1二元运算基本概念和性质(离散数学)
《离散数学》代数系统的一般性质-1
定义 设 S 为集合,函数 f:S×S→S 称为 S 上的 二元运算, 简称为二元运算. 也称 S 对 f 封闭. 特点: - 变量和函数值的取值限定在同一个集合上。 例1 - (1) N 上的二元运算:加法、乘法. - (2) Z 上的二元运算:加法、减法、乘法. - (3) 非零实数集 R* 上的二元运算: 乘法、除 法. - (4) 设 S = { a1, a2, … , an}, ai ∘aj = ai , ∘ 为 S 上二元运算.
二元运算的特异元素 5.1 二 元 运 算 及 其 性 质 单位元
定义 设∘为S上的二元运算,如果存在el(或er)S,使得 对任意x∈S 都有 el ∘x =x (或x∘er =x), 则称el(或er )是S中关于∘运算的左(或右)幺元(单位元). 若e∈S关于∘运算既是左单位元又是右单位元,则称 e 为S上关于∘运算的幺元. 例:N上加法的幺元是0,乘法的幺元是1 Mn(R)上加法的么元是0矩阵,乘法的幺元是单位阵
第5章 代数系统的一般 性质
代数结构
【引例】 (1)在Z集合上,x∈Z,
5.1 二 元 运 算 及 其 性 质
则f(x)=-x是将x映为它的相反 数。-x是由x唯一确定的,它是对一个数施行求相反数运 算的结果。这个运算可表示为函数: f :Z→Z
(2)在R+ 集合上,x∈R+,则f(x)= 1/x是将x映为它的倒 数。1/x是由x唯一确定的,它是对R+中的一个数施行倒数 运算的结果。这个元算可以表示为函数 f : R+ → R+。 (3)设a,b∈R,则f(a,b)=a+b(a-b,a×b)是将两个数a, b映为R中的唯一的一个数,它是对R中的两个数施行加 (减,乘)法运算的结果。这个运算可以表示为函数f : R2 → R。
离散数学第五章
作业:P178 (2);P185 (1), (2)
5.3 半群和独异点
一、半群
1、定义
①具有运算封闭性的代数系统A=〈s,*〉 称为 广群,满足运算封闭、结合律的代数 系统 A=<s,*>,称为半群,这里*是二 元运算。 ②存在么元的半群称为独异点,也称含么 半群, 单位半群,单元半群。
5.3 半群和独异点
二、么元(单位元)和零元
例:代数A=〈{a,b,c}, ○ 〉用下表定义: ○ a b c 特殊元: b是左么元,无右么元; a是右零元,b是右零元, 无左零元; 运算:既不满足结合律,也不满足交换律。 a a a a b b b b c b c a
二、么元(单位元)和零元
例: a)〈I,x〉, I为整数集
5.2 运算及其性质
5.吸收律:设<A,*,△>,若x,y,z∈A有: x*(x △z)=x 称运算*满足吸收律; x △(x * y) =x; 运算 △满足吸收律
例:N为自然数集,x,y∈N,x*y=max{x,y},
x△y=min{x,y}
试证:*,△满足吸收律 证明:x,y∈N, x*(x△y)=max{x,min{x,y}}=x ∴*满足吸收律 x x≥y x<y x≥y =x =x
则么元为1,零元为0
b)〈(s),∪,∩〉 对运算∪,是么元, s是零元,
对运算∩,s是么元 ,是零元。 c)〈N,+〉 有么元0,无零元。
二、么元(单位元)和零元
2、性质
性质1: 设*是s上的二元运算,满足结合律,具 有左么元el,右么元er,则el=er=e 证明: er = el* er = e
闭否,<A,+>,<A,/>呢? 解:2r,2s∈A, 2r x 2s=2r+s∈A (r+s∈N)
离散数学第七章二元关系
19
证明
(2) 任取<x,y>, <x,y>∈(FG)1 <y,x>∈FG t (<y,t>∈F∧<t,x>∈G) t (<x,t>∈G1∧<t,y>∈F1) <x,y>∈G1 F1 所以 (F G)1 = G1 F1
20
关系运算的性质
定理7.3 设R为A上的关系, 则 RIA= IAR=R <x,y> <x,y>∈RIA t (<x,t>∈R∧<t,y>∈IA) t (<x,t>∈R∧t=y∧y∈A) <x,y>∈R
例如 A = P(B) = {,{a},{b},{a,b}}, 则 A上的包含关系是 R = {<,>,<,{a}>,<,{b}>,<,{a,b}>,<{a},{a}>, <{a},{a,b}>,<{b},{b}>,<{b},{a,b}>,<{a,b},{a,b}>} 类似的还可以定义: 大于等于关系, 小于关系, 大于关系, 真包含关系等.
