于一个细长的柱体,其临界荷载可以通过欧拉公式\( P_{cr} =\frac{\pi^2EI}{(KL)^2} \)来计算,其中\( E \)是材料的弹性模量,\( I \)是截面惯性矩,\( K \)是有效长度系数,\( L \)是柱体的长度。

结论结构力学习题集的答案需要根据具体的题目条件和要求来确定。

掌握基本的力学原理和计算方法是解决这些问题的关键。

通过不断的练习和分析,可以提高解决实际工程问题的能力。

请注意,上述内容仅为示例,实际的习题集答案应根据具体的题目来编写。

如果需要针对特定题目的详细解答,请提供具体的题目信息。

结构与力学试题及答案

结构与力学试题及答案

结构与力学试题及答案一、选择题(每题2分,共20分)1. 以下关于结构力学的描述,哪一项是不正确的?A. 结构力学是研究结构在外力作用下的应力、应变和位移的学科B. 结构力学只研究静力平衡问题C. 结构力学是土木工程、机械工程等工程领域的重要基础学科D. 结构力学的研究对象包括梁、板、柱等构件答案:B2. 简支梁在均布荷载作用下的最大弯矩发生在:A. 梁的中点B. 梁的支点C. 梁的四分之一点D. 梁的任意点答案:B3. 在结构力学中,下列哪一项不是结构分析的基本原则?A. 力的平衡B. 力的可传递性C. 力的可加性D. 力的不可分解性答案:D4. 梁的剪力图和弯矩图的零点分别位于:A. 梁的支点B. 梁的中点C. 梁的四分之一点D. 梁的任意点答案:A5. 根据能量原理,下列哪一项不是结构力学分析中常用的方法?A. 虚功原理B. 虚位移原理C. 虚力原理D. 虚应力原理答案:C6. 在结构力学中,下列哪一项不是静定结构的特点?A. 内部无多余约束B. 内力可以通过静力平衡方程求解C. 内部有多余约束D. 变形可以通过几何方程求解答案:C7. 受弯构件的应力分布规律是:A. 线性分布B. 抛物线分布C. 正弦波分布D. 指数分布答案:B8. 梁的挠度计算公式中,下列哪一项是不需要的?A. 梁的截面惯性矩B. 梁的长度C. 梁的截面面积D. 梁的弹性模量答案:B9. 在结构力学中,下列哪一项不是结构稳定性分析的内容?A. 屈曲分析B. 振动分析C. 疲劳分析D. 极限承载力分析答案:C10. 根据材料力学,下列哪一项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 硬度答案:D二、填空题(每题2分,共20分)1. 梁的弯矩M可以表示为:\[ M = \frac{EI}{\rho^2} \],其中E 是材料的弹性模量,I是截面的惯性矩,\(\rho\)是梁的________。

答案:曲率半径2. 根据结构力学,梁的剪力V和弯矩M之间的关系可以用微分方程表示为:\[ \frac{dV}{dx} = -M \],其中x是梁的________。

