三维可视化基础
地下基础设施的三维可视化管理系统研究
地下基础设施的三维可视化管理系统研究董乾坤;王国婕【摘要】地下管网由纵横交错的给水、排水、燃气、热力、工业管线等组成,它们是一个地区基础设施的重要组成部分,被称为城市的“生命线”.该系统采用C#面向对象编程技术、ArcSDE空间数据库管理技术、Skyline三维地理信息系统软件平台提供的三维可视化显示技术,针对网络分析的几何网络模型等,综合管线的管理提供一种二维、三维交互式操作体验,将隐匿于地下的综合管线清晰、直观地呈现在用户眼前,提高地下综合管线的管理与分析、营区规划的效率,便于领导层的分析与决策.【期刊名称】《安徽农业科学》【年(卷),期】2013(000)031【总页数】3页(P12509-12510,12520)【关键词】管网三维模型;三维仿真;Skyline;二、三维交互【作者】董乾坤;王国婕【作者单位】陕西省地矿局测绘队,陕西西安710054;西安科技大学测绘科学与技术学院,陕西西安710054;陕西省地矿局测绘队,陕西西安710054;西安科技大学测绘科学与技术学院,陕西西安710054【正文语种】中文【中图分类】S126地下综合管线是一项重要基础设施,是地下空间规划、开发、利用的有机组成部分。
地下管线按对象可以分为给水、排水、电力、电信、燃气、工业、综合管沟等。
地下管线犹如人体的“神经”与“血管”,日夜担负城市信息传递、能量输送、废物排放等工作,是一个营区赖以生存的物质基础。
因此,需要建立满足实际情况、实际工作需求的地下综合管线管理系统,对各种地下管线进行科学的、规范的管理,以保障“生命线”持续、健康、长久的发展。
地下管线管理系统是在计算机软硬件、数据库和网络等条件的支持下,利用GIS技术实现对地下管线及其附属设施的空间和属性信息进行输入、编辑、存储、查询、统计、分析、更新和输出的计算机管理系统。
GIS技术的出现,特别是三维地理信息系统的广泛应用领域,给地下综合管线的管理工作打开了一个新的局面。
三维可视化系统
1.三维可视化的目标与主要研究内容可视化(Visualization)技术是利用计算机图形学和图像处理技术,将数据转换成图形或图像在屏幕上显示出来,并进行交互处理的理论、方法和技术。
它涉及到计算机图形学、图像处理、计算机视觉、计算机辅助设计等多个领域,成为研究数据表示、数据处理、决策分析等一系列问题的综合技术。
在之前的十几年中,计算机图形学得到了长足的发展,使得三维建模技术逐步完善,通过计算机仿真能够再现三维世界中的物体,并且能够用三维形体来表示复杂的信息;同时,最近几年来并行计算技术与图形加速硬件的快速崛起,使得可视化技术也得到了质的飞跃。
一般讲的可视化,包括科学计算可视化和信息可视化。
前者大量运用在医学、地理、物理等领域(空间数据),比如虚拟样机系统对数字样机部件运行时的实时演示图像生成,就可以归为科学计算可视化的一种;后者则主要是信息系统、商业金融、网络等领域(非空间数据,或者多维数据)。
在我们的基于超算的三维可视化子系统中,所涉及的基本为科学计算可视化的范畴。
在我们基于超算的数字样机应用中,实际的物理模型是由样机来产生激光,并使激光在一个具有各种物理参数的场中的特定位置处聚焦。
因此,可视化模块就能将样机的虚拟模型、靶场物理属性的动态变化、激光打靶的动态仿真数据以即时动画的方式显示,使用户能够实时地观测到样机产生激光时的温度、动能的变化情况,也能即时看到激光在靶场中的射击效果以便调整激光喷射头的位置和角度。
此外,激光对环境介质的影响以及激光的的一些破坏性效果,也能通过精良的可视化技术来渲染这些基于物理及仿真数据的模型,使用户看到具有相当真实感的激光物理效果。
2.三维可视化技术相关领域国内外技术现状、发展趋势及国内现有工作基础2.1国际标准中图形软件到硬件的接口相关领域的研究者对三维可视化技术的研究已经历了一个很长的历程,而且形成了许多比较实用的可视化工具。
由于可视化需要图形应用程序与图形硬件驱动程序的数据交互,因此首先要考虑的是这两者之间的中间件,即用户需要一个向底层的驱动程序发送指令、回馈数据的中介,然后用户和中介之间的交互只需使用简单的API来定义各种相关参数。
arcgis三维可视化步骤
arcgis三维可视化步骤摘要:1.ArcGIS 三维可视化的基本概念2.ArcGIS 三维可视化的步骤3.ArcGIS 三维可视化的应用案例正文:一、ArcGIS 三维可视化的基本概念ArcGIS 是一款功能强大的地理信息系统软件,其三维可视化功能可以有效地将地理信息以立体图形的方式展示出来,使得用户可以直观地理解和分析地理数据。
在ArcGIS 中,三维可视化涉及到许多要素,包括地形、建筑物、道路等,这些要素可以根据用户的需求进行实时调整和优化。
二、ArcGIS 三维可视化的步骤1.准备数据:在进行ArcGIS 三维可视化之前,需要先准备好相应的地理数据,包括地形数据、建筑物数据、道路数据等。
这些数据可以从网上获取,也可以通过实地测绘获得。
2.创建三维场景:在ArcGIS 中,创建三维场景是实现三维可视化的基础。
用户可以根据需求创建一个新的三维场景,也可以使用已有的三维场景进行修改和优化。
3.添加三维要素:在创建好三维场景后,用户可以将准备好的数据添加到场景中。
这一过程可以通过导入数据、复制数据、粘贴数据等方式完成。
4.设置三维视图:添加完三维要素后,用户需要设置三维视图,以便更好地观察和分析数据。
在ArcGIS 中,用户可以设置视图的方向、高度、角度等参数,还可以通过添加灯光、阴影等效果来增强场景的真实感。
5.进行三维分析:在设置好三维视图后,用户可以进行三维分析,包括地形分析、空间分析等。
这些分析可以帮助用户更好地理解地理数据,并为决策提供支持。
三、ArcGIS 三维可视化的应用案例ArcGIS 三维可视化在许多领域都有广泛应用,包括城市规划、环境保护、资源管理等。
例如,在城市规划中,通过ArcGIS 三维可视化,可以直观地展示城市的地形、建筑物、道路等要素,帮助规划师更好地进行规划设计。
在环境保护中,通过ArcGIS 三维可视化,可以展示环境污染的分布情况,帮助环保部门更好地进行污染治理。
三维可视化技术在基建维修中的应用研究
