历年各地中考数学二次函数试题与答案
中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。
中考数学《二次函数》专项练习题及答案

中考数学《二次函数》专项练习题及答案一、单选题1.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个2.对于抛物线y=−13(x−5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(-5,3)D.开口向上,顶点坐标(-5,3)3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的?()A.第8秒B.第10秒C.第12秒D.第15秒4.已知二次函数y=x2−4x+2,当自变量x取值在−2≤x≤5范围内时,下列说法正确的是()A.有最大值14,最小值-2B.有最大值14,最小值7C.有最大值7,最小值-2D.有最大值14,最小值25.如图,二次函数y=ax2+bx+c图象的对称轴为x=1,则下列说法正确的有()①abc<0,②2a+b=0,③a−b+c>0,④若4a+2b+c>0.A.①②③B.②③④C.①②④D.①②③④6.在平面直角坐标系中,对于点 P(x ,y) 和 Q(x ,y′) ,给出如下定义:若 y′={y +1 (x ≥0)−y (x <0),则称点 Q 为点 P 的“亲密点”.例如:点 (1,2) 的“亲密点”为点 (1,3) ,点 (−1,3) 的“亲密点”为点 (−1,−3) .若点 P 在函数 y =x 2−2x −3 的图象上.则其“亲密点” Q 的纵坐标 y′ 关于 x 的函数图象大致正确的是( )A .B .C .D .7.对于二次函数 y =2(x −1)2−3 ,下列说法正确的是( )A .图象开口向下B .图象和y 轴交点的纵坐标为-3C .x <1 时,y 随x 的增大而减小D .图象的对称轴是直线 x =−18.抛物线 y =−3x 2+12x −3 的顶点坐标是( )A .(2,9)B .(2,-9)C .(-2,9)D .(-2,-9)9.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )A .a <0B .a ﹣b+c <0C .−b 2a>1D .4ac ﹣b 2<﹣8a10.已知抛物线y =ax 2+bx +c(a ≠0)交x 轴于点A(1,0),B(3,0).P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上两个点.若|x 1−2|>|x 2−2|>1,则下列结论一定正确的是( ) A .y 1<y 2B .y 1>y 2C .|y 1|<|y 2|D .|y 1|>|y 2|11.二次函数y=x2-1的图象可由下列哪个函数图象向右平移2个单位,向下平移2个单位得到()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x−2)2−3D.y=(x+2)2+312.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF△BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.二、填空题13.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2 √3个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴左侧的图象上,则点C的坐标为.14.将y=x2的向右平移3个单位,再向上平移5个单位后,所得的解析式是.15.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为81元,则平均每次降价的百分率是.16.如果抛物线y=x2﹣6x+c的顶点到x轴的距离是3,那么c的值等于.17.不等式x2+ax+b≥0(a≠0)的解集为全体实数,假设f(x)=x2+ax+b,若关于x的不等式f(x)<c的解集为m<x<m+6,则实数c的值为.18.用16m长的篱笆围成长方形的生物园饲养小兔,设围成长方形的生物园的长为x m,则围成长方形的生物的面积S(单位:m2)与x的函数表达式是.(不要求写自变量x的取值范围)三、综合题19.鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?20.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.21.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=−12x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.22.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1与x轴交于点A,B.(点A在点B的左侧)(1)求m的取值范围;(2)当m取最大整数时,求点A、点B的坐标.23.我市某电器商场代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现,在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.(1)若某月空气净化器售价降低30元,则该月可售出多少台?(2)试确定月销售量y(台)与售价x(元/台)之间的函数关系式,并求出售价x的范围.(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获的利润w(元)最大,最大利润是多少?24.一家超市,经销一种地方特色产品,每千克成本为50元.这种产品在不同季节销量与单价满足一次函数变化关系.下表是其中不同4个月内一天的销量y(kg)与单价x(元/kg)的对应值.单价x(元/kg)55606570销量y(kg)70605040(2)平均每天获得600元销售利润的季节,顾客利益也较大,销售单价是多少?(3)当销售单价为多少时,一天的销售利润最大?最大利润是多少?参考答案1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】A 5.【答案】D 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】D 10.【答案】D 11.【答案】B 12.【答案】D13.【答案】(1﹣ √7 ,﹣3) 14.【答案】y=(x ﹣3)2+5 15.【答案】10% 16.【答案】c=6或12 17.【答案】918.【答案】S =−x 2+8x19.【答案】(1)解:依题意有:y=10x+160;(2)解:依题意有:W=(80﹣50﹣x )(10x+160)=﹣10(x ﹣7)2+5290,∵-10<0且x 为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元; (3)解:依题意有:﹣10(x ﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.20.【答案】(1)解:当1≤x <50时,y=(200-2x )(x+40-30)=-2x 2+180x+2000当50≤x≤90时y=(200-2x )(90-30)=-120x+12000综上所述:y= {−2x 2+180x +2000(1≤x <50)−120x +12000(50≤x ≤90)(2)解:当1≤x <50时,二次函数开口向下,二次函数对称轴为x=45 当x=45时,y 最大=-2×452+180×45+2000=6050 当50≤x≤90时,y 随x 的增大而减小当x=50时,y最大=6000综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元(3)解:当1≤x<50时,y=-2x2+180x+2000≥4800,解得20≤x≤50,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=-120x+12000≥4800,解得x≤60因此利润不低于4800元的天数是50≤x≤60,共11天所以该商品在销售过程中,共41天每天销售利润不低于4800元;21.【答案】(1)解:由已知得:C(0, 4),B(4, 4)把B与C坐标代入y=−12x2+bx+c得:{4b+c=12c=4解得:b=2则解析式为y=−12x2+2x+4;(2)解:∵y=−12x2+2x+4=−12(x−2)2+6∴抛物线顶点坐标为(2, 6)则S四边形ABDC=S△ABC+S△BCD=12×4×4+12×4×2=8+4=12. 22.【答案】(1)解:根据题意得△=(-4)2-4(2m-1)>0解得m<5 2;(2)解:m的最大整数为2抛物线解析式为y=x2-4x+3当y=0时,x2-4x+3=0,解得x1=1,x2=3所以A(1,0),B(3,0).23.【答案】(1)解:由题意得:200+30×5=350(台)答:该月可售出350台(2)解:由题意得:y=200+5(400−x)=−5x+2200由供货商对售价和销售量的规定得:{x≥330y≥450,即{x≥330−5x+2200≥450解得:330≤x≤350答:所求的函数关系式为y=−5x+2200,售价x的范围为330≤x≤350(3)解:由题意和(2)可得:w=(x−200)(−5x+2200)整理得:w=−5(x−320)2+72000由二次函数的性质可知:当330≤x≤350时,w随x的增大而减小则当x=330时,w取得最大值,最大值为w=−5×(330−320)2+72000=71500(元)答:当售价定为330元/台时,商场每月销售这种空气净化器所获的利润最大,最大利润是71500元24.【答案】(1)解:设y=kx+b,由题意得:{55k+b=70 60k+b=60解得{k=−2 b=180∴y(kg)与x(元/kg)之间的函数关系式为y=﹣2x+180.(2)解:由题意得:(x﹣50)(﹣2x+180)=600整理,得x2﹣140x+4800=0解得x1=60,x2=80∵顾客利益也较大∴x=60∴平均每天获得600元销售利润的季节,顾客利益也较大,销售单价是60元/千克.(3)解:一天的销售利润为:w=(x﹣50)(﹣2x+180)=﹣2x2+280x﹣9000=﹣2(x﹣70)2+800∴当x=70时,w最大=800.∴当销售单价为70元/kg时,一天的销售利润最大,最大利润是800元。
2023中考数学真题汇编12 二次函数图象性质与应用(含答案与解析)

2023中考数学真题汇编·12二次函数图象性质与应用一、单选题1.(2023·甘肃兰州)已知二次函数 2323y x ,下列说法正确的是()A .对称轴为2xB .顶点坐标为 2,3C .函数的最大值是-3D .函数的最小值是-32.(2023·四川成都)如图,二次函数26y ax x 的图象与x 轴交于(3,0)A ,B 两点,下列说法正确的是()A .抛物线的对称轴为直线1xB .抛物线的顶点坐标为1,62C .A ,B 两点之间的距离为5D .当1x 时,y 的值随x 值的增大而增大3.(2023·广西)将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线是()A .2(3)4y xB .2(3)4y xC .2(3)4y x D .2(3)4y x 4.(2023·湖南)如图所示,直线l 为二次函数2(0)y ax bx c a 的图像的对称轴,则下列说法正确的是()A .b 恒大于0B .a ,b 同号C .a ,b 异号D .以上说法都不对5.(2023·辽宁大连)已知抛物线221y x x ,则当03x 时,函数的最大值为()A .2B .1C .0D .26.(2023·四川泸州)已知二次函数223y ax ax (其中x 是自变量),当03x 时对应的函数值y 均为正数,则a 的取值范围为()A .01a B .1a 或3a C .30a 或0<<3a D .10a 或0<<3a 7.(2023·河南)二次函数2y ax bx 的图象如图所示,则一次函数y x b 的图象一定不经过()A .第一象限B .第二象限C .第三象限D .第四象限8.(2023·浙江杭州)设二次函数 (0,,y a x m x m k a m k 是实数),则()A .当2k 时,函数y 的最小值为aB .当2k 时,函数y 的最小值为2aC .当4k 时,函数y 的最小值为aD .当4k 时,函数y 的最小值为2a9.(2023·四川自贡)经过23,()41,),(A b m B b c m 两点的抛物线22122y x bx b c (x 为自变量)与x 轴有交点,则线段AB 长为()A .10B .12C .13D .1510.(2023·四川凉山)已知抛物线 20y ax bx c a 的部分图象如图所示,则下列结论中正确的是()A .<0abcB .420a b cC .30a c D .20am bm a (m 为实数)11.(2023·山东东营)如图,抛物线 20y ax bx c a 与x 轴交于点A ,B ,与y 轴交于点C ,对称轴为直线=1x ,若点A 的坐标为 4,0 ,则下列结论正确的是()A .20a bB .420a b c C .2x 是关于x 的一元二次方程 200ax bx c a 的一个根D .点 11,x y , 22,x y 在抛物线上,当121x x 时120y y 12.