发电机自动准同期并列不成功原因的初步分析详细版

合集下载

发电机自动准同期并网断路器拒合原因分析

发电机自动准同期并网断路器拒合原因分析

科技信息1.引言我发电厂发电机采用自动准同期装置并列,型号是SYN3000自动准同期装置。

在并网时出现过几次在电压和频率条件满足后,并网断路器出现拒合现象。

通过对故障的分析,现总结了以下几点原因,仅供大家参考。

2.并网断路器拒合原因分析:2.1机械原因:断路器操作机构经过多次的合闸和跳闸后,机械严重磨损,可能会出现以下故障[1,2]:(1)操作机构卡死;(2)操作机构及传动连接中螺栓丝杆拉脱、插口销脱落;(3)自动脱扣机构磨损,使断路器再扣困难,容易脱扣;(4)弹簧机构故障。

如果出现断路器拒绝合闸现象,首先应该判断是否因为断路器操作机构故障引起。

将并网断路器退至试验位置,按手动分、合闸按钮,检查断路器分、合闸情况,判断断路器是否因为操作机构故障引起并网断路器拒合。

2.2电气原因:2.2.1控制回路问题经过长时间的运行,控制回路会经常出现以下几种情况,引起断路器拒绝合闸现象[3]:(1)操作电源电压低;(2)合闸回路断线;(3)合闸线圈烧坏;(4)自动准同期合闸继电器线圈烧坏;(5)自动准同期合闸继电器接线松动、断线、触点粘连;(6)合闸闭锁电磁铁烧坏。

用万用表对控制回路中的操作电压、各个接点、线圈、继电器触点进行仔细检查,判断断路器是否因为控制回路中存在断线、线圈烧坏、电压低等故障引起并网断路器拒合。

2.2.2检测回路问题2.2.2.1SYN3000自动准同期装置功能描述:SYN3000自动准同期装置用于对同期或非同期的三相或单相系统进行同期和并列,该装置配备了10个遥控输入通道以适应现场各种不同形式的并网要求。

该遥控输入可以启动SYN3000的全部功能。

当SYN3000自动准同期装置输入工作电源时,自动准同期装置进入准备状态,在装置面板上显示“准备”信号。

当机组转速速达到90%额定转速时(我站自动准同期装置功能启动触发条件),转速令接点闭合,自动准同期装置的遥控输入接点得电,自动准同期装置被“选中”,“选中”指示灯亮,开始计算相应的电压输入信号。

发电机并网条件及误操作

发电机并网条件及误操作

发电机并网条件及误操作小水电站发电机误并列的几个因素及防止作者:佚名文章来源:本站原创点击数:87 更新时间:2007-12-20 13:46:35 【字体:小大】湖北安全生产信息网(安全生产资料大全) 寻找资料>>1概述海南松涛水利工程管理局有小水电站13座,装机31台,单机容量从200kW至10000kW 不等。

这些渠道跌水电站普通使用同步表法的手动准同期,把发电机并入电网。

但运行实践证明,发电机误并列情况时有发生。

误并列由于其合闸时机控制不好,或控制失误,很难满足准同期电压差、频率差及相角差要求,发电机可能受到冲击损坏。

这点,常常因为有些误并列当时没有造成严重后果而被忽视。

2手动准同期装置的核心元件分析2.1用于捕捉合闸时机的同步表现场常用的电磁式同步表的接线(见图1),当接到其A、B 和K1、K2端子的电压úAB与úK1K2频率不相等时,同步表指针将不停地旋转,且频率差越大,旋转越快。

当指针指在同期点时,表明úAB与úK1K2相位达到相同。

根据同期电压接线原理,以上两电压分别反映发电机一次电压úAB和电网电压úA′B′。

如果一次电压相序一致,则一次电压对应相的相位分别相同。

这就是同步表的频率差、相角差鉴定原理。

图1同步表、同期检查继电器接线示意图图1同步表、同期检查继电器接线示意图2.2同期检查继电器设计接线中,把同期检查继电器TJJ(见图2)的常闭接点串入同期合闸操作回路中,以控制合闸脉冲。