清华大学《结构力学习题集》

清华大学《结构力学习题集》

清华⼤学《结构⼒学习题集》第三章静定结构的位移计算⼀、判断题:1、虚位移原理等价于变形谐调条件,可⽤于求体系的位移。

2、按虚⼒原理所建⽴的虚功⽅程等价于⼏何⽅程。

3、在⾮荷载因素(⽀座移动、温度变化、材料收缩等)作⽤下,静定结构不产⽣内⼒,但会有位移且位移只与杆件相对刚度有关。

4、求图⽰梁铰C 左侧截⾯的转⾓时,其虚拟状态应取:5、功的互等、位移互等、反⼒互等和位移反⼒互等的四个定理仅适⽤于线性变形体系。

6、已知M p 、M k 图,⽤图乘法求位移的结果为:()/()ωω1122y y EI +。

7、图a 、b 两种状态中,粱的转⾓?与竖向位移δ间的关系为:δ=? 。

8、图⽰桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

9、图⽰桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

⼆、计算题:10、求图⽰结构铰A 两侧截⾯的相对转⾓?A ,EI = 常数。

11、求图⽰静定梁D 端的竖向位移 ?DV 。

EI = 常数,a = 2m 。

12、求图⽰结构E 点的竖向位移。

EI = 常数。

13、图⽰结构,EI=常数,M =?90kN m , P = 30kN 。

求D 点的竖向位移。

14、求图⽰刚架B 端的竖向位移。

15、求图⽰刚架结点C 的转⾓和⽔平位移,EI = 常数。

16、求图⽰刚架中D点的竖向位移。

EI =常数。

17、求图⽰刚架横梁中D点的竖向位移。

EI =常数。

18、求图⽰刚架中D 点的竖向位移。

E I = 常数。

19、求图⽰结构A、B两截⾯的相对转⾓,EI =常数。

20、求图⽰结构A 、B 两点的相对⽔平位移,E I = 常数。

21、求图⽰结构B 点的竖向位移,EI = 常数。

22、图⽰结构充满⽔后,求A 、B 两点的相对⽔平位移。

E I = 常数,垂直纸⾯取1 m 宽,⽔⽐重近似值取10 kN / m 3。

23、求图⽰刚架C 点的⽔平位移 ?CH ,各杆EI = 常数。

结构力学习题集及答案

结构力学习题集及答案

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只和杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:C A.;;C B.CD.M CC.=1=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

Mk M p21y 1y 2**ωω ABP =1ϕ( a )A BCM =1δ(b)7、图a 、b 两种状态中,粱的转角ϕ和竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

BAaaaB9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

qlll /2A11、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a10kN/mD12、求图示结构E 点的竖向位移。

EI = 常数 。

ll l /32 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

M CDAP B 3m3m3m14、求图示刚架B 端的竖向位移。

q lEI2EIAB15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

lABC16、求图示刚架中D点的竖向位移。

EI = 常数 。

llPDl/217、求图示刚架横梁中D点的竖向位移。

EI = 常数 。

aD aa18、求图示刚架中D 点的竖向位移。

E I = 常数 。

qDlll/l/2219、求图示结构A、B两截面的相对转角,EI = 常数 。

结构力学习题及答案

结构力学习题及答案

结构力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进行几何组成分析。

若是具有多余约束的几何不变体系,则需指明多余约束的数目。

题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-1 1W=2-1 9-W=2-3 3-W=2-4 2-=W2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。

(a)(b)(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。

(a)(b)(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。

习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定结构的弯矩图是否正确。

(a)(b)(c)(d)部分习题答案3-1 (a )m kN M B ⋅=80(上侧受拉),kN F RQB 60=,kN F L QB 60-=(b )m kN M A ⋅=20(上侧受拉),m kN M B ⋅=40(上侧受拉),kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c) 4Fl M C =(下侧受拉),θcos 2F F L QC =3-2 (a) 0=E M ,m kN M F ⋅-=40(上侧受拉),m kN M B ⋅-=120(上侧受拉)(b )m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11(下侧受拉)(c )m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10(左侧受拉),m kN M DF ⋅=8(上侧受拉),m kN M DE ⋅=20(右侧受拉) 3-4 m kN M BA ⋅=120(左侧受拉)3-5 m kN M F ⋅=40(左侧受拉),m kN M DC ⋅=160(上侧受拉),m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60(右侧受拉),m kN M BD ⋅=45(上侧受拉),kN F QBD 46.28=3-7 m kN M C ⋅=70下(左侧受拉),m kN M DE ⋅=150(上侧受拉),m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0(上侧受拉),m kN M BA ⋅=36.0(右侧受拉) 3-9 m kN M AB ⋅=10(左侧受拉),m kN M BC ⋅=10(上侧受拉) 3-10 (a )错误 (b )错误 (c )错误 (d )正确第4章 静定平面桁架和组合结构的内力分析4-1 试判别习题4-1图所示桁架中的零杆。