(2023·四川眉山)如图,二次函数 20y ax bx c a 的图象与x 轴的一个交点坐标为 1,0,对称轴为直线=1x ,下列四个结论:①<0abc ;②420a b c ;③30a c ;④当31x 时,20ax bx c ;其中正确结论的个数为()A .1个B .2个C .3个D .4个13.(2023·浙江宁波)已知二次函数2(31)3(0)y ax a x a ,下列说法正确的是()A .点(1,2)在该函数的图象上B .当1a 且13x 时,08yC .该函数的图象与x 轴一定有交点D .当0a 时,该函数图象的对称轴一定在直线32x的左侧14.(2023·内蒙古通辽)如图,抛物线 20y ax bx c a 与x 轴交于点 1020x ,,,,其中101x ,下列四个结论:①0abc <;②0a b c ;③230b c ;④不等式22cax bx c x c 的解集为02x .其中正确结论的个数是()A .1B .2C .3D .415.(2023·四川达州)如图,拋物线2y ax bx c (,,a b c 为常数)关于直线1x 对称.下列五个结论:①0abc ;②20a b ;③420a b c ;④2am bm a b ;⑤30a c .其中正确的有()A .4个B .3个C .2个D .1个16.(2023·黑龙江齐齐哈尔)如图,二次函数 20y ax bx c a 图像的一部分与x 轴的一个交点坐标为3,0,对称轴为直线1x ,结合图像给出下列结论:①0abc ;②2b a ;③30a c ;④关于x 的一元二次方程220(0)ax bx c k a 有两个不相等的实数根;⑤若点 1,m y , 22,y m 均在该二次函数图像上,则12y y .其中正确结论的个数是()A .4B .3C .2D .117.(2023·安徽)已知反比例函数 0ky k x在第一象限内的图象与一次函数y x b 的图象如图所示,则函数21y x bx k 的图象可能为()A .B .C .D .18.(2023·四川广安)如图所示,二次函数2(y ax bx c a b c 、、为常数,0)a 的图象与x 轴交于点3,0,1,0A B .有下列结论:①0abc ;②若点 12,y 和 20.5,y 均在抛物线上,则12y y ;③50a b c ;④40a c .其中正确的有()A .1个B .2个C .3个D .4个19.(2023·四川遂宁)抛物线 20y ax bx c a 的图象如图所示,对称轴为直线2x .下列说法:①0abc ;②30c a ;③ 242a ab at at b ≥(t 为全体实数);④若图象上存在点 11,A x y 和点 22,B x y ,当123m x x m 时,满足12y y ,则m 的取值范围为52m .其中正确的个数有()A .1个B .2个C .3个D .4个20.(2023·山东聊城)已知二次函数 20y ax bx c a 的部分图象如图所示,图象经过点 0,2,其对称轴为直线=1x .下列结论:①30a c ;②若点 14,y , 23,y 均在二次函数图象上,则12y y ;③关于x 的一元二次方程21ax bx c 有两个相等的实数根;④满足22ax bx c 的x 的取值范围为20x .其中正确结论的个数为().A .1个B .2个C .3个D .4个21.(2023·山东烟台)如图,抛物线2y ax bx c 的顶点A 的坐标为1,2m,与x 轴的一个交点位于0合和1之间,则以下结论:①0abc ;②20b c ;③若图象经过点 123,,3,y y ,则12y y ;④若关于x 的一元二次方程230ax bx c 无实数根,则3m .其中正确结论的个数是()A .1B .2C .3D .422.(2023·湖北随州)如图,已知开口向下的抛物线2y ax bx c 与x 轴交于点(60),,对称轴为直线2x .则下列结论正确的有()①0abc <;②0a b c ;③方程20cx bx a 的两个根为1211,26x x;④抛物线上有两点 11,P x y 和 22,Q x y ,若122x x 且124x x ,则12y y .A .1个B .2个C .3个D .4个23.(2023·湖北鄂州)如图,已知抛物线 20y ax bx c a 的对称轴是直线1x ,且过点 1,0 ,顶点在第一象限,其部分图象如图所示,给出以下结论:①0ab ;②420a b c ;③30a c ;④若11,A x y , 22,B x y (其中12x x )是抛物线上的两点,且122x x ,则12y y ,其中正确的选项是()A .①②③B .①③④C .②③④D .①②④24.(2023·新疆)如图,在平面直角坐标系中,直线1y mx n 与抛物线223y ax bx 相交于点A ,B .结合图象,判断下列结论:①当23x 时,12y y ;②3x 是方程230ax bx 的一个解;③若 11,t , 24,t 是抛物线上的两点,则12t t ;④对于抛物线,223y ax bx ,当23x 时,2y 的取值范围是205y .其中正确结论的个数是()A .4个B .3个C .2个D .1个25.(2023·四川乐山)如图,抛物线2y ax bx c 经过点(1,0)(,0)A B m 、,且12m ,有下列结论:①0b ;②0a b ;③0a c ;④若点1225,,,33C y D y在抛物线上,则12y y .其中,正确的结论有()A .4个B .3个C .2个D .1个26.(2023·湖南)已知 111222,,,P x y P x y 是抛物线243y ax ax (a 是常数, 0a 上的点,现有以下四个结论:①该抛物线的对称轴是直线2x ;②点 0,3在抛物线上;③若122x x ,则12y y ;④若12y y ,则122x x 其中,正确结论的个数为()A .1个B .2个C .3个D .4个27.(2023·山东)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:(1,3),(2,6),(0,0)A B C 等都是“三倍点”,在31x 的范围内,若二次函数2y x x c 的图象上至少存在一个“三倍点”,则c 的取值范围是()A .114cB .43cC .154cD .45c 28.(2023·广东)如图,抛物线2y ax c 经过正方形OABC 的三个顶点A ,B ,C ,点B 在y 轴上,则ac 的值为()A .1B .2C .3D .429.(2023·山东枣庄)二次函数2(0)y ax bx c a 的图象如图所示,对称轴是直线1x ,下列结论:①0abc <;②方程20ax bx c (0a )必有一个根大于2且小于3;③若 1230,,,2y y是抛物线上的两点,那么12y y ;④1120a c ;⑤对于任意实数m ,都有()m am b a b ,其中正确结论的个数是()A .5B .4C .3D .230.(2023·湖南)已知0m n ,若关于x 的方程2230x x m 的解为 1212,x x x x .关于x 的方程2230x x n 的解为3434,()x x x x .则下列结论正确的是()A .3124x x x xB .1342x x x x C .1234x x x x D .3412x x x x 31.(2023·湖北十堰)已知点 11,A x y 在直线319y x 上,点 2233,,,B x y C x y 在抛物线241y x x 上,若123y y y 且123x x x ,则123x x x 的取值范围是()A .123129x x xB .12386x x xC .12390x x x D .12361x x x 32.(2023·湖北)拋物线2(0)y ax bx c a 与x 轴相交于点 3010A B ,,,.下列结论:①0abc <;②240b ac ;③320b c ;④若点 122P m y Q m y ,,,在抛物线上,且12y y ,则1m .其中正确的结论有()A .1个B .2个C .3个D .4个33.(2023·湖北黄冈)已知二次函数2(0)y ax bx c a 的图象与x 轴的一个交点坐标为(1,0) ,对称轴为直线1x ,下列论中:①0a b c ;②若点 1233,,2,,4,y y y 均在该二次函数图象上,则123y y y ;③若m 为任意实数,则24am bm c a ;④方程210ax bx c 的两实数根为12,x x ,且12x x ,则121,3x x .正确结论的序号为()A .①②③B .①③④C .②③④D .①④34.(2023·四川)已知抛物线2y ax bx c (a ,b ,c 是常数且a<0)过 1,0 和 0m ,两点,且34m ,下列四个结论:0abc ①;30a c ②;③若抛物线过点 1,4,则213a ;④关于x 的方程13a x x m 有实数根,则其中正确的结论有()A .1个B .2个C .3个D .4个35.(2023·四川南充)抛物线254y x kx k 与x 轴的一个交点为(,0)A m ,若21m ,则实数k 的取值范围是()A .2114kB .k 214或1k C .5k98D .5k 或k9836.(2023·湖南岳阳)若一个点的坐标满足 ,2k k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数 212y t x t x s (,s t 为常数,1t )总有两个不同的倍值点,则s 的取值范围是()A .1sB .0sC .01sD .10s 二、填空题37.(2023·内蒙古)已知二次函数223(0)y ax ax a ,若点(,3)P m 在该函数的图象上,且0m ,则m 的值为________.38.(2023·湖南郴州)抛物线26y x x c 与x 轴只有一个交点,则c ________.39.(2023·上海)一个二次函数2y ax bx c 的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是________.40.(2023·山东滨州)要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管长度应为____________.41.(2023·福建)已知抛物线22(0)y ax ax b a 经过 1223,,1,A n y B n y 两点,若,A B 分别位于抛物线对称轴的两侧,且12y y ,则n 的取值范围是___________.42.(2023·内蒙古赤峰)如图,抛物线265y x x 与x 轴交于点A ,B ,与y 轴交于点C ,点 2,D m 在抛物线上,点E 在直线BC 上,若2DEB DCB ,则点E 的坐标是____________.43.(2023·湖北武汉)抛物线2y ax bx c (,,a b c 是常数,0c )经过(1,1),(,0),(,0)m n 三点,且3n .下列四个结论:①0b ;②244ac b a ;③当3n 时,若点(2,)t 在该抛物线上,则1t ;④若关于x 的一元二次方程2ax bx c x 有两个相等的实数根,则103m .其中正确的是________(填写序号).44.(2023·四川宜宾)如图,抛物线2y ax bx c 经过点 30A ,,顶点为 1,M m ,且抛物线与y 轴的交点B 在 02 ,和 03 ,之间(不含端点),则下列结论:①当31x 时,0y ;②当ABM 的面积为332时,32a ;③当ABM 为直角三角形时,在AOB 内存在唯一点P ,使得PA PO PB 的值最小,最小值的平方为1893 .其中正确的结论是___________.(填写所有正确结论的序号)45.(2023·吉林长春)2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A 、B 的水平距离为80米时,两条水柱在物线的顶点H 处相遇,此时相遇点H 距地面20米,喷水口A 、B 距地面均为4米.若两辆消防车同时后退10米,两条水柱的形状及喷水口A 、B 到地面的距离均保持不变,则此时两条水柱相遇点H 距地面__________米.三、解答题46.(2023·浙江宁波)如图,已知二次函数2y x bx c 图象经过点(1,2)A 和(0,5)B .(1)求该二次函数的表达式及图象的顶点坐标.(2)当2y 时,请根据图象直接写出x 的取值范围.47.(2023·浙江温州)一次足球训练中,小明从球门正前方8m 的A 处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m 时,球达到最高点,此时球离地面3m .已知球门高OB 为2.44m ,现以O 为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O 正上方2.25m 处?48.(2023·河北)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x 的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188nC y x x c 的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.49.(2023·河南)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA ,2m CA ,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度 m y 与水平距离 m x 近似满足一次函数关系0.4 2.8y x ;若选择吊球,羽毛球的飞行高度 m y 与水平距离 m x 近似满足二次函数关系21 3.2y a x .(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.50.