TJJ一般采用DT-13型继电器,如图1所示。

它的两个线圈分别并接在同步表的A、B与K1、K2端子电压上,且极性相反。

当两电压相角差大于其动作角δdz时,TJJ动作,常闭接点断开,禁止发出合闸脉冲;相角差小于其返回值δh时,TJJ返回,常闭接点闭合,允许发出合闸脉冲。

但当频率差较大时,TJJ往返动作快,接点处在闭合状态的时间比断路器固有合闸时间短,断路器不能合闸。

发电机自动准同期并列不成功原因的初步分析

发电机自动准同期并列不成功原因的初步分析

发电机自动准同期并列不成功原因的初步分析8月24日3:13运转人员准备发电机采用D-AVR自动升压,发电机自动准同期并列,当操作执行第26步在DCS上将“ASS START/STOP”按钮选择在“ON”位置和第27步在DCS上将“CONFIRM”按钮选择“ON”位置,即将发电机自动准同期装置投入后,自动准同期装置开始自动检同期,经过一段时间后,自动准同期装置发出告警信号,装置闭锁,发电机自动准同期并网失败。

5:10发电机采用D-AVR自动升压,发电机手动准同期并列成功。

原因初步分析发电机自动准同期装置发出的告警信号为“滑差太小”。

根据发电机自动准同期装置内部特性,当发电机与系统之间滑差<0.02Hz、时间大于30秒后,装置将发出闭锁,本次同期并网失败告警。

根据特性,当发电机的频率与系统的频率不一致时,装置将自动向DEH发出增速或减速信号,发出的信号脉冲宽度与发电机与系统频差大小相反,即发电机与系统频差越大,增、减速信号脉冲宽度越宽,相反,发电机与系统频差越小,增、减速信号脉冲宽度越小。

而DEH接受的最小信号宽度为200ms,即当发电机与系统频差小于一定值以后,自动准同期装置向DEH发出的最小信号宽度将小于DEH接受的最小信号宽度,使汽轮机不能增、减转速,最终使发电机自动同期失败。

防范措施发电机并列前,使发电机的频率/转速稍高于系统的频率/转速,使发电机与系统之间的滑差大于0.02Hz(1.2rpm),以保证自动同期装置对DEH的正常调节。

减小DEH的最小脉冲信号接受宽度,或增加自动同期装置向DEH 发出的最小增速或减速信号脉冲宽度。

(9月2日自动同期装置厂家已将DEH脉冲增加至220ms)(9月5日发电机自动同期并网良好)以上分析仅是对本次发电机自动准同期并网失败情况的分析,由于发电机总启动期间未对发电机自动准同期、发电机程序并网回路进行假并列试验,建议接机之前找一合适机会对上述回路进行试验。

同步发电机常见故障及对策

同步发电机常见故障及对策

同步发电机常见故障及对策.txt小时候觉得父亲不简单,后来觉得自己不简单,再后来觉得自己孩子不简单。

越是想知道自己是不是忘记的时候,反而记得越清楚。

浅谈同步发电机常见故障及对策来源:电机维修网频道:电机发布时间:2008-08-13发电机在运行中会不断受到振动、发热、电晕等各种机械力和电磁力的作用,加之由于设计、制造、运行管理以及系统故障等原因,常常引起发电机温度升高、转子绕组接地、定子绕组绝缘损坏、励磁机碳刷打火、发电机过负载等故障,同步发电机运行中常见的一些故障分析如下。

发电机常见故障及措施2.1 发电机非同期并列发电机用准同期法并列时,应满足电压、周波、相位相同这3个条件,如果由于操作不当或其它原因,并列时没有满足这3个条件,发电机就会非同期并列,它可能使发电机损坏,并对系统造成强烈的冲击,因此应注意防止此类故障的发生。

当待并发电机与系统的电压不相同,其间存有电压差,在并列时就会产生一定的冲击电流。

一般当电压相差在±10%以内时,冲击电流不太大,对发电机也没有什么危险。

如果并列时电压相差较多,特别是大容量电机并列时,如果其电压远低于系统电压,那么在并列时除了产生很大的电流冲击外,还会使系统电压下降,可能使事故扩大。

一般在并列时,应使待并发电机的电压稍高于系统电压。

如果待并发电机电压与系统电压的相位不同,并列时引起的冲击电流将产生同期力矩,使待并发电机立刻牵入同步。

如果相位差在土300以内时,产生的冲击电流和同期力矩不会造成严重影响。

如果相位差很大时,冲击电流和同期力矩将很大,可能达到三相短路电流的2倍,它将使定子线棒和转轴受到一个很大的冲击应力,可能造成定子端部绕组严重变形,联轴器螺栓被剪断等严重后果。