三维可视化技术在基建维修中的应用研究在基础设施维修中,三维可视化技术被广泛应用于项目设计、施工过程监控、故障排查和维修计划优化等方面。
本文将讨论该技术的应用研究,并分析其在基础设施维修中的优势和挑战。
1. 项目设计:三维可视化技术可以帮助工程师和设计师更好地理解和分析项目需求,并提供高质量的设计方案。
通过将基础设施的各个组成部分以三维模型的形式表达,设计师可以更好地预测和解决潜在问题。
三维可视化技术还可以用于展示设计方案给客户和利益相关方,以便于他们更好地理解和评估设计方案。
2. 施工过程监控:三维可视化技术可以实时监控施工过程,提供高清晰度的图像和视频,帮助监督人员更好地了解工地的情况。
监督人员可以通过三维可视化技术实时查看施工进度、发现潜在问题,并及时采取措施进行调整。
三维可视化技术还可以在施工过程中进行模拟和演练,提前预测施工中可能出现的问题,以减少风险。
3. 故障排查:三维可视化技术可以帮助技术人员迅速定位和解决故障。
通过将基础设施的各个部件以三维模型的形式表达,技术人员可以更好地理解其内部结构和工作原理,从而更准确地判断故障原因,并采取相应的措施进行修复。
三维可视化技术还可以用于模拟测试故障的修复过程,以便于技术人员制定更有效的修复方案。
1. 提高效率:三维可视化技术可以通过图像和视频快速传递信息,减少沟通成本,提高工作效率。
技术人员和维修人员可以通过三维可视化技术迅速了解项目的情况,并根据情况采取相应的措施。
通过三维可视化技术,技术人员和维修人员可以在更短的时间内完成工作,减少了维修过程中的停工时间,提高了项目的整体效率。
2. 提高质量:三维可视化技术可以帮助设计师、监督人员和维修人员更好地理解项目需求和工作细节,从而提高项目的质量。
设计师可以通过三维可视化技术更准确地表达项目需求,避免设计错误。
监督人员可以通过三维可视化技术更准确地监控施工过程,发现问题,并及时采取措施进行调整。
维修人员可以通过三维可视化技术更准确地定位和解决故障,提高维修质量。
三维可视化开发流程
三维可视化开发流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!三维可视化开发流程一般包括以下几个步骤:1. 需求分析与客户或项目团队沟通,了解项目的目标、需求和预期效果。
简述三维可视化的基本原理和特点
简述三维可视化的基本原理和特点
三维可视化是一种使用三维图形来展示数据和模型的技术。
其基本原理是将数据或模型中的信息映射到三维空间中,并通过计算机图形学技术生成三维图像。
三维可视化的特点包括:
1. 直观性:三维可视化能够将复杂的数据或模型以直观的方式呈现出来,使人更容易理解。
2. 真实性:三维可视化能够准确地表达数据或模型中的信息,使得呈现的效果更为真实。
3. 交互性:三维可视化允许用户通过交互来探索数据和模型,例如旋转、缩放和平移等操作。
4. 可解释性:三维可视化可以提供更多的上下文信息,使得用户能够更好地理解数据和模型。
5. 可扩展性:三维可视化可以处理大规模的数据和模型,同时也可以应用于不同的领域和场景。
总的来说,三维可视化是一种强大而灵活的工具,可以帮助人们更好地理解和分析复杂的数据和模型。
AUTOCAD三维绘图基础知识
AUTOCAD三维绘图基础知识AUTOCAD三维绘图基础学问1、三维绘图的基本概念·平面XY平面是2D平面,用户只能在Z=0的XY平面上建立2D模型.·Z轴Z轴是3D坐标中的第三轴, Z轴总是垂直于XY平面. ·平面视图(plan view)当视线与Z轴平行时, 用户观看到的XY平面上的视图. ·标高(elevation):从XY平面沿Z测量的Z坐标值.可以用ELEV命令设置对象的标高和厚度。
·厚度(thickness)对象从标高开头往上或往下拉伸的距离.可以用系统变量thickness来设置对象的厚度.具有厚度的对象可以举行消隐, 着色和渲染处理. 建立新文本时,将忽视当前的厚度设置而将其设置为0,但其后可用DDMODIFY命令修改.2、建立容易的3D模型3、3D坐标与视点1) 3D空间中对象的位置用3D坐标来表示.3D坐标是在2D坐标的基础上添加Z轴而实现的.还可以用柱坐标(XY平面极坐标加Z轴坐标而成)或球坐标(用到原点的距离,XY平面从X轴开头的角度,与XY 平面的夹角)表示.2)观看3D模型在AUTOCAD中,用户可以使用系统本身提供的标准视图(鸟瞰图、仰望图、前视图、后视图、右视图、以及各种轴侧视图)观看图形,也可以用有关命令设置视点的位置,从而建立新的视图。
在建立了新的视图以后可以将其保存起来。
AutoCAD 2022提供了灵便的挑选视点的功能,Vpoint和DDVpoint命令是实现这一功能的两个不同的操作方式,下面分离举行介绍。
在模型空间里,可以从不同的视点(VPOINT)来观看图形.视点就是观看图形的方向.(1)设置视点·命令: DDVPOINT弹出视点预置对话框,可以设定XY平面从X轴开头的角度,与XY平面的夹角的值.缺省时,两个角度都相对于WCS,如要相对于UCS挑选相对于ucs.(2)使用三维动态观看器观看模型·命令: 3DORBIT显示出观看球,当光标在观看球中间时,可移动对象,当光标在观看球外边或在观看球上小圆中时,可以转动.(3)设置平面视图·命令: PLAN输入选项[当前UCS(C)/UCS(U)/世界(W)] :可以将当前视区设置为相应坐标系下的平面视图. 3)坐标系统AutoCAD提供了两种类型的坐标系,一个是固定的坐标系,叫做世界坐标系(WCS);另一个是由使用者自定义的,叫做用户坐标系(UCS)。
三维数据场可视化ppt课件
采样数据的预处理
• 生成致密的三角形表面网格来描述几何实体 的表面
• 通过插值得到三角形表面网格每个节点上的 数据
华塑软件研究中心
11
由二维轮廓线重构三维形体(1)
断层扫描数据广泛地存在于医学、生物、地学、环境等应用领域,是一种最简单的三维标量 场。如果各断层问是相互平行的,每一断层与实体的交线就是实体在该断层上的轮廓线,也就 是二维平面上一条封闭的无自交的等值线,如图所示.如原始数据是光栅图像形式,在每一断 层上轮廓线表现为由连续的两相临点间线段组成的一组简单封闭的直线线段,也就是一个封闭 多边形链。
非凸多边形
华塑软件研究中心
多轮廓线
什么是体渲染?