(2023·内蒙古赤峰)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度OA 为28.75cm 的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y (单位:cm ),乒乓球运行的水平距离记为x (单位:cm ).测得如下数据:水平距离x /cm105090130170230竖直高度y/cm28.7533454945330(1)在平面直角坐标系xOy中,描出表格中各组数值所对应的点 ,x y,并画出表示乒乓球运行轨迹形状的大致图象;(2)①当乒乓球到达最高点时,与球台之间的距离是__________cm,当乒乓球落在对面球台上时,到起始点的水平距离是__________cm;②求满足条件的抛物线解析式;(3)技术分析:如果只上下调整击球高度OA,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出OA的取值范围,以利于有针对性的训练.如图②.乒乓球台长OB为274cm,球网高CD为15.25cm.现在已经计算出乒乓球恰好过网的击球离度OA的值约为1.27cm.请你计算出乒乓球恰好落在对面球台边缘点B处时,击球高度OA的值(乒乓球大小忽略不计).51.(2023·湖北武汉)某课外科技活动小组研制了一种航模飞机.通过实验,收集了飞机相对于出发点的飞行水平距离x(单位:m)以、飞行高度y(单位:m)随飞行时间t(单位:s)变化的数据如下表.飞行时间/s t02468…x010203040…飞行水平距离/my022405464…飞行高度/m探究发现:x与t,y与t之间的数量关系可以用我们已学过的函数来描述.直接写出x关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围).问题解决:如图,活动小组在水平安全线上A处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.(1)若发射平台相对于安全线的高度为0m ,求飞机落到安全线时飞行的水平距离;(2)在安全线上设置回收区域,125m,5m MN AM MN .若飞机落到MN 内(不包括端点,M N ),求发射平台相对于安全线的高度的变化范围.52.(2023·广东深圳)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成,其中3m AB ,4m BC ,取BC 中点O ,过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E ,若以O 点为原点,BC 所在直线为x 轴,OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点 0,4E ,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT ,SMNR ,若0.75m FL NR ,求两个正方形装置的间距GM 的长;(3)如图,在某一时刻,太阳光线透过A 点恰好照射到C 点,此时大棚截面的阴影为BK ,求BK 的长.53.(2023·黑龙江)如图,抛物线23y ax bx 与x 轴交于 3,0,1,0A B 两点,交y 轴于点C .(1)求抛物线的解析式.(2)拋物线上是否存在一点P ,使得12PBC ABC S S ,若存在,请直接写出点P 的坐标;若不存在,请说明理由.【参考答案与解析】1.【答案】C【解析】二次函数 2323y x 的对称轴为2x ,顶点坐标为 2,3 ∵30 ,∴二次函数图象开口向下,函数有最大值,为=3y ∴A 、B 、D 选项错误,C 选项正确故选:C.2.【答案】C【解析】解:∵二次函数26y ax x 的图象与x 轴交于(3,0)A ,B 两点,∴0936a ,∴1a ∴二次函数解析式为26y x x 212524x,对称轴为直线12x ,顶点坐标为125,24 ,故A ,B 选项不正确,不符合题意;∵10a ,抛物线开口向上,当1x 时,y 的值随x 值的增大而减小,故D 选项不正确,不符合题意;当0y 时,260x x ,即123,2x x ,∴ 2,0B ,∴5AB ,故C 选项正确,符合题意;故选:C .3.【答案】A【解析】解:将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线的函数表达式为:2(3)4y x .故选:A .4.【答案】C【解析】解:∵直线l 为二次函数2(0)y ax bx c a 的图像的对称轴,∴对称轴为直线>02bx a,当a<0时,则>0b ,当>0a 时,则0b ,∴a ,b 异号,故选:C .5.【答案】D【解析】解:∵ 222112y x x x ,∴对称轴为1x ,当1x 时,函数的最小值为2 ,当0x 时,2211y x x ,当3x 时,232312y ,∴当03x 时,函数的最大值为2,故选:D.6.【答案】D【解析】∵二次函数223y ax ax ,∴对称轴212ax a,当0a 时,∵当03x 时对应的函数值y 均为正数,∴此时抛物线与x 轴没有交点,∴ 22430a a ,∴解得0<<3a ;当a<0时,∵当03x 时对应的函数值y 均为正数,∴当3x 时,9630y a a ,∴解得1a ,∴10a ,综上所述,当03x 时对应的函数值y 均为正数,则a 的取值范围为10a 或0<<3a .故选:D .7.【答案】D【解析】解:由图象开口向下可知a<0,由对称轴bx 02a,得0b .∴一次函数y x b 的图象经过第一、二、三象限,不经过第四象限.故选:D .8.【答案】A【解析】解:令0y ,则 0a x m x m k ,解得:1x m ,2x m k ,∴抛物线对称轴为直线222m m k m kx当2k 时,抛物线对称轴为直线1x m ,,把1x m 代入 2y a x m x m ,得y a ,∵0a ∴当1x m ,2k 时,y 有最小值,最小值为a .故A 正确,B 错误;当4k 时,抛物线对称轴为直线2x m ,把2x m 代入 4y a x m x m ,得4y a ,∵0a ∴当2x m ,4k 时,y 有最小值,最小值为4a ,故C 、D 错误;故选:A .9.【答案】B【解析】解:∵抛物线22122y x bx b c 的对称轴为直线1222b b x b a∵抛物线经过23,()41,),(A b m B b c m 两点,∴23412b bc b ,即1c b ,∴22221122222y x bx b c x bx b b ,∵抛物线与x 轴有交点,∴240b ac ,即22142202b b b,即2440b b ,即 220b ,∴2b ,1211c b ,∴23264,418118b b c ,∴ 41238412AB b c b ,故选:B .10.【答案】C【解析】解:∵抛物线开口向上,与y 轴交于负半轴,∴00a c ,,∵抛物线对称轴为直线1x ,∴12ba,∴20b a ,∴0abc ,故A 中结论错误,不符合题意;∵当4x 时,0y ,抛物线对称轴为直线1x ,∴当2x 时,0y ,∴420a b c ,故B 中结论错误,不符合题意;∵当3x 时,0y ,抛物线对称轴为直线1x ,∴当=1x 时,0y ,∴0a b c ,又∵2b a ,∴30a c ,故C 中结论正确,符合题意;∵抛物线对称轴为直线1x ,且抛物线开口向上,∴抛物线的最小值为2a b c a a c a c ,∴2am bm c a c ,∴20am bm a ,故D 中结论错误,不符合题意;故选C .11.【答案】C【解析】解:A .抛物线 20y ax bx c a 的对称轴为直线=1x ,则12ba,则2b a ,即20a b ,故选项错误,不符合题意;B .抛物线 20y ax bx c a 的对称轴为直线=1x ,点A 的坐标为 4,0 ,当2x 时,420y a b c ,故选项错误,不符合题意;C .抛物线 20y ax bx c a 的对称轴为直线=1x ,若点A 的坐标为 4,0 ,可得点 2,0B ,当2x 时,420y a b c ,即2x 是关于x 的一元二次方程 200ax bx c a 的一个根,故选项正确,符合题意;D .∵抛物线 20y ax bx c a 的对称轴为直线1x = ,开口向上,∴当1x 时,y 随着x 的增大而增大,∴点 11,x y , 22,x y 在抛物线上,当121x x 时12y y ,故选项错误,不符合题意;故选:C .12.【答案】D【解析】解:∵二次函数开口向上,与y 轴交于y 轴负半轴,∴00a c ,,∵二次函数的对称轴为直线=1x ,∴12ba,∴20b a ,∴<0abc ,故①正确;∵二次函数 20y ax bx c a 的图象与x 轴的一个交点坐标为 1,0,∴二次函数 20y ax bx c a 的图象与x 轴的另一个交点坐标为 3,0 ,∴当2x 时,0y ,∴420a b c ,故②正确;∵1x 时,0y ,∴0a b c ,∴20a a c ,即30a c ,故③正确;由函数图象可知,当31x 时,20ax bx c ,故④正确;综上所述,其中正确的结论有①②③④共4个,故选:D .13.【答案】C【解析】解:∵2(31)3(0)y ax a x a ,当1x 时:(31)322y a a a ,∵0a ,∴222a ,即:点(1,2)不在该函数的图象上,故A 选项错误;当1a 时, 224321y x x x ,∴抛物线的开口向上,对称轴为2x ,∴抛物线上的点离对称轴越远,函数值越大,∵13x ,123222 ,∴当=1x 时,y 有最大值为 21218 ,当2x 时,y 有最小值为1 ,∴18y ,故B 选项错误;∵ 222(31)43961310a a a a a ,∴该函数的图象与x 轴一定有交点,故选项C 正确;当0a 时,抛物线的对称轴为:313132222a x a a ,∴该函数图象的对称轴一定在直线32x的右侧,故选项D 错误;故选:C .14.【答案】C【解析】解:∵抛物线开口向上,对称轴在y 轴右边,与y 轴交于正半轴,∴000a b c ,,,∴0abc <,故①正确.∵当1x 时,0y ,∴0a b c ,故②错误.∵抛物线2y ax bx c 与x 轴交于两点 1020x ,,,,其中101x ,∴2021222b a ,∴3122b a ,当322b a时,3b a ,当2x 时,420y a b c ,122b a c ,1232a c a ,∴20a c ,∴ 234342220bc a c c a c a c ,故③正确;设21y ax bx c ,22c y x c ,如图:由图得,12y y 时,02x ,故④正确.综上,正确的有①③④,共3个,故选:C .15.【答案】B【解析】①∵抛物线的开口向上,0.a ∵抛物线与y 轴交点在y 轴的负半轴上,0.c 由02b a得,0b ,0abc ,故①正确;②∵抛物线的对称轴为1x , 12b a, 2b a , 20a b ,故②正确;③由抛物线的对称轴为1x ,可知2x 时和0x 时的y 值相等.由图知0x 时,0y ,∴2x 时,0y .即420a b c .故③错误;④由图知1x 时二次函数有最小值,2a b c am bm c ,2a b am bm ,(a b m ax b ),故④错误;⑤由抛物线的对称轴为1x 可得12b a,2b a ,∴22y ax ax c ,当=1x 时,23y a a c a c .由图知=1x 时0,y 30.a c 故⑤正确.综上所述:正确的是①②⑤,有3个,故选:B .16.【答案】B【解析】解:∵抛物线开口向上,与y 轴交于负半轴, 00a c ,,∵抛物线的对称轴为直线1x ,∴12b a,即20b a ,即②错误;∴0abc ,即①正确,∵二次函数 20y ax bx c a 图像的一部分与x 轴的一个交点坐标为 3,0930a b c 9320a a c ,即30a c ,故③正确;∵关于x 的一元二次方程220(0)ax bx c k a , 2222444b a c k b ac ak ,00a c ,,∴40ac ,240ak ,∴无法判断2244b ac ak 的正负,即无法确定关于x 的一元二次方程220(0)ax bx c k a 的根的情况,故④错误;∵ 212m m ,∴点 1,m y , 22,y m 关于直线1x 对称∵点 1,m y , 22,y m 均在该二次函数图像上,∴12y y ,即⑤正确;综上,正确的为①③⑤,共3个故选:B .17.【答案】A【解析】解:如图所示,设 1,A k ,则 ,1B k ,根据图象可得1k ,将点 ,1B k 代入y x b ,∴1k b ,∴1k b ,∵1k ,∴2b ,∴21y x bx k 2222112=224b b x bx b x bx b x b ,对称轴为直线12b x ,当1x 时,121b b ,∴抛物线经过点()1,1-,∴抛物线对称轴在1x 的右侧,且过定点()1,1-,当0x 时,120y k b ,故选:A .18.【答案】C【解析】解:由图可知,二次函数开口方向向下,与y 轴正半轴交于一点,<0a ,>0c .<02b a∵,<0b .>0abc .故①正确.∵ 3,0,1,0A B 是关于二次函数对称轴对称,12b a. 12,y 在对称轴的左边, 20.5,y 在对称轴的右边,如图所示,12y y .故②正确.∵图象与x 轴交于点 3,0,1,0A B ,930a b c ,0a b c .10220a b c .50a b c .故③正确.∵12b a,2b a .当1x 时,0y ,0a b c .30a c ,3c a ,443<0a c a a a .故④不正确.综上所述,正确的有①②③.