为防止非同期并列,有些厂在手动准同期装置中加装了电压差检查装置和相角闭锁装置,以保证在并列时电差、相角差不超过允许值。

2.2 发电机温度升高(1)定子线圈温度和进风温度正常,而转子温度异常升高,这时可能是转子温度表失灵,应作检查。

水轮发电机组自动准同期并网故障解析

水轮发电机组自动准同期并网故障解析

水轮发电机组自动准同期并网故障解析匡全忠!郭光海(白溪水库建设发展有限公司9浙江省宁海县315606)摘要!水轮发电机组往往在系统中起到调峰\调频和事故备用的作用9因此9要求水轮机组能快速及时并网D 发生自动准同期故障使水轮机组的优势大打折扣9影响其功能的正常发挥D 文中针对白溪电站发生的凡次自动准同期并网故障9从电压\频率和相位差三方面入手9全面深入地分析了故障原因9并提出了相应的整改措施9取得了良好的实际效果D 对其他电站也有很好的借鉴作用D 关键词!水轮发电机组9自动准同期故障9水电站9整改措施中图分类号!T V 734.4收稿日期 2004-07-13D0 引言随着国民经济的持续快速增长9近两年全国普遍出现了电力供应紧张的局势O 因此9对于电网和发电厂的安全运行也提出了越来越高的要求9特别是系统对于水轮发电机组能快速准确并网的要求也更为明确O白溪水电站位于浙江省宁海县境内9装机容量2>9MW O 容量虽不大9却是宁波市最大的常规水电站9起到系统调峰\调频和事故备用的作用O 因此9要求机组频繁开停机9并及时准确地并入系统O1 基本情况白溪水电站电气主接线采用一机一变的单元接线方式9发电机额定电压为6.3k V O 正常情况下发电同期并列点选在发电机断路器9同期点电压由6.3k V 母线压变和发电机母线压变引入9并通过机组同期装置采取自动准同期(自准)的方式并网O 发生自准故障时9可利用继保室操作表计柜上装设的组合式同期表和同期开关进行手动准同期O 电站1号机\2号机都曾因不同原因多次发生自准故障9不能及时并网9严重影响电站各项功能的充分发挥O 1.1 故障12001年6月8日8时35分9上位机开机9令2号机开机至空载O 2号机按开机流程(如图1所示)正常开机至空载状态O 发令投自准装置并网O 2号发电机断路器合闸后9机组即发生事故停机O 事故后查2号机保护装置为差动保护动作跳闸O 对2号机进行全面深入的检查92号发电机定子绕组及其引出线都未发现故障9事故原因未查明O 此后91号机\2号机都相继发生几次相同事故O 同时9发现事故时机组并网均有较大的冲击声O 据此9判断机组并网并非同期合闸O图1 开机流程1.2 故障22001年6月21日13时1分9上位机开机9令2号机开机至空载9一切正常O 发令投自准装置并网O 约1m i n 后9上位机报2号机自准故障O 同时9发现2号机频率变化偏大9难以稳定O 到机旁将2号机调速器切H 手动H 位置9手动将机组频率调节到约50H zO 再将2号机调速器切回至H 自动H 位置9机组频率又不稳定9难以满足并网条件O 此后91号机也出现过类似情况O 1.3 故障32003年5月9日8时30分9上位机开机9令2号机开机并网O 2号机按流程开机9转速上升至95%N e 9机组建压9投自准装置后约5S 9上位机报2号机自准故障O 到操作表计柜进行手准并网成功O 此后92号机多次出现此故障9而1号机只是偶尔出现O21第28卷 第6期2004年12月20日V O L .28 N O .6D e c .20920042故障分析准同期并列的条件是:待并发电机电压与系统电压数值相等;频率相等;在投入发电机断路器瞬间9两侧电压的瞬时相位差为0o由于理想条件难以实现9故只要将电压差~频率差及相位差控制在允许范围内9是不会对发电机造成危害的o因此9导致上述故障不外乎频率~电压及相位差3种原因o下面分别对上述3种故障情况进行分析o2.1故障1事故发生后9查看2号发电机保护动作记录9最后跳闸数据如下o跳闸前电流:A相469A9B相495A9C相410A;跳闸前差动电流:A相185A9B 相0A9C相237A;跳闸前电压:A相5862V9B相5840V9C相5792V;跳闸前负序电流是最大负序电流的14%;跳闸前频率49.98H z;跳闸前有功0.627MW;跳闸前无功-1.336M v a r o同时9查看上位机2号发电机并网前的历史记录92号发电机的频率及机端电压未见异常9基本满足并网条件o由此9初步推断事故原因可能是并网瞬间相位差过大导致机组并网时冲击较大引起差动保护动作o采用自准方式并网时9并网时机把握不够准确将会导致并网瞬间相位差过大o查阅自准装置使用手册和2号发电机自准装置参数表发现9自准装置的合闸脉冲导前时间TD L的默认初始值为400m S o 而2号发电机开关合闸时间出厂试验值和安装测试值分别为69m S和70m S o显然9合闸脉冲导前时间与开关合闸时间相差太大导致2号机并网不同期产生较大冲击o可为什么会导致差动保护动作呢?