高中文科数学平面向量知识点整理

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中文科数学平面向量知识点整理

1、概念

向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 单位向量:长度等于1个单位的向量.

平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.

相等向量:长度相等且方向相同的向量. 相反向量:a =-b ⇔b =-a ⇔a +b =0

向量表示:几何表示法AB ;字母a 表示;坐标表示:a =xi+yj =(x,y).向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a .

( 2

22222||,||a x y a a x y =+==+。)

零向量:长度为0的向量。a =O ⇔|a |=O .

【例题】1.下列命题:(1)若a b =,则a b =。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若AB DC =,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则AB DC =。(5)若,a b b c ==,则a c =。(6)若//,//a b b c ,则//a c 。其中正确的是_______

(答:(4)(5))

2.已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____

(答:13);

2、向量加法运算:

⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.

⑶三角形不等式:a b a b a b -≤+≤+.

⑷运算性质:①交换律:a b b a +=+;②结合律:()()

a b c a b c ++=++;

b

a

C

B

A

a b C C -=A -AB =B

③00a a a +=+=.

⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:

⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--.

【例题】

(1)①AB BC CD ++=___;②AB AD DC --=____;

③()()AB CD AC BD ---=_____ (答:①AD ;②CB ;③0);

(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____

(答:);

(3)

已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是

(答:(9,1))

4、向量数乘运算:

⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;

②当0λ>时,a λ的方向与a 的方向相同;

当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.

⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()

a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 【

题】(1)

若M (-3,-2),N (6,-

1),且1MP MN 3

--→--→

=-,则点P 的坐标为_______

(答:7

(6,)3

--);

5、向量共线定理:向量()

0a a ≠与b 共线,当且仅当有唯一一个实数λ,使

b a λ=.设()11,a x y =,()22,b x y =,(0b ≠)22()(||||)a b a b ⇔⋅=。

【例题】 (1)若向量(,1),(4,)a x b x ==,当x =_____时a 与b 共线且方向相同

(答:2);

(2)已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =______

(答:4); 6、向量垂直:0||||a b a b a b a b ⊥⇔⋅=⇔+=-12120x x y y ⇔+=.

【例题】(1)已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m =

(答:

3

2

); (2)以原点O 和A(4,2)为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是________

(答:(1,3)或(3,-1));

(3)已知(,),n a b =向量n m ⊥,且n m =,则m 的坐标是________

(答:(,)(,)b a b a --或)

7、平面向量的数量积:

⑴()

cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,

a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;2

2a a a a ⋅==或a a a =⋅.③

a b a b ⋅≤.

⑶运算律:①a b b a ⋅=⋅;②

()()()

a b a b a b λλλ⋅=⋅=⋅;③

()a b c a c b c +⋅=⋅+⋅.

⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则2

22a x y =+,或22a x y =+.

设()11,a x y =,()22,b x y =,则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.

则a ∥b ⇔a =λb (b ≠0)⇔x 1y 2= x 2y 1.

设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则

相关文档
最新文档