故选:C.19.【答案】C【解析】∵抛物线的开口向下,对称轴为直线202b x a,抛物线与y 轴交点位于负半轴,∴0,0,0a b c ,∴0abc ,故①正确;由图象可知,0a b c ,根据对称轴,得4b a ,∴40a a c ,∴30c a ,故②正确;∵抛物线的开口向下,对称轴为直线202b x a ,∴抛物线的最大值为42y a b c ,当x t 时,其函数值为2y at bt c ,∴242a b c at bt c ,∴242a b at bt ,∵0a ,∴ 242a a b at bt ≤a ,∴ 242a ab at b ≤at ,故③错误;如图所示, 11,A x y 和点 22,B x y 满足12y y ,∴ 11,A x y 和点 22,B x y 关于对称轴对称,∴122,2x x ,∵123m x x m ,∴122,23m x x m ,解得52m ,故④正确;故选:C .20.【答案】B【解析】①∵抛物线开口向下,∴a<0.∵抛物线的对称轴为直线12b x a,∴2b a ,由图象可得1x 时,0y ,即0a b c ,而2b a ,∴30a c .故①错误;②∵抛物线开口向下,抛物线的对称轴为直线=1x .故当1x 时,y 随x 的增大而增大,当1x 时,y 随x 的增大而减小,∵ 143 ,134 ,即点 14,y 到对称轴的距离小于点 23,y 到对称轴的距离,故12y y ,故②正确;③由图象可知:二次函数2y ax bx c 与直线1y 有两个不同的交点,即关于x 的一元二次方程21ax bx c 有两个不相等的实数根,故③错误;④∵函数图象经过 0,2,对称轴为直线=1x ,∴二次函数必然经过点 22 ,,∴22ax bx c 时,x 的取值范围20x ,故④正确;综上,②④正确,故选:B .21.【答案】C【解析】解:①∵该抛物线开口向下,∴a<0,∵该抛物线的对称轴在y 轴左侧,∴0b ,∵该抛物线于y 轴交于正半轴,∴0c ,∴0abc ,故①正确,符合题意;②∵1,2A m,∴该抛物线的对称轴为直线122b x a =-=-,则a b ,当1x 时,y a b c ,把a b 得:当1x 时,2y b c ,由图可知:当1x 时,0y ,∴20b c ,故②不正确,不符合题意;③∵该抛物线的对称轴为直线12x ,∴ 13,y 到对称轴的距离为 15322 , 23,y 到对称轴的距离为17322,∵该抛物线开口向下,∴在抛物线上的点离对称轴越远,函数值越小,∵5722,∴12y y ,故③正确,符合题意;④将方程230ax bx c 移项可得23ax bx c ,∵230ax bx c 无实数根,∴抛物线2y ax bx c 与直线3y 没有交点,∵1,2A m,∴3m .故④正确综上:正确的有:①③④,共三个.故选:C .22.【答案】B【解析】解:由抛物线的开口可知:a<0,由抛物线与y 轴的交点可知:0c ,由抛物线的对称轴可知:202b a,∴0b ,∴<0abc ,故①正确;∵抛物线2y ax bx c 与x 轴交于点(60),,对称轴为直线2x ,则另一个交点(20) ,,∴=1x 时,0y ,∴0a b c ,故②正确;∵抛物线2y ax bx c 与x 轴交于点(60),和(20) ,,∴20ax bx c 的两根为6和2 ,∴ 624b a , 6212c a,则4b a ,12c a ,如果方程20cx bx a 的两个根为1211,26x x成立,则111263a c ,而12c a ,∴14a c ,∴方程20cx bx a 的两个根为1211,26x x 不成立,故③不正确;∵122x x ,∴P 、Q 两点分布在对称轴的两侧,∵ 212112222240x x x x x x ,即1x 到对称轴的距离小于2x 到对称轴的距离,∴12y y ,故④不正确.综上,正确的有①②,故选:B .23.【答案】D【解析】解:二次函数开口向下,则a<0,二次函数对称轴为1x ,则12b a,2b a ,0b ,∴0ab ,故①正确;∵过点 1,0 ,∴由对称性可得二次函数与x 轴的另一交点为 3,0,由函数图象可得2x 时0y , 420a b c ,故②正确;1x ∵时0y ,0a b c ,2b a 代入得:30a c ,故③错误;∵对称轴是直线1x ,∴若1212x x ,即122x x 时,12y y ,∴当122x x 时,点 11,A x y 到对称轴的距离小于点 22,B x y 到对称轴的距离∵二次函数开口向下∴12y y ,故④正确.综上所述,正确的选项是①②④.故选:D .24.【答案】B【解析】解:根据函数图象,可得当23x 时,12y y ,故①正确;∵ 3,0A 在223y ax bx 上,∴3x 是方程230ax bx 的一个解;故②正确;∵ 3,0A , 2,5B 在抛物线223y ax bx 上,∴93304235a b a b ,解得:12a b ∴2223y x x 当0y 时,2230x x ,解得:121,3x x ∴当=1x 时,0y ,当4x 时,0y ,∴若 11,t , 24,t 是抛物线上的两点,则12t t ;故③正确;∵2223y x x 214x ,顶点坐标为 14 ,,∴对于抛物线,223y ax bx ,当23x 时,2y 的取值范围是245y ,故④错误.故正确的有3个,故选:B .25.【答案】B【解析】解:∵抛物线2y ax bx c 的图象开口向上,∴0a ,∵抛物线2y ax bx c 经过点(1,0)(,0)A B m 、,且12m ,∴1022b a ,∴0b ,故①正确;∵1022b a ,0a ,∴b a ∴0a b ,故②正确;由图象可知,当1x 时,0y ,即0a bc ,∴a b c ∵0a ,0b ,∴0a c ,故③正确;∵12512332 ,又∵1022b a ,∴252332b b a a ,∵抛物线2y ax bxc 的图象开口向上,∴12y y ,故④错误.∴正确的有①②③共3个,故选:B .26.【答案】B【解析】解:∵抛物线243y ax ax (a 是常数, 0a ,∴4222b a x a a,故①正确;当0x 时,3y ,∴点 0,3在抛物线上,故②正确;当0a 时,12y y ,当0a 时,12y y ,故③错误;根据对称点的坐标得到1222 x x ,124x x ,故④错误.故选:B .27.【答案】D【解析】解:由题意可得:三倍点所在的直线为3y x ,在31x 的范围内,二次函数2y x x c 的图象上至少存在一个“三倍点”,即在31x 的范围内,2y x x c 和3y x 至少有一个交点,令23x x x c ,整理得:240x x c ,则 22444116+40b ac c c ===,解得4c ,x∴12x 22x∴321 或321当321 时,13 ,即03 ,解得45c ,当321 时,31 ,即01 ,解得43c ,综上,c 的取值范围是45c ,故选:D .28.【答案】B【解析】解:连接AC ,交y 轴于点D ,如图所示:当0x 时,则y c ,即OB c ,∵四边形OABC 是正方形,∴22AC OB AD OD c ,AC OB ,∴点,22c c A,∴224c c a c ,解得:2ac ,故选:B .【解析】解:∵抛物线开口向上,对称轴为直线12b x a,与y 轴交于负半轴,∴0,20,0a b a c ,∴0abc ;故①错误;由图可知,抛物线与x 轴的一个交点的横坐标的取值范围为:10x ,∵抛物线关于直线1x 对称,∴抛物线与x 轴的一个交点的横坐标的取值范围为:23x ,∴方程20ax bx c (0a )必有一个根大于2且小于3;故②正确;∵0a ,∴抛物线上的点离对称轴的距离越远,函数值越大,∵ 1230,,,2y y 是抛物线上的两点,且30112 ,∴12y y ;故③错误;∵0,2a b a ,∴ 112522252a c a a b c a a b c ,由图象知:=1x ,0y a b c ,∴ 112520a c a a b c ;故④正确;∵0a ,对称轴为直线1x ,∴当1x 时,函数值最小为:a b c ,∴对于任意实数m ,都有2am bm c a b c ,即:2am bm a b ,∴()m am b a b ;故⑤正确;综上:正确的有3个;故选:C .30.【答案】B【解析】解:如图所示,设直线y m 与抛物线223y x x 交于A 、B 两点,直线y n 与抛物线223y x x 交于C 、D 两点,∵0m n ,关于x 的方程2230x x m 的解为 1212,x x x x ,关于x 的方程2230x x n 的解为3434,()x x x x ,∴1234,,,x x x x 分别是A 、B 、C 、D 的横坐标,∴1342x x x x ,故选B .【解析】解:如图所示,设直线319y x 与抛物线241y x x 对称轴左边的交点为P ,设抛物线顶点坐标为Q联立231941y x y x x ,解得:54x y 或431x y∴ 5,4P ,由 224125y x x x ,则 2,5Q ,对称轴为直线2x ,设123m y y y ,则点,,A B C 在y m 上,∵123y y y 且123x x x ,∴A 点在P 点的左侧,即15x ,232x x ,当5m 时,23x x 对于319y x ,当5y ,8x ,此时18x ,∴18x ,∴185x ∵对称轴为直线2x ,则 23224x x ,∴123x x x 的取值范围是123912x x x ,故选:A .32.【答案】B【解析】解:①由题意得: 223123y ax bx c a x x ax ax a ,∴23b a c a ,,∵a<0,∴00b c ,,∴0abc ,故①错误;②∵抛物线2(0)y ax bx c a 与x 轴相交于点 3010A B ,,,.∴20ax bx c 有两个不相等的实数根,∴240b ac ,故②正确;③∵23b a c a ,,∴32660b c a a ,故③正确;④∵抛物线2(0)y ax bx c a 与x 轴相交于点 3010A B ,,,.∴抛物线的对称轴为:=1x ,当点 122P m y Q m y ,,,在抛物线上,且12y y ,。
二次函数中考题大全(有答案)

初中数学二次函数中考题集锦第1题(2006梅州课改)将抛物2(1)y x =--向左平移1个单位后,得到的抛物线的解析式是. 第2题(2006 泰安非课改)下列图形:其中,阴影部分的面积相等的是( ) A.①②B.②③C.③④D.④①第3题(2006 泰安非课改)抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:容易看出,()20-,是它与x 轴的一个交点,则它与x 轴的另一个交点的坐标为_________.第5题(2006芜湖课改)如图,在平面直角坐标系中,二次函数2(0)y ax c a =+≠的图象过正方形ABOC 的三个顶点A B C ,,,则ac 的值是.第6题(2006滨州非课改)已知抛物线2(1)(2)y x m x m =+-+-与x 轴相交于A B ,两点,且线段2AB =,则m 的值为.第7题.(2006滨州非课改)已知二次函数不经过第一象限,且与x 轴相交于不同的两点,请写出一个满足上述条件的二次函数解析式.第8题.(2006河南课改)已知二次函数222y x x c =-++的对称轴和x 轴相交于点()0m ,,则m 的值为________.第9题(2006临沂非课改)若()123135143A y B y C y⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,,,,为二次函数245y x x =--+的图象上的三点,则123y y y ,,的大小关系是( ) A.123y y y <<B.321y y y << C.312y y y <<D.213y y y <<2 ① ③1-④第12题(2006广东课改)求二次函数221y x x =--的顶点坐标及它与x 轴的交点坐标。