对2号机差动保护用的电流互感器特性曲线进行测试9发现发电机出线侧电流互感器为测量用的0.5级o当发电机产生较大冲击电流时9差动电流无法躲过整定值9引起保护动作o1号机组的情况与2号机基本相同o将自准装置合闸脉冲导前时间更改为70m S;同时9将发电机出线侧电流互感器更换为保护用的B/B级后9机组未发生过此类故障o2.2故障2此类故障显然是由于机组调速器无法使机组稳定在额定转速运行造成的o而导致调速器伺服电机来回抽动~运行不稳定有多种因素o伺服电机是控制调速器稳定运行的重要部件o 调速器伺服电机的驱动电源来自:①可编程调节器输入的控制电压;②电动集成随动装置的反馈信号o 控制电压由频给~机频及功给等信号经可编程调节器综合输出o机组空载时9频给为定值9功给为09故导致调速器伺服电机来回抽动~不稳定的因素可能是机频和电动集成随动装置的反馈信号o机频信号来自发电机母线调速器电压互感器9输入到可编程调节器测频接口板o空载时9机频只与导叶开度有关o查机频信号无异常情况o电动随动装置的反馈信号是由电动集成阀经反馈电位器输入到伺服电机驱动电源的;电动集成阀阀芯的上下运动带动导向环在反馈电位器上下滑动9将阀芯的位移经电位器反馈给伺服电机的控制回路o查伺服电机驱动电源9反馈电位器与伺服电机的接线松动9且反馈电位器多处存在零点9不能正常反映导叶开度o由以上分析可知9伺服电机来回抽动~调速器开度不稳定是电动集成随动装置的反馈信号失真引起的o空载开度不稳定使机频变化较大9难以稳定;并网时很难捕捉到并网时机9容易引起自准并网失败o 手准并网对机组冲击相对较大o更换1号机和2号机调速器的反馈电位器后9机组空载时能稳定运行在额定转速9为成功并网提供有利条件o2.3故障3据故障统计9发现该故障多发生在2号机9发生时系统电压较低9最低达到5.45k V o同时9投自准初始9自准装置电源投入;调节一段时间后9自准装置失去电源o查看机组P L C梯形图(如图2所示)发现9投自准装置电源前要将机端电压和90%Ue (即5.67k V)进行比较o当机端电压大于5.67k V 时才投自准装置电源o图2投自准装置电源梯形图由此推断该故障的全过程如下:上位机正常开机投励磁9机组建压9达到正常值后开始进行电压比较9当机端电压大于5.67k V时9延时1S投机组自准装置电源o自准装置开始调节机组转速~电压以满足并网条件o因系统电压较低9当低于5.67k V31"调速励磁与辅机控制"匡全忠等水轮发电机组自动准同期并网故障解析时 为满足并网条件 自准装置把机端电压调节至低于5.67k V 后自准装置自身电源失去 无法再进行自准并网 因此上位机报自准故障 但是 为什么在电站运行两年后才出现此故障呢?为什么常发生在2号机呢?这是由于2003年系统出现供电紧张局势 且电站机组开机并网时往往是系统负荷最大的时候 致使并网时系统电压较低 而后者的原因是2号机所在的线路为35k V 且白溪电站处在系统的末梢 2号机所属系统电压通常比1号机低约0.1k V考虑到系统用电紧张 且调节主变分接头比较复杂 故对投自准装置的比较电压值进行调整 由5.67k V 改为5.40k V 调整后机组并网再未发生此类故障 提高了自准并网的可靠性3 结语本文对白溪电站所发生的水轮机组自准故障进行了全面的分析 找出了故障原因 并提出了相应的整改措施 经过实践检验 满足运行要求 大大提高了机组的自准并网可靠性白溪电站所发生的自准并网故障具有相当的普遍性 对于其他电站有一定的借鉴意义 下面就白溪电站发生的3种故障进行总结a .故障1主要原因是自准装置参数设定与发电机开关合闸时间不匹配且差动保护用的电流互感器型号错误 因此 在机组调试和设备出厂时 应该对设备的各项重要参数进行全面的测试比较 以达到设计目的 满足用户的要求b .故障2是调速器反馈电位器接触不好引起的 间题不大 却是麻烦不小 如不及时发现 伺服电机频繁来回抽动 容易烧毁电机3机组空载运行状态不稳定 会引起机组振动~水导摆度增大 因此 应该加强对设备的检查维护 保证设备的各元件能正常运行c .故障3是由于系统电压较低引起的比较少见 同时 也表明在设定各设备参数时要根据实际的需要匡全忠(1976-> 男 助理工程师 从事水电站运行检修管理工作 E -m a i L :k u a n g gz 09@ 163.c O m (上接第7页>5 卢 强孙元章.电力系统非线性控制.北京:科学出版社 19936 孙郁松.水轮发电机水门非线性控制规律的研究.电力系统自动化 1999 23(23>:33~367 李基成.现代同步发电机励磁系统设计及应用.北京:中国电力出版社 20028 电机工程手册.北京:机械工业出版社 19969 高景德王祥行 李发海.交流电机及其系统的分析.北京:清华大学出版社 199310 陈 缔.同步电机运行基本理论与计算机算法.北京:水利电力出版社 199211 黄家裕岑文辉.同步电机基本理论及其动态行为分析.上海:上海交通大学出版社 198912 谢小荣韩英锋 崔文进 等.多机电力系统中发电机励磁控制设计的数学模型.中国电机工程学报 200221(9>:8~12 2113 沈祖治.水轮机调节系统分析.北京:水利水电出版社 199114 王敬民杨嘉勤 曾 云 等.水轮发电机组综合控制器研究---控制策略设计.云南水力发电 2000 16(4>:78~8115 王敬民杨嘉勤 曾 云 等.水轮发电机组综合控制器研究---理论设计.云南水力发电 2000 16(4>:82~8416 李春文冯元垠.多变量非线性控制的逆系统方法.北京:清华大学出版社 199117 刘 翔李东海 姜学智 等.水轮发电机组的非线性控制器仿真研究.