注意: 关系矩阵适合表示从A到B的关系或A上的关系(A,B为有 穷集) 关系图适合表示有穷集A上的关系
11
实例
例4 A={1,2,3,4}, R={<1,1>,<1,2>,<2,3>,<2,4>,<4,2>}, R的关系矩阵MR和关系图GR如下:
1 1 0 0 0 0 1 1 MR 0 0 0 0 0 1 0 0
10
关系的表示
离散数学笔记总结
离散数学笔记总结一、命题逻辑。
1. 基本概念。
- 命题:能够判断真假的陈述句。
例如“2 + 3 = 5”是真命题,“1 > 2”是假命题。
- 命题变元:用字母表示命题,如p,q,r等。
2. 逻辑联结词。
- 否定¬:¬ p表示对命题p的否定,若p为真,则¬ p为假,反之亦然。
- 合取wedge:pwedge q表示p并且q,只有当p和q都为真时,pwedge q才为真。
- 析取vee:pvee q表示p或者q,当p和q至少有一个为真时,pvee q为真。
- 蕴含to:pto q表示若p则q,只有当p为真且q为假时,pto q为假。
- 等价↔:p↔ q表示p当且仅当q,当p和q同真同假时,p↔ q为真。
3. 命题公式。
- 定义:由命题变元、逻辑联结词和括号按照一定规则组成的符号串。
- 赋值:给命题变元赋予真假值,从而确定命题公式的真值。
- 分类:重言式(永真式)、矛盾式(永假式)、可满足式。
4. 逻辑等价与范式。
- 逻辑等价:若A↔ B是重言式,则称A与B逻辑等价,记作A≡ B。
例如¬(pwedge q)≡¬ pvee¬ q(德摩根律)。
- 范式:- 析取范式:由有限个简单合取式的析取组成的命题公式。
- 合取范式:由有限个简单析取式的合取组成的命题公式。
- 主析取范式:每个简单合取式都是极小项(包含所有命题变元的合取式,每个变元只出现一次)的析取范式。
- 主合取范式:每个简单析取式都是极大项(包含所有命题变元的析取式,每个变元只出现一次)的合取范式。
二、谓词逻辑。
1. 基本概念。
- 个体:可以独立存在的事物,如人、数等。
- 谓词:用来刻画个体性质或个体之间关系的词。
例如P(x)表示x具有性质P,R(x,y)表示x和y具有关系R。
- 量词:- 全称量词∀:∀ xP(x)表示对于所有的x,P(x)成立。
- 存在量词∃:∃ xP(x)表示存在某个x,使得P(x)成立。
《离散数学》第9—11章 习题详解!
第九章 代 数 系 统
9.1 内 容 提 要
1.二元运算与一元运算 二元运算 设 S 为集合,函数 f:S ×S→S 称为 S 上的二元运算.这时也称 S 对 f 是封闭的. 一元运算 设 S 为集合,函数 f:S→S 称为 S 上的一元运算.这时也称 S 对 f 是封闭的. 二元与一元运算的算符 ,倡,· ,◇,Δ等 二元与一元运算的表示法 表达式或者运算表 2.二元运算的性质 (1) 涉及一个二元运算的算律
定理 9.3 如果 |S |>1,则单位元不等于零元. 定理 9.4 对于可结合的二元运算,可逆元素 x 只有惟一的逆元 x -1 .
3.代数系统
代数系统 非空集合 S 与 S 上的 k 个一元或二元运算 f1 ,f2 ,…,fk 组成的系统,记作 <S,f1 ,
f2 ,…,fk >. 同类型的代数系统与同种的代数系统
称 V =<A ×B,· 重要结果:
<a1 ,b1 >· <a2 ,b2 >=<a1 a2 ,b1 倡b2 > >为 V1 与 V2 的积代数,记作 V1 ×V2 .这时也称 V1 和 V2 为 V 的因子代数.
任何代数系统 V 都存在子代数,V 是 V 的平凡子代数.
V 的子代数与 V 不仅是同类型的,也是同种的.
9.2 基 本 要 求
1.会判断给定函数 f 是否为集合 S 上的二元或一元运算. 2.会判断或者证明二元运算的性质.
第九章 代 数 系 统
177
3.会求二元运算的特异元素. 4.掌握子代数的概念. 5.掌握积代数的定义及其性质 6.能够判断函数是否为同态并分析同态的性质.
9.3 习 题 课
本章的习题主要有以下题型. 题型一 判断运算是否封闭( 集合与运算是否构成代数系统) ,并对封闭的运算确定其性质 及特异元素
1二元运算基本概念和性质(离散数学)
有
有
无
有
有
无
有
有
无
无
有
无
有
有
有
有Hale Waihona Puke 有有无无
无
有
有
无
无
有
无
17
二元运算的性质(续)
定义 设 ∘ 和 ∗ 为 S 上两个不同的二元运算, (1) 如果 x, y, z∈S 有 (x ∗ y) ∘ z = (x ∘ z) ∗ (y ∘ z) z ∘(x ∗ y) = (z ∘ x) ∗ (z ∘ y) 则称 ∘ 运算对 ∗ 运算满足分配律. (2) 如果∘ 和 ∗ 都可交换, 并且 x, y∈S 有 x ∘ (x ∗ y) = x x ∗ (x ∘ y) = x 则称 ∘ 和 ∗ 运算满足吸收律.