第13题(2006河北非课改)在同一平面直角坐标系中,一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )第14题(2006江西非课改)一条抛物线214y x mx n =++经过点302⎛⎫ ⎪⎝⎭,与342⎛⎫ ⎪⎝⎭,. (1)求这条抛物线的解析式,并写出它的顶点坐标;(2)现有一半径为1,圆心P 在抛物线上运动的动圆,当P 与坐标轴相切时,求圆心P 的坐标.友情提示:抛物线()20y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 第17题(2006上海非课改)二次函数()213y x =--+图象的顶点坐标是( )A.()13-,B.()13,C.()13--,D.()13-, 第18题(2006烟台非课改)已知抛物线2y ax bx c =++过点312A ⎛⎫⎪⎝⎭,,其顶点E 的横坐标为2,此抛物线与x 轴分别交于()10B x ,,()20C x ,两点()12x x <,且221216x x +=. (1)求此抛物线的解析式及顶点E 的坐标;(2)若D 是y 轴上一点,且CDE △为等腰三角形,求点D 的坐标.第19题(2006广州课改)抛物线21y x =-的顶点坐标是()A .(01),B .(01)-,C .(10),D .(10)-,第22题. (2006 白银课改)二次函数2y ax bx c =++图象上部分点的对应值如下表:x3-2- 1- 0 1 2 3 4 y60 4-6- 6- 4-6则使0y <的x第23题. (2006 海南课改)一位篮球运动员站在罚球线后投篮,球入篮得分.下列图象中,可以大致反映篮球出手后到入篮框这一时间段内,篮球的高度()h 米与时间()t 秒之间变化关系的是( )y OxyOxy OxyOxA.B. C. D.第24题(2006梧桐非课改)二次函数2y ax bx =+和反比例函数by x=在同一坐标系中的图象大致是( )第25题(2006天津非课改)已知抛物线24113y x x =--.(I )求它的对称轴;(II )求它与x 轴、y 轴的交点坐标.第26(2006广东非课改)抛物线226y x x c =++与x 轴的一个交点为(10),,则这个抛物线的顶点坐标是.第27题(2006菏泽非课改)若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是()A.1a >B.1a <C.1a ≥D.1a ≤第28题(2006菏泽课改)二次函数2y ax bx c =++的图象如图所示,则直线y bx c =+的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限第29题、(2006衡阳课改)抛物线2(1)3y x =-+的顶点坐标为.第30题、(2006无锡课改)已知抛物线2(0)y ax bx c a =++>的顶点是(01)C ,,直线:3l y ax =-+与这条抛物线交于P Q ,两点,与x 轴,y 轴分别交于点M 和N . (1)设点P 到x 轴的距离为2,试求直线l 的函数关系式;A.B.C.D.(2)若线段MP 与PN 的长度之比为3:1,试求抛物线的函数关系式.1答案:2y x =- 2答案:C 3答案:()30, 5答案:2-6答案:15, 7答案:2y x x =--答案不唯一 8答案:19答案:C12答案:解:221y x x =--2212x x =-+- 2(1)2x =--.∴二次函数的顶点坐标是(12)-,.设0y =,则2210x x --=,2(1)20x --=2(1)21x x -=-=,,1211x x ==二次函数与x轴的交点坐标为(1+。
中考数学有关二次函数大题含答案

中考数学有关二次函数大题含答案1、(2007天津市)知一抛物线与x 轴的交点是)0,2(-A 、B (1,0),且经过点 C (2,8)。
(1)求该抛物线的解析式; (2)求该抛物线的顶点坐标。
2、(2007贵州省贵阳)二次函数2(0)y ax bx c a =++≠的图象如 图1所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2分) (2)写出不等式20ax bx c ++>的解集.(2分)(3)写出y 随x 的增大而减小的自变量x 的取值范围.(2分)(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.(4分3、(2007河北省)如图2,已知二次函数24y ax x c=-+的图像经过点A 和点B .(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P (m ,m )与点Q 均在该函数图像上(其中m >0),且这两点关于抛物线的对称轴对称,求m 的值及点Q 到x 轴的距离.4、(2008•茂名)如图3,在平面直角坐标系中,抛物线y=﹣x 2+bx+c 经过A(0,﹣4)、B (x 1,0)、C (x 2,0)三点,且x 2﹣x 1=5. (1)求b 、c 的值;(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3)在抛物线上是否存在一点P ,使得四边形BPOH 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形;若不存在,请说明理由.x y 33 2 2 11 4 1- 1- 2-O xyO3-9-1 -1AB图2图3 图45、(2008•宁波)如图4,平行四边形ABCD 中,AB=4,点D 的坐标是(0,8),以点C 为顶点的抛物线y=ax 2+bx+c 经过x 轴上的点A ,B . (1)求点A ,B ,C 的坐标;(2)若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式. 6、(2008•南充)如图5,已知平面直角坐标系xoy 中,有一矩形纸片OABC ,O 为坐标原点,AB ∥x 轴,B (3,),现将纸片按如图折叠,AD ,DE 为折痕,∠OAD=30度.折叠后,点O 落在点O 1,点C 落在线段AB 点C 1处,并且DO 1与DC 1在同一直线上. (1)求折痕AD 所在直线的解析式;(2)求经过三点O ,C 1,C 的抛物线的解析式;(3)若⊙P 的半径为R ,圆心P 在(2)的抛物线上运动,⊙P 与两坐标轴都相切时,求⊙P 半径R 的值.图5图67、(2007浙江省)如图6,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2。
中考数学真题二次函数专项练习(带答案)

中考数学真题二次函数一、选择题1.已知点M(−4,a−2) N(−2,a) P(2,a)在同一个函数图象上.则这个函数图象可能是()A.B.C.D.2.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1).B(x2,y2)两点.若x1+x2<0.则直线y= ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限3.设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数).则()A.当k=2时.函数y的最小值为−a B.当k=2时.函数y的最小值为−2aC.当k=4时.函数y的最小值为−a D.当k=4时.函数y的最小值为−2a4.已知二次函数y=ax2−(3a+1)x+3(a≠0).下列说法正确的是()A.点(1,2)在该函数的图象上B.当a=1且−1≤x≤3时.0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时.该函数图象的对称轴一定在直线x=32的左侧5.一个球从地面竖直向上弹起时的速度为10米/秒.经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2.那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.2二、填空题6.在平面直角坐标系xOy中.一个图形上的点都在一边平行于x轴的矩形内部(包括边界).这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图.函数y=(x−2)2(0⩽x⩽3)的图象(抛物线中的实线部分).它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c(0⩽x⩽3)图象的关联矩形恰好也是矩形OABC.则b=.三、解答题7.设二次函数y=ax2+bx+1.(a≠0.b是实数).已知函数值y和自变量x的部分对应取值如下表所示:(1)若m=4.求二次函数的表达式;(2)写出一个符合条件的x的取值范围.使得y随x的增大而减小.(3)若在m、n、p这三个实数中.只有一个是正数.求a的取值范围.8.如图.已知二次函数y=x2+bx+c图象经过点A(1,−2)和B(0,−5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤−2时.请根据图象直接写出x的取值范围.9.已知二次函数y=−x2+bx+c.(1)当b=4,c=3时.①求该函数图象的顶点坐标.②当−1⩽x⩽3时.求y的取值范围.(2)当x⩽0时.y的最大值为2;当x>0时.y的最大值为3.求二次函数的表达式.10.在二次函数y=x2−2tx+3(t>0)中.(1)若它的图象过点(2,1).则t的值为多少?(2)当0≤x≤3时.y的最小值为−2.求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上.且a<b<3.求m的取值范围。
中考数学《二次函数》专项练习(附答案解析)

中考数学《二次函数》专项练习(附答案解析)一、综合题1.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是()(填方案一,方案二,或方案三),则B点坐标是(),求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.2.如图,抛物线 y =-x2+3x +4 与x轴负半轴相交于A点,正半轴相交于B点,与 y 轴相交于C 点.(1)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线 BC 对称的点的坐标;(2)在(1)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.3.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A,B,C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.4.已知抛物线C1:y=ax2+4ax+4a+b(a≠0,b>0)的顶点为M,经过原点O且与x轴另一交点为A.(1)求点A的坐标;(2)若△AMO为等腰直角三角形,求抛物线C1的解析式;(3)现将抛物线C1绕着点P(m,0)旋转180°后得到抛物线C2,若抛物线C2的顶点为N,当b=1,且顶点N在抛物线C1上时,求m的值.5.如图,抛物线G:y=−x2+2mx−m2+m+3的顶点为P(x P,y P),抛物线G与直线l:x=3交于点Q.(1)x P=,y P=(分别用含m的式子表示);y P与x P的函数关系式为;(2)求点Q的纵坐标y Q(用含m的式子表示),并求y Q的最大值;(3)随m的变化,抛物线G会在直角坐标系中移动,求顶点P在y轴与l之间移动(含y轴与l)的路径的长.6.如图,抛物线的顶点D的坐标为(﹣1,4),抛物线与x轴相交于A.B两点(A在B的左侧),与y轴交于点C(0,3).(1)求抛物线的表达式;(2)如图1,已知点E(0,﹣3),在抛物线的对称轴上是否存在一点F,使得△CEF的周长最小,如果存在,求出点F的坐标;如果不存在,请说明理由;(3)如图2,连接AD,若点P是线段OC上的一动点,过点P作线段AD的垂线,在第二象限分别与抛物线、线段AD相交于点M、N,当MN最大时,求△POM的面积.7.已知:如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系xOy中,O为坐标原点,点A(4,0),点B(0,4),ΔABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4√5时,求点P的坐标.9.如图1所示,已知抛物线y=−x2+4x+5的顶点为D,与x轴交于A、B两点(A左B右),与y轴交于C点,E为抛物线上一点,且C、E关于抛物线的对称轴对称,作直线AE.(1)求直线AE的解析式;(2)在图2中,若将直线AE沿x轴翻折后交抛物线于点F,则点F的坐标为(直接填空);(3)点P为抛物线上一动点,过点P作直线PG与y轴平行,交直线AE于点G,设点P的横坐标为m,当S△PGE∶S△BGE=2∶3时,直接写出所有符合条件的m值,不必说明理由.10.综合与探究如图,直线y=−23x+4与x轴,y轴分别交于B,C两点,抛物线y=ax2+43x+c经过B,C两点,与x轴的另一个交点为A(点A在点B的左侧),抛物线的顶点为点D.抛物线的对称轴与x轴交于点E.(1)求抛物线的表达式及顶点D的坐标;(2)点M是线段BC上一动点,连接DM并延长交x轴交于点F,当FM:FD=1:4时,求点M的坐标;(3)点P是该抛物线上的一动点,设点P的横坐标为m,试判断是否存在这样的点P,使∠PAB+∠BCO=90°,若存在,请直接写出m的值;若不存在,请说明理由.11.如图,点A,B在函数y=14x2的图像上.已知A,B的横坐标分别为-2、4,直线AB与y轴交于点C,连接OA,OB.(1)求直线AB的函数表达式;(2)求ΔAOB的面积;(3)若函数y=14x2的图像上存在点P,使得ΔPAB的面积等于ΔAOB的面积的一半,则这样的点P共有个.12.如图,已知二次函数y=ax2﹣2ax+c(a<0)的图象与x轴负半轴交于点A(﹣1,0),与y 轴正半轴交于点B,顶点为P,且OB=3OA,一次函数y=kx+b的图象经过A、B.(1)求一次函数解析式;(2)求顶点P的坐标;,求点M (3)平移直线AB使其过点P,如果点M在平移后的直线上,且tan∠OAM=32坐标;(4)设抛物线的对称轴交x轴于点E,连接AP交y轴于点D,若点Q、N分别为两线段PE、PD上的动点,连接QD、QN,请直接写出QD+QN的最小值.13.如图,抛物线y=ax2+bx+4经过点A(−1,0),B(2,0)两点,与y轴交于点C,点D是拋物线在x轴上方,对称轴右侧上的一个动点,设点D的横坐标为m.连接AC,BC,DB,DC.(1)求抛物线的解析式;(2)当△BCD的面积与△AOC的面积和为7时,求m的值;2(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.(x+m)(x−3m)图象的顶点为M,图象交x轴于A、14.如图,y关于x的二次函数y=−√33mB两点,交y轴正半轴于D点.以AB为直径作圆,圆心为C.定点E的坐标为(−3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;(2)当m为何值时M点在直线ED上?判定此时直线与圆的位置关系;(3)当m变化时,用m表示△AED的面积S,并在给出的直角坐标系中画出S关于m的函数图象的示意图.15.