中国电机工程学报 2002 22(1>:91~96陈祖嘉(1979-> 男 硕士研究生 主要研究方向为电力系统及水力电力自动化 E -m a i L :z u ji a -c h e n @S O h u .c O m S T U D YO N M U L T I V A R I A B L ET O T A LC O N T R O L L E R O R H Y D R OT U R B I N EG E N E R A T O RS E T S I NI S O L A T E DG R I D SC h e nz u j i a ,z h a n g J i a n gb i n (X i *a nU n i v e r S i r y O fT ec h n O L O g y ,X i *a n710048,C h i n a )A b a c S r a r r i n g W i r hr h ee x c i r a r i O na n dr h e g O v e r n O rO fh yd r Or u r b i ne g e n e r a r O rS e r S ,af r e ra n a L y z i ng rh er r a d i r i O n a L r O r a L a u r O m a r i c g e n e r a r i O n c O n r r O L L e r ,b a S e d O n r h e r h e O r y O f i n v e r S e S y S r e mn O n L i n e a r c O n r r O L ,r h i S p a p e r i n v e S r i g a r e S r h e a p pr O a c h r O r h em u L r i v a r i a b L er O r a Lc O n r r O L L e rf O rh y d r Or u r b i n e g e n e r a r O rS e r Si ni S O L a r e d g r i d S .T h eS i m u L a r i O nr e S u L r Si n d i c a r er h a r ,c O m p a r e dW i r h r h e r r a d i r i O n a L c O n r r O L L e r ,r h e r O r a L c O n r r O L L e rb a S e dO nr h e r h e O r y O f i n v e r S eS y S r e mc a n i m p r O v en O rO n L y r h e S y S r e m *S r r a n S i e n r S r a b i L i r y ,b u r a L S O r h e p r e c i S i O nO f v O L r a g e c O n r r O L .K e y w o d h y d r O r u r b i n e g e n e r a r O r S e r ;e x c i r a r i O n ;g O v e r n O r ;m u L r i v a r i a b L e r O r a L c O n r r O L L e r ;r h e O r y O f i n v e r S e S y S r e mn O n L i n e a r c O n r r O L412004 28(6>水轮发电机组自动准同期并网故障解析作者:匡全忠, 郭光海作者单位:白溪水库建设发展有限公司,浙江省,宁海县,315606刊名:水电自动化与大坝监测英文刊名:HYDROPOWER AUTOMATION AND DAM MONITORING年,卷(期):2004,28(6)被引用次数:2次1.路玉锋我的并网经验[期刊论文]-农村电工2005(11)2.汪鹏.WANG Peng发电机非同期并网事故分析和改进措施[期刊论文]-湖北电力2008,32(5)3.邢海仙大华电站机组甩负荷试验[期刊论文]-云南水力发电2002,18(3)4.陈贤明.王伟.吕宏水.刘国华.王彤水轮发电机起励仿真研究[会议论文]-20065.徐立群.Xu Li-qun一种用于水轮机组甩负荷水锤防护的装置措施[期刊论文]-云南水力发电2005,21(1)6.李晓忠.苑国栋.范焕杰发电机同期试验造成机组跳闸原因分析及处理[会议论文]-20097.梁力元.戈宝军.牛志雷1000MW水轮发电机运行特性的分析[会议论文]-20108.杨海.吴爱兵.董丽娜关于水电站机组甩负荷的几点分析[期刊论文]-水利科技与经济2008,14(12)9.刘卫亚缩短甩负荷后水轮机调速器调节时间[会议论文]-200010.潘淑改.郭伟震.张宏杰.陈磊.张炳月小浪底西沟电站机组带主变零起升压浅析[会议论文]-20091.匡全忠励磁系统改造过程中存在问题的分析[期刊论文]-水电自动化与大坝监测 2009(2)2.徐庆芳十三陵蓄能电厂机组并网不成功原因分析和解决方案[期刊论文]-水电自动化与大坝监测 2007(3)本文链接:/Periodical_dbgcytgcs200406004.aspx。