• 体是由三维空间的多个体元(voxel)的三维数组组成
• 组成形式同二维的图像相似,图像由像素组成 • 由CT得到的数据或者其他方式的标量数据场很容易用体表示 • 体元是体的基本组成元素 • 体元的数量太多,如比较小的体含有1283个体元
s(x(t)) : scalar value
c(s(x(t)): color; emitted light
a(s(x(t)): absorption coefficient
D
t
- a(s(x(t’)))dt’
C = c(s(x(t)) e 0
dt
0
华塑软件研究中心
18
光学模型(2)
21
光线投影法的改进
• 性能改进方法
• 使用层次八叉树的结构存储体元 • 完全透明的多个体元由一个体元代替 • 取少量的点进行光线投影,其余点插值获得
• 质量改进方法
• 采样更多的点,如一个像素点采取4点进行光线投影 • 采用透视投影替换平行投影
三维可视化
三维可视化什么是三维可视化?三维可视化是一种利用计算机技术将数据以三维空间的形式进行表示和展示的方法。
在传统的二维平面可视化中,数据以平面直角坐标系进行表示,而三维可视化则将数据从平面扩展到了空间,使得人们可以以更直观、更真实的方式来理解和分析数据。
三维可视化可以用于各种不同领域,例如科学研究、医学、工程设计等。
通过将数据以三维形式呈现,人们可以更清晰地观察数据之间的关系和趋势,发现其中的模式和规律,进而进行更深入的分析和研究。
三维可视化的应用科学研究在科学研究中,三维可视化可以帮助科学家更好地理解和分析复杂的科学现象和实验数据。
例如,在物理学中,科学家通过将三维空间中的粒子运动轨迹可视化,来研究粒子之间的相互作用和力学性质;在气象学中,科学家可以利用三维可视化来展示大气层的三维结构和气候变化趋势。
医学在医学领域,三维可视化可以帮助医生更准确地诊断病情和制定治疗方案。
例如,在影像学中,医生可以将CT、MRI 等医学图像进行三维重建,以便更好地观察人体器官的结构和病变情况;在手术模拟中,医生可以利用三维可视化技术来模拟手术过程,提前规划手术路径和操作步骤,减少手术风险。
工程设计在工程设计中,三维可视化可以帮助工程师更好地设计和优化产品和系统。
例如,在建筑设计中,工程师可以使用三维可视化工具来展示建筑物的外观和内部结构,以便客户更好地理解和评估设计方案;在机械工程中,工程师可以利用三维可视化来模拟机械零件的运动和装配过程,以便进行设计优化和故障排除。
三维可视化的工具和技术建模软件在三维可视化中,建模软件是一种常用的工具,用于将数据转换为三维模型。
建模软件通常提供了丰富的建模工具和操作,可以让用户根据实际需求创建和编辑三维模型。
常见的建模软件包括AutoCAD、SolidWorks、Blender等。
渲染引擎渲染引擎是一种用于将三维模型转化为图像的软件工具。
渲染引擎通过计算光照、材质和阴影等因素,将三维模型渲染成逼真的图像。
三维可视化基础幻灯片课件
Z缓存
在3D环境中,每个像素中会利用一组数据资料用来定义 像素在显示时的纵深充(即Z轴座值)在Z BUFFER所用的位 数越高,则代表该显示卡所提供的物体纵深感也越精确。一 般的3D加速卡仅能支持到16位或24位的Z BUFFER,对于普通 的3D模型而言也算是足够了,不过高级的3D卡更可支持到32 位的Z BUFFER。对一个含有很多物体连接的较复杂3D模型而 言,能拥有较多位数来表现深度感是相当重要的事情。例如 一台500公尺长的飞机,其管线之间仅相距5公分的距离,2bitZBUFFER将无法提供足够的精确性让我们从某些视角能清 楚地辨别二条管线的前后顺序。当显示卡尝试要显示这二条 管线时,它会试着一次将二个同时显示出来,因而产生令人 讨厌的闪烁现象。若使用的32位的Z BUFFER就能避免闪烁现 象发生。
MIP-MAP纹理映射
引擎用来减少纹理内存和带宽需求的另外一个技术就是 MIP-MAP。 MIP 映射技术通过预先处理纹理,产生它的多个拷贝纹理,每个相 继的拷贝是上一个拷贝大小的1/4。
使用 MIP-MAP ,还可以有效解决纹理走样问题。
多重纹理映射
相比最初来说,单一纹理映射已给整个3D真实感图形带来很大的 不同,但使用多重纹理甚至可以达到一些更加令人难忘的效果。
填充模式
平移、旋转、缩放
拾取
三维应用程序中,拾取算法的思想很简单:得到鼠标点击处的屏 幕坐标,通过投影矩阵和观察矩阵把该坐标转换为通过视点和鼠 标点击处的一条射入场景的光线,该光线如果与场景模型的三角 形相交,则获取该相交三角形的信息。
Front Buffer and Back Buffer
使用DirectX的主要的两个好处:1)为软件开发者提供硬件无关性;2) 为硬件开发提供策略。
arcgis三维可视化步骤
arcgis三维可视化步骤ArcGIS三维可视化是一种基于地理空间数据的数据可视化技术,通过将二维地理信息转换为三维模型,展示地球表面上的地理现象和空间关系。
下面将详细介绍ArcGIS三维可视化的步骤。
1.数据准备首先,需要准备好用于三维可视化的地理数据。
这些数据可以是矢量数据,如点、线、面要素,也可以是栅格数据,如DEM(数字高程模型)或卫星影像。
在数据准备阶段,还需要根据需求对数据进行预处理,如数据清洗、投影转换等。
2.创建三维场景在ArcGIS软件中,创建一个新的三维场景是进行三维可视化的第一步。
可以在“内容”面板中右键单击一个文件夹或地理数据库,然后选择“新建”>“场景”来创建一个新的场景。
可以选择合适的坐标系统和高程单位,并为场景指定一个名称。
3.导入数据在场景中导入数据是进行三维可视化的关键步骤之一。
可以将准备好的地理数据直接拖动到场景中,或者通过“内容”面板中的“添加数据”按钮来导入数据。
导入的数据将显示在场景的“图层”面板中。