X ∼X {a,b} {a} {a} {b} {b} {a,b}
14
运算表的实例(续)
例5 Z5 = { 0, 1, 2, 3, 4 }, , 分别为模 5 加法 与乘法
的运算表
的运算表
01234
0 01234 1 12340 2 23401 3 34012 4 40123
24
消去律
定义 设∘为V上二元运算,如果 x, y, zV, 若 x ∘ y = x ∘ z,且 x不是零元,则 y = z 若 y ∘ x = z ∘ x, 且 x 不是零元,则 y = z
那么称 ∘ 运算满足 消去律.
实例: Z, Q, R 关于普通加法和乘法满足消去律. Mn(R) 关于矩阵加法满足消去律,但是关于矩阵 乘法不满足消去律.
18
二元运算的特异元素
单位元
定义 设∘为S上的二元运算, 如果存在el(或er)
离散数学第4章-二元关系
4.6 等价关系与划分
• 三 性质 • 定理4.13 设R是A上的等价关系,则 (1)对任一a∈A,有a∈[a]; (2)对a, b∈A,如果aRb,则[a]=[b]; (3)对a, b∈A,如果(a, b)∉R,则[a]∩[b]=∅; (4)∪a∈A[a]=A。
4.6 等价关系与划分
• 定理4.14 集合A上的任一划分可以确定A上 的一个等价关系R。 • 定理4.15 设R1和R2是A上的等价关系, R1=R2⇔ A/R1=A/R2 。 • 定理4.16 设R1和R2是A上的等价关系,则 R1∩R2是A上的等价关系。
4 .3 关系的运算
• 一 逆运算 • 定义4.7(逆关系) 设R是从A到B的二元关系, 则从B到A的二元关系记为R-1,定义为R-1 ={(b,a)|(a,b)∈R},称为R的逆关系。 • 定理2.1 (1)(R-1)-1=R; (2)(R1∪R2)-1= R1-1∪ R2-1; (3)(R1∩R2)-1= R1-1 ∩R2-1; (4) (A×B)-1= B×A;
4 .5 关系的闭包
•
• (1) (2) (3) • (1) (2) (3)
二 基本性质
定理4.5 设R是A上的二元关系,则 R是自反的 ⇔ r( R )=R; R是对称的 ⇔ s( R )=R; R是传递的 ⇔ t( R )=R; 定理4.6 设R1和R2是A上的二元关系,若R1⊆R2则 r(R1)⊆ r(R2); s(R1)⊆ s(R2); t(R1)⊆ t(R2)。
第四章 关系
4.1 二元关系 4.2 关系的性质 4 .3 关系的运算 4 .5 关系的闭包 4.6 等价关系与划分
4.1 二元关系
• 一 定义4.1(二元关系)
设A和B是任意两个集合,A×B的子集R称为从A到 B的二元关系。当A=B时,称R为A上的二元关系。若 (a, b)∈R,则称a与b有关系R,记为aRb。 (a, b)∉R:a与b没有关系R R=∅:空关系 R=A×B:全关系
离散数学二元关系习题讲解
极 大 元
极 小 元
作业
2.设集合X={x1,x2,x3,x4,x5}上的偏序关系如下图所示 最 最 极 极 上 下 ,求X的最大元、最小元、极大元、极小元。求子 集 上 下 大 小 大 小 确 确 集X1={x2,x3,x4},X合 ={x ,x ,x } , X ={x ,x ,x } 的上 界 界 2 3 4 5 3 1 3 5 元 元 元 元 界 界 界、下界、上确界、下确界、最大元、最小元、极 大元和极小元。 X1 无 x4 x2, x4 x1 x x1 x4
3
偏序关系
1.设集合A={a,b,c,d,e,f,g,h},对应的哈斯图见下图令 B1={a,b},B2={c,d,e}。求出B1,B2的最大元、最小 元、极大元、极小元、上界、下界、上确界、下确 界。 h
f d
c a
4
g e
集 合 B1
最 大 元 无
最 小 元 无
b
B2
无
c
上 下 下 上界 确 确 界 界 界 c,d,e,f a,b a,b ,g,h 无 c 无 a, b, h c d,e c h c
x1
x3 x3 x1 x1
4ቤተ መጻሕፍቲ ባይዱ
X2
x2 x3
x3 x1 x1
无 x5 无
X3
x5 X
x4, x3, 无 x3 x5 x1 x x5 x1 x1
5
无 x5
x4
5
x4, x5
二元关系
二元关系基本概念(重点) 关系的运算 关系的性质(重点) 关系的闭包运算 等价关系与偏序关系(难点)
关系的性质
例5 判断下述关系所具备的性质。
(1)集合A上的恒等关系,全域关系。 (2)R1={<x,y>|x≤y, x,y∈N}注:将≤改为<? (3)R2={<x,y>|x|y,x,y∈N-{0}} (4)R3={<S1,S2>|S1S2,S1,S2∈P(S)}其中P(S)是 S的幂集。注:若改为? (5)R4={<x,y>|x+y=偶数,x,y∈N}
离散数学 代数系统(1)
例10.1.7 设R为实数集, 为集合R上的二元运算,对任意
的a,b∈R,a b=a+2b,问这个运算满足交换律、结合律 吗?