在图1中,抛物线y=ax2+2ax﹣8(a≠0)与x轴交于点A、B(点A在B左侧),与y轴负半轴交于点C,OC=4OB,连接AC,抛物线的对称轴交x轴于点E,交AC于点F.(1)AB的长为,a的值为;(2)图2中,直线ON分别交EF、抛物线于点M、N,OM=√17,连接NC.①求直线ON的解析式;②证明:NC∥AB;③第四象限存在点P使△BFP与△AOC相似,且BF为△BFP的直角边,请直接写出点P坐标.16.如图,直线AB的解析式为y=−43x+4,抛物线y=−13x2+bx+c与y轴交于点A,与x轴交于点C(6,0),点P是抛物线上一动点,设点P的横坐标为m.(1)求抛物线的解析式;(2)如图(1),当点P在第一象限内的抛物线上时,求△ABP面积的最大值,并求此时点P的坐标;(3)过点A作直线l//x轴,过点P作PH⊥l于点H,将△APH绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在坐标轴上,请直接写出点P的坐标.参考答案与解析1.【答案】(1)解:方案一:点B的坐标为(5,0),设抛物线的解析式为:y=a(x+5)(x−5).由题意可以得到抛物线的顶点为(0,5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15(x+5)(x−5)方案2:点B的坐标为(10,0).设抛物线的解析式为:y=ax(x−10).由题意可以得到抛物线的顶点为(5,5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15x(x−10);方案3:点B的坐标为(5,−5),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:y=ax2,把点B的坐标(5,−5),代入解析式可得:a=−15,∴抛物线的解析式为:y=−15x2;(2)解:方案一:由题意:把x=3代入y=−15(x+5)(x−5),解得:y=165=3.2,∴水面上涨的高度为3.2m方案二:由题意:把x=2代入y=−15x(x−10)解得:y=165=3.2,∴水面上涨的高度为3.2m.方案三:由题意:把x=3代入y=−15x2解得:y=−95= −1.8,∴水面上涨的高度为5−1.8= 3.2m.2.【答案】(1)解: 将点D( m,m+1 )代入y=−x2+3x+4中,得:m+1=−m2+3m+4,解得:m=−1或3,∵点D在第一象限,∴m=3,∴点D的坐标为(3,4);令y=0,则−x2+3x+4=0,解得:x1=−1,x2=4,令x=0,则y=4,由题意得A(-1,0),B(4,0),C(0,4),∴OC=OB=4,BC= 4√2,CD=3,∵点C、点D的纵坐标相等,∴CD∥AB,∠OCB=∠OBC=∠DCB=45°,∴点D关于直线BC的对称点E在y轴上.根据对称的性质知:CD=CE=3 ,∴OE=OC−CE=4−3=1,∴点D关于直线BC对称的点E的坐标为(0,1);(2)解: 作PF⊥AB于F,DG⊥BC于G,由(1)知OB=OC=4,∠OBC=45°.∵∠DBP=45°,∴∠CBD=∠PBF.∵CD=3,∠DCB=45°,∴CG=DG= 3√22,∵BC= 4√2,∴BG= 4√2−3√22=5√22∴tan∠PBF=tan∠CBD=DGBG =35.设PF=3t,则BF=5t,OF=5t−4.∴P(−5t+4,3t),∵P点在抛物线上,∴3t=−(−5t+4)2+3(−5t+4)+4解得:t=2225或t=0(舍去).∴点P的坐标为( −25,6625).3.【答案】(1)解:在Rt△AOB中,OA=1,tan∠BAO= OBOA=3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为{a+b+c=09a−3b+c=0c=3,解得: {a =−1b =−2c =3.∴抛物线的解析式为y=﹣x 2﹣2x+3(2)解:①∵抛物线的解析式为y=﹣x 2﹣2x+3,∴对称轴l=﹣ b2a =﹣1,∴E 点的坐标为(﹣1,0).如图, 当∠CEF=90°时,△CEF ∽△COD .此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);当∠CFE=90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于点M ,则△EFC ∽△EMP . ∴EMMP =EFFC =DO OC=13 ,∴MP=3EM .∵P 的横坐标为t ,∴P (t ,﹣t 2﹣2t+3).∵P 在第二象限,∴PM=﹣t 2﹣2t+3,EM=﹣1﹣t ,∴﹣t 2﹣2t+3=﹣(t ﹣1)(t+3),解得:t 1=﹣2,t 2=﹣3(因为P 与C 重合,所以舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P (﹣2,3).∴当△CEF 与△COD 相似时,P 点的坐标为:(﹣1,4)或(﹣2,3); ②设直线CD 的解析式为y=kx+b ,由题意,得{−3k +b =0b =1 ,解得: {k =13b =1,∴直线CD 的解析式为:y= 13 x+1.设PM 与CD 的交点为N ,则点N 的坐标为(t , 13 t+1),∴NM= 13 t+1.∴PN=PM ﹣NM=﹣t 2﹣2t+3﹣( 13 t+1)=﹣t 2﹣ 73t +2. ∵S △PCD =S △PCN +S △PDN ,∴S △PCD = 12 PN •CM+ 12 PN •OM= 12 PN (CM+OM )= 12 PN •OC= 12 ×3(﹣t 2﹣ 73t +2)=﹣ 32 (t+76)2+ 12124 ,∴当t=﹣ 76 时,S △PCD 的最大值为 12124 . 4.【答案】(1)解:∵抛物线C 1:y=ax 2+4ax+4a+b (a ≠0,b >0)经过原点O , ∴0=4a+b ,∴当ax 2+4ax+4a+b=0时,则ax 2+4ax=0, 解得:x=0或﹣4,∴抛物线与x 轴另一交点A 坐标是(﹣4,0)(2)解:∵抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b(a≠0,b>0),(如图1)∴顶点M坐标为(﹣2,b),∵△AMO为等腰直角三角形,∴b=2,∵抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b过原点,∴a(0+2)2+2=0,解得:a=﹣12,∴抛物线C1:y=﹣12x2﹣2x(3)解:∵b=1,抛物线C1:y=ax2+4ax+4a+b=a(x+2)2+b过原点,(如图2)∴a=﹣14,∴y=﹣14(x+2)2+1=﹣14x2﹣x,设N(n,﹣1),又因为点P(m,0),∴n﹣m=m+2,∴n=2m+2即点N的坐标是(2m+2,﹣1),∵顶点N在抛物线C1上,∴﹣1=﹣14(2m+2+2)2+1,解得:m=﹣2+ √2或﹣2﹣√2 5.【答案】(1)m;m+3;y P=x P+3(2)解:∵抛物线 G :y =−x 2+2mx −m 2+m +3 与直线 l :x =3 交于点 Q , ∴把 x =3 代入 y =−x 2+2mx −m 2+m +3 , 得 y Q =−m 2+7m −6 .∵y Q =−m 2+7m −6=−(m −72)2+254,∴当 m =72 时, y Q 的最大值为 254 .(3)解:∵点 P 在 y 轴与 l 之间沿直线 l 1:y =x +3 运动, 如图,设直线 l 1:y =x +3 与 y 轴和直线 l 分别交于点 B 和点 P 1 ,线段 BP 1 的长即为点 P 路径长.把 x B =0 , x P 1=3 代入 y =x +3 得点 B(0,3) ,点 P 1(3,6) , 过点 P 1 作 P 1M ⊥y 轴,垂足为M , 则 P 1M =3,BM =3 , 在 Rt △BMP 1 中, BP 1=√BM 2+MP 12=√32+32=3√2 ,∴点 P 路径长为 3√2 .6.【答案】(1)解:设抛物线的表达式为:y =a (x+1)2+4, 把x =0,y =3代入得:3=a (0+1)2+4,解得:a =﹣1 ∴抛物线的表达式为y =﹣(x+1)2+4=﹣x 2﹣2x+3(2)解:存在.如图1,作C 关于对称轴的对称点C ′,连接EC ′交对称轴于F ,此时CF+EF的值最小,则△CEF的周长最小.∵C(0,3),∴C′(﹣2,3),易得C′E的解析式为:y=﹣3x﹣3,当x=﹣1时,y=﹣3×(﹣1)﹣3=0,∴F(﹣1,0)(3)解:如图2,∵A(﹣3,0),D(﹣1,4),易得AD的解析式为:y=2x+6,过点D作DH⊥x轴于H,过点M作MG⊥x轴交AD于G,AH=﹣1﹣(﹣3)=2,DH=4,∴AD=√AH2+DH2=√22+42=2√5,设M(m,﹣m2﹣2m+3),则G(m,2m+6),(﹣3≤m≤﹣1),∴MG=(﹣m2﹣2m+3)﹣(2m+6)=﹣m2﹣4m﹣3,由题易知△MNG∽△AHD,∴MGMN =ADAH即MN=AH×MGAD =22√5=−√55(m+2)2+√55∵√55<0∴当m =﹣2时,MN 有最大值;此时M (﹣2,3),又∵C (0,3),连接MC ∴MC ⊥y 轴∵∠CPM =∠HAD ,∠MCP =∠DHA =90°, ∴△MCP ∽△DHA , ∴PCAH =MCDH 即 PC2=24 ∴PC =1∴OP =OC ﹣PG =3﹣1=2, ∴S △POM = 12×2×2 =2,7.【答案】(1)解:由题意,得 {0=16a −8a +c 4=c解得 {a =−12c =4∴所求抛物线的解析式为:y=﹣ 12 x 2+x+4(2)解:设点Q 的坐标为(m ,0),过点E 作EG ⊥x 轴于点G .由﹣ 12 x 2+x+4=0, 得x 1=﹣2,x 2=4∴点B 的坐标为(﹣2,0) ∴AB=6,BQ=m+2 ∵QE ∥AC ∴△BQE ∽△BAC∴EG CO =BQBA 即 EG4=m+26 ∴EG =2m+43∴S △CQE =S △CBQ ﹣S △EBQ = 12 BQ •CO ﹣ 12 BQ •EG = 12 (m+2)(4﹣2m+43)= −13m 2+23m +83 =﹣ 13 (m ﹣1)2+3 又∵﹣2≤m ≤4∴当m=1时,S △CQE 有最大值3,此时Q (1,0) (3)解:存在.在△ODF 中. (ⅰ)若DO=DF ∵A (4,0),D (2,0) ∴AD=OD=DF=2又在Rt △AOC 中,OA=OC=4 ∴∠OAC=45度 ∴∠DFA=∠OAC=45度∴∠ADF=90度.此时,点F 的坐标为(2,2) 由﹣ 12 x 2+x+4=2, 得x 1=1+ √5 ,x 2=1﹣ √5此时,点P 的坐标为:P (1+ √5 ,2)或P (1﹣ √5 ,2). (ⅱ)若FO=FD ,过点F 作FM ⊥x 轴于点M由等腰三角形的性质得:OM= 12OD=1∴AM=3∴在等腰直角△AMF中,MF=AM=3∴F(1,3)由﹣12x2+x+4=3,得x1=1+ √3,x2=1﹣√3此时,点P的坐标为:P(1+ √3,3)或P(1﹣√3,3).(ⅲ)若OD=OF∵OA=OC=4,且∠AOC=90°∴AC= 4√2∴点O到AC的距离为2√2,而OF=OD=2 <2√2,与OF≥2 √2矛盾,所以AC上不存在点使得OF=OD=2,此时,不存在这样的直线l,使得△ODF是等腰三角形综上所述,存在这样的直线l,使得△ODF是等腰三角形所求点P的坐标为:P(1+ √5,2)或P(1﹣√5,2)或P(1+ √3,3)或P(1﹣√3,3)8.【答案】(1)解:∵C为OB的中点,点B(0,4),∴点C(0,2),又∵M为AC中点,点A(4,0),0+4 2=2,2+02=1,∴点M(2,1)(2)解:∵⊙P与直线AD,则∠CAD=90°,设:∠CAO=α,则∠CAO=∠ODA=∠PEH=α,tan∠CAO=OCOA =12=tanα,则sinα=√5,cosα=√5,AC=√10,则CD=ACsin∠CDA =√10sinα=10,则点D(0,−8),设直线AD的解析式为:y=mx+n,将点A、D的坐标分别代入得:{0=4m+n−8=n,解得:{m=2n=−8,所以直线AD的表达式为:y=2x−8(3)解:设抛物线的表达式为:y=a(x−2)2+1,将点B坐标代入得:4=a(0-2)2+1,解得:a=34,故抛物线的表达式为:y=34x2−3x+4,过点P作PH⊥EF,则EH=12EF=2√5,cos∠PEH=EHPE =2√5PE=cosα=√5,解得:PE=5,设点P(x,34x2−3x+4),则点E(x,2x−8),则PE=34x2−3x+4−2x+8=5,解得x=143或2(舍去2),则点P(143,193) .9.【答案】(1)解:∵抛物线的解析式为y=−x2+4x+5,∴该抛物线的对称轴为:x=−42×(−1)=2,令y=−x2+4x+5中x=0,则y=5,∴点C的坐标为(0,5),∵C、E关于抛物线的对称轴对称,∴点E的坐标为(2×2−0,5),即(4,5),令y =−x 2+4x +5中y =0,则−x 2+4x +5=0, 解得:x 1=−1,x 2=5,∴点A 的坐标为(−1,0)、点B 的坐标为(5,0), 设直线AE 的解析式为y =kx +b ,将点A(−1,0)、E(4,5)代入y =kx +b 中, 得:{0=−k +b 5=4k +b ,解得:{k =1b =1,∴直线AE 的解析式为y =x +1; (2)(6,-7)(3)解:符合条件的m 值为0、3、3−√412和3+√412.10.【答案】(1)解:当x =0时,得y =4, ∴点C 的坐标为(0,4),当y =0时,得−23x +4=0,解得:x =6, ∴点B 的坐标为(6,0), 将B ,C 两点坐标代入,得{36a +43×6+c =0,c =4. 