同济大学推荐结构力学习题集含答案

同济大学推荐结构力学习题集含答案

P 3m
2m
(j) 16、图(k)所示结构的零杆有 7 根。 17、图(l)所示结构中,CD 杆的内力 N1 = P 。
P PP
C
a
D 4a
(l)
18、图(m)所示桁架中,杆 1 的轴力为 0。
P
3m
3m
3m (k)
P P/2 P /2
1
4a
(m)
—— 6 ——
《结构力学》习题集 (上册)
二、作图题:作出下列结构的弯矩图(组合结构要计算链杆轴力)。
M =1
A.
B.
C
;
C
M =1
M =1
C.
C
D. ;
C
5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形 体系。
6、已知 M p 、 M k 图,用图乘法求位移的结果为: (ω 1 y1 + ω 2 y2 ) / ( EI ) 。
ω 1
Mp * ω2*
y 2
y 1
Mk
P =1
A
26、
4m 2m 2m q
2a
28、
a 2a
a
P a
aa
29、
30、
—— 7 ——
《结构力学》习题集 (上册)
m0
a
a
P
P
a
a a/2 a/2
a
a /2 a /2
31、
P
q = P/a
P
B
A
aa
a 1.5 a 1.5 a
33、
m
l
l
l
l
35、
40kN/m
CD
3m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构力学-习题集(含答案)《结构力学》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《结构力学》(编号为06014)共有单选题,判断题,计算题1,计算题2,计算题3,计算题4,几何构造分析等多种试题类型,其中,本习题集中有[计算题4]等试题类型未进入。