4.设置符号对导入的数据进行符号设置,可以使得地理要素在三维场景中呈现出不同的形状、颜色和大小。
在“图层”面板中选择一个图层,然后点击“图层”选项卡上的“符号”按钮,即可打开符号设置对话框。
在对话框中,可以选择不同的符号类型,并根据数据的属性值设置符号样式。
5.配置图层属性除了设置符号外,还可以对图层的属性进行配置,以便更好地表达地理信息。
例如,可以通过右键单击图层,在上下文菜单中选择“属性”,打开图层属性对话框,然后在“标注”选项卡中设置标注样式和显示位置。
6.创建高程表面在三维可视化中,高程表面可以显示地形的起伏和存在的起伏。
可以使用DEM(数字高程模型)数据或通过插值等技术生成高程表面。
在ArcGIS软件中,可以通过在场景中选择“添加”>“高程数据”添加DEM数据,然后通过在DEM上右键单击选择“表面”>“生成新表面”来创建一个新的高程表面。
三维设计基础ppt课件
结合具体案例,分析照明技巧的 应用及效果。
环境光与全局照明
环境光
模拟环境中的漫反射光线,使场景中的物体 呈现均匀的亮度。
光线追踪
模拟光线的传播路径,实现全局照明的精确 计算。
全局照明
计算场景中所有物体间的光线反射和折射, 实现更真实的光照效果。
光子映射
通过发射光子并记录其传播路径,实现全局 照明的近似计算。
贴图的使用方法
通过贴图坐标调整贴图在 模型表面的位置和大小, 使用不同的贴图通道实现 多种效果。
材质球设置与调整
材质球的概念
表示模型表面材质属性的球体, 通过调整其参数来改变模型表面
的视觉效果。
材质球的设置
包括颜色、透明度、反射、折射等 属性的设置。
材质球的调整技巧
如使用渐变、噪波等效果增加材质 的复杂性和真实感,通过调整高光 和反射属性实现金属、玻璃等特效。
三维场景中的光源类型
点光源
模拟点状的发光体,光 线向四周均匀发散。
平行光
聚光灯
面积光
模拟远处光源发出的平 行光线,常用于模拟日
光。
模拟具有方向性的光源, 光线在一定范围内汇聚。
模拟较大发光面发出的 光线,光线柔和且均匀。
灯光属性设置与调整
01
02
03
04
灯光颜色
调整灯光的颜色属性,以改变 场景的光照色调。
三维设计基础ppt课件
CATALOGUE
目 录
• 三维设计概述 • 三维建模技术 • 三维材质与贴图 • 三维灯光与照明 • 三维动画制作 • 三维渲染输出
01
CATALOGUE
三维设计概述
三维设计的定义与发展
定义
Python三维可视化:Mayavi入门
Mayavi库的安装/mayavi/mayavi/index.html安装Mayavi的基本要求:l VTKl numpyl Traits(Traits、TraitsUI和TraitsBackendWX/TraitsBackendQT)VTK-7.1.1-cp36-cp36m-win_amd64.whl mayavi-4.5.0-cp36-cp36m-win_amd64.whl PyQt4-4.11.4-cp36-cp36m-win_amd64.whlBuildingToolspip install mayavi-4.5.0-cp36-cp36m-win_amd64.whl代码编辑环境:Python3.6 自带的IDLE3.6Pycharm Community EditionMayavi库的安装小测>>> from mayavi import mlabMayavi库的基本元素类别说明绘图函数barchar、contour3d、contour_surf、flow、imshow、mesh、plot3d、points3d、quiver3d、surf、triangular_mesh图形控制函数clf、close、draw、figure、gcf、savefig、screenshot、sync_camera图形修饰函数colorbar、scalarbar、xlabel、ylabel、zlabel相机控制函数move、pitch、roll、view、yaw其他函数animate、axes、get_engine、show、set_engine……Mlab管线控制Open、set_vtk_src、adddataset、scalar_cut_planeMayavi.mlab类别说明管线基础对象Scene、Source、Filter、ModuleManager、Module、PipelineBase、Engine主视窗和UI对象DecoratedScene、MayaviScene、SceneEditor、MlabSceneModel、EngineView、EngineRichView Mayavi API快速绘图实例描述的坐标点为:[[(-1, -1, 1), (1, -1, 1), (1, -1, -1), (-1, -1, -1), (-1, -1, 1)] [(-1, 1, 1), (1, 1, 1), (1, 1, -1), (-1, 1, -1), (-1, 1, 1)]]键盘鼠标对场景进行操作l旋转场景:左键拖动或键盘的方向键l平移场景:按住Shift键并使用左键拖动,shift+方向键盘l缩放场景:鼠标右键上下拖动或使用“+”和“-”按键l滚动相机:按住CTRL键并用左键拖动l工具栏:从坐标轴6个方向观察场景、等角投影、切换平行透视和成角透视等快速绘制实例2Mlab.mesh(x,y,z,representation=‘wireframe’,line_width=1.0)Mayavi管线Mayavi管线的层级l Engine:建立和销毁Scenesl Scenes:多个数据集合Sourcesl Filters:对数据进行变换l Module Manager:控制颜色,Colors and Legends l Modules:最终数据的表示,如线条、平面等mlab.show_pipeline()管线中的对象scene Mayavi Scene:处于树的最顶层的对象,表示场景。