解,得{a =−13,c =4.∴抛物线线的表达式为y =−13x 2+43x +4.∵y =−13x 2+43x +4=−13(x 2−4x +4−4)+4=−13(x −2)2+163.∴顶点D 坐标为(2,163). (2)解:作MG ⊥x 轴于点G ,∵∠MFG =∠DFE ,∠MGF =∠DEF =90°, ∴ΔMGF ∽ΔDEF .∴FM FD =MG DE.∴14=MG163.∴MG =43当y =43时,43=−23x +4 ∴x =4.∴点M 的坐标为(4,43).(3)解:∵∠PAB +∠BCO =90°,∠CBO +∠BCO =90°, ∴∠PAB =∠CBO ,∵点B 的坐标为(6,0),点C 的坐标为(0,4), ∴tan ∠CBO =46=23, ∴tan ∠PAB =23, 过点P 作PQ ⊥AB , 当点P 在x 轴上方时,−13m 2+4m +12m +2=23解得m=4符合题意, 当点P 在x 轴下方时,13m 2−4m −12m +2=23解得m=8符合题意, ∴存在,m 的值为4或8.11.【答案】(1)解:∵A ,B 是抛物线 y =14x 2 上的两点,∴当 x =−2 时, y =14×(−2)2=1 ;当 x =4 时, y =14×42=4 ∴点A 的坐标为(-2,1),点B 的坐标为(4,4) 设直线AB 的解析式为 y =kx +b , 把A ,B 点坐标代入得 {−2k +b =14k +b =4解得, {k =12b =2所以,直线AB 的解析式为: y =12x +2 ; (2)解:对于直线AB : y =12x +2 当 x =0 时, y =2 ∴OC =2∴S ΔAOB =S ΔAOC +S ΔBOC = 12×2×2+12×2×4 =6 (3)412.【答案】(1)解:∵A (﹣1,0), ∴OA=1 ∵OB=3OA , ∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)解:∵二次函数y=ax 2﹣2ax+c (a <0)的图象与x 轴负半轴交于点A (﹣1,0),与y 轴正半轴交于点B (0,3), ∴c=3,a=﹣1,∴二次函数的解析式为:y=﹣x 2+2x+3 ∴抛物线y=﹣x 2+2x+3的顶点P (1,4) (3)解:设平移后的直线的解析式为:y=3x+m ∵直线y=3x+m 过P (1,4), ∴m=1,∴平移后的直线为y=3x+1 ∵M 在直线y=3x+1,且 设M (x ,3x+1)①当点M 在x 轴上方时,有 3x+1x+1=32 ,∴x =13 , ∴M 1(13,2)②当点M 在x 轴下方时,有 −3x+1x+1=32 ,∴x =−59 , ∴M 2(−59 , −23)(4)解:作点D 关于直线x=1的对称点D ′,过点D ′作D ′N ⊥PD 于点N , 当﹣x 2+2x+3=0时,解得,x=﹣1或x=3, ∴A (﹣1,0), P 点坐标为(1,4),则可得PD 解析式为:y=2x+2, 根据ND ′⊥PD ,设ND ′解析式为y=kx+b , 则k=﹣ 12 ,将D ′(2,2)代入即可求出b 的值, 可得函数解析式为y=﹣ 12 x+3,将两函数解析式组成方程组得: {y =−12x +3y =2x +2 ,解得 {x =25y =145 ,故N ( 25 , 145 ),由两点间的距离公式:d= √(2−25)2+(2−145)2 = 4√55, ∴所求最小值为4√5513.【答案】(1)解:把A (-1,0),B (2,0)代入抛物线解析式得: {a −b +4=04a +2b +4=0,解得: {a =−2b =2∴抛物线的解析式为: y =−2x 2+2x +4 (2)解:如图,连接OD ,由 y =−2x 2+2x +4 可得: 对称轴为 x =−22×(−2)=12 ,C (0,4)∵D(m,−2m 2+2m +4)(12<m <2) ,A (-1,0),B (2,0) ∴∴S △BCD =S △OCD +S △BCD −S △OBC=12×4m +12×2·(−2m 2+4m +2)−12×2×4=−2m 2+4m S △AOC =12×1×4=2又∵S △BCD +S △AOC =72 ∴−2m 2+4m +2=72 ,∴4m 2−8m +3=0解得: m 1=12 , m 2=32 ,当 m 1=12 时,点在对称轴上,不合题意,舍去,所以取 m 2=32 , 综上, m =32(3)解: M 1(0,0) , M 2(4,0) , M 3(√142,0) , M 4(−√142,0)14.【答案】(1)解:令y =0,则−√33m (x +m)(x −3m)=0,解得x 1=−m ,x 2=3m ;令x =0,则y =−√33m (0+m)(0−3m)=√3m .故A(−m ,0),B(3m ,0),D(0,√3m).(2)解:设直线ED 的解析式为y =kx +b ,将E(−3,0),D(0,√3m)代入得:{−3k +b =0b =√3m解得,k =√33m ,b =√3m .∴直线ED 的解析式为y =√33mx +√3m .将y =−√33m (x +m)(x −3m)化为顶点式:y =−√33m (x −m)2+4√33m . ∴顶点M 的坐标为(m ,4√33m).代入y =√33mx +√3m 得:m 2=m∵m >0,∴m =1.所以,当m =1时,M 点在直线DE 上. 连接CD ,C 为AB 中点,C 点坐标为C(m ,0). ∵OD =√3,OC =1, ∴CD =2,D 点在圆上又∵OE =3,DE 2=OD 2+OE 2=12, EC 2=16,CD 2=4, ∴CD 2+DE 2=EC 2.∴∠EDC =90°∴直线ED 与⊙C 相切.(3)解:当0<m <3时,S △AED =12AE ⋅OD =√32m(3−m)S =−√32m 2+3√32m . 当m >3时,S ΔAED =12AE ⋅OD =√32m(m −3).即S =√32m 2_3√32m . S 关于m 的函数图象的示意图如右:15.【答案】(1)6;1(2)解:①由抛物线的表达式知,抛物线的对称轴为x=﹣1,故设点M的坐标为(﹣1,m),则OM=12+m2=(√17)2,解得m=4(舍去)或﹣4,故点M的坐标为(﹣1,﹣4),由点O、M的坐标得,直线OM(即ON)的表达式为y=4x②,故答案为y=4x;②联立①②并解得{x=−2y=−8,故点N(﹣2,﹣8),∵点C、N的纵坐标相同,故NC∥x轴,即NC∥AB;③当∠BFP为直角时,由A(﹣4,0),C(0,-8)可求AC解析式为y=-2x﹣8,把x=-1,代入y=-2x﹣8得,y=-6,点F的坐标为:(-1,-6),由点F、B的坐标得,直线BF的表达式为y=2x﹣4,当x=﹣2时,y=2x﹣4=﹣8,故点N在直线BF上,连接FN,过点F作FP⊥BF交NC的延长线于点K,由直线BF 的表达式知,tan ∠BNK =2,则tan ∠FKN = 12 , 故设直线PF 的表达式为y =﹣ 12 x+t , 将点F 的坐标代入上式并解得t =﹣ 132 ,则直线PF 的表达式为y =﹣ 12 x ﹣ 132 ,故设点P 的坐标为(m ,﹣ 12 m ﹣ 132 ), 在Rt △AOC 中,tan ∠ACO = AOCO = 12 ,则tan ∠OCA =2, ∵△BFP 与△AOC 相似, 故∠FBP =∠ACO 或∠OAC ,则tan ∠FBP =tan ∠ACO 或tan ∠OAC ,即tan ∠FBP = 12 或2, 由点B 、F 的坐标得:BF = √32+62=3√5 , 则PF =BFtan ∠FBP =3√52或6 √5 ,由点P 、F 的坐标得:PF 2=(m+1)2+(﹣ 12 m ﹣ 132 +6)2=( 3√52)2或(6 √5 )2, 解得m =2或﹣4(舍去)或11或﹣13(舍去), 故点P 的坐标为(11,﹣12)或(2,﹣ 152 ); 当∠PBF 为直角时,过点B 作BP ⊥BF ,同理可求直线PF 的表达式为y =﹣ 12 x+1,故设点P 的坐标为(m ,﹣ 12 m ﹣1),同理可得,PB =BFtan ∠FBP =3√52或6 √5 ,由点P 、B 的坐标得:PB 2=(m-2)2+(﹣ 12 m+1)2=(3√52)2或(6 √5 )2,解得m=-1(舍去)或5或14或﹣10(舍去),点P的坐标为(5,﹣32)或(14,-6);综上,点P的坐标为(11,﹣12)或(2,﹣152)或(5,﹣32)或(14,-6);16.【答案】(1)解:当x=0时,y=−43x+4=4,则A(0,4),把A(0,4),C(6,0)代入y=−13x2+bx+c得{−12+6b+c=0c=4,解得{b=43c=4,∴抛物线解析式为y=−13x2+43x+4;(2)连接OP,设P(m,−13m2+43m+4),当y=0时,−43x+4=0,解得x=3,则B(3,0),S△ABP=S△AOP+S△POB−S△AOB=12⋅4⋅m+12⋅3⋅(−13m2+43m+4)−12⋅3⋅4=−12m2+4m,=−12(m−4)2+8,当m=4时,△ABP面积有最大值,最大值为8,此时P点坐标为(4,4);(3)在Rt△OAB中,AB=√32+42=5,当点P′落在x轴上,如图2,∵△APH绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在x 轴上∴P′H′=PH=4−(−13m2+43m+4)=13m2−43m,AH′=AH=m,∠P′H′A=∠PHA=90∘,∵∠P′BH′=∠ABO,∴△BP ′H ′ ∽ △BAO ,∴P ′H ′ : OA =BH ′ :OB ,即 (13m 2−43m) : 4=BH ′ :3, ∴BH ′=14m 2−m , ∵AH ′+BH ′=AB ,∴m +14m 2−m =5 ,解得 m 1=2√5 , m 2=−2√5( 舍去 ) ,此时P 点坐标为 (2√5,−8+8√53) ; 当点 P ′ 落在y 轴上,如图3,同理可得 P ′H ′=PH =13m 2−43m , AH ′=AH =m , ∠P ′H ′A =∠PHA =90∘ , ∵∠P ′AH ′=∠BAO , ∴△AH ′P ′′ ∽ △AOB ,∴P ′H ′ : OB =AH ′ :AO ,即 (13m 2−43m) : 3=m :4, 整理得 4m 2−25m =0 ,解得 m 1=254, m 2=0( 舍去 ) ,此时P 点坐标为 (254,−4348) ; 综上所述,P 点坐标为 (2√5,−8+8√53) 或 (254,−4348) ;。
中考数学《二次函数的三种形式》专项练习题及答案

中考数学《二次函数的三种形式》专项练习题及答案一、单选题1.二次函数y=-2(x-1)2+3的图象的顶点坐标是()A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)2.二次函数y=(x+1)2-1图象的顶点坐标是( )A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)3.抛物线y=(x+1)2+2的对称轴为()A.直线x=1B.直线x=-1C.直线x=2D.直线x=-24.二次函数y=3(x-2)2-1的图象的顶点坐标是()A.(2,-1)B.(-2,-1)C.(2,1)D.(-2,1)5.若b>0,则二次函数y=x2+2bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限6.将抛物线y=2x2向右平移2个单位,再向上平移3个单位,所得抛物线的表达式为()A.y=2(x+2)2+3B.y=(2x﹣2)2+3C.y=(2x+2)2﹣3D.y=2(x﹣2)2+37.对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是() A.y =-2x2 + 8x +3B.y =-2x2 –8x +3C.y = -2x2 + 8x –5D.y =-2x2 –8x +28.二次函数y=x2-6x+5的图像的顶点坐标是()A.(-3,4)B.(3,-4)C.(-1,2)D.(1,-4)9.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+710.抛物线y=(x−2)2+1的顶点坐标是()A.(−2, −1)B.(−2, 1)C.(2, −1)D.(2, 1)11.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下列函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是A.1米B.5米C.6米D.7米12.已知二次函数的解析式为:y=-3(x+5)2﹣7,那么下列说法正确的是()A.顶点的坐标是(5,-7)B.顶点的坐标是(-7,-5)C.当x=-5时,函数有最大值y=-7D.当x=-5时,函数有最小值y=-7二、填空题13.将抛物线y=﹣﹣12x2﹣3x+1写成y=a(x+h)2+k的形式应为.14.如果二次函数y=x2+bx+c配方后为y=(x﹣2)2+1,那么c的值为15.将二次函数y=x2+4x﹣2配方成y=(x﹣h)2+k的形式,则y=.16.若y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式(其中m,k为常数),则m+k=;当x=时,二次函数y=x2+2x﹣2有最小值.17.把二次函数y=(x﹣2)2+1化为y=x2+bx+c的形式,其中b、c为常数,则b+c=.18.将二次函数y=x2−4x+5化成y=a(x−ℎ)2+k的形式为.三、综合题19.