一、单选题1.弯矩图肯定发生突变的截面是()。

A.有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。

2.图示梁中C截面的弯矩是()。

4m2m4mA.12kN.m(下拉);B.3kN.m(上拉);C.8kN.m(下拉);D.11kN.m(下拉)。

3.静定结构有变温时,()。

A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。

4.图示桁架a杆的内力是()。

A.2P;B.-2P;C.3P;D.-3P。

5.图示桁架,各杆EA为常数,除支座链杆外,零杆数为()。

结构力学-习题集(含答案) A.四根;B.二根;C.一根;D.零根。

Pal = a PPP66. 图示梁A 点的竖向位移为(向下为正)( )。

A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl 。

PEI EI A l/l/2227. 静定结构的内力计算与( )。

A.EI 无关;B.EI 相对值有关;C.EI 绝对值有关;D.E 无关,I 有关。

8. 图示桁架,零杆的数目为:( )。

A.5;B.10;C.15;D.20。

9. 图示结构的零杆数目为( )。

A.5;B.6;C.7;D.8。

10. 图示两结构及其受力状态,它们的内力符合( )。

A.弯矩相同,剪力不同;B.弯矩相同,轴力不同;C.弯矩不同,剪力相同;D.弯矩不同,轴力不同。

PPll11. 刚结点在结构发生变形时的主要特征是( )。

A.各杆可以绕结点结心自由转动;B.不变形;C.各杆之间的夹角可任意改变;D.各杆之间的夹角保持不变。

12. 若荷载作用在静定多跨梁的基本部分上,附属部分上无荷载作用,则( )。

A.基本部分和附属部分均有内力;B.基本部分有内力,附属部分没有内力;C.基本部分无内力,附属部分有内力;D.不经过计算,无法判断。

13. 图示桁架C 杆的内力是( )。

A .P ;B.-P /2;C.P /2;D.0。

14. 用单位荷载法求两截面的相对转角时,所设单位荷载应是( )。

A.一对大小相等方向相反的集中荷载;B.集中荷载;C.弯矩;D.一对大小相等方向相反的力偶。

15. 用图乘法求位移的必要条件之一是:( )。

A.单位荷载下的弯矩图为一直线;B.结构可分为等截面直杆段;C.所有杆件EI 为常数且相同;D.结构必须是静定的。

16. 一般在绘制影响线时,所施加的荷载是一个( )。

A.集中力偶;B.指向不变的单位移动集中力;C.单位力偶;D.集中力。

17.下图中各图乘结果正确的是()。

A. B. C. D.S=ωy0 S=ω1y1+ ω2y2 S=ωy0 S=ωy018.图示伸臂梁,B支座左侧截面B的剪力影响线正确的是()。

A. B.C. D.19.利用机动法作静定梁影响线的原理是()。

A.虚功原理;B.叠加原理;C.平衡条件;D.变形条件。

20.图示伸臂梁的影响线为哪个量值的影响线()。

A.F左; B.QA F; C. QA F右; D.RA F。

QA21.图示结构,超静定次数为()。

A.9;B.12;C.15;D.20。

22.力法方程中的系数δki表示的是基本结构由()。

A.X i产生的沿X k方向的位移;B.X i=1产生的沿X k方向的位移;C.X i=1产生的沿X i方向的位移;D.X k=1产生的沿X i方向的位移。

23.对称结构在对称荷载作用下,其()。

A.弯矩图和轴力图对称,剪力图反对称,变形与位移对称;B.弯矩图和轴力图对称,剪力图对称;变形与位移反对称;C.弯矩图和轴力图对称,剪力图对称,变形与位移对称;D.弯矩图和轴力图对称,剪力图反对称,变形与位移反对称。

24.力法的基本未知力是通过变形协调条件确定的,而位移法基本未知量是通过()条件确定的。

A.平衡;B.物理;C.图乘法;D.变形协调。

25.图示结构,超静定次数为()。

A.4;B.5;C.6;D.7。

26.图示结构的超静定次数为()。

A.3;B.4;C.5;D.6。

27.打开连接三个刚片的复铰,相当于去掉()个约束?A.2;B.3;C.4;D.5。

28.图示结构C截面不为零的是()。

A.竖向位移;B.弯矩;C.轴力;D.转角。

29.力法的基本未知量是()。

A.多余未知力;B.支座反力;C.独立的结点线位移;D.角位移。

30.对于下图所示结构,下列论述正确的是()。

A.A点线位移为零;B.AB杆无弯矩;C. AB杆无剪力;D. AB杆无轴力。

31.位移法经典方程中主系数一定()。

A.等于零;B.大于零;C.小于零;D.大于等于零。

32.在位移法中,将铰接端的角位移,滑动支撑端的线位移作为基本未知量()。

A.绝对不可;B.可以,但不必;C.一定条件下可以;D.必须。

33.计算刚架时,位移法的基本结构是()。

A.单跨静定梁的集合体;B.静定刚架;C.单跨超静定梁的集合体;D.超静定铰结体。

34.在位移法基本方程中,k ij代表()。

A.只有⊿j=1时,由于⊿j=1在附加约束i处产生的约束力;B.只有⊿i=1时,由于⊿i=1在附加约束j处产生的约束力;C.⊿j=1时,在附加约束j处产生的约束力;D.⊿i=1时,在附加约束i处产生的约束力。