解 因为2 3=2+2×3=8,而3 2=3+2×2=7,23≠3 2,故
该运算不满足交换律。
又=2因+2为×((23 +32)× 44)=(=223+,2×(32) 3+)2 ×44≠=216 (,3而 42) (,3 故4)该运
运算在A上满足结合律。
例10.1.6 设A为非空集合, 为集合A上的二元运算,对任意 的a,b∈A,ab=a,证明 是可结合的。
证明 因为对于任意的a,b,c∈A,
(a b) c=a c=a,而a (b c)= a b=a, 所以有(a b)c= a (b c),因此运算是可结合的。
10.1 二元运算及其性质
b∈Z,a b =2a+b,问运算是否可交换?
解:因为
a b=2a+b=2 b +a=b a,
所以是可交换的。
10.1 二元运算及其性质
10.1.2 二元运算的性质
定 都有义(10x.1 .4y)设 z=为x集 (合y Az)上,的则二称元该运二算元,运若算对是任可意结x,合y的,,z∈也A称,
有零元;对于乘法运算来说,1是单位元,0是零元。
例 设有一个由有限个字母组成的集合X,叫字母表,在X 上构造任意长的字母串,叫做X上的句子或字,串中字母 的个数叫做这个串的长度,且当一个串的长度n=0时用符 号∧表示,称作空串。这样构造出了一个在X上的所有串 的集合X*。
10.1 二元运算及其性质
10.2 代数系统
例 设代数系统(A,*),其中A={x,y,z},*是A上的 一个二元运算。对于表10.2-1中所确定的几个运算,试分 别讨论它们的交换性、等幂性,并且讨论在A中关于*是 否有零元及单位元,如果有单位元,那么A中的元素是否 有逆元。
二元关系的n次方
二元关系的n次方1.引言1.1 概述概述二元关系是离散数学中的重要概念之一。
它描述了两个元素之间的某种关系或联系。
在数学领域,二元关系的定义和性质一直以来都是学习和研究的重点。
在本文中,我们将讨论二元关系的幂运算,也就是二元关系的n次方。
二元关系的幂运算是指将一个关系连续地作用于自身多次。
这类似于数学中的指数运算,我们通过将一个数连续乘以自身,来得到这个数的幂。
同样地,通过对二元关系进行幂运算,我们可以得到关系的n次方。
在本文的后续部分,我们将探讨二元关系的幂运算及其性质。
我们将介绍如何定义二元关系的幂运算,并研究它的一些基本性质。
通过深入研究这些性质,我们可以更好地理解二元关系的幂运算的意义和应用。
通过对二元关系的n次方的研究,我们可以发现一些有趣的结果和应用。
例如,对于某些特定的二元关系,它的n次方可能具有特殊的性质或者应用价值。
我们将在结论部分探讨这些应用,并给出一些具体的例子。
总之,本文将全面介绍二元关系的幂运算,包括定义、性质和应用。
通过对这一概念的研究,我们可以深入理解二元关系的内在特性,拓展我们的数学思维,并在实际问题中应用这些知识。
接下来,让我们开始探索二元关系的幂运算及其鲜为人知的奥秘吧!1.2文章结构1.2 文章结构本文将按照以下结构进行讨论二元关系的n次方:第一部分,引言。
在此部分中,我们将对本文的主题进行概述,并介绍文章的结构和目的。
第二部分,正文。
这一部分将包括两个小节:2.1 二元关系的定义和性质。
我们将首先介绍二元关系的基本定义,包括其在集合论中的形式化表示以及常见的关系类型。
然后,我们将探讨二元关系的一些基本性质,如自反性、对称性、传递性等,以及它们之间的相互关系。
2.2 二元关系的幂运算及其性质。
在这一小节中,我们将引入二元关系的幂运算的概念,并详细讨论其定义和性质。
我们将探讨幂运算在关系合成中的作用,以及幂运算的几个重要性质,如结合律、幂次零的特殊性质等。
第三部分,结论。
《离散数学》第5章 代数系统简介
在 M n (R) 上,对于矩阵乘法只有可逆矩阵 M M n (R) 存在逆元
M 1 , M M 1 E 和 M 1 M E 成立, 使得 其中 E 为 n 阶 单位矩阵.
9、设 为 S 上的二元运算,如果对任意的 x, y, z S 满足以下条件 (1)若 x y x z 且 x 不是零元,则 y z , (2)若 y x z x 且 x 不是零元,则 y z , 就称运算 满足消去律
例如: 在幂集 P ( S ) 上的 和 是满足吸收律的.
若 算“”满足左分配律; b c a b a c a , 则运算“ ”对运算“ ”满足右分配律.若左右分配律 均满足, 称运算“ ”对运算“ ”满足分配律. 则
5、 设 是 A 上的二元运算,若存在 a A ,有
1、若 a b b a ,则称运算“ ”在A上是可换的 ,或 者说运算“ ”满足交换律.
例如:在实数集R上,通常的加法和乘法都满足交换律,但减法 和除法不满足交换律.因为2和4都是实数.因为2-4≠4-2.在幂集 P(S)上 , , 都满足交换律,但相对补不满足交换律.
2、若a b c a b c,则称运算“*”在A上是可结合 的.或称“*”满足结合律.
这些相当于前缀表示法,但对二元运算用得较多的还是 a1 a2 b .我们在本书中所涉及的代数运算仅限于一元. 和二元运算.