如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.20.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN 的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使∥PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.21.如图,已知二次函数y=ax2+bx+c的图象过点A(﹣1,0)和点C(0,3),对称轴为直线x=1.(1)求该二次函数的关系式和顶点坐标;(2)结合图象,解答下列问题:①当﹣1<x<2时,求函数y的取值范围.②当y<3时,求x的取值范围.22.已知二次函数y=x2−2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?23.把下列函数化为y=a(x+m)2+k形式,并求出各函数图象的顶点坐标、对称轴、最大值或最小值:(1)y=x2﹣2x+4;(2)y=100﹣5x2.24.如图,抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣1,0),B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)连接BC,点P为抛物线上第一象限内一动点,当∥BCP面积最大时,求点P的坐标;(3)设点D是抛物线的对称轴上的一点,在抛物线上是否存在点Q,使以点B,C,D,Q为顶点的四边形为平行四边形?若存在,求出点Q的坐标;若不存在,说明理由.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】D7.【答案】C8.【答案】B9.【答案】A10.【答案】D11.【答案】C12.【答案】C13.【答案】y=﹣12(x+3)2+11214.【答案】515.【答案】(x+2)2﹣616.【答案】-4;-117.【答案】118.【答案】y=(x−2)2+119.【答案】(1)解:∵OM=ON=4∴M点坐标为(4,0),N点坐标为(0,4)设抛物线解析式为y=a(x﹣4)2把N(0,4)代入得16a=4,解得a= 1 4所以抛物线的解析式为y= 14(x﹣4)2= 14x2﹣2x+4(2)解:∵点A的横坐标为t ∴DM=t﹣4∴CD=2DM=2(t﹣4)=2t﹣8把x=t代入y= 14x2﹣2x+4得y= 14t2﹣2t+4∴AD= 14t2﹣2t+4∴l=2(AD+CD)=2(14t2﹣2t+4+2t﹣8)= 12t 2﹣8(t >4) 20.【答案】(1)解:将点B (3,0)、C (0,3)代入抛物线y=x 2+bx+c 中得: {0=9+3b +c 3=c ,解得: {b =−4c =3 ∴抛物线的解析式为y=x 2﹣4x+3.(2)解:设点M 的坐标为(m ,m 2﹣4m+3),设直线BC 的解析式为y=kx+3 把点点B (3,0)代入y=kx+3中 得:0=3k+3,解得:k=﹣1 ∴直线BC 的解析式为y=﹣x+3. ∵MN∥y 轴∴点N 的坐标为(m ,﹣m+3).∵抛物线的解析式为y=x 2﹣4x+3=(x ﹣2)2﹣1 ∴抛物线的对称轴为x=2 ∴点(1,0)在抛物线的图象上 ∴1<m <3.∵线段MN=﹣m+3﹣(m 2﹣4m+3)=﹣m 2+3m=﹣ 12 + 94∴当m= 32 时,线段MN 取最大值,最大值为 94 .(3)解:假设存在.设点P 的坐标为(2,n ). 当m= 32 时,点N 的坐标为( 32 , 32) ∴PB= √(2−3)2+(n −0)2 = √1+n 2 ,PN= √(2−32)2+(n −32)2 ,BN= √(3−32)2+(0−32)2=3√22.∥PBN 为等腰三角形分三种情况:①当PB=PN 时,即 √1+n 2 = √(2−32)2+(n −32)2解得:n= 12此时点P 的坐标为(2, 12);②当PB=BN 时,即 √1+n 2 = 3√22解得:n=± √142此时点P 的坐标为(2,﹣ √142 )或(2, √142);③当PN=BN 时,即 √(2−32)2+(n −32)2 = 3√22解得:n= 3±√172此时点P 的坐标为(2, 3−√172 )或(2, 3+√172).综上可知:在抛物线的对称轴l 上存在点P ,使∥PBN 是等腰三角形,点的坐标为(2, 12)、(2,﹣√142 )、(2, √142 )、(2, 3−√172 )或(2, 3+√172). 21.【答案】(1)解:根据题意得 {a −b +c =0c =3−b2a =1 ,解得 {a =−1b =2c =3,所以二次函数关系式为y=﹣x 2+2x+3,因为y=﹣(x ﹣1)2+4 所以抛物线的顶点坐标为(1,4);(2)解:①当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下 所以当﹣1<x <2时,0<y≤4;②当y=3时,﹣x 2+2x+3=3,解得x=0或2 所以当y <3时,x <0或x >2.22.【答案】(1)解:∵∥=(﹣2m )2﹣4×1×(m 2+3)=4m 2﹣4m 2﹣12=﹣12<0∴方程x 2﹣2mx+m 2+3=0没有实数解, 即不论m 为何值,该函数的图象与x 轴没有公共点; (2)解:y=x 2﹣2mx+m 2+3=(x ﹣m )2+3∴把函数y=x 2﹣2mx+m 2+3的图象沿y 轴向下平移3个单位长度后,得到的函数的图象与x 轴只有一个公共点.23.【答案】(1)解:y=x 2﹣2x+4=x 2﹣2x+1+3=(x ﹣1)2+3.顶点坐标是(1,﹣1),对称轴为x=1,最小值为﹣1 (2)解:y=100﹣5x 2.顶点坐标是(0,100),对称轴为x=0,最大值为10024.【答案】(1)解:设抛物线解析式为y=a (x+1)(x ﹣3)把C (0,3)代入得a•1•(﹣3)=3,解得a=﹣1所以抛物线解析式为y=﹣(x+1)(x ﹣3),即y=﹣x 2+2x+3 (2)解:设直线BC 的解析式为y=kx+m把B (3,0),C (0,3)代入得 {3k +m =0m =3 ,解得 {k =−1m =3所以直线BC 的解析式为y=﹣x+3 作PM∥y 轴交BC 于M ,如图1设P(x,﹣x2+2x+3),(0<x<3),则M(x,﹣x+3)∴PM=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x∴S∥PCB= 12•3•PM=﹣32x2+ 92=﹣32(x﹣32)2+ 278当x= 32时,∥BCP的面积最大,此时P点坐标为(32,154)(3)解:如图2抛物线的对称轴为直线x=1当四边形BCDQ为平行四边形,设D(1,a),则Q(4,a﹣3)把Q(4,a﹣3)代入y=﹣x2+2x+3得a﹣3=﹣16+8+3,解得a=﹣2∴Q(4,﹣5);当四边形BCQD为平行四边形时,设D(1,a),则Q(﹣2,3+a)把Q(﹣2,3+a)代入y=﹣x2+2x+3得3+a=﹣4﹣4+3,解得a=﹣8∴Q(﹣2,﹣5);当四边形BQCD为平行四边形时,设D(1,a),则Q(2,3﹣a)把Q(2,3﹣a)代入y=﹣x2+2x+3得3﹣a=﹣4+4+3,解得a=0∴Q(2,3)综上所述,满足条件的Q点坐标为(4,﹣5)或(﹣2,﹣5)或(2,3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. 先向右平移 2 个单位 , 再向下平移 3 个单位
D. 先向右平移 2 个单位 , 再向上平移 3 个单位
【答案】 B
2. ( 2011 广东广州市, 5,3 分)下列函数中 , 当 x>0 时 y 值随 x 值增大而减小的是 ( ).
A. y = x2
B. y = x-1
3 C. y = 4 x
【答案】 D
17. ( 2011 山东济宁, 8,3 分)已知二次函数
y
2
ax
bx
c 中,其函数 y 与自变量 x
之间的部分对应值如下表所示:
x
……
0
1
2
3
4
……
y
……
4
1
0
1
4
……
点 A( x1 , y1 )、B( x2 , y2 )在函数的图象上,则当 1 x1 2, 3 x2 4 时, y1 与 y2
B.有最小值- 1,有最大值 0
C .有最小值- 1,有最大值 3
D.有最小值- 1,无最大值
【答案】 D 10.( 2011 四川重庆, 7, 4 分)已知抛物线 y=ax2+ bx+ c( a≠0) 在平面直角坐标系中的位
置如图所示,则下列结论中正确的是 ( )
A. a>0 B . b<0 C . c< 0 D . a+ b+ c>0
可能是( )
【答案】 C
20.( 2011 四川广安, 10, 3 分)若二次函数 y (x m) 2 1 .当 x ≤ l 时, y 随 x 的增大
全国各地中考数学试卷试题分类汇编
第 13 章 二次函数
一、选择题
1. ( 2011 山东滨州, 7,3 分)抛物线 y
2
x2
3 可以由抛物线 y
x2 平移得到 , 则下
列平移过程正确的是 ( )
A. 先向左平移 2 个单位 , 再向上平移 3 个单位
B. 先向左平移 2 个单位 , 再向下平移 3 个单位
1 D. y = x
【答案】 D
3. (2011 湖北鄂州, 15,3 分)已知函数 y
2
x 1 1 x≤3
,则使 y=k 成立的 x 值恰
x
2
5
1 x>3
好有三个,则 k 的值为(
)
A. 0
B. 1
C. 2
D. 3
4. ( 2011 山东德州 6,3 分)已知函数 y ( x a)( x b) (其中 a b )的图象
C. 4 个
D. 1 个
y
1
-1 O
1
x
【答案】 D 16. ( 2011 江苏宿迁 ,8,3 分)已知二次函数 y= ax2+bx+ c( a≠ 0)的图象如图,则下列结
论中正确的是(▲)
A. a>0 C. c<0
B.当 x> 1 时, y 随 x 的增大而增大 D . 3 是方程 ax2+ bx+ c= 0 的一个根
如下面右图所示,则函数 y ax b 的图象可能正确的是
第 6 题图 y
1 O1 x ( A) 【答案】 D
y
1
-1 O
x
(B)
y
-1
O
x
-1
(C)
y
1
O
x
-1
(D)
5. ( 2011 山东菏泽, 8,3 分)如图为抛物线 y ax2 bx c 的图像, A、 B、C 为抛物线
与坐标轴的交点,且 OA=OC=1,则下列关系中正确的是
的大小关系正确的是
A. y1 y 2 B . y1 y2
C
. y1 y2
D
. y1 y2
【答案】 B
18. ( 2011 山东聊城, 9, 3 分)下列四个函数图象中,当
增大而减小的是(
)
x<0 时,函数值 y 随自变量 x 的
【答案】 D
19. ( 2011 山东潍坊, 12,3 分)已知一元二次方程 ax2 bx c 0 (a 0) 的两个实数根 x1 、 x2 满足 x1 x2 4 和 x1 x2 3 ,那么二次函数 y ax2 bx c ( a 0) 的图象有
【答案】 D 11. ( 2011 台湾台北, 6)若下列有一图形为二次函数
y=2x
2
-
8x+6
的图形,
则此图为何?
【答案】 A
12. (2011 台湾台北, 32)如图 ( 十四 ) ,将二次函数 y=31x2-999 x+892 的图形画在坐标
平面上,判断方程
式 31x2-999 x+892=0 的两根,下列叙述何者正确?
D.( 2,- 1)
【答案】 A
15. ( 2011 甘肃兰州, 9, 4 分)如图所示的二次函数 y ax2 bx c 的图象中,刘星同学
观察得出了下面四条信息: ( 1) b2 4ac 0 ;(2) c>1;( 3) 2a- b<0;( 4) a+b+c<0。你
认为其中错.误.的有
A. 2 个
B. 3 个
C.-13
D.-27
【答案】 D
7. ( 2011 山东威海, 7,3 分)二次函数 y x2 2x 3 的图象如图所示.当 y<0 时,自
变量 x 的取值范 围是(
).
A.- 1< x< 3
B. x<- 1
C. x > 3
D. x<- 1 或 x> 3
【答案】 A
8. ( 2011 山东烟台, 10,4 分)如图,平面直角坐标系中,两条抛物线有相同的
A.两根相异,且均为正根 C.两根相同,且为正根
B
.两根相异,且只有一案】 A
13. ( 2011 台湾全区, 28)图 ( 十二 ) 为坐标平面上二次函数 y ax 2 bx c 的图形,且此
图形通(- 1 , 1)、( 2 , - 1)两点.下列关于此二次函数的叙述,何者正确?
A . y 的最大值小于 0
B
C.当 x=1 时, y 的值大于 1 D
.当 x= 0 时, y 的值大于 1 .当 x=3 时, y 的值小于 0
【答案】 D
14. ( 2011 甘肃兰州, 5, 4 分)抛物线 y
2
x
2x 1的顶点坐标是
A.( 1, 0)
B.(- 1, 0)
C.(- 2, 1)
A. a+b=- 1
B. a- b=- 1 C . b<2a
D . ac<0
【答案】 B
2
6. ( 2011 山东泰安, 20 , 3 分)若二次函数 y=ax +bx+c 的 x 与 y 的部分对应值如下表:
X
-7
-6
-5
-4
-3
-2
y
-27
-13
-3
3
5
3
则当 x=1 时, y 的值为
A.5
B.-3
则下列关系正确的是(
)
A. m=n, k> h
B
.m= n ,k< h
C. m>n,k= h
D
. m< n, k= h
对称轴,
【答案】 A
9. ( 2011 浙江温州, 9,4 分)已知二次函数的图象 (0 ≤ x≤3) 如图所示.关于该函数在所
给自变量取值范围内,下列说法正确的是 ( )
A .有最小值 0,有最大值 3