重大社2024《三维建模可视化表现》教学课件项目三 SketchUP模型创建
任务2 SketchUp高级建模 任务1 SketchUp建模基础
任务一 SketchUp 建模基础 (1) SketchUp建模基础
在制作模型前,首先要明白建模的重要性、建模的思路以及建模的常用方法等,只有掌握了这些最基本的知识,才能 在创建模型时得心应手。
打开SketchUp图标,根据项目要求选择模板,通常情况下选择“建筑设计一毫米”为单位。(图3-51)
图3-63 圆弧工具1
图3-64 圆弧工具2
(3)SketchUp 材质灯光
SketchUp 材质灯光是在模型完成之后对模型进行效果图的制作,效果制作前需要对材质灯光进行进一步调试,将材 质赋予模型之上,把材质纹理和质感调出来,最后通过 SketchUp—VRay 渲染成一张完整的效果图。(图3-65、图 366)
三维建模可视化表现
Animation Model Design and Production
环境艺术设计
建筑动画技术
目录
模块一 三维建模可视化基础理论(职业岗位理论)
项目一 三维建模可视化表现理论及软件 项目二 三维建模可视化表现理论及软件
模块二 三维数字建模师(职业岗位资格证书 ) 项目一 3dsMax软件基础 项目二 建筑物效果图制作 项目三 后期图像处理
SketchUp 曲面建模与 SketchUp 常规建模不一样,SketchUp 常规建模可以根据面进行推拉完成,而 SketchUp 曲 面建模不能使用常规的推拉工具进行推拉。曲面建模可以根据放样进行创建,首先绘制一条完整的路径,再绘制一个样式 的封闭面(图3-67)。生成曲面步骤:首先选中路径,再点击放样,再次点击封面的面,这样一个曲面路径就创建完成( 图3-68)。
图3-67 曲线放样路径及图形
arcgis三维可视化步骤
arcgis三维可视化步骤「ArcGIS三维可视化步骤」- 3000-6000字长文回答引言:ArcGIS是地理信息系统(GIS)行业中最重要和广泛使用的软件之一。
它提供了丰富的地理数据分析和可视化功能,赋予用户以深入了解地理数据的能力。
其中三维可视化是ArcGIS的重要功能之一,使用户能够以三维空间的方式呈现和分析地理数据。
本文将一步一步地介绍ArcGIS中进行三维可视化的步骤。
第一步:数据准备进行三维可视化之前,首先需要准备好相关的地理数据。
这些数据可以是矢量数据(如点、线、面)、栅格数据(如高程、影像)或者点云数据(如激光雷达数据)。
确保数据的完整性和准确性非常重要,因为任何不准确或缺失的数据都可能影响到最终的可视化结果。
第二步:创建三维场景在ArcGIS中创建一个三维场景是进行三维可视化的必要步骤。
在ArcScene或ArcGlobe中打开ArcGIS软件,在“文件”菜单下选择“新建”>“三维场景”选项,或者直接点击工具栏上的“新建三维场景”按钮。
在弹出的对话框中,选择适当的坐标系统和投影方式,并设定场景的基本属性,如名称、描述等。
第三步:导入和管理数据将准备好的地理数据导入到创建好的三维场景中。
这可以通过将数据文件直接拖拽到场景中,或者在“文件”菜单下选择“导入”>“导入数据”选项来实现。
在导入数据时,需要注意数据的坐标系统和投影方式是否与场景一致,如果不一致,则需要进行投影转换。
第四步:设置数据属性和风格在导入数据后,可以通过设置数据的属性和风格,使其更好地适应三维场景的呈现需求。
选择要设置属性和风格的图层,在“图层”菜单下选择“属性表”选项,可以对数据的属性进行编辑。
在“图层”菜单下选择“符号化”选项,可以对数据的外观进行设置,如颜色、样式、透明度等。
第五步:调整场景视角调整场景的视角是使三维可视化更具吸引力和可读性的重要步骤。
在ArcScene或ArcGlobe中,可以使用鼠标平移、旋转和缩放场景,以获得最佳的视角。
计算机形学中的几何变换与投影算法基础
计算机形学中的几何变换与投影算法基础在计算机图形学中,几何变换与投影算法是实现三维对象表示、变换和可视化的基础。
通过对三维空间中的对象进行变换和投影,可以将其呈现在二维平面上,从而实现更直观的可视化效果。
本文将介绍计算机形学中的几何变换和投影算法的基本概念和应用。
一、几何变换几何变换是指通过对三维对象进行平移、旋转、缩放等操作,改变其在空间中的位置和形状。
在计算机图形学中,常用的几何变换包括平移、旋转、缩放和剪切。
1. 平移平移是指将对象沿着指定方向移动一定的距离。
在计算机图形学中,平移变换可以通过将对象的每个顶点坐标增加一个平移向量来实现。
平移变换公式如下:[x'] = [1 0 0 tx] [x][y'] [0 1 0 ty] [y][z'] [0 0 1 tz] [z][1 ] [0 0 0 1] [1]其中,(tx, ty, tz)表示平移向量。
通过对对象的每个顶点应用上述变换矩阵,可以实现平移效果。
2. 旋转旋转是指将对象绕指定轴进行旋转。
在计算机图形学中,常用的旋转有绕X轴、Y轴和Z轴旋转。
旋转变换可以通过将对象的每个顶点坐标乘以一个旋转矩阵来实现。
旋转变换矩阵的形式如下:[x'] = [1 0 0 0] [x][y'] [0 cosθ -sinθ 0] [y][z'] [0 sinθ cosθ 0] [z][1 ] [0 0 0 1] [1]其中,θ表示旋转角度。
通过对对象的每个顶点应用上述变换矩阵,可以实现旋转效果。
3. 缩放缩放是指改变对象的尺寸大小。
在计算机图形学中,缩放变换可以通过将对象的每个顶点坐标乘以一个缩放因子来实现。
缩放因子分别作用于X、Y和Z轴的坐标,从而改变对象在各个轴上的尺寸。
缩放变换公式如下:[x'] = [sx 0 0 0] [x][y'] [0 sy 0 0] [y][z'] [0 0 sz 0] [z][1 ] [0 0 0 1] [1]其中,(sx, sy, sz)表示缩放因子。