如果集合S是有穷集,S上的一元和二元运算也可以用 运算表给出.表5―1和表5-2是一元和二元运算表的一 般形式.
表5-1
表5-1
例2、(2) 设 S 0,1, 2,3, 4 ,定义 S 上的两个 二元运算如下:
离散数学ch10[1]二元运算
几类实际问题
项链问题
例(分子结构的计数问题):在一个苯环上结合H原子或 CH3原子团,问可能形成多少种不同的化合物?
如果假定苯环上相邻C原子 之间的键都是互相等价的, 则此问题就是两种颜色6颗 珠子的项链问题。
几类实际问题
数字通信的可靠性问题
例:简单检错码——奇偶性检错码 用6位二进制码来表示26个英文字母; 其中前5位顺序表示字母; 第6位作检错用,码中1的个数始终是偶数个。
二元运算
二元运算
例: f:R×R→R,f(<x,y>)=x+y就是实数R上的二元运算, 实数集合R,实数集合R上的加法、减法和乘法,都是二元运算 S为任意集合,则,,~等为S的幂集上的二元运算 S为任意集合,SS是S上所有函数的集合, 则合成运算º S上的二元运算 是S 自然数集合上的减法运算是不是二元运算?
零元
例: 定义集合A={a,b,c}上的二元运算º 如下:
。 a b c
a a a a
b b b b
c b c a
则左么元: b 左零元: 无
右么元: 右零元:
无 a b
不满足交换律 也不满足结合律
逆元
逆元
设 * 是集合 X 中 xX 的二元运算,并且集合 X 中有 幺元 e,再设任意的元素 xX (1)如果有一个元素 xl,能使 xl*x=e, 则称xl是 x 的左逆元; 同时,称 x 是左可逆的。 (2)如果有一个元素 xr,能使 x*xr=e, 则称xr是 x 的右逆元; 则称 x 是可逆的。 注: 逆元具有唯一性 同时,称 x 是右可逆的。 (3)如果元素 x 既是左可逆的, 同时又是右可逆的,
c的右逆元: 无 左逆元:
a
二元运算的性质:吸收律
离散数学二元运算及其性质
二元运算及其性质
一、二元运算的定义与实例
1.二元运算的定义 定义10.1 设S为集合,函数f:S×S→S称为S上的二元运 算, 简称为二元运算. 复习函数的定义: 例如,f:N×N→N, f(<x,y>)=x+y就是N上的二元运算, 即普通的加法运算, 但普通减法运算不是N上的二元运算。 注:验证一个运算是否为集合S上的二元运算主要考虑 两点:(1)S中任何两个元素都可以进行这种运算,且运算 的结果是唯一的。(2)S中任何两个元素的运算结果都属于 S,即S对该运算是封闭的。
20
17
2.代数系统的表示 (a)列出所有的成分:集合、运算、代数常数(如果存 在) 如<Z,+,0>, <P(S),∪,∩> (b)列出集合和运算,在规定系统性质时不涉及具有单 位元的性质(无代数常数) 如<Z,+>, <P(S),∪,∩> (c)用集合名称简单标记代数系统 在前面已经对代数系统作了说明的前提下使用如代数 系统Z, P(B)
(2)一元运算的表示 (a)公式表示 例5 设A={1/2,1,2},定义A上的一元运算◦: ∀ x,y∈R, ◦x=1/x. (b)运算表 设S={a1,a2,…,an}, 则S上一元运算可以用如下运算表 表示:
6
例6 设A=P({a,b}),∼ 为绝对补运算({a,b}为全集). 则∼ 的运算表为:
14
定理10.2 设◦为S上可结合的二元运算, e为该运算的 单位元, 对于x∈S,如果存在左逆元yl 和右逆元yr, 则有 yl = yr= y, 且y是x的惟一的逆元. 证:由 yl◦x = e 和 x◦yr = e 得 yl = yl◦e = yl◦ (x◦yr) = (yl◦x) ◦yr = e◦yr = yr 令yl = yr = y,则y 是x 的逆元. 假若y′∈S 也是x 的逆元,则 y′= y′◦e = y′◦ (x◦y) = (y′◦x) ◦y = e◦y = y 所以y 是x 惟一的逆元. 注: 对于可结合的二元运算, 可逆元素 x 只有惟一的逆元, −1 记作 x .