浅析发电机自动准同期并网技术

浅析发电机自动准同期并网技术

浅析发电机自动准同期并网技术【摘要】本文结合自动准同期装置在宣钢的成功使用经验,对发电机自动准同期并网进行浅要的分析介绍。

【关键词】发电机;同期并网;自动准同期;电压;频率引言发电机必须并入电力系统才能将所发出的电能上送至系统中,才能实现电能从发电机流向用电设备,对发电机与电力系统之间的并列操作就是同期并网操作,同期并网操作是发电机操作中的一项关键内容,操作出现问题将直接导致发电机并网失败。

当前,企业电网的规模日益增大,同时发电机的数量和容量都在不断增加,这就需要对同期并网技术进行深入的了解,最终实现能够将发电机准确、可靠、稳定的并入系统目标。

1、发电机并网的条件手动准同期的缺点1.1发电机并网的条件(1)发电机机端母线的电压与系统母线的电压幅值相等并且波形一致。

(2)发电机所发出电的频率与系统的频率相同,均为50Hz。

(3)发电机侧电压与系统侧电压的相序相同。

(4)合闸的瞬间,发电机侧电压与系统侧电压相位相同。

在以上四个条件具备的基础上,就能完成发电机的顺利并网,在并网瞬间,发电机机端电压与系统电压的瞬时值越是差距越小,则发电机并网时受到的冲击就越小,并网过程就越平稳。

2、手动同期并网的缺点老式发电机采用的手动准同期装置,虽然可以通过人工观察合闸前的发电机与系统两侧的电压、频率等数值,通过调节发电机本体和励磁装置来调节发电机侧的参数使其等于系统侧参数,并在参数相同的时刻合上并网开关,实现发电机的并网操作,但是根据实际情况来看,其始终摆脱不了如下几条缺点:(1)不能自动选择合闸的时机,对操作人员的专业素质和操作熟练程度依赖性较大。