35.位移法的基本未知量是()。

A.支座反力;B.杆端弯矩;C.独立的结点位移;D.多余未知力。

二、判断题36.有多余约束的体系一定是几何不变体系。

()37.构成二元体的链杆可以是复链杆。

()38.每一个无铰封闭框都有3个多余约束。

()39.如果体系的计算自由度等于其实际自由度,那么该体系没有多余约束。

()40.若体系的计算自由度小于或等于零,则该体系一定是几何不变体系。

()41.对于静定结构,改变材料的性质或者改变横截面的形状和尺寸,不会改变其内力分布,也不会改变其变形和位移。

()42.下图所示两相同的对称刚架,承受的荷载不同,但二者的支座反力是相同的。

()P PP243.温度改变,支座移动和制造误差等因素在静定结构中均引起内力。

()44.图示结构水平杆件的轴力和弯矩均为0。

()45. 在荷载作用下,刚架和梁的位移主要是由于各杆的弯曲变形引起。

( )46. 用机动法作得下图(a)所示结构b Q 左影响线如图(b)所示。

( )_1( )ab( )BB( 左 )Q B ( 左 )Q B47. 影响线的正负号仅表示实际的内力(或反力)与假设的方向是否一致。

( ) 48. 静定结构指定量值的影响线总是由直线段组成的折线,折点位于铰结点和欲求截面处。

( )49. 荷载的临界位置必然有一集中力作用在影响线顶点,若有一集中力作用在影响线顶点也必为一荷载的临界位置。

( )50. 一组集中移动荷载作用下,简支梁的绝对最大弯矩不可能出现在跨中截面。

( ) 51. 力法的基本体系是不唯一的,且可以是可变体系。

( )52. n 次超静定结构,任意去掉n 个多余约束均可作为力法基本结构。

( ) 53. 图(a )对称结构可简化为图(b )来计算。

( )54. 下图所示结构的超静定次数是n=8。

( )55. 超静定结构在荷载作用下的内力计算与各杆刚度相对值有关。

( )56.超静定结构在支座移动、温度变化影响下会产生内力。

()57.超静定结构中的杆端力矩只取决于杆端位移。

()58.位移法的基本结构有多种选择。

()59.位移法是计算超静定结构的基本方法,不能求解静定结构。

()60.位移法方程的物理意义是结点位移的变形协调方程。

()三、计算题161.求下图所示刚架的弯矩图。

a a a aqAB CD62.用结点法或截面法求图示桁架各杆的轴力。

63.请用叠加法作下图所示静定梁的M图。

64.作图示三铰刚架的弯矩图。

65. 作图示刚架的弯矩图。

四、计算题266. 用机动法作下图中E M 、L QB F 、RQB F 的影响线。

1m 2m2mFp 1=1mEBA 2mCD67. 作图示结构F M 、QF F 的影响线。

68. 用机动法作图示结构影响线L QB F F M ,。

69. 用机动法作图示结构RQB C F M ,的影响线。

70. 作图示结构QB F 、E M 、QE F 的影响线。

五、计算题371. 用力法作下图所示刚架的弯矩图。

l B DPACllEI =常数72. 用力法求作下图所示刚架的M 图。

73.利用力法计算图示结构,作弯矩图。

74.用力法求作下图所示结构的M图,EI=常数。

75.用力法计算下图所示刚架,作M图。

六、几何构造分析76.77.78.79.80.81.82.83.84.85.七、计算题4(略)……答案一、单选题1. D2. D3. C4. D5. A6. C7. A8. C9. C11. D12. B13. A14. D15. B16. B17. D18. A19. A20. C21. B22. B23. A24. A25. A26. C27. C28. D29. A30. D31. B32. B33. C34. A35. C二、判断题36.Х37.√38.√39.√40.Х41.Х42.Х43.Х44.Х46. Х 47. √ 48. √ 49. Х 50. Х 51. Х 52. Х 53. Х 54. Х 55. √ 56. √ 57. Х 58. Х 59. Х 60. Х三、计算题1 61. 解:取整体为研究对象,由0AM=,得2220yB xB aF aF qa +-= (1)(2分)取BC 部分为研究对象,由0CM=∑,得yB xB aF aF =,即yB xB F F =(2)(2分)由(1)、(2)联立解得23xB yB F F qa ==(2分) 由0x F =∑有 20xA xB F qa F +-= 解得 43xAF qa =-(1分) 由0y F =∑有 0yA yB F F += 解得 23yA yB F F qa =-=-(1分)则2224222333D yB xB M aF aF qa qa qa =-=-=()(2分)弯矩图(3分)62. 解:(1)判断零杆(12根)。

(4分)(2)节点法进行内力计算,结果如图。

每个内力3分(3×3=9分)63. 解:(7分) (6分)64. 解:由0B M =∑,626P RA F F =⨯,即2PRA F F =(↓)(2分) 由0y F =∑,2PRB RA F F F ==(↑)(1分) 取BE 部分为隔离体0EM=∑,66yB RB F F =即2PyB F F =(←)(2分) 由0x F =∑得2PyA F F =(←)(1分) 故63DE DA yA P M M F F ===(内侧受拉)(2分)63CB CE yB P M M F F ===(外侧受拉)(2分)(3分)65. 解:(1)求支座反力。

相关文档
最新文档