离散数学课件第四章二元关系习题
闭包的定义基于关系的传递 性,即如果关系R满足传递性, 那么对于任何元素x,如果存 在元素y和z,使得xRy和yRz, 那么一定存在一个元素z',使 得xRz'。闭包就是由给定关系 和所有满足闭包定义的新元 素构成的关系集合。
闭包具有一些重要的性质, 这些性质决定了闭包在数学 和计算机科学中的广泛应用 。
同余关系的应用
应用1
在密码学中,同余关系可用于生成加 密密钥。例如,通过选择两个同余的 数作为密钥,可以确保加密和解密操 作的一致性。
应用2
在计算机科学中,同余关系可用于实 现数据校验。例如,通过将数据与一 个已知的校验值进行同余运算,可以 检测数据是否在传输过程中被篡改。
THANKS
感谢观看
反对称性
如果对于关系中的每一对 元素,如果元素x与元素y 有关系,且元素y与元素x 也有关系,但元素x与元 素y的关系不等于元素y与 元素x的关系,则称该关 系具有反对称性。
习题解析
习题1
判断给定的关系是否具有自反性、反自反性、对称性和反对称性。通过举例和推理,分析 给定的关系是否满足这些性质。
习题2
表示方法
总结词
掌握二元关系的表示方法是解题的关键。
详细描述
在数学中,我们通常使用笛卡尔积来表示二元关系。例如,如果A和B是两个集合, 那么A和B的笛卡尔积可以表示为A×B,它包含了所有形如(a, b)的元素,其中a属于 A,b属于B。
习题解析
总结词
通过解析具体习题,可以加深对二元关系定义和表示方法的理解。
有着广泛的应用。
05
习题五:关系的同余
同余关系的定义与性质
定义
反身性
对称性
传递性
如果对于任意元素$x$, 都有$f(x) = g(x)$,则 称$f$和$g$是同余的。
离散数学 代数系统
二元运算的性质
定义5.7 设°和∗为S上两个可交换的二元运算, 定义5.7 上两个可交换的二元运算, 上两个可交换的二元运算 如果对于任意的x,y∈ , 如果对于任意的 ∈S,都有 x∗(x°y)=x ∗ ° = x°(x∗y)=x ° ∗ = 则称运算° 满足吸收律 吸收律。 则称运算°和∗满足吸收律。
说 明
不是自然数集合N 不是自然数集合N上的二元运算
验证一个运算是否为集合S上的二元运算主要考虑两点: 验证一个运算是否为集合S上的二元运算主要考虑两点: 不封闭。 对减法不封闭 称N对减法不封闭。 中任何两个元素都可以进行这种运算, S中任何两个元素都可以进行这种运算,且运算的结果 是唯一的。 是唯一的。 中任何两个元素的运算结果都属于S S中任何两个元素的运算结果都属于S,即S对该运算是 封闭的。 封闭的。
ai ∅ {1} {2} {1,2}
~ ai {1,2} {2} {1} ∅
{2} {1,2}
{1,2} {1,2} {2}
例5.5
上的二元运算° 例5.5 设S={1,2,3,4},定义 上的二元运算°如下 ,定义S上的二元运算 x ° y=(xy) mod 5, ∀x,y∈S = , , ∈S
离散数学
第5章 代数系统
本章说明 本章的主要内容
–一元和二元运算定义及其实例 一元和二元运算定义及其实例 –二元运算的性质 二元运算的性质 –代数系统定义及其实例 代数系统定义及其实例 –子代数 子代数
与后面各章的关系
–是后面典型代数系统的基础 是后面典型代数系统的基础
本章内容
5.1 二元运算及其性质 5.2 代数系统 本章小结 作 业
二元与一元运算的算符
可以用° 可以用°、∗、·、⊕、⊗、∆等符号表示二元或一 、 元运算,称为算符 算符。 元运算,称为算符。
离散数学中的二元关系
离散数学中的二元关系1 什么是二元关系二元关系是离散数学里面一个重要的概念,指的是两个可以分别属于两个集合A和B的元素之间的关系。
它是一种特殊的集合论概念,意味着在某一个函数f上,两个元素之间存在着一种单一的关系,这种关系被称之为二元关系。
这种二元关系可以用写成集合的形式也可以是表的形式。
2 二元关系表的一般形式一般的二元关系表的形式为:$f=\left\{\left(x,y\right)\inA\times B \mid P(x,y)\right\}$其中,A和B都是集合,P(x,y)是关于它们的关系式,学习中会有各种关系式,比如等于、不等于、大于及小于等。
3 二元关系的类型由于不同的二元关系关系式不同,所以,二元关系也可以分为多种类型。
常见的有:(1)等价关系:表示两个可以互换的元素之间的关系,一般以“=”表示,也可以一一对应;(2)全序关系:表示两个元素之间的一种“前大于后”的关系,一般以“>”或“<”表示,可以用来描述一种有序的类型;(3)传递关系:这种关系意味着“当关系式成立时,如果保持原有的条件不变,则关系式仍然成立”,这种关系一般以“++”表示;(4)偏序关系:和全序关系类似,也是一种前大于后的一种关系,但不代表完全的大小,只是一种大体的参照,一般以“>+”及“<+”表示;(5)子集关系:子集关系是一个集合是某个集合的子集,一般以“⊆”表示;(6)关联关系:此关系也称为满足关系,是指满足一定的关系式,两个或多个元素有直接或间接的关系,一般以“→”表示。
4 二元关系的应用二元关系是离散数学中很重要的概念,与它特殊的表达方式有着密切的联系。
在数学运算中,二元关系常常被用来表示集合之间的关系、排列组合以及概率等,还应用于计算机科学中的图论。
此外,在社会学、心理学等学科中,二元关系也被广泛应用,它有助于理解彼此之间的关系、区分概念及表达媒体变化等。
离散数学第四章二元关系和函数
例题
• 例题4.8:下列关系都是整数集Z上的关系,分别求出它们的 定义域和值域.