(2)老的手动准同期装置的精度下降,虽然是在同期装置所显示的可以合闸的区间进行合闸并网工作,但是往往由于操作的延时和装置的细小误差而使实际合闸过程并不满足发电机并网的条件,这种状况就造成了非同期并网。

(3)过程完全需要人工进行干预,不能实现自动调节。

3、微机自动准同期装置的结构我厂选用的微机自动准同期装置属于越前时间恒定的自动并列装置,这种并列装置对发电机侧和系统侧的电压频率进行检测,当在设定的越前时刻检测到两侧的电压差和频率差均在设定的允许范围之内,则迅速启动合闸逻辑并输出合闸信号驱动断路器合闸,实现发电机的并网,这样能够最大程度上保证在经过了断路器固有的合闸延时之后,两侧电压与频率的差值仍然处于最小的范围。

大型火力发电机组顺控同期并网失败常见原因分析及防范

大型火力发电机组顺控同期并网失败常见原因分析及防范
2.2 同期装置上电瞬间 发 “装 置 失 电”毛 刺 脉 冲 导 致 顺 控同期并网失败
某 电 厂 一 期 工 程 同 期 装 置 采 用 深 圳 智 能 SID-2CM 型 微机装置。由于本身固有特性,同期装置在上电瞬间会产 生宽约20ms的“装置 失 电”脉 冲, 该 脉 冲 参 与 的 逻 辑 有 时 会导致同期装置退出, 因 此 曾 多 次 造 成 #2 发 电 机 顺 控 失 败。经过完善相应逻辑,保证同 期 装 置“装 置 失 电”脉 冲 宽 度在不超过 1200ms时 不 参 与 其 后 的 逻 辑。 逻 辑 修 改 后,
2 顺控同期并网失败常见原因及防范措施
期并网,延长机组额定转速空转甚至灭火停炉,火电厂都 要付出较大的社会和经济代价,因此提高顺控并网的可靠 性,进而 实 现 起 机 过 程 中 一 次 顺 控 同 期 并 网 成 功 极 为 重要。
目前涉及机组顺控同期并网的 ECS硬件、微机同期装 置等设备技术成熟、可靠性较高,造成同期并网失败的原 因往往是 ECS逻辑或外部回路问题。
2.4 发电机转子剩磁过低导致起励失败 某电厂曾发生#1 发 电 机 在 检 修 期 间 进 行 转 子 直 流 电
阻测试时,由于极性接反造成转子去磁效应,转子剩磁过 低,因此机组在起机过程中,前8次起励均告失败,经起 励电源冲击9次后才能正常起励建压。由此可知,在起励 失败时应检查起励电源是否正常、发电机转子剩磁是否过 低、起励回路是否存在问题,尤其是进行发电机转子预防 性试验时需考虑是否会导致转子退磁效应。
收 稿 日 期 :2018-11-25 作者简介:潘崴(1974-),从事电力系统 电 气 二 次 维 护、试 验、调 试工作。
文献[1]曾介 绍 郑 州 泰 祥 电 厂 顺 控 逻 辑 ECS“DEH 允 许”与同期装 置 “同 期 请 求”存 在 逻 辑 死 锁 的 情 况, 即 ECS 顺控逻辑开始 需 满 足 “DEH 允 许 ”自 动 同 期 指 令, 而 满 足 “DEH 允许”自动 同 期 指 令 的 前 提 是 同 期 装 置 发 “同 期 请 求”信号,但同期 装 置 是 在 之 后 才 上 电 运 行 的, 因 此 造 成 逻辑死锁。某电厂刚开始也存在同样的逻辑死锁,解决的 办法不是通过 ECS将“同期 请 求”逻 辑 强 制 为 “1”, 而 是 通 过硬接线短接该信号接点来实现逻辑解锁。

水力发电厂发电机同期合闸失败分析及处理

水力发电厂发电机同期合闸失败分析及处理

水力发电厂发电机同期合闸失败分析及处理摘要:发电机的存在是水力发电工作的重要保障,也是水力发电厂运营过程中不可缺少的设备,由于整个水力发电的工作环境具有潮湿性,且相对恶劣,很容易会对发电机的使用寿命造成较为严重的影响,引发故障的同时,导致发电机无法正常使用。

正因如此,本文就当前我国水力发电厂发电机在同期合闸过程中所产生的失败情况进行较为详细地分析,提出导致该情况发生的主要原因与影响,并以此基础开展处理措施的内容论述。