7 三维可视化技术
7 三维可视化技术三维可视化(3D Visualization)技术是20世纪80年代中期诞生的一门集计算机数据处理、图像显示的综合性前缘技术。
它是利用三维地震数据体显示、描述和解释地下地质现象和特征的一种图像显示工具。
它可使地球物理学家和地质学家“钻入”到数据体中,更深刻地理解各种地质现象的发生、发展和相互之间的联系。
7.1 三维可视化技术概述可视化技术是把描述物理现象的数据转化为图形、图像,并运用颜色、透视、动画和观察视点的实时改变等视觉表现形式,使人们能够观察到不可见的对象,洞察事物的内部结构。
可视化技术有两种基本类型:基于平面图的可视化(Surface Visualization)和基于数据体的可视化(Volume Visualization),也称为层面可视化和体可视化。
层面可视化指的是地质层位、断层和地震剖面在三维空间的立体显示,其主要用于解释成果的检验和显示。
体可视化是通过对数据体(可以是常规地震振幅数据体,也可以是地震属性数据体,如波阻抗体或相干体)作透明度等调整,从而使数据体呈透明显示,其主要用于数据体的显示和全三维解释。
在体可视化解释中,常用技术有5种:体元自动追踪技术、锁定层位可视化技术、锁定时窗可视化技术、垂直剖面叠合可视化技术和多属性可视化技术。
(1) 体元自动追踪技术追踪过程是从解释人员定义种子体元(Seed Voxel)开始的,体元追踪是沿着真正的三维路径追踪数据体,因此追踪结果是数据体而不是层位。
图7—1给出利用体元自动追踪技术解释某油田含油砂体的过程,即从油层标定、种子点拾取、体元追踪到三维显示。
(2) 锁定层位可视化技术利用已有的层位数据(或者层位数据做定量时移)作为约束条件,将目的层段的数据从整个数据体中提取出来,然后针对层段内部数据体调整颜色、透明度和光照参数,可以更有效地圈定地质体的分布范围,更准确地判断断层的延展方向和断层之间的切割关系。
图7—2为淮南张集煤矿西部采区13—1煤层振幅体可视化图。
三维可视化建模步骤
三维可视化建模步骤三维可视化建模是将实际的物体或场景以三维图形的形式呈现出来的过程。
它广泛应用于建筑设计、游戏开发、影视制作等领域。
下面是三维可视化建模的步骤,帮助你了解这一过程。
第一步:收集资料和准备工作在开始建模之前,你需要收集有关物体或场景的资料和参考图像。
这些资料可以是实际的照片、图纸、设计草图等。
准备工作还包括确定建模的目标和需求,例如模型的精细程度、材质和纹理等。
第二步:建立基础几何体在三维建模软件中,你可以通过创建基本的几何体(如立方体、球体、圆柱体等)来构建物体的整体形状。
这些基础几何体可以被修改和组合,以创建更复杂的形状。
第三步:细化模型形状细化模型的形状是建模的关键步骤。
你可以使用软件提供的各种工具,如移动、拉伸、旋转、缩放等,来逐步调整模型的细节。
这需要技巧和经验,以确保模型的比例、比例和流畅度。
第四步:添加细节和纹理为了使模型更加真实和有趣,你可以通过添加细节和纹理来增强其外观。
这包括模型的细节雕刻、纹理映射、贴图等。
使用软件提供的纹理编辑工具,你可以为模型添加颜色、纹理、光泽等效果,使其看起来更加逼真。
第五步:设置摄像机和灯光摄像机和灯光的设置对于展示和渲染模型非常重要。
你可以选择适当的摄像机视角,以便观众能够清晰地看到模型的各个方面。
灯光的设置可以为模型增加阴影和光影效果,使其更加生动和逼真。
第六步:优化和调整建模完成后,你需要进行优化和调整,以确保模型的效果和性能。
这包括清理不必要的面片和点,调整纹理和材质,以减少模型的文件大小和渲染时间。
此外,还可以进行适当的渲染设置,以达到最佳的展示效果。
第七步:渲染和输出最后,你可以使用渲染引擎将模型渲染为图像或动画。
渲染引擎可以为模型添加阴影、反射、抗锯齿等效果,以提高其视觉质量。
完成渲染后,你可以将模型输出为图片、视频或交互式应用程序,以便与他人分享或使用。
这就是三维可视化建模的基本步骤。
通过掌握这些步骤,你可以更好地了解和应用三维建模技术,创造出生动、逼真的三维模型。
ArcGIS三维可视化开发简介
的方法和属性; DataGraph:提供了控制数据图表的方法和属性,提供了 控制DataGraph对象属性的方法和属性。
四. C#代码示例
1. 加载DEM数据 ISceneGraph pSceneGraph=this.axSceneControl1.SceneGraph; IScene pScene=pSceneGraph.Scene; IRasterLayer pRasterLayer=new RasterLayerClass(); ILayer pLayer;
3. 通视分析 应用背景如:观察哨所位置的选择,能监视感兴趣区域, 视线不能被地形挡住;低空侦察机在飞行时选择雷达盲区 等。根据实际问题输出维数的不同,可分为:点通视,线 通视,面通视等。由于通视分析使用的方法Visibility只适 用于Raster表面,因此ArcEngine没有提供对Tin表面的分 析方法。
this.openFileDialog1.Title=""Raster Layer; this.openFileDialog1.DefaultExt=".TIF"; this.openFileDialog1.Filter="(*.tif) | *.tif";
if(this.openFileDialog1.ShowDialog()==DialogResult.OK) { string pPathName=this.openFileDialog1.FileName; string pPath=pPathName.Substring(0,stIndexOf ('\\')); string fileName=pPathName.Substring(pPath.Length+1,pPath Name.Length-pPath.Length-1); IWorkspaceFactory pwsf=new RasterWorkspaceFactoryClass();