– R1={<x,y>|x,yZxy}; – R2={<x,y>|x,yZx2+y2=1};
• domR1=ranR1=Z. R={<0,1>,<0,-1>,<1,0>,<-1,0>} domR2=ramR2={0,1,-1}
IA={<0,0>,<1,1>,<2,2>}
关系实例
• 设A为实数集R的某个子集,则A上的小于等于关系定义为 LA={<x,y>|x,yA,xy}.
• 例4.4 设A={a,b},R是P(A)上的包含关系, R={<x,y>|x,yP(A),xy}, 则有 P(A)={,{a},{b},A}. R={<, >,<,{a}>,<,{b}>,<,A>, <{a},{a}>,<{a},A>,<{b},{b}>,<{b},A>,<A,A>}.
– 例如:A={a,b},B={0,1,2},则 AxB={<a,0>,<a,1>,<a,2>,<b,0>,<b,1>,<b,2>}; BxA={<0,a>,<0,b>,<1,a>,<1,b>,<2,a>,<2,b>}.
– 如果A中的元素为m个元素,B中的元素为n个元素, 则AxB和BxA中有mn个元素.
0100 1010 . 0001 0000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题分析
例6 设 ∘ 运算为 Q 上的二元运算, x, yQ, x∘y = x+y+2xy,
(1) ∘运算是否满足交换和结合律? 说明理由. (2) 求 ∘ 运算的单位元、零元和所有可逆元.
解 (1) ∘ 运算可交换,可结合. 任取x, yQ, x ∘ y = x+y+2xy = y+x+2yx = y ∘ x,
矩阵 B 无
yl ∘ x = e
逆元 X 的逆元 x X 的逆元 x1 (x-1属于给定集合)
X逆元X X的逆元 X1 (X是可逆矩阵) 的逆元为 B 的逆元为 B X 的逆元为 X
22
惟一分别为 S
中关于运算的左和右单位元,则 el = er = e 为 S 上关于 ∘ 运算的惟一的单位元.
有
有
无
有
有
无
有
有
无
无
有
无
有
有
有
有
有
有
无
无
无
有
有
无
无
有
无
17
二元运算的性质(续)
定义 设 ∘ 和 ∗ 为 S 上两个不同的二元运算, (1) 如果 x, y, z∈S 有 (x ∗ y) ∘ z = (x ∘ z) ∗ (y ∘ z) z ∘(x ∗ y) = (z ∘ x) ∗ (z ∘ y) 则称 ∘ 运算对 ∗ 运算满足分配律. (2) 如果∘ 和 ∗ 都可交换, 并且 x, y∈S 有 x ∘ (x ∗ y) = x x ∗ (x ∘ y) = x 则称 ∘ 和 ∗ 运算满足吸收律.
∘ai
a1 ∘a1 a2 ∘a2 .. .. .. an ∘an
13
运算表的实例
例4 A = P({a, b}), , ∼分别为对称差和绝对补运算
({a,b}为全集)
的运算表
∼ 的运算表
{a} {b} {a,b}
{a} {b} {a,b} {a} {a} {a.b} {b} {b} {b} {a,b} {a} {a,b} {a,b} {b} {a}
给定 x,设 x 的逆元为 y, 则有 x ∘ y = 0 成立,即
因此当
x+y+2xy = 0 x 1/2时,
y
y
x
1
x 2x
是
x
(x = 1/2) 的逆元.
1 2x
27
例题分析(续)
例7 (1) 说明那些运算是交换的、可结合的、幂等的. (2) 求出运算的单位元、零元、所有可逆元素的逆元.
• 70年代在数据库研究中人们发现关系代数理论能够 作为数据库的理论模型;
• 泛代数和多类代数是程序设计方法学研究中的有力 工具;
• 抽象数据类型代数规范理论和技术广泛应用于计算 机软件形式说明和开发以及硬件体系结构设计。
3/55
11.1 代数运算的基本概念
1.二元运算定义及其实例 一元运算定义及其实例
24
消去律
定义 设∘为V上二元运算,如果 x, y, zV, 若 x ∘ y = x ∘ z,且 x不是零元,则 y = z 若 y ∘ x = z ∘ x, 且 x 不是零元,则 y = z
那么称 ∘ 运算满足 消去律.
实例: Z, Q, R 关于普通加法和乘法满足消去律. Mn(R) 关于矩阵加法满足消去律,但是关于矩阵 乘法不满足消去律.
1、集合A中任意两个元素可以进行该运算; 2、运算的结果仍然属于集合A
7/55
闭运算的例子
例1 (1) N 上的二元运算:加法、乘法. (2) Z 上的二元运算:加法、减法、乘法. (3) 非零实数集 R* 上的二元运算: 乘法、除法. (4) 设 S = { a1, a2, … , an}, ai ∘aj = ai , ∘为 S 上二 元运算.
X ∼X {a,b} {a} {a} {b} {b} {a,b}
14
运算表的实例(续)
例5 Z5 = { 0, 1, 2, 3, 4 }, , 分别为模 5 加法 与乘法
的运算表
的运算表
01234
0 01234 1 12340 2 23401 3 34012 4 40123
证
el = el ∘ er = el ∘ er = er
所以 el = er , 将这个单位元记作 e. 假设 e’ 也是 S
中的单位元,则有
e’ = e ∘ e’ = e.
惟一性得证.
类似地可以证明关于零元的惟一性定理.
注意:当 |S| 2,单位元与零元是不同的;
当 |S| = 1 时,这个元素既是单位元也是零元. 23
(2) 非零有理数集 Q*,非零实数集 R*上的一元 运算: 求倒数
(3) 复数集合 C 上的一元运算: 求共轭复数 (4) 幂集 P(S) 上, 全集为 S: 求绝对补运算~ (5) A 为 S 上所有双射函数的集合,ASS: 求反
函数 (6) 在 Mn(R) ( n≥2 )上,求转置矩阵
10
二元与一元运算的表示
令 yl = yr = y, 则 y 是 x 的逆元. 假若 y’∈S 也是 x 的逆元, 则
y'= y’ ∘ e = y’ ∘(x ∘ y) = (y’ ∘ x) ∘ y = e ∘ y = y
所以 y 是 x 惟一的逆元. 说明:对于可结合的二元运算,可逆元素 x 只有 惟一的逆元,记作 x1.
8/55
(5) 设 Mn(R) 表示所有 n 阶 (n≥2) 实矩阵的集 合,即
二元运算的实例(续) Mn(R)
a11
a21
an1
a12 a22
an2
a1n
a2n
ann
aij R, i, j 1,2,...,n
惟一性定理(续)
定理 设 ∘为 S 上可结合的二元运算, e 为该运算
的单位元, 对于 x∈S 如果存在左逆元 yl 和右逆元 yr , 则有 yl = yr= y, 且 y 是 x 的惟一的逆元.
证 由 yl ∘ x = e 和 x ∘ yr = e 得 yl = yl ∘ e = yl ∘(x ∘ yr) = (yl ∘ x) ∘ yr = e ∘ yr = yr
20
二元运算的特异元素(续)
可逆元素及其逆元
令 e 为 S 中关于运算∘的单位元. 对于 x∈S,如
果存在yl(或 yr)∈S 使得
yl ∘ x = e(或 x ∘ yr = e),
则称 yl ( 或 yr )是 x 的 左逆元 ( 或右逆元 ).
关于 ∘运算,若 y∈S 既是 x 的左逆元又是 x 的
18
二元运算的特异元素
单位元
定义 设∘为S上的二元运算, 如果存在el(或er)
S,使得对任意 x∈S 都有
el ∘ x = x ( 或 x ∘ er = x ), 则称 el ( 或 er )是 S 中关于 ∘ 运算的 左 ( 或右 )
单位元.
若 e∈S 关于 ∘ 运算既是左单位元又是右单位 元,则称 e 为 S 上关于 ∘ 运算的 单位元.
16
实例分析
Z, Q, R分别为整数、有理数、实数集;Mn(R)为 n 阶实 矩阵集合, n2;P(B)为幂集;AA 为 A上A,|A|2.
集合 Z, Q, R Mn(R)
P(B)
AA
运算 普通加法+ 普通乘法 矩阵加法+ 矩阵乘法
并 交 相对补 对称差 函数符合
交换律 结合律 幂等律
(2) 设∘运算的单位元和零元分别为 e 和 ,则对于 任意 x 有 x∘e = x 成立,即 x+e+2xe = x e = 0 由于 ∘ 运算可交换,所以 0 是幺元.
对于任意 x 有 x ∘ = 成立,即 x++2 x = x + 2 x = 0 = 1/2
* ((a,b))=d 记之为
a*b =d
5/55
集合A上的代数运算
定义2 设A,B是两个非空集合。 若* 是A×A到B的一个运算, 则称 * 是集合A上的一个代数运算或二 元运算。
6/55
闭运算
设 * 是A×A到B的一个运算, 若B⊆A, 说*是集合A上的闭运算。 也说集合A对运算 * 是封闭的。
abc
a cab b abc c bca
∘ abc
a aaa b bbb c ccc
矩阵加法和乘法都是 Mn(R) 上的二元运算. (6) 幂集 P(S) 上的二元运算:∪,∩,-, .
(7) SS 为 S 上的所有函数的集合:合成运算∘.
9
一元运算的定义与实例(补)
定义 设 S 为集合,函数 f:S→S 称为 S 上的一 元运算,简称为一元运算. 例2 (1) Z, Q 和 R 上的一元运算: 求相反数
分析学 数学中沟通形与数且涉及极限运算的部分
代数学 数学中研究数的部分
几何学 数学中研究形的部分
这三大类数学构成了整个数学的本体与核心。 在这一核心的周围,由于数学通过数与形这两 个概念,与其它科学互相渗透,而出现了许多 边缘学科和交叉学科。
1/55
代数学
算术 初等代数——实数有理数无理数、加减乘除 高等代数——矢量矩阵、线性变换 数论 抽象代数——抽象元素、代数运算
任取x, y, zQ, (x ∘ y) ∘ z= (x+y+2xy) + z + 2(x+y+2xy) z
= x+y+z+2xy+2xz+2yz+4xyz x ∘ (y ∘ z) = x + (y+z+2yz) + 2x(y+z+2yz