关键词:水力发电厂;发电机;同期合闸通常情况下,电力系统在运行的过程中,发电机应当呈现为并列的状态,无论哪一种规模的发电机都要呈现出旋转的同步性,并且不同发电机在转子相角之间的差距不能够超过极限值,这样不但能够确保电力系统的运行质量能够得到有效保障,同时也是确保水电厂经济效益能够得到有效提升的重要措施。

在这一过程中,为了满足系统的运行需求,相关人员应当对断路器开展相应的合格处理,并明确系统两侧电压在同期条件方面是否存在共性,一旦这方面出现问题,很有可能就会导致电力系统受到不必要的冲击。

一、同期合闸的应用内容作为快速并网的重要手段,同期合闸的本质就是对同期并列的应用,使得发电机能够呈现同步性,这样不仅能够有效降低能源消耗,同时还能够避免设备在运行过程中出现故障情况,当发生故障时,可以通过备用设备的应用来确保整个电力系统的运行质量不会受到较为严重的影响。

在这一过程中,断路器一旦出现问题,或者是电压情况出现问题,都会导致同期合闸的失败。

正因如此,水电厂在进行系统管理的过程中,需要加强对同期合闸装置的重视程度,并确保整个线路具有完好性,从而确保后续工作能够得到有效开展[1]。

在这一过程中,为了确保发电机在进行同期合闸的过程中,自身所承受的冲击力相对较小,需要达到相应的条件与标准:(1)无论是系统的电压还是发电机两端的电压都要具有相近性,在额定电压方面需要处于5到10的百分比区间内,同时额定电压也要控制在20千瓦,这样能够确保后续工作顺利开展;(2)相角差是无法避免的,在进行发电机管理的过程中,应当明确并列状态下的发电机所具备的电压与系统电压不能够超过10%的相角差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文件编号:GD/FS-7614
A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing.
编辑:_________________
单位:_________________
日期:_________________
(解决方案范本系列)
发电机自动准同期并列不成功原因的初步分析详细

发电机自动准同期并列不成功原因
的初步分析详细版
提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。

,文档所展示内容即为所得,可在下载完成后直接进行编辑。

8月24日3:13运行人员准备发电机采用D-AVR自动升压,发电机自动准同期并列,当操作执行第26步在DCS上将“ASS START/STOP”按钮选择在“ON”位置和第27步在DCS上将“CONFIRM”按钮选择“ON”位置,即将发电机自动准同期装置投入后,自动准同期装置开始自动检同期,经过一段时间后,自动准同期装置发出告警信号,装置闭锁,发电机自动准同期并网失败。

5:10发电机采用D-AVR自动升压,发电机手动准同期并列成功。

原因初步分析
发电机自动准同期装置发出的告警信号为“滑差太小”。

根据发电机自动准同期装置内部特性,当发电机与系统之间滑差<0.02Hz、时间大于30秒后,装置将发出闭锁,本次同期并网失败告警。

根据特性,当发电机的频率与系统的频率不一致时,装置将自动向DEH发出增速或减速信号,发出的信号脉冲宽度与发电机与系统频差大小相反,即发电机与系统频差越大,增、减速信号脉冲宽度越宽,相反,发电机与系统频差越小,增、减速信号脉冲宽度越小。

而DEH接受的最小信号宽度为200ms,即当发电机与系统频差小于一定值以后,自动准同期装置向DEH发出的最小信号宽度将小于DEH接受的最小信号宽度,使汽轮机不能增、减转速,最终使发电机自动同期失败。

防范措施
发电机并列前,使发电机的频率/转速稍高于系统的频率/转速,使发电机与系统之间的滑差大于0.02Hz(1.2rpm),以保证自动同期装置对DEH 的正常调节。

减小DEH的最小脉冲信号接受宽度,或增加自动同期装置向DEH发出的最小增速或减速信号脉冲宽度。

(9月2日自动同期装置厂家已将DEH脉冲增加至220ms)(9月5日发电机自动同期并网良好)以上分析仅是对本次发电机自动准同期并网失败情况的分析,由于发电机总启动期间未对发电机自动准同期、发电机程序并网回路进行假并列试验,建议接机之前找一合适机会对上述回路进行试验。

可在这里输入个人/品牌名/地点
Personal / Brand Name / Location Can Be Entered Here。

相关文档
最新文档