如何进行三维建模与可视化
如何进行三维建模与可视化三维建模与可视化是现代科技中一项重要的技术,它广泛应用于各个领域,如游戏开发、工业设计、建筑设计等。
本文将从基本概念、方法和应用等方面介绍如何进行三维建模与可视化。
一、三维建模的基本概念三维建模是指将实际物体或场景通过计算机图形学的方法转化为虚拟的三维模型。
在三维建模中,包含了几何形状、纹理、光照等多个方面的信息,用于模拟实际物体的外观和行为。
三维建模的基本概念包括模型、网格和纹理等。
1. 模型:模型是指虚拟的三维物体或场景。
根据不同的需求,模型可以是简单的几何形状,也可以是复杂的实际物体。
2. 网格:网格是三维模型中最基本的组成单元,由一系列的顶点、边和面组成。
通过对网格的组合和变换,可以创建出各种形状的模型。
3. 纹理:纹理是模型表面的图案或颜色。
在三维建模中,使用纹理可以为模型增加真实感,使得模型的表面呈现出各种细节和效果。
二、三维建模的方法三维建模有多种方法和工具可供选择,下面介绍两种常用的方法:手工建模和计算机辅助建模。
1. 手工建模:手工建模是指通过手工艺的方式,使用物体模型、粘土或其他可塑性材料等,以真实的物体为参考来进行建模。
这种方法灵活简便,适用于小规模的模型制作。
2. 计算机辅助建模:计算机辅助建模是指利用计算机软件进行三维建模。
这种方法通常使用专业的建模软件,通过对虚拟模型的绘制、编辑和变换等操作来进行建模。
计算机辅助建模具有高度的精确度和灵活性,并可应用于大规模的模型制作。
三、三维建模的应用三维建模与可视化技术在各个领域中都有重要的应用,下面介绍其中的几个领域:1. 游戏开发:三维建模被广泛应用于游戏开发中,用于创建游戏中的场景、角色和物体等。
通过精细的三维建模和逼真的渲染技术,可以为游戏带来更真实的视觉效果,并提升玩家的沉浸感。
2. 工业设计:三维建模在工业设计中的应用日益增多。
设计师可以利用三维建模软件进行快速原型制作和设计验证,从而缩短产品开发周期,降低成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光照
一般三维引擎光照模型将光归纳为两类:环境光和直射光 环境光,和自然界中的一样,没有实际的方向和光源,只有颜色
和光强 。它给各处提供一个较低级别的光强 直射光是场景中的光源产生的光,它总是具有颜色和强度,并沿
特定的方向传播。 直射光类型:点光源、聚光灯和平行光
着色模式
用于控制渲染多边形的着色模式完全影响到渲染结果。着色模式 决定多边形表面上任意一点上颜色的强度和光照计算方式
DEM数据组织
DEM库采用金字塔结构存放多种空间分辨率的地形数据,同一分 辨率的栅格数据被组织在一个层面内,而不同分辨率的地形数据具有上 下的垂直组织关系:越靠近顶层,数据的分辨率越小,数据量也越小, 只能反映原始地形的概貌;越靠近底层,数据的分辨率越大,数据量也 越大,更能反映原始地形详情
数据分块调度
图元
3D颜色表达
3D引擎一般采用红(R)、绿(G) 、蓝(B)和阿尔法(A)——描述颜色, 并将它们合成,产生最终颜色。R、G、B、A称之为颜色通道, 其中A描述了色彩的透明度属性。
表达颜色的Bit-即色深-决定了颜色的表现力和丰富程度。 OpenGL采用float精度也就是4个字节表现一个颜色通道,而 Direct3D采用Byte精度也就是1个字节表现一个颜色通道。
使用 MIP-MAP ,还可以有效解决纹理走样问题。
多重纹理映射
相比最初来说,单一纹理映射已给整个3D真实感图形带来很大的 不同,但使用多重纹理甚至可以达到一些更加令人难忘的效 果。
填充模式
平移、旋转、缩放
拾取
三维应用程序中,拾取算法的思想很简单:得到鼠标点击处的屏 幕坐标,通过投影矩阵和观察矩阵把该坐标转换为通过视点和鼠 标点击处的一条射入场景的光线,该光线如果与场景模型的三角 形相交,则获取该相交三角形的信息。
形成和原始表面近似且无缝无叠的简化连续三角化表面。
Lever=1
顶点
1
左邻接区
右邻接区
左顶点
左子树
右子树
中点
底部邻接区域
Lever=2
右顶点
23
Lever=3 5
4
6 7
层次细节模型——裂缝
裂缝的产生:
在建立地表模型时,如果只是单纯孤立地 绘制各个分块,而不考虑它们之间的联系,那 么就会出现块间的“裂痕”现象。
产生原因 :
相邻分块在公共边上的处理方式不一致。
层次细节模型——裂缝消除
层次细节模型——视觉平滑
模型层次切换时,采用几何形状过渡方法形成视觉 的光滑过渡 ,即将新增点随视点的拉近从起始位置逐渐移 动到最终位置。
格网立体图
生成真实感图形基本步骤
1、建立模型 模型的建立分以下三个小步: (1)建立物体的几何模型,设定物体的光学属性,其中多 边形建模方法是最常用的模型表示方法,该方法将对象简 化成一系列多边形表面。物体的光学属性包括对光的漫反 射系数、镜面反射系数、折射率、透明度、颜色、纹理、 粗糙度等 ; (2)设定光源的位置、形状及光学特性; (3)设定视点和视屏位置。 2、计算视屏上各像素点的颜色 : (1)不可见面消除; (2)阴影计算; (3)光照颜色计算 选择合适的光照模型,计算在光源照射 下物体表面各可见点对视屏上各像素点的光贡献,由此求 出视屏上各像素点的颜色值。 3.显示计算到屏幕上。
纹理压缩算法:
color_2 = (2 * color_0 + color_1 + 1) / 3; color_3 = (color_0 + 2 * color_1 + 1) / 3;
MIP-MAP纹理映射
引擎用来减少纹理内存和带宽需求的另外一个技术就是 MIP-MAP。 MIP 映射技术通过预先处理纹理,产生它的多个拷贝纹理,每个相 继的拷贝是上一个拷贝大小的1/4。
视域范围计算
层次细节模型
Level of Detail: 一种实时三维计算机图形技术,
规则网
最先由Clark于1976年提出。 工作原理:
三角网
视点离物体近时,能观察到的模
型细节丰富;视点远离模型时,观察
到的细节逐渐模糊。系统绘图程序根
据一定的判断条件,选择相应的细节
进行显示,从而避免了因绘制那些意
除了Specular属性,其余每个属性都用一个RGBA颜色描述, 表示该材质对某一给定类型光的红、绿和蓝成分的反射度, 以及一个阿尔法混合因子——RGBA颜色的A。
材质效果图
雾
纹理
计算机图形学中,纹理指的是一张表示物体表面细节 的位图。
纹理映射:
纹理坐标
纹理压缩
越真实的场景就要求纹理的数量越多,质量越高,这对系统带宽 和显存负担很大,因此自然想到对纹理进行压缩
本讲主要内容
三维可视化基础知识 地形可视化
三维地形可视化应用
三维可视化基础3DFra bibliotek视化基本概念 三维可视化引擎 三维可视化渲染流程
坐标系
坐标系
•世界坐标系 •物体坐标系
坐标变换
把三维物体变为二维图形表示的过程称为投影变换。 投影变换的分类情况如下表所示:
坐标变换
正平行投影
坐标变换
坐标变换
第三步,选择相机 镜头并调焦,使三维物体 投影在二维胶片上(投影 变换,Projection Transformation)。
第四步,决定二维像 片的大小(视口变换,
Viewport Transformation)。
这样,一个三维空间 里的物体就可以用相应的 二维平面物体表示了,也 就能在二维的电脑屏幕上 正确显示了。
DIRECT与OPENGL
目前来看,OpenGL和D3D在应用领域上各有侧重。 OpenGL在工业领域应用较多,而D3D在游戏领域则 更多。
D3D学习掌握较困难,但完善的辅助库支持,使得搭 建三维应用更快捷。在Windows平台下优势明显。
OpenGL架构相对稳定,更规范严格,跨平台和独立 窗口意义重大,容易掌握;但复杂应用上工作量很大。
材质
材质表现了物体表面对灯光的反射属性。在D3D和OpenGL 中材质还有一个自发光属性-Emissive ,它用来描述物体自 身发出的光的颜色和透明度的。
颜色成员为R: 1.0, G: 1.0, B: 1.0, A: 1.0的材质会反射所有 的入射光。同样,成员为R: 0.0, G: 1.0, B: 0.0, A: 1.0的材 质会反射所有入射的绿光。具有多重反射系数值(Diffuse、 Specular、等等)的材质可以创建不同类型的效果 。
Z Buffer
OpenGL
OpenGL(Open Graphics Library)是以SGI公司的GL三维图形库为基础制定的
一个通用共享的开放式三维图形标准。从软件的角度讲,它就是一个开放的针 对于图形硬件的三维图形软件包。
OpenGL的优点:1) OpenGL可以大大降低了开发高质量图形软件对软、硬 件的依赖程度;2)跨平台,基本上的工业标准;3)学习容易,上手快;
HAL可以是显示驱动程序的一部分,也可以是一个动态连接库 (DLL)。HAL 由芯片制造商、板卡生产者或者原始设备制造商(OEM) 实现。HAL 实现了设备依赖的代码,但是并不做任何的模拟。也 就是说,如果硬件并不提供某一个功能,HAL 并不将其声明为硬 件的能力。另外,HAL 并不验证参数;Direct3D 在调用 HAL 以 前就已经完成了这项操作。
3D游戏效果图
3D操作系统
地形可视化
传统的地学分析图形中,三维地形立体图通常是用 一组经投影变换的剖面线或网线构造的,图形简单,内 容单一,缺乏实体感,实用价值受到限制。而三维地形 模型的动态显示是区域地形等多种要素三维景观的综合 体现,具有信息丰富、层次分明、真实感强的特点。
我们可通过获取地形等高线及地表属性多边形等信 息,采用适当的内插拟合方法,生成真实描述实际地表 特征的数字高程模型,并用栅格化技术建立相应的描述 区域地表类型的属性栅格,经透视投影变换和属性叠加 后,采用恰当的消隐处理和光照模型进行显示,再现区 域的三维地形形态,取得真实、鲜明、直观的图像效果。
Windows NT下OpenGL的结构
OpenGL程序运行方式
OpenGL硬件加速方式
一些显示芯片如3Dlabs公司的GliNT进行了优化,OpenGL的大 部分功能均可由硬件实现,仅有少量功能由操作系统来完成。
三维图形加速模式
一些中低档的图形芯片往往也具备一定的三维加速功能,由硬件 来完成一些较为复杂的图形操作。
使用DirectX的主要的两个好处:1)为软件开发者提供硬件无关性;2) 为硬件开发提供策略。
Direct3D
硬件抽象层
Direct3D通过硬件抽象层-HAL 提供了设备无关性。HAL 是一个 与设备相关的接口,它由设备制造商提供,Direct3D 通过它直接 控制显示设备。应用程序不会直接与 HAL 打交道。相反,通过 HAL 提供的特性,Direct3D 提供了一系列接口和方法用于应用程 序绘制图形。
透视投影
坐标变换
实际上,从三维空 间到二维平面,就如同 用相机拍照一样,通常 都要经历以下几个步骤 (括号内表示的是相应 的图形学概念):
第一步,将相机置 于三角架上,让它对准 三维景物(视点变换, Viewing Transformation)。
第二步,将三维物 体放在适当的位置(模 型变换,Modeling Transformation)。
义相对不大的细节而造成的时间浪费,
同时有效地协调了画面连续性与模型
分辨率的关系。
LOD
静态 动态
静态层次细节模型
视点抬高时地形① 线框/实体绘制效果
常见层次细节模型——四叉树
四叉树: