人教版八年级数学上学期 第十三章测试卷

合集下载

人教版八年级数学上册检测题 第十三章检测题

人教版八年级数学上册检测题 第十三章检测题

第十三章检测题(时间:100分钟满分:12022一、选择题(每小题3分,共30分)1.(2020·永州)永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是( D )2.(2020·大连)平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是( B )A.(3,1) B.(3,-1) C.(-3,1) D.(-3,-1)3.(南充中考)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是( B )A.AM=BM B.AP=BNC.∠MAP=∠MBP D.∠ANM=∠BNM第3题图第4题图第5题图4.(2020·宜昌)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是( A )A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线5.(2020·绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=( C )A.16°B.28°C.44°D.45°6.(衢州中考)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是( D )A.60°B.65°C.75°D.80°第6题图第7题图7.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为点D,交AC于点E,∠A=∠ABE,AC=5,BC=3,则BD的长为( A )A.1 B.1.5 C.2 D.2.58.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( C ) A.10 B.8 C.6 D.4第8题图第9题图第10题图9.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为( C ) A.15°B.22.5°C.30°D.45°10.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC 和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.下列五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正确结论的个数是( C )A.2个B.3个C.4个D.5个二、填空题(每小题3分,共15分)11.(兰州中考)在△ABC中,AB=AC,∠A=40°,则∠B=__70__°.12.(2020·达州)如图,点P(-2,1)与点Q(a,b)关于直线l(y=-1)对称,则a+b=__-5__.第12题图第13题图第14题图第15题图13.(2020·常州)如图,在△ABC中,BC的垂直平分线分别交BC,AB于点E,F.若△AFC是等边三角形,则∠B=__30__°.14.(2020·恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=__40°__.15.(黄冈中考)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB 的中点,若∠CMD=120°,则CD的最大值是__14__.【解析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD =120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形,∵CD≤CA′+A′B′+B′D=CA+AM +BD=2+4+8=14,∴CD的最大值为14三、解答题(共75分)16.(8分)如图,在△ABC中,AB=AC,点D在BC上,且BD=AD,DC=AC.将图中的等腰三角形全都写出来,并求∠B的度数.解:图中等腰三角形有△ABC,△ADB,△ADC,∠B=36°17.(9分)如图,已知直线l及其两侧两点A,B.(1)在直线l上求一点O,使点O到A,B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.解:图略(1)连接AB与l的交点O即为所求(2)作AB的垂直平分线,与l的交点P 即为所求(3)作点B关于l的对称点B′,作直线AB′与l的交点Q即为所求18.(9分)(2020·吉林)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点;(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点;(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.解:(1)如图①,MN即为所求(2)如图②,PQ即为所求(3)如图③,△DEF即为所求19.(9分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.解:(1)∵AB=AC,∴∠B=∠C=30°,∴∠BAC=120°,∠DAC=∠BAC-∠BAD =120°-45°=75°(2)∵∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,又∵AB=AC,∴DC=AB20.(9分)(天门中考)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.解:(1)如图①,直线m即为所求(2)如图②,直线n即为所求21.(10分)如图,在△ABC 中,AB =AC ,∠BAC =120°,AD 是BC 边的中线,点E ,F 分别是AB ,AC 的中点,连接DE ,DF .(1)求证:△ADE 是等边三角形;(2)若AB =2,求四边形AEDF 的周长.解:(1)∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°.∵AD 是BC 边的中线,∴AD⊥BC .∴∠BAD =60°,AD =12 AB .∵AE =12AB ,∴AE =AD .∴△ADE 是等边三角形 (2)由(1)证得△ADE 是等边三角形,同理△ADF 是等边三角形.∴AE =AF =AD =DE =DF .∵AE =12AB =1,∴四边形AEDF 的周长是422.(10分)(2020·绍兴)问题:如图,在△ABD 中,BA =BD .在BD 的延长线上取点E ,C ,作△AEC ,使EA =EC .若∠BAE =90°,∠B =45°,求∠DAC 的度数.答案:∠DAC =45°.思考:(1)如果把以上“问题”中的条件“∠B =45°”去掉,其余条件不变,那么∠DAC 的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B =45°”去掉,再将“∠BAE =90°”改为“∠BAE =n °”,其余条件不变,求∠DAC 的度数.解:(1)∠DAC 的度数不会改变;∵EA =EC ,∴∠AED =2∠C ①,∵∠BAE =90°,∴∠BAD =12 (180°-∠B )=12 [180°-(90°-∠AED )]=12[180°-(90°-2∠C )]=45°+∠C ,∴∠DAE =90°-∠BAD =90°-(45°+∠C )=45°-∠C ②,由①,②得∠DAC=∠DAE +∠CAE =45° (2)设∠ABC =m °,则∠BAD =12 (180°-m °)=90°-12m °,∠AEB =180°-n °-m °,∴∠DAE =n °-∠BAD =n °-90°+12m °,∵EA =EC ,∴∠CAE =12 ∠AEB =90°-12 n °-12 m °,∴∠DAC =∠DAE +∠CAE =n °-90°+12 m °+90°-12n °-12 m °=12n °23.(11分)如图,已知AE ⊥FE ,垂足为点E ,且E 是DC 的中点.(1)如图①,如果FC ⊥DC ,AD ⊥DC ,垂足分别为点C ,D ,且AD =DC ,判断AE 是∠FAD 的平分线吗?(不必说明理由)(2)如图②,如果(1)中的条件“AD =DC ”去掉,其余条件不变,(1)中的结论仍成立吗?请说明理由;(3)如图③,如果(1)中的条件改为“AD ∥FC ”,(1)中的结论仍成立吗?请说明理由.解:(1)AE 是∠FAD 的角平分线 (2)成立.理由如下:延长FE 交AD 的延长线于G .∵E 为CD 的中点,∴CE =DE .易证△CEF ≌△DEG (ASA),∴EF =EG .∵AE ⊥FG ,∴AF =AG ,∴AE 是∠FAD 的平分线 (3)结论仍成立,证明方法同(2)。

人教版八年级数学上册第十三章检测卷

人教版八年级数学上册第十三章检测卷

第十三章 轴对称周周测2一、选择题(每小题3分,共30分)1、下列图形中不是轴对称图形的是 ( )A B C D 2、正方形的对称轴共有()A .2条B .4条C .5条D .10条3、△ABC 和△A’B’C’关于直线l 对称,若△ABC 的周长为12cm ,则△A’B’C’的周长为 ( )A .24cmB .12cmC .6cmD .4cm4、点A(-2,3)关于x 轴对称的点A’的坐标为 ( ) A .(-2,-3) B .(2,3) C .(2,-3) D .(3,-2)5、已知点A (x,-4)与点B (3,y )关于y 轴对称,那么x +y 的值为 ( ) A .-1 B .-7 C .7 D .26、如图,△ABC 与△A 1B 1C 1关于直线l 对称,则∠B 的度数为 ( ) A .30° B .50° C .90° D .100°第6题图 第7题图 第9题图 第10题图 7、如图,点D 在AC 的垂直平分线上,AB ∥CD ,若∠D =130°,则∠BAC 的度数为 ( ) A .15° B .20° C .25° D .30°8、点(2,5)关于直线x=1的对称点的坐标为 ( ) A .(-2,5) B .(-3,5) C .(4,5) D .(0,5)9、如图,△OBC 的顶点O (0,0),B (-6,0),且∠OCB=90°,OC=BC ,则点C 关于x 轴对称的点的坐标是 ( )A .(3,3)B .(-3,3)C .(-3,-3)D .(-6,6) 10、如图,在△ABC 中,分别以点A 和点B 为圆心,大于21AB 的长为半径画弧,两弧相交于点M 、N ,交BC 于D,连接AD,若△ADC 的周长为10,AB=7,则△ABC 的周长为 ( )A .7B .14C .17D .20 二、填空题(每小题3分,共18分)11、如图,AB=4,AC=5,BC=3,△ABC 与△A’B’C’关于直线l 对称,则B’C’=____________第11题图 第12题图 第13题图12、如图,点A 关于y 轴对称的点的坐标是____________________13、如图,以正方形ABCD 的中心为原点建立直角坐标系,若点A 的坐标为(-1,1),则点B 的坐标为____________ ,点C 的坐标为_____________,点D 的坐标为____________ . 14、如图,∠AOB 内一点P ,P 1、P 2分别是点P 关于OA 、OB 的对称点,P 1、P 2交OA 于M,交OB 于N ,若P 1P 2=5cm ,则△PMN 的周长是__________ cmxy OCBA第14题图 第15题图 第16题图15、如图,△ABC 的面积为2cm 2,AP 与∠B 的平分线垂直,垂足是点P ,则△PBC 的面积为__________ cm 216、如图,在平面直角坐标系中,AB=BC ,∠ABC=90°,A(0,3),B(-1,0), 以AB 为直角边在AB 的右侧作等腰Rt △ABE ,则点E 的坐标是____________ 三、解答题(共8题,72分)17、(8分)如图,点A 在线段BD 的垂直平分线上,BF ⊥AD ,DE ⊥AB,垂足分别为F 、E. 求证:BF=DEDFE AB18、(8分)如图,将长方形ABCD 沿EF 折叠,使CD 落在GH 的位置,GH 交BC 于M ,若∠HMB=50°,求∠HEF 的度数19、(8分)如图,分别作点A(-3,0),B(-2,2)关于直线x=2的对称点A’、B’.(1)A’ 点坐标为_____________ , B’点坐标为____________.(2)四边形ABB’ A’的面积为___________20、(8分)已知A、B两点的坐标分别为(-2,1)和(2,3)(1)在图1中分别画出线段AB关于x轴和y轴的对称线段A1B1及A2B2,并写出相应端点的坐标;(2)在图2中分别画出线段AB关于直线x=-1和直线y=4的对称线段A3B3及A4B4,并写出相应端点的坐标。

人教版 八年级数学上册 第十三章测试题含答案)

人教版 八年级数学上册 第十三章测试题含答案)

人教版八年级数学上册第十三章测试题含答案)13.1 轴对称一、选择题1. 点M(3,2)关于x轴对称的点的坐标为()A. (-3,2)B. (3,-2)C. (-3,-2)D. (3,2)2. 如图,线段AB与A′B′(AB=A′B′)不关于直线l成轴对称的是()3. 如果点(m-1,-1)与点(5,-1)关于y轴对称,那么m的值为()A.4 B.-4 C.5 D.-54. 将一张长与宽的比为2∶1的长方形纸片按图①②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④中的纸片展开铺平,所得到的图案是()5. 在平面直角坐标系中,作点A(3,4)关于x轴的对称点A′,再将点A′向左平移6个单位长度,得到点B,则点B的坐标为()A.(4,-3) B.(-4,3)C.(-3,4) D.(-3,-4)6. [2018·河北] 图是由“○”和“□”组成的轴对称图形,则该图形的对称轴是直线()A.l1B.l2C.l3D.l47. 如图,以C为圆心,大于点C到AB的距离为半径作弧,交AB于点D,E,再以D,E为圆心,大于12DE的长为半径作弧,两弧交于点F,作射线CF,则()A.CF平分∠ACB B.CF⊥ABC.CF平分AB D.CF垂直平分AB8. 已知:在平面直角坐标系中,A(a,b)(b≠0),B(m,n).若a-m=4,b+n=0,则下列结论正确的是()A.把点A向左平移4个单位长度后,与点B关于x轴对称B.把点A向右平移4个单位长度后,与点B关于x轴对称C.把点A向左平移4个单位长度后,与点B关于y轴对称D.把点A向右平移4个单位长度后,与点B关于y轴对称9. 如图,分别以线段AB的两端点A,B为圆心,大于12AB的长为半径画弧,在线段AB的两侧分别交于点E,F,作直线EF交AB于点O.在直线EF上任取一点P(不与点O重合),连接PA,PB,则下列结论不一定成立的是()A.PA=PB B.OA=OBC.OP=OF D.PO⊥AB10. 如图,在RtABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为A .52B .3C .2D .72二、填空题11. 如图,在△ABC 中,AB =BC ,∠ABC =110°.AB 的垂直平分线DE 交AC 于点D ,连接BD ,则∠ABD =________度.12. 如图,△ABO 是关于y 轴对称的轴对称图形,点A 的坐标为(-2,3),则点B 的坐标为________.13. 如图所示,分别将标号为A ,B ,C ,D 的正方形沿图中的虚线剪开后,得到标号为E ,F ,G ,H 的四个图形,则剪前与剪后拼接的图形的对应关系是:A 与________对应,B 与________对应,C 与________对应,D 与________对应.14. 已知点P(x,y)的坐标满足等式(x-2)2+|y-1|=0,且点P与点P′关于y轴对称,则点P′的坐标为________.15. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.16. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).三、解答题17. 如图所示,两个四边形关于直线l对称,∠C=90°,试写出边a,b的长,并求出∠G的度数.18. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG的周长为16,GE=3,求AC的长.19. 如图,在四边形ABCD中,AB=AD,BC边的垂直平分线MN经过点A.求证:点A在线段CD的垂直平分线上.人教版八年级数学上册13.1 轴对称一、选择题1. 【答案】B2. 【答案】A3. 【答案】B[解析] ∵点(m-1,-1)与点(5,-1)关于y轴对称,∴m-1=-5,解得m=-4.4. 【答案】A5. 【答案】D[解析] 点A(3,4)关于x轴的对称点A′的坐标为(3,-4),将点A′向左平移6个单位长度,得到点B(-3,-4).6. 【答案】C[解析] 沿着直线l3折叠,直线两旁的部分能够互相重合,因此该图形的对称轴是直线l3.7. 【答案】B8. 【答案】A[解析] ∵a -m =4,∴a -4=m.又∵b +n =0(b≠0),∴b =-n.∴把点A 向左平移4个单位长度后,与点B 关于x 轴对称.9. 【答案】C[解析] 由作图可知,EF 垂直平分AB ,因此可得OA =OB ,PO ⊥AB ,由线段垂直平分线的性质可得PA =PB ,但不能得到OP =OF.10. 【答案】A【解析】由作法得GF 垂直平分BC , ∴FB FC =,2CG BG ==,FG BC ⊥, ∵90ACB ∠=︒,∴FG AC ∥,∴BF CF =, ∴CF 为斜边AB 上的中线,∵5AB ==, ∴1522CF AB ==.故选A .二、填空题11. 【答案】35 【解析】∵AB =BC ,∠ABC =110°,∴∠A =∠C =35°,∵DE 垂直平分AB ,∴DA =DB ,∴∠ABD =∠A =35°.12. 【答案】(2,3)[解析] ∵△ABO 是关于y 轴对称的轴对称图形,∴点A(-2,3)与点B 关于y 轴对称.∴点B 的坐标为(2,3).13. 【答案】GE F H [解析] A 剪开后是三个三角形,B 剪开后是两个直角梯形和一个三角形,C 剪开后是一个直角三角形和两个四边形,D 剪开后是两个三角形和一个四边形,因而,A 与G 对应,B 与E 对应,C 与F 对应,D 与H 对应.14. 【答案】(-2,1)[解析] ∵(x -2)2≥0,|y -1|≥0,又(x -2)2+|y -1|=0,∴x-2=0且y -1=0,即x =2,y =1.∴点P 的坐标为(2,1).那么点P 关于y 轴的对称点P′的坐标为(-2,1).15. 【答案】3[解析] ∵AD 平分∠BAC ,且DE ⊥AB ,∠C =90°,∴CD =DE=1.∵DE是AB的垂直平分线,∴AD=BD.∴∠B=∠DAB.∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B.∵∠C=90°,∴∠CAD+∠DAB+∠B=90°.∴∠B=30°.∴BD=2DE=2.∴BC=BD+CD=2+1=3.16. 【答案】③三、解答题17. 【答案】解:∵两个四边形关于直线l对称,∴四边形ABCD≌四边形FEHG,∴∠H=∠C=90°,∠A=∠F=80°,∠E=∠B=135°,a=5 cm,b=4 cm. ∴∠G=360°-∠H-∠E-∠F=55°.18. 【答案】解:∵DE垂直平分线段AB,GF垂直平分线段BC,∴EB=EA,GB=GC.∵△BEG的周长为16,∴EB+GB+GE=16.∴EA+GC+GE=16.∴GA+GE+GE+GE+EC=16.∴AC+2GE=16.∵GE=3,∴AC=10.19. 【答案】证明:连接AC.∵点A在线段BC的垂直平分线MN上,∴AB=AC.∵AB=AD,∴AC=AD.∴点A在线段CD的垂直平分线上.13.2 画轴对称图形课时训练一.选择题1.点A(3,4)关于x轴的对称点的坐标为()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)2.在平面直角坐标系中,点M(12,﹣17)关于x轴对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点P(3,﹣2),点Q(﹣3,2),点R(﹣3,﹣2),点H(3,2),下面选项中关于y轴对称的是()A.P和Q B.P和H C.Q和R D.P和R4.若点A(﹣4,m﹣3),B(2n,1)关于x轴对称,则()A.m=2,n=0B.m=2,n=﹣2C.m=4,n=2D.m=4,n=﹣2 5.蝴蝶标本可以近似地看做轴对称图形.如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A的坐标为(5,3),则其关于y轴对称的点B的坐标为()A.(5,﹣3)B.(﹣5,3)C.(﹣5,﹣3)D.(3,5)6.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)7.在平面直角坐标系中,点A(﹣3,﹣4)平移后能与原来的位置关于y轴对称,则应把点A()A.向左平移6个单位B.向右平移6个单位C.向下平移8个单位D.向上平移8个单位8.已知点M(2,2),规定一次变换是:先作点M关于x轴对称,再将对称点向左平移1个单位长度,则连续经过2020次变换后,点M的坐标变为()A.(﹣2018,2)B.(﹣2018,﹣2)C.(﹣2017,2)D.(﹣2017,﹣2)二.填空题9.点A(5,﹣1)关于x轴对称的点A'的坐标是.10.若点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),则m+a的值为.11.如图,点P(﹣2,1)与点Q(a,b)关于直线l(y=﹣1)对称,则a+b=.12.已知点M(a,3),点N(2,b)关于y轴对称,则(a+b)2019的值是.三.解答题13.已知点M(﹣2,2b﹣1),N(3a﹣11,5).(1)若M,N关于y轴对称,试求a,b的值;(2)若M,N关于x轴对称,试求a+b的算术平方根.14.△ABC在平面直角坐标系中的位置如图.请画出△ABC关于y轴对称的△A1B1C1,并求出A1、B1、C1三点的坐标.15.如图,在长方形网格中有一个△ABC.(1)画出△ABC关于y轴对称的△A1B1C1.(2)若网格中的最小正方形边长为1,求△A1B1C1的面积.16.如图,△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点上.(1)写出△ABC三个顶点的坐标.(2)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标.17.如图,在平面直角坐标系中,A(1,0),B(3,3),C(5,1).(1)画出△ABC关于x轴的对称图形△AB1C1;(2)△ABC的面积为;(3)在x轴上求一点P,使得△APB的面积等于△ABC的面积.18.如图,在平面直角坐标系中.(1)作△ABC关于x轴对称的△A1B1C1;(2)求出△ABC的面积;(3)在x轴上是否存在一点P,使得△AA1P与△ABC面积相等?若存在,请求出点P 的坐标;若不存在,说明理由.参考答案一.选择题1.解:点A(3,4)关于x轴对称点的坐标为:(3,﹣4).故选:A.2.解:∵点(12,﹣17)关于x轴对称的坐标是(12,17),∴点M(12,﹣17)关于x轴对称的点在第一象限.故选:A.3.解:点P(3,﹣2),点Q(﹣3,2),点R(﹣3,﹣2),点H(3,2)中Q和H,P和R都关于y轴对称.故选:D.4.解:根据题意:m﹣3=﹣1,2n=﹣4,所以m=2,n=﹣2.故选:B.5.解:∵A,B关于y轴对称,A(5,3),∴B(﹣5,3),故选:B.6.解:由坐标系可得B(﹣3,1),将△ABC先沿y轴翻折得到B点对应点为(3,1),再向上平移3个单位长度,点B的对应点B'的坐标为(3,1+3),即(3,4),故选:C.7.解:∵点A(﹣3,﹣4)平移后能与原来的位置关于y轴轴对称,∴平移后的坐标为(3,﹣4),∵横坐标增大,∴点是向右平移得到,平移距离为|3﹣(﹣3)|=6.故选:B.8.解:由题可得,第2019次变换后的点M在x轴下方,∴点M的纵坐标为2,横坐标为2﹣2020×1=﹣2018,∴点M的坐标变为(﹣2018,﹣2),故选:B.二.填空题9.解:点A(5,﹣1)关于x轴对称的点A'的坐标是(5,1).故答案为:(5,1).10.解:∵点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),∴3+m=﹣3,a﹣2=2,解得:m=﹣6,a=4,则m+a的值为:﹣6+4=﹣2.故答案为:﹣2.11.解:∵点P(﹣2,1)与点Q(a,b)关于直线l(y=﹣1)对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5,故答案为﹣5.12.解:∵点M(a,3),点N(2,b)关于y轴对称,∴a=﹣2,b=3,∴(a+b)2019=(﹣2+3)2019=1.故答案为:1.三.解答题13.解:(1)依题意得3a﹣11=2,2b﹣1=5,∴a=,b=3.(2)依题意得3a﹣11=﹣2,2b﹣1=﹣5,∴a=3,b=﹣2,∴=1.14.解:A1(2,3)(1分)B1(3,2)(2分)C1(1,1)(3分)15.解:(1)△A1B1C1即为所求;(2)△A1B1C1的面积为:3×5﹣×2×3﹣×2×3﹣×1×5=15﹣3﹣3﹣2.5=6.5.16.解:(1)A、B、C三点的坐标分别为(2,4),(1,1),(3,2);(2)如图所示:△A1B1C1,点C1的坐标为:(﹣3,2).17.解:(1)如图所示,△AB1C1即为所求.(2)△ABC的面积为4×3﹣×2×3﹣×1×4﹣×2×2=5,故答案为:5;(3)设点P坐标为(m,0),根据题意,得:×|m﹣1|×3=5,解得m=或m=﹣,∴点P的坐标为(,0)或(﹣,0).18.解:(1)如图所示,△A1B1C1即为所求;(2)S△ABC=×(1+3)×5﹣×1×2﹣×3×3=;(3)存在,设点P坐标为(a,0),根据题意,得:×4×|a﹣1|=,解得a=或a=﹣,∴点P坐标为(,0)或(﹣,0).13.3 等腰三角形一、选择题1. 如图,等腰三角形的对称轴是()A.直线l1B.直线l2C.直线l3D.直线l42. 如图,AC=AD,BC=BD,则有()A.CD垂直平分ABB.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB3. 已知等腰三角形的一个角等于42°,则它的底角为() A.42°B.69°C.69°或84°D.42°或69°4. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对5. 如图,AD是△ABC的中线,下列条件中不能推出△ABC是等腰三角形的是()A.∠BAD+∠B=∠CAD+∠C B.AB-BD=AC-CDC.AB+BD=AC+CD D.AD=BC6. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°7. 如图,△ABC是等边三角形,DE∥BC.若AB=10,BD=6,则△ADE的周长为()A.4 B.12 C.18 D.308. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题11. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.12. 如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=________.13. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.14. 如图所示,在△ABC中,DE是AC的垂直平分线,AE=5 cm,△ABD的周长为18 cm,则△ABC的周长为.15. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.16. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.三、解答题17. 如图,在△ABC中,AB=BD,根据图中的数据,求∠BAC的度数.18. 如图,在△ABC中,O是边AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△ABC的外角平分线于点F.探究线段OE与OF的数量关系,并说明理由.19. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E,F.求证:△CEF是等腰三角形.人教版八年级数学上册13.3 等腰三角形同步训练-答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】D[解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.4. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.5. 【答案】D[解析] 由∠BAD +∠B =∠CAD +∠C 可得∠ADB =∠ADC ,又∠ADB +∠ADC =180°,所以∠ADB =∠ADC =90°,又BD =DC ,由垂直平分线的性质可得AB =AC.由等式的性质,根据AB -BD =AC -CD ,AB +BD =AC +CD ,又BD =CD ,均可得AB =AC.选项D 不能得到AB =AC.6. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.7. 【答案】B[解析] ∵△ABC 为等边三角形,∴∠A =∠B =∠C =60°.∵DE ∥BC ,∴∠ADE =∠B =60°,∠AED =∠C =60°.∴△ADE 为等边三角形.∵AB =10,BD =6,∴AD =AB -BD =10-6=4.∴△ADE 的周长为4×3=12.8. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A. 9. 【答案】C10. 【答案】D[解析] ∵OC =CD =DE ,∴∠O =∠ODC ,∠DCE =∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题11. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.12. 【答案】40°[解析] 如图.∵△BCD是等边三角形,∴∠BDC=60°.∵a∥b,∴∠2=∠BDC=60°.由三角形的外角性质和对顶角的性质可知,∠1=∠2-∠A=40°.13. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.14. 【答案】28 cm15. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.16. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.三、解答题17. 【答案】解:∵∠ADB=30°+40°=70°,AB=BD,∴∠BAD=∠ADB=70°.∴∠BAC=∠BAD+∠CAD=100°.18. 【答案】解:OE=OF.理由:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF.∵CE平分∠ACB,CF平分∠ACD,∴∠OCE=∠BCE,∠OCF=∠DCF.∴∠OEC=∠OCE,∠OFC=∠OCF.∴OE=OC,OC=OF.∴OE=OF.19. 【答案】证明:∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD⊥AB,∴∠CAD+∠ACD=90°.∴∠ACD=∠B.∵AE是∠BAC的平分线,∴∠CAE=∠EAB.∵∠EAB+∠B=∠CEF,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF. ∴CF=CE.∴△CEF是等腰三角形.。

2022年人教版八年级数学上册第十三章轴对称同步测评试卷(含答案详解版)

2022年人教版八年级数学上册第十三章轴对称同步测评试卷(含答案详解版)

人教版八年级数学上册第十三章轴对称同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°2、如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .3、在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,12AB BC cm +=,则AB 的长度为( )A .6cmB .7cmC .8cmD .9cm4、一个三角形具备下列条件仍不是等边三角形的是( )A .一个角的平分线是对边的中线或高线B .两边相等,有一个内角是60°C .两角相等,且两角的和是第三个角的2倍D .三个内角都相等5、若点()2,3A a -和点()1,5B b -+关于x 轴对称,则点(),C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限6、2020年初,新冠状病毒引发肺炎疫情,全国多家医院纷纷派医护人员驰援武汉.下面是四家医院标志得图案,其中是轴对称图形得是( )A .B .C .D .7、如图,若ABC 是等边三角形,6AB =,BD 是ABC ∠的平分线,延长BC 到E ,使CE CD =,则BE =( )A .7B .8C .9D .108、如图,在ABC ∆中,4AC =,ADE ∆的周长10,ABC ∠和ACB ∠的平分线交于点O ,过点O 作//DE BC 分别交AB 、AC 于D 、E ,则AB 的长为( )A .10B .6C .4D .不确定9、如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在折痕MN 上,折痕为AE,点B 在MN 上的对应点为H,沿AH 和DH 剪下,这样剪得的△ADH 中 ( )A .AH=DH≠ADB .AH=DH=ADC .AH=AD≠DHD .AH≠DH≠AD10、以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,AB AC =,点E 在CA 延长线上,EP BC ⊥于点P ,交AB 于点F ,若10CE =,3AF =,则BF 的长度为______.2、如图,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,AE =7cm ,AP =4cm ,则P 点到直线AB 的距离是_____.3、如图,AB 的垂直平分线l 交AB 于点M ,P 是l 上一点,PB 平分∠MPN .若AB =2,则点B 到直线PN 的距离为__________.4、如图,在△ABC 中,AB <AC ,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,BD=4,△ABE 的周长为14,则△ABC 的周长为_____.5、如图, 在△ABC 中, ∠ACB 的平分线交AB 于点D, DE⊥AC 于点E, F 为BC 上一点,若DF=AD, △ACD 与△CDF 的面积分别为10和4, 则△AED 的面积为______三、解答题(5小题,每小题10分,共计50分)1、已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.2、如图,在△ABC 中,AB =AC ,D ,E 是BC 边上的点,连接AD ,AE ,以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△AD 'E ,连接D 'C ,若BD =CD '.(1)求证:△ABD ≌△ACD '.(2)若∠BAC =100°,求∠DAE 的度数.3、如图,在△ABC 和△DCB 中,∠A =∠D =90°,AC =BD ,AC 与BD 相交于点O .(1)求证:△ABC ≌△DCB ;(2)△OBC 是何种三角形?证明你的结论.4、如图,已知△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC .求证:BC =AB +CD .5、平面直角坐标系中,点A 坐标为(0,2)-,,B C 分别是x 轴,y 轴正半轴上一点,过点C 作//CD x 轴,3CD =,点D 在第一象限,32ACD AOB S S ∆∆=,连接AD 交x 轴于点E ,45BAD ∠=︒,连接BD .(1)请通过计算说明AC OB =;(2)求证ADC ADB ∠=∠;(3)请直接写出BE 的长为 .-参考答案-一、单选题1、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【详解】∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED 是BC 的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD 是△ABC 的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,故选D .【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.3、C【解析】【分析】根据直角三角形的性质30°所对的直角边等于斜边的一半求解即可.【详解】∵在Rt △ABC 中,90C ∠=︒,30A ∠=︒,∴12BC AB =, ∴=2AB BC∵12AB BC cm +=,∴3BC =12cm .∴BC =4cm∴AB =8cm故选:C【考点】本题考查了含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解题的关键.4、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A ,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B ,两边相等,有一个内角是60°,根据有一个角为60°的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C ,两角相等,且两角的和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60°,即可判定该三角形是等边三角形;选项D ,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60°,即可判定该三角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.5、D【解析】【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点A(a−2,3)和点B(−1,b+5)关于x轴对称,得a−2=-1,b+5=-3.解得a=1,b=−8.则点C(a,b)在第四象限,故选:D.【考点】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a−2=-1,b+5=-3是解题关键.6、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:选项B能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是做轴对称图形;选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是做轴对称图形;故选:B.【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、C【解析】【分析】根据等边三角形三线合一得到BD垂直平分CA,所以CD=1122AC AB,另有CE CD,从而求出BE的长度.【详解】解:由于△ABC是等边三角形,则其三边相等,BD也是AC的垂直平分线,即AB=BC=CA=6,AD=DC=3,已知CE=CD,则CE=3.而BE=BC+CE,因此BE=6+3=9.故答案选C.【考点】本题考查了等边三角形性质,看到等边三角形应想到三条边相等,三线合一.8、B【解析】【分析】根据平行线、角平分线和等腰三角形的关系可证DO = DB 和EO=EC ,从而得出DE=DB +EC ,然后根据ADE ∆的周长即可求出AB.【详解】解:∵//DE BC∴∠OBC=∠DOB∵BO 平分ABC ∠∴∠OBC=∠DBO∴∠DOB=∠DBO∴DO = DB同理可证:EO=EC∴DE=DO+EO= DB +EC∵4AC =,ADE ∆的周长10,∴AD+AE +DE=10∴AD+AE +DB +EC =10∴AB+AC=10∴AB=10-AC=6故选B.【考点】此题考查的是平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行线、角平分线和等腰三角形的关系是解决此题的关键.9、B【解析】【分析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题.【详解】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选B.【考点】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移.10、D【解析】【分析】根据轴对称图形的定义判断即可【详解】∵A,B,C都不是轴对称图形,∴都不符合题意;D是轴对称图形,符合题意,故选D.【考点】本题考查了轴对称图形的定义,准确理解轴对称图形的定义是解题的关键.二、填空题1、4【分析】根据等边对等角得出∠B=∠C,再根据EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,从而得出∠E=∠BFP,再根据对顶角相等得出∠E=∠AFE,最后根据等角对等边即可得出答案.【详解】证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE=3,∴△AEF是等腰三角形.又∵CE=10,∴CA=AB=7,∴BF=AB-AF=7-3=4,故答案为:4.【考点】本题考查了等腰三角形的判定和性质,解题的关键是证明∠E=∠AFE,注意等边对等角,以及等角对等边的使用.2、3cm.【分析】由已知条件,根据垂直平分线的性质得出AB=BC,可得到∠ABD=∠DBC,再利用角平分线上的点到角两边的距离相等得到答案.【详解】解:过点P作PM⊥AB与点M,∵BD垂直平分线段AC,∴AB=CB,∴∠ABD=∠DBC,即BD为角平分线,∵AE=7cm,AP=4cm,∴AE﹣AP=3cm,又∵PM⊥AB,PE⊥CB,∴PM=PE=3(cm).故答案为:3cm.【考点】本题综合考查了线段垂直平分线的性质及角平分线的性质,线段垂直平分线上的点到线段两端的距离相等,角平分线上的点到角两边的距离相等,灵活应用线段垂直平分线及角平分线的性质是解题的关键.3、1【解析】根据线段垂直平分线的性质得出BM=1,根据角平分线的性质得到BN=BM=1,即可得出答案.【详解】解:如图,过点B作BC⊥PN,垂足为点C,∵AB的垂直平分线l交AB于点M,∴112BM AB==,BM⊥PM,∵PB平分∠MPN,BM⊥PM,BC⊥PN,∴BC=BM=1,∴点B到直线PN的距离为1,故答案为:1.【考点】本题考查了线段垂直平分线的性质与角平分线的性质,能熟记线段垂直平分线上的点到线段两个端点的距离相等是解此题的关键.4、22【解析】【详解】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得BE=CE,然后求出△ABE的周长=AB+AC ,再求出BC 的长,然后根据三角形的周长定义计算即可得解.【详解】∵BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,BD=4,∴BE=EC,BC=2BD=8;又∵△ABE 的周长为14,∴AB+AE+BE=AB+AE+EC=AB+AC=14,∴△ABC 的周长是:AB+AC+BC=14+8=22,故答案是:22.【考点】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的周长,熟记性质是解题的关键.5、3【解析】【分析】如图(见解析),过点D 作DG BC ⊥,根据角平分线的性质可得DE DG =,再利用三角形全等的判定定理得出,CDE CDG ADE FDG ∆≅∆∆≅∆,从而有,CDE CDG ADE FDG S S S S ∆∆∆∆==,最后根据三角形面积的和差即可得出答案.【详解】如图,过点D 作DG BC ⊥ CD 平分ACB ∠,DE AC ⊥DE DG ∴=CD CD =()CDE CDG HL ∴∆≅∆CDE CDG S S ∆∆∴=又AD FD =()ADE FDG HL ∴∆≅∆ADE FDG S S ∆∆∴=104ACD ADE CDE CDE CDG CDF FDG ADES S S S S S S S ∆∆∆∆∆∆∆∆=+=⎧∴⎨==+=+⎩ 则410ADE ADE S S ∆∆++=解得3ADE S ∆=故答案为:3.【考点】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.三、解答题1、(1)1<c <5;(2)△ABC 为等腰三角形【解析】【分析】(1)根据三角形的三边关系定理可得3-2<c <3+2,再解不等式即可;(2)根据c 的范围可直接得到答案.【详解】解:(1)根据三角形的三边关系定理可得3-2<c <3+2,即1<c <5;(2)∵第三边c 为奇数,∴c=3,∵a=2,b=3,∴b=c,∴△ABC 为等腰三角形.【考点】此题主要考查了三角形的三边关系及等腰三角形的判断,关键是掌握三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边.2、(1)见解析;(2)50︒.【解析】【分析】(1)由对称得到AD AD =',再证明ABD △≅ACD '△ ()SSS 即可;(2)由全等三角形的性质,得到BAD CAD '∠=∠,∠BAC =DAD '∠=100°,最后根据对称图形的性质解题即可.【详解】解:(1)以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△A D E ',AD AD '∴=在△ABD 与ACD '△中,AB AC BD CD AD AD ''=⎧⎪=⎨⎪=⎩ABD ∴≅ACD '△ ()SSS(2)ABD ≅ACD '△ ()SSSBAD CAD '∴∠=∠,∠BAC =DAD '∠=100°,以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△A D E ',111005022DAE D AE DAD ''∴∠=∠=∠=⨯︒=︒ ∴∠DAE 50=︒.【考点】本题考查全等三角形的判定与性质、轴对称的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.3、 (1)见解析(2)等腰三角形,证明见解析【解析】【分析】(1)利用HL 公理证明 Rt △ABC ≌Rt △DCB ;(2)利用Rt △ABC ≌Rt △DCB 证明∠ACB =∠DBC ,从而证明△OBC 是等腰三角形.(1)证明:在△ABC 和△DCB 中,∠A =∠D =90°AC =BD ,BC 为公共边,∴Rt △ABC ≌Rt △DCB (HL );(2)△OBC 是等腰三角形,证明:∵Rt △ABC ≌Rt △DCB ,∴∠ACB=∠DBC,∴OB=OC,∴△OBC是等腰三角形.【考点】此题主要考查斜边直角边判定两个直角三角形全等和等腰三角形的判定与性质,熟练掌握斜边直角边等腰三角形的判定与性质是解题的关键.4、证明见解析【解析】【分析】在BC上截取点E,并使得BE=BA,连接DE,证明△ABD≌△EBD,得到∠DEB=∠BAD=108°,进一步计算出∠DEC=∠CDE=72°得到CD=CE即可证明.【详解】证明:在线段BC上截取BE=BA,连接DE,如下图所示:∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中:AB BEABD EBD BD BD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△EBD(SAS),∴∠DEB=∠BAD=108°,∴∠DEC =180°-108°=72°,又AB =AC ,∴∠C =∠ABC =(180°-108°)÷2=36°,∴∠CDE =180°-∠C -∠DEC =180°-36°-72°=72°,∴∠DEC =∠CDE ,∴CD =CE ,∴BC =BE +CE =AB +CD .【考点】本题考查了角平分线的定义,三角形内角和定理,全等三角形的判定与性质,等腰三角形性质等,本题的关键是能在BC 上截取BE ,并使得BE =BA ,这是角平分线辅助线和全等三角形的应用的一种常见作法.5、(1)证明见解析;(2)证明见解析;(3)5BE =.【解析】【分析】(1)先根据点A 坐标可得OA 的长,再根据32ACD AOB S S ∆∆=即可得证;(2)如图(见解析),延长DC 至点H ,使得CH OA =,连接AH ,先根据三角形全等的判定定理与性质可得,12,AH AB H CAB =∠=∠∠=∠,再根据直角三角形的性质和45BAD ∠=︒得出45HAD BAD ∠=∠=︒,然后根据三角形全等的判定定理与性质即可得证; (3)先由题(2)两个三角形全等可得5BD DH ==,再根据平行线的性质得出3ADC ∠=∠,从而有3ADB ∠=∠,然后根据等腰三角形的定义(等角对等边)即可得.【详解】(1)(0,2)A -2OA ∴=11,,3,3222ACD OAB ACD AOB S CD AC S O S S OB CD A ∆∆∆∆=⋅==⋅=131222CD AC OA OB ⋅=⨯⋅∴,即31322221AC OB ⨯=⨯⨯ AC OB =∴;(2)如图,延长DC 至点H ,使得CH OA =,连接AHOB AC =,//CD x 轴90HCA AOB ∴∠=∠=︒()ACH BOA SAS ∆≅∆∴,12,AH AB H CAB =∠=∠∠=∠∴190H ︒∠+∠=190CAB ∠+∠=︒∴45BAD ∠=︒45HAD BAD ∴∠=∠=︒()HAD BAD SAS ∴∆≅∆ADH ADB ∴∠=∠,即ADC ADB ∠=∠;(3)由(2)已证,,325HAD BAD ADC ADB DH CD CH CD OA ∆≅∆∠=∠⎧⎨=+=+=+=⎩ 5BD DH ∴==//CD x 轴3ADC ∴∠=∠3ADB ∴∠=∠5BE BD ∴==(等角对等边)故答案为:5.【考点】本题考查了三角形全等的判定定理与性质、等腰三角形的定义、平行线的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。

人教版八年级上册数学第13章测试卷及答案

人教版八年级上册数学第13章测试卷及答案

精品基础教育教学资料,仅供参考,需要可下载使用!《轴对称》综合测试一一、选择题(每小题3分,共24分)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.2.下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称3.下列条件中,不能得到等边三角形的是()A.有两个角是60°的三角形B.有一个角是60°的等腰三角形C.有两个外角相等的等腰三角形D.三边都相等的三角形4.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC 于点E,则△BEC的周长为()A.13 B.14 C.15 D.165.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=AB B.BD=AB C.BD=AB D.BD=AB6.如图,△ABC中,AB=AC,点D是BC的中点,E是AC上一点,且AE=AD,若∠AED=75°,则∠EDC的度数是()A. 10°B. 15°C. 20°D. 25°7.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是()A.(0,3)B.(1,2) C.(0,2)D.(4,1)8. 如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为( B )A. 6cm2B. 5cm2C. 4cm2D. 3cm2二、填空题(每小题4分,共24分)9.已知点A(a,2019)与点B(2020,b)关于y轴对称,则a+b的值为.10.等腰三角形一个角等于100°,则它的一个底角的度数是.11.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为.12.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为cm2.13.如图,在△ABC中,∠B与∠C的平分线交于点O.过O点作DE∥BC,分别交AB、AC 于D、E.若AB=8,AC=6,则△ADE的周长是 .14.如图:D、E是三角形ABC的边BC上的两点,且BD=DE=AD=AE=EC,则∠BAC的大小等于.三、解答题(5个小题,共52分)15.(8分)如图所示,写出△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.16.(10分)如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用三种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.17.(10分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.18.(12分)如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F.(1)若△CMN的周长为20cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.19.(12分)如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N 第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.《轴对称》综合测试一参考答案一、1. D 2.B 3.C 4.A 5.C 6.B 7.A 8.B.提示:1. 提示:A、有3条对称轴;B、有4条对称轴;C、有2条对称轴;D、有6条对称轴.故选D.2.提示:A、两个关于某直线对称的图形一定全等,本选项正确;B、对称图形的对称点不一定在对称轴的两侧,如可能在对称轴上,故本选项错误;C、两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴,本选项正确;D、平面上两个全等的图形不一定关于某直线对称,本选项正确.故选B.3.提示:A、有两个角是60°的三角形,那么第三个角也是60°,故是等边三角形;B、有一个角是60°的等腰三角形是等腰三角形;C、有两个外角相等的等腰三角形,不一定是等边三角形;D、三边都相等的三角形是等边三角形,正确;故选:C.4.提示:∵DE是AB的垂直平分线,∴AE=BE,∴△BEC周长=BE+CE+BC=AE+CE+BC=AC+BC,∵腰长AB=8,∴AC=AB=8,∴△BEC周长=8+5=13.故选A.5.提示:∵∠ACB=90°,∠A=30°,∴BC=AB.∵CD是高,∴∠BCD=∠A=30°,∴BD=BC,∴BD=AB.故选C.小结:30º锐角所对的边等于斜边的一半,只有在直角三角形中才成立,其他三角形中不成立.6.提示:∵在△ABC中,D为BC中点,AB=AC,∴AD⊥BC;又∵AD=AE,∠AED=75°,∴∠ADE=75°∴∠EDC=∠ADC-∠ADE=90°-75°=15°.故选B.小结:本题主要考查了等腰三角形的两条重要性质:等边对等角和“三线合一”.7.提示:如图所示,点B′(0,3).故选A.小结:本题考查的是画轴对称图形,旨在培养学生的动手操作能力和观察能力.8.提示:如图,延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP(ASA),∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,设△ACE的面积为m,∴S△ABE=S△ABC+S△ACE=10+m,∴S△PBC=S△ABE-S△ACE=1022m m+-=5.故选:B.小结:因为等底同高的两个三角形面积相等,所以三角形被中线分成的两个三角形面积相等.二、9. -1 10.40°11.10°12.9 13.14 14.120°提示:9. 提示:由点A(a,2019)与点B(2020,b)关于x轴对称,得a=-2020,b=2019,a+b=-1,故答案为:-1.10.提示:∵一个角为100°,∴这个角只能是等腰三角形的顶角,∴该等腰三角形的顶角为100°,∴底角为=40°,故答案为:40°.11.提示:由题意得:∠CA′D=∠A=50°,∠B=40°,由外角定理可得:∠CA′D=∠B+∠A′DB,∴可得:∠A′DB=10°.故答案为:10°.12.提示:根据等腰三角形是轴对称图形,△CEF和△BEF的面积相等,所以阴影部分的面积是三角形面积的一半.∵S△ABC=18cm2,∴阴影部分面积=×18=9cm2.故答案为:9.小结:本题考查了等腰三角形的性质及轴对称性质,利用对称发现△CEF和△BEF的面积相等是正确解答本题的关键.13.提示:∵BO平分∠ABC,∴∠DBO=∠CBO,∵DE∥BC,∴∠CBO=∠DOB,∴∠DBO=∠DOB,∴BD=DO,同理OE=EC,∴△ADE的周长=AD+AE+ED=AB+AC=8+6=14.故答案为14.小结:本题考查等腰三角形的性质,平行线的性质及角平分线的性质.有效的进行线段的等量代换是正确解答本题的关键.14.提示:∵AD=AE=DE,∴△ADE是等边三角形,∴∠ADE=∠AED=∠DAE=60°,∵AD=AB,AE=EC,∴∠B=∠BAD,∠C=∠CAE,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,∴∠BAD=∠CAE=30°,∴∠BAC=∠BAD+∠DAE+∠CAE=120°.故答案为:120°.小结:本题考查了等边三角形的判定的性质,发现并利用等边三角形是解题的关键.三、15. 解:△ABC各顶点的坐标以及△ABC关于x轴对称的△A1B1C1的各顶点坐标:A1(﹣3,﹣2),B1(﹣4,3),C1(﹣1,1),如图所示:△A2B2C2,即为所求.16.解:本题画法较多,只要满足题意均可,如图所示:17.思路分析:根据等腰直角三角形的性质,得到△BEH是等腰直角三角形,然后利用角平分线的性质,得到DE=HE,再利用BM=2DE,得到△HEM是等腰直角三角形,从而获证. 解:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵EH⊥AB于H,∴△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.小结:等腰直角三角形既是等腰三角形也是直角三角形,因此它兼具这两种三角形的所有性质.18.思路分析:(1)利用垂直平分线的性质求AB的长;(2)由四边形内角和得∠ACB的度数,再由三角形内角和得∠A+∠B的度数,最后根据等腰三角形的性质求∠MCN的度数.解:(1)∵DM是AC边的垂直平分线,∴MA=MC,∵EN是BC边的垂直平分线,∴NB=NC,∴AB=AM+MN+NB=MC+MN+NC=△CMN的周长=20cm;(2)∵MD⊥AC,NE⊥BC,∠MFN=70°,∴∠ACB=180°﹣∠MFN=110°,∴∠A+∠B=70°,∵MA=MC,NB=NC,∴∠MCA=∠A,∠NCB=∠B,∴∠MCA+∠NCB=70°,∴∠MCN=110°-70°=40°.小结:本题主要考查了线段垂直平分线和等腰三角形的性质.线段垂直平分线经转化后就是等腰三角形.19.思路分析:(1)当M、N两点重合时,它们的路程差是12,据此可求出运动时间;(2)当M在AC上,N在AB上时,可得到等边三角形△AMN,根据等边三角形的性质得运动时间;(3)根据点M、N将在点C重合,所以点M、N在BC上时,能得到以MN为底边的等腰三角形AMN,证明△ACM≌△ABN,由全等三角形的性质求得运动时间.解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.小结:动点问题要动中求静,将动点运动的路径进行分段,逐段分析可解决问题.《轴对称》综合测试二一、选择题(每小题3分,共24分)1.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.2.已知点A(﹣2,3)关于x轴对称的点是点B,点B关于y轴对称的点是C,则点C的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)3.已知a、b、c是三角形的三边长,且满足(a﹣b)2+|b﹣c|=0,那么这个三角形一定是()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形4.如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是()A.15cm B.13cm C.11cm D.9cm5.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)6.将一张正方形按图1,图2方式折叠,然后用剪刀沿图3中虚线剪掉一角,再将纸片展开铺平后得到的图形是()A.B.C.D.7.已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③8.图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的12)后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则P n﹣P n﹣1的值为()A.114n-⎛⎫⎪⎝⎭B.C.112n-⎛⎫⎪⎝⎭D.二、填空题(每小题4分,共24分)9.我国国旗上的五角星有条对称轴.10.已知点P(2a+b,b)与P1(8,﹣2)关于y轴对称,则a+b= .11.如图,CD是△ABC的边AB上的高,且AB=2BC=8,点B关于直线CD的对称点恰好落在AB的中点E处,则△BEC的周长为.12.已知一个等腰三角形的两边长分别是6和5,那么它的周长为.13.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为.14.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有个.三、解答题(5个小题,共52分)15.(8分)某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使得三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.16.(10分)如图,一艘轮船从点A向正北方向航行,每小时航行15海里,小岛P在轮船的北偏西15°,2小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P 的周围18海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.17.(10分)如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.(1)如图1,填空∠B= °,∠C= °;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2.①求证:△ANE是等腰三角形;②试写出线段BN、CE、CD之间的数量关系,并加以证明.18.(12分)(1)如图1,直线同侧有两点A、B,在直线上求一点C,使它到A、B之和最小.(保留作图痕迹不写作法)(2)知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使△PEF周长最短(保留作图痕迹不写作法)(3)解决问题:①如图3,在五边形ABCDE中,在BC,DE上分别找一点M,N,使得△AMN周长最小;②若∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,∠AMN+∠ANM的度数为.19.(12分)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG 与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.《轴对称》综合测试二参考答案一、1. D 2.B 3.B 4.B 5.C 6.B 7.A 8.C.提示:1. 提示:利用轴对称图形定义判断.下列四个汉字中,可以看作轴对称图形的是“中”,故选D.2.提示:点A(﹣2,3)关于x轴对称的点B的坐标为(﹣2,﹣3).点B(﹣2,﹣3)关于y轴对称的点C的坐标为(2,-3).故选:B.3.提示:根据非负数的性质,得∴a﹣b=0,且b﹣c=0,∴a=b,且b=c,∴a=b=c,∴这个三角形一定是等边三角形,故选B.4.提示:∵AB=AC,∴∠ABC=∠C.∵DE∥AB,∴∠DEC=∠ABC=∠C,∠ABD=∠BDE,∴DE=DC,∵BD是∠ABC的平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE,∴BE=DE=DC=5cm,∴△CDE 的周长为DE+DC+EC=5+5+3=13(cm),故选B.5.提示:如图,∵点P (﹣1,2),∴点P 到直线x=1的距离为1﹣(﹣1)=2,∴点P 关于直线x=1的对称点P ′到直线x=1的距离为2,∴点P ′的横坐标为2+1=3,∴对称点P ′的坐标为(3,2).故选C .小结:本题采用数形结合的办法更容易得到答案,找一个点的坐标,应分为求点的横坐标与纵坐标两个小题.6.提示:由于剪去的是一个等腰直角三角形,四个等腰直角三角形直角顶点重合可以得到一个正方形.故选:B .小结:此题主要考查了剪纸问题,解答此类题最好动手操作,易得出答案. 7.提示:由题意知,要求“被一条直线分成两个小等腰三角形”,(1)中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°,72°,能; (2)不能;(3)显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能; (4)中的为36°,72,72°和36°,36°,108°,能.故选A .小结:在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形形状相同才有可能. 8.提示:P 1=1+1+1=3,P 2=1+1+12=52,P 3=1+12+12+14×3=114,P 4=1+12+12+14×2+18×3=238,… ∴p 3﹣p 2=114﹣52=14=212,P 4﹣P 3=238﹣114=18=312,则Pn ﹣Pn ﹣1=112n -=112n -⎛⎫⎪⎝⎭.故选C .小结:本题考查了等边三角形的性质;要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.二、9. 5 10.﹣5 11.12 12.16或17 13.5.5 14.8.提示:9. 提示:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.提示:∵点P(2a+b,b)与P1(8,﹣2)关于y轴对称,∴2a+b=﹣8,b=﹣2,解得:a=﹣3,则a+b=﹣3﹣2=﹣5.故答案为:﹣5.11.提示:∵点B与点E关于DC对称,∴BC=CE=4.∵E是AB的中点,∴BE=12AB=4.∴△BEC的周长12.故答案为:12.12.提示:当腰为6时,则三角形的三边长分别为6、6、5,满足三角形的三边关系,周长为17;当腰为5时,则三角形的三边长分别为5、5、6,满足三角形的三边关系,周长为16;综上可知,等腰三角形的周长为16或17.故答案为:16或17.小结:已知等腰三角形的两边长求周长,不仅要分类讨论,还要看是否符合三角形三边关系.13.提示:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=12AB=12×11=5.5,∴DF=5.5.故答案为:5.5.小结:角平分线与平行线结合时,常有等腰三角形出现.14.提示:如图,AB是腰长时,有4个点可以作为点C,AB是底边时,有4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8.故答案为8.小结:掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.三、15. 解:如图,①连接AB,AC,②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,则P即为售票中心.16.解:如图,过P作PE⊥AB于E,由题意得:∠PAE=15°,∠PBE=30°,AB=30海里.∴AB=BP=30,在Rt△BPE中,∵∠PBE=30°,∴PE=12BP=12×30=15.又∵周围18海里都会有危险,∴轮船继续向北航行,有触礁危险.17.思路分析:(1)由等边对等角,得∠C=∠ADC=∠BAC=2∠B,∠DAC=∠B,在△ADC中由三角形内角和可求得∠B,∠C;(2)①由(1)可知∠BAD=∠CAD=36°,利用三角形内角和求得∠ANH、∠AEH的度数,可得AN=AE;②由①知AN=AE,借助已知利用线段的和差可得CD=BN+CE.解:(1)∵BA=BC,∴∠BCA=∠BAC,∵DA=DB,∴∠BAD=∠B,∵AD=AC,∴∠ADC=∠C=∠BAC=2∠B,∴∠DAC=∠B,∵∠DAC+∠ADC+∠C=180°,∴2∠B+2∠B+∠B=180°,∴∠B=36°,∠C=2∠B=72°,故答案为:36;72;(2)①在△ADB中,∵DB=DA,∠B=36°,∴∠BAD=36°,在△ACD中,∵AD=AC,∴∠ACD=∠ADC=72°,∴∠CAD=36°,∴∠BAD=∠CAD=36°,∵MH⊥AD,∴∠AHN=∠AHE=90°,∴∠AEN=∠ANE=54°,即△ANE是等腰三角形;②CD=BN+CE.证明:由①知AN=AE,又∵BA=BC,DB=AC,∴BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,∴BN+CE=BC﹣BD=CD,即CD=BN+CE.小结:本题主要考查等腰三角形的判定和性质,掌握等角对等边、等边对等角是解题的关键,注意方程思想的应用.18.思路分析:(1)根据两点之间线段最短,作A关于直线MN的对称点E,连接BE交直线MN于C,即可得出答案;(2)作P关于OA、OB的对称点C、D,连接CD交OA、OB于E、F.此时△PEF周长有最小值;(3)①取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,根据轴对称的性质可得AM=PM,AN=QN,然后求出△AMN周长=PQ,根据轴对称确定最短路线问题,PQ的长度即为△AMN 的周长最小值;②根据三角形的内角和等于180°求出∠P+∠Q,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AMN=2∠P,∠ANM=2∠Q,然后求解即可得出答案.解:(1)作A关于直线MN的对称点E,连接BE交直线MN于C,连接AC,BC,则此时C点符合要求.(2)作图如下:(3)①作图如下:②∵∠BAE=125°,∴∠P+∠Q=180°﹣125°=55°,∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°.小结:在平面内找最短路径,要利用轴对称,用这个点的对称点去代替这个点,化曲为直.19.思路分析:(1)利用“三边相等”的三角形是等边三角形证得△EBC是等边三角形;(2)延长ED使得DW=DM,连接MN,即可得出△WDM是等边三角形,利用△WGM≌△DBM即可得出BD=WG=DG+DM,再利用AD=BD,即可得出答案;(3)利用等边三角形的性质得出∠H=∠2,进而得出∠DNG=∠HNB,再求出△DNG≌△HNB 即可得出答案.(1)证明:如图1所示:在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,BC=.∵BD平分∠ABC,∴∠CBD=∠DBA=∠A=30°.∴DA=DB.∵DE⊥AB于点E.∴AE=BE=.∴BC=BE.∴△EBC是等边三角形;(2)结论:AD=DG+DM.证明:如图2所示:延长ED使得DW=DM,连接MW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,又∵DM=DW,∴△WDM是等边三角形,∴MW=DM,在△WGM和△DBM中,∵∴△WGM≌△DBM,∴BD=WG=DG+DM,∴AD=DG+DM.(3)结论:AD=DG﹣DN.证明:延长BD至H,使得DH=DN.由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.小结:此题主要考查了等边三角形的判定与性质以及全等三角形的判定与性质,根据已知做出正确辅助线是解题关键.。

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)

人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。

人教版八年级数学上册第13章测试题及答案

人教版八年级数学上册第13章测试题及答案

人教版八年级数学上册第13章测试题及答案一、单选题1.下列润滑油1ogo 标志图标中,不是轴对称图形的是( )A .B .C .D .2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .ABC V 的三条中线的交点B .ABC V 三边的垂直平分线的交点C .ABC V 三条角平分线的交点D .ABC V 三条高所在直线的交点3.三角形的外心是三角形的( )A .三条中线的交点B .三条角平分线的交点C .三边垂直平分线的交点D .三条高所在直线的交点4.下列条件中,不能判定直线CD 是线段AB (C ,D 不在线段AB 上)的垂直平分线的是( )A .CA =CB ,DA =DB B .CA =CB ,CD ⊥ABC .CA =DA ,CB =DBD .CA =CB ,CD 平分AB5.如图,在 △ABC 中,AB =AC ,∠=36°,BD 平分∠ABC 交 AC 于点 D ,则图中的等腰三角形共有( )A .1 个B .2 个C .3 个D .4 个6.下列图形中,不是轴对称图形的是( )A .有一个角是45度的直角三角形B .有两个角相等的三角形C .有一个角是40度,另一个角是100度的三角形D .有一个角是30度的直角三角形7.如图,在ABC V 中,90,6,10,8BAC AC BC AB Ð=°===,过点A 的直线//,DE BC ABC Ð与ACB Ð的平分线分别交DE 于点E 、D ,则DE 的长为( )A .14B .16C .18D .208.若等腰三角形的顶角是40°,则它的底角是( )A .40°B .70°C .80°D .100°9.如图,在等边ABC V 中,AD 是它的角平分线,DE AB ^于点E ,若8AC =,则BD =( )A .4B .3C .2D .110.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,150ABC Ð=°,BC 的长是40m ,则乘电梯从点B 到点C 上升的高度h 是( )A .20mBCD .11.如图,△ABC 是边长为4的等边三角形,点P 在AB 上,过点P 作PE ⊥AC ,垂足为E ,延长BC 至点Q ,使CQ =PA ,连接PQ 交AC 于点D ,则DE 的长为( )A .1B .1.8C .2D .2.512.如图,等边三角形ABC 的三条角平分线相交于点O ,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,那么这个图形中的等腰三角形共有( )个A .4B .5C .6D .7二、填空题13.在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.14.如图,在ABC V 中,10cm AB AC ==,AB 的垂直平分线交AC 于点D ,且BCD △的周长为17cm ,则BC =________cm .15.如图,在ABC D 中,,MP NQ 分别垂直平分边,AB AC ,交BC 于点,P Q ,如果20BC =,那么APQ V 的周长为 __________.16.ABC D 中,AB =AC ,AB 的中垂线与AC 所在直线相交成的锐角为50°,则底角B 的大小为_________.17.如图,∠AOB =60°,C 是BO 延长线上一点,OC =10cm ,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 出发沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t (s )表示移动的时间,当t =______s 时,△POQ 是等腰三角形.三、解答题18.如图,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD 垂直平分EF .19.如图,在ABC V 中,,AB AC AB =的垂直平分线交AB 于点D ,交AC 于点E .已知BCE V 的周长为8,2AC BC -=,求AB 与BC 的长.20.如图,AD 是ABC V 的角平分线,EF 是AD 的垂直平分线.求证:(1)EAD EDA Ð=Ð;(2)//DF AC ;(3)EAC B Ð=Ð.21.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .22.如图,在△ABC中,∠BAC=90°,E为边BC上的任意点,D为线段BE的中点,AB=AE,EF⊥AE,∥.AF BC(1)求证:∠DAE=∠C;(2)求证:AF=BC.23.阅读下面材料:【原题呈现】如图1,在V ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到V DEC≌V DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知V ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.参考答案1.C2.C3.C4.C5.C6.D7.A8.B9.A10.A11.C12.D解:①∵△ABC 为等边三角形,∴AB =AC ,∴△ABC 为等腰三角形;②∵BO ,CO ,AO 分别是三个角的角平分线,∴∠ABO =∠CBO =∠BAO =∠CAO =∠ACO =∠BCO ,∴AO =BO ,AO =CO ,BO =CO ,∴△AOB 为等腰三角形;③△AOC 为等腰三角形;④△BOC 为等腰三角形;⑤∵OD ∥AB ,OE ∥AC ,∴∠ABC =∠ODE ,∠ACB =∠OED ,∵∠ABC =∠ACB ,∴∠ODE =∠OED ,∴△DOE 为等腰三角形;⑥∵OD ∥AB ,OE ∥AC ,∴∠BOD =∠ABO ,∠COE =∠ACO ,∵∠DBO =∠ABO ,∠ECO =∠ACO ,∴∠BOD =∠DBO ,∠COE =∠ECO ,∴△BOD 为等腰三角形;⑦△COE 为等腰三角形.故选:D .13. 5 圆、正六边形、五角星、等边三角形、锐角14.715.2016.70°或20°17.103或1018.证明:Q AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,,EAD FAD DE EF\Ð=Ð=又AD AD=\AED AFDV V ≌\AE AF=\,A D 在EF 的垂直平分线上即AD 垂直平分EF .19.解: ∵BCE V 的周长为8,∴8BE EC BC ++=∵AB 的垂直平分线交AB 于点D ,交AC 于点E ,∴AE BE =,∴8AE EC BC ++=,即8AC BC +=,∵2AC BC -=,∴5AC =,3BC =,∵AB AC =,∴5AB =.20解析:(1)根据线段垂直平分线上任意一点,到线段两端的距离相等可得到AE DE =,再根据三角形全等得到EAD EDA Ð=Ð;(2)根据线段垂直平分线的性质证明AF DF =,进而得到BAD ADF Ð=Ð,再利用角平分线的性质可得到BAD CAD Ð=Ð,利用等量代换可得ADF CAD Ð=Ð,再根据平行线的判定即可得到//DF AC ;(3)根据三角形内角与外角的关系可得到结论.答案:证明:(1)如图,连接AE ,设AD 与EF 相交于点Q ,∵EF 是AD 的垂直平分线,∴AE DE =,AQ DQ =,在AEQ △和DEQ V 中,∵,,,AQ DQ EQ EQ AE DE =ìï=íï=î∴AEQ DEQ V V ≌(SSS ),∴EAD EDA Ð=Ð;(2)∵EF 是AD 的垂直平分线,∴AF DF =,在AFQ △和DFQ V 中,∵,,,AQ DQ FQ FQ AF DF =ìï=íï=î∴AFQ DFQ V V ≌(SSS ),∴BAD ADF Ð=Ð,∵AD 是ABC V 的角平分线,∴BAD CAD Ð=Ð,∴ADF CAD Ð=Ð,∴//DF AC ;(3)由(1)知EAD EDA Ð=Ð,EAD CAD EAC Ð=Ð+Ð,∴EDA CAD EAC Ð=Ð+Ð,又∵EDA BAD B Ð=Ð+Ð,∴CAD EAC BAD B Ð+Ð=Ð+Ð,∵BAD CAD Ð=Ð,∴EAC B Ð=Ð.易错:证明:(1)∵EF 是AD 的垂直平分线,∴AE DE =,在AEQ △和DEQ V中,,,,AQ DQ AEQ DEQ AE DE =ìïÐ=Ðíï=î∴AEQ DEQ V V ≌(SAS ),∴EAD EDA Ð=Ð.错因:角不是夹角,随意找三个条件证明全等.满分备考:掌握线段的垂直平分线和角平分线的性质与判定的应用,可以快速解决有关线段相等,角相等或距离相等的问题.21(1)//AD BC Q ,,F DAE ECF D \Ð=ÐÐ=Ð,Q 点E 是CD 的中点,CE DE \=,在CEF △和DEA △中,F DAE ECF D CE DE Ð=ÐìïÐ=Ðíï=î,()CEF DEA AAS \@V V ,FC AD \=;(2)由(1)已证:CEF DEA @V V ,FE AE \=,又BE AE ^Q ,BE \是线段AF 的垂直平分线,AB FB BC FC \==+,由(1)可知,FC AD =,AB BC AD \=+.22.(1)证明:∵AB =AE ,D 为线段BE 的中点,∴AD ⊥BC ,∴∠C +∠DAC =90°,∵∠BAC =90°,∴∠BAD +∠DAC =90°,∴∠C =∠BAD ,∵AB =AE ,AD ⊥BE ,∴∠BAD =∠DAE ,∴∠DAE =∠C ;(2)证明:∵AF ∥BC ,∴∠FAE =∠AEB ,∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠FAE ,又∠AEF =∠BAC =90°,AB =AE ,∴△ABC ≌△EAF (ASA ),∴AC =EF .23.解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =ìïÐ=Ðíï=î,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =ìïÐ=Ðíï=î,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.人教版八年级数学上册第13章测试题及答案一、单选题1.下列润滑油1ogo 标志图标中,不是轴对称图形的是( )A .B .C .D .2.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .ABC V 的三条中线的交点B .ABC V 三边的垂直平分线的交点C .ABC V 三条角平分线的交点D .ABC V 三条高所在直线的交点3.三角形的外心是三角形的( )A .三条中线的交点B .三条角平分线的交点C .三边垂直平分线的交点D .三条高所在直线的交点4.下列条件中,不能判定直线CD 是线段AB (C ,D 不在线段AB 上)的垂直平分线的是( )A .CA =CB ,DA =DB B .CA =CB ,CD ⊥ABC .CA =DA ,CB =DBD .CA =CB ,CD 平分AB5.如图,在 △ABC 中,AB =AC ,∠=36°,BD 平分∠ABC 交 AC 于点 D ,则图中的等腰三角形共有( )A .1 个B .2 个C .3 个D .4 个6.下列图形中,不是轴对称图形的是( )A .有一个角是45度的直角三角形B .有两个角相等的三角形C .有一个角是40度,另一个角是100度的三角形D .有一个角是30度的直角三角形7.如图,在ABC V 中,90,6,10,8BAC AC BC AB Ð=°===,过点A 的直线//,DE BC ABC Ð与ACB Ð的平分线分别交DE 于点E 、D ,则DE 的长为( )A .14B .16C .18D .208.若等腰三角形的顶角是40°,则它的底角是( )A .40°B .70°C .80°D .100°9.如图,在等边ABC V 中,AD 是它的角平分线,DE AB ^于点E ,若8AC =,则BD =( )A .4B .3C .2D .110.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,150ABC Ð=°,BC 的长是40m ,则乘电梯从点B 到点C 上升的高度h 是( )A .20mBCD .11.如图,△ABC 是边长为4的等边三角形,点P 在AB 上,过点P 作PE ⊥AC ,垂足为E ,延长BC 至点Q ,使CQ =PA ,连接PQ 交AC 于点D ,则DE 的长为( )A .1B .1.8C .2D .2.512.如图,等边三角形ABC 的三条角平分线相交于点O ,//OD AB 交BC 于点D ,//OE AC 交BC 于点E ,那么这个图形中的等腰三角形共有( )个A .4B .5C .6D .7二、填空题13.在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.14.如图,在ABC V 中,10cm AB AC ==,AB 的垂直平分线交AC 于点D ,且BCD △的周长为17cm ,则BC =________cm .15.如图,在ABC D 中,,MP NQ 分别垂直平分边,AB AC ,交BC 于点,P Q ,如果20BC =,那么APQ V 的周长为 __________.16.ABC D 中,AB =AC ,AB 的中垂线与AC 所在直线相交成的锐角为50°,则底角B 的大小为_________.17.如图,∠AOB =60°,C 是BO 延长线上一点,OC =10cm ,动点P 从点C 出发沿CB 以2cm/s 的速度移动,动点Q 从点O 出发沿OA 以1cm/s 的速度移动,如果点P 、Q 同时出发,用t (s )表示移动的时间,当t =______s 时,△POQ 是等腰三角形.三、解答题18.如图,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD 垂直平分EF .19.如图,在ABC V 中,,AB AC AB =的垂直平分线交AB 于点D ,交AC 于点E .已知BCE V 的周长为8,2AC BC -=,求AB 与BC 的长.20.如图,AD 是ABC V 的角平分线,EF 是AD 的垂直平分线.求证:(1)EAD EDA Ð=Ð;(2)//DF AC ;(3)EAC B Ð=Ð.21.如图,在四边形ABCD 中,//AD BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .22.如图,在△ABC中,∠BAC=90°,E为边BC上的任意点,D为线段BE的中点,AB=AE,EF⊥AE,∥.AF BC(1)求证:∠DAE=∠C;(2)求证:AF=BC.23.阅读下面材料:【原题呈现】如图1,在V ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到V DEC≌V DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知V ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.参考答案1.C2.C3.C4.C5.C6.D7.A8.B9.A10.A11.C12.D解:①∵△ABC 为等边三角形,∴AB =AC ,∴△ABC 为等腰三角形;②∵BO ,CO ,AO 分别是三个角的角平分线,∴∠ABO =∠CBO =∠BAO =∠CAO =∠ACO =∠BCO ,∴AO =BO ,AO =CO ,BO =CO ,∴△AOB 为等腰三角形;③△AOC 为等腰三角形;④△BOC 为等腰三角形;⑤∵OD ∥AB ,OE ∥AC ,∴∠ABC =∠ODE ,∠ACB =∠OED ,∵∠ABC =∠ACB ,∴∠ODE =∠OED ,∴△DOE 为等腰三角形;⑥∵OD ∥AB ,OE ∥AC ,∴∠BOD =∠ABO ,∠COE =∠ACO ,∵∠DBO =∠ABO ,∠ECO =∠ACO ,∴∠BOD =∠DBO ,∠COE =∠ECO ,∴△BOD 为等腰三角形;⑦△COE 为等腰三角形.故选:D .13. 5 圆、正六边形、五角星、等边三角形、锐角14.715.2016.70°或20°17.103或1018.证明:Q AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,,EAD FAD DE EF\Ð=Ð=又AD AD=\AED AFDV V ≌\AE AF=\,A D 在EF 的垂直平分线上即AD 垂直平分EF .19.解: ∵BCE V 的周长为8,∴8BE EC BC ++=∵AB 的垂直平分线交AB 于点D ,交AC 于点E ,∴AE BE =,∴8AE EC BC ++=,即8AC BC +=,∵2AC BC -=,∴5AC =,3BC =,∵AB AC =,∴5AB =.20解析:(1)根据线段垂直平分线上任意一点,到线段两端的距离相等可得到AE DE =,再根据三角形全等得到EAD EDA Ð=Ð;(2)根据线段垂直平分线的性质证明AF DF =,进而得到BAD ADF Ð=Ð,再利用角平分线的性质可得到BAD CAD Ð=Ð,利用等量代换可得ADF CAD Ð=Ð,再根据平行线的判定即可得到//DF AC ;(3)根据三角形内角与外角的关系可得到结论.答案:证明:(1)如图,连接AE ,设AD 与EF 相交于点Q ,∵EF 是AD 的垂直平分线,∴AE DE =,AQ DQ =,在AEQ △和DEQ V 中,∵,,,AQ DQ EQ EQ AE DE =ìï=íï=î∴AEQ DEQ V V ≌(SSS ),∴EAD EDA Ð=Ð;(2)∵EF 是AD 的垂直平分线,∴AF DF =,在AFQ △和DFQ V 中,∵,,,AQ DQ FQ FQ AF DF =ìï=íï=î∴AFQ DFQ V V ≌(SSS ),∴BAD ADF Ð=Ð,∵AD 是ABC V 的角平分线,∴BAD CAD Ð=Ð,∴ADF CAD Ð=Ð,∴//DF AC ;(3)由(1)知EAD EDA Ð=Ð,EAD CAD EAC Ð=Ð+Ð,∴EDA CAD EAC Ð=Ð+Ð,又∵EDA BAD B Ð=Ð+Ð,∴CAD EAC BAD B Ð+Ð=Ð+Ð,∵BAD CAD Ð=Ð,∴EAC B Ð=Ð.易错:证明:(1)∵EF 是AD 的垂直平分线,∴AE DE =,在AEQ △和DEQ V中,,,,AQ DQ AEQ DEQ AE DE =ìïÐ=Ðíï=î∴AEQ DEQ V V ≌(SAS ),∴EAD EDA Ð=Ð.错因:角不是夹角,随意找三个条件证明全等.满分备考:掌握线段的垂直平分线和角平分线的性质与判定的应用,可以快速解决有关线段相等,角相等或距离相等的问题.21(1)//AD BC Q ,,F DAE ECF D \Ð=ÐÐ=Ð,Q 点E 是CD 的中点,CE DE \=,在CEF △和DEA △中,F DAE ECF D CE DE Ð=ÐìïÐ=Ðíï=î,()CEF DEA AAS \@V V ,FC AD \=;(2)由(1)已证:CEF DEA @V V ,FE AE \=,又BE AE ^Q ,BE \是线段AF 的垂直平分线,AB FB BC FC \==+,由(1)可知,FC AD =,AB BC AD \=+.22.(1)证明:∵AB =AE ,D 为线段BE 的中点,∴AD ⊥BC ,∴∠C +∠DAC =90°,∵∠BAC =90°,∴∠BAD +∠DAC =90°,∴∠C =∠BAD ,∵AB =AE ,AD ⊥BE ,∴∠BAD =∠DAE ,∴∠DAE =∠C ;(2)证明:∵AF ∥BC ,∴∠FAE =∠AEB ,∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠FAE ,又∠AEF =∠BAC =90°,AB =AE ,∴△ABC ≌△EAF (ASA ),∴AC =EF .23.解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =ìïÐ=Ðíï=î,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =ìïÐ=Ðíï=î,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.。

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。

第十三章周测(13.1~13.2)【习题课件】八年级上册人教版数学

第十三章周测(13.1~13.2)【习题课件】八年级上册人教版数学
≌△ ANP (SSS).故①正确.

∴∠ DAC =∠ DAB = ∠ BAC =30°.

∴∠ ADC =90°-∠ CAD =60°,故②正确.
∵∠ B =90°-∠ BAC =30°,
∴∠ BAD =∠ B . ∴ DA = DB .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
周测(13.1~13.2)
条对称轴;C. 是轴对称图形,有2条对称轴;D. 是轴对称图形,有
3条对称轴.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
周测(13.1~13.2)
一、选择题
二、填空题
三、解答题
2. 已知点 A ( a ,-2 016)与点 B (2 017,- b )关于 x 轴对称,则 a + b 的
值为(
B
)
A. -1
B. 1
D. -4 033
C. 4 033
【解析】∵点 A ( a ,-2 016)与点 B (2 017,- b )关于 x 轴对称,∴ a =
2 017, b =-2 016.
∴ a + b =1.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
周测(13.1~13.2)
周测(13.1~13.2)

最新人教版八年级数学上册 第十三章综合能力检测卷(含答案解析)

最新人教版八年级数学上册 第十三章综合能力检测卷(含答案解析)
第十三章 综合能力检测卷
―、选择题(每题 3 分,共 30 分) 1.下列图标是轴对称图形的是( )
2.将点 A (2,3)向左平移 2 个单位长度得到点 A ' ,点 A ' 关于 x 轴的对称点是 A '' , 则点 A '' 的坐标为( A.(0,-3) 3.下列说法正确的有( ) B.(4,-3) ) C.(4,3) D.(0,3)
1 1 BC AD= 4 AD=16.解得 AD=8.因为 EF 是线段 AC 的垂 2 2
直平分线,所以点 C 关于直线的对称点为 A,所以 AD 的长为 CM+MD 的最小值, 所以△CDM 的周长的最小值为 AD+CD=AD+
1 1 BC=8+ 4=10.故选 C. 2 2
9. D【解析】如图,连接 MN,过点 N 作 ND//AB,交 AM 于点 D,则 DNC NCB
23.(12 分)如图,已知△ABC 中, CAB 的平分线和 AD 边 BC 的垂直平分线 ED 相 交于点 D ,过点 D 作 DF AC 交 AC 的延长线于点 F , DM AB 于点 M . (1)猜想 CF 和 BM 之间有何数量关系,并说明理由; (2)求证: AB AC 2CF .
AD, DE AB 于点 E .求证: EB 3EA .
22.(10 分)如图,已知△ABC 是边长为 3cm 的等边三角形,动点 P,Q 同时从 A,B 两 点出发,分别沿 AB,BC 方向匀速移动,它们的速度都是 1cm/s,当点 P 到达点 B 时,P,Q 两点停止运动.设点 P 的运动时间为 t s,则当 t 为何值时,△PBQ 是直角三 角形?
20.(8 分)如图,在等腰三角形 ABC 中,AB=AC,点 D,E 分别在边 AB,AC 上,且 AD=AE, 连接 BE,CD,交于点 F. (1)判断 ABE 与 ACD 的数量关系,并说明理由; (2)求证:过点 A,F 的直线垂直平分线段 BC.

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)

八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。

人教版八年级数学上册第13章单元测试卷及答案

人教版八年级数学上册第13章单元测试卷及答案

人教版八年级数学上册第13章单元测试卷及答案一.选择题(每小题3分,共30分)1.下面四个图形分别是节能.节水.低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A.B.C.D.2.在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )A.(﹣3,﹣2) B.(﹣2,2)C.(2,2)D.(2,﹣2)3.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°第3题图第4题图第5题图4.如图,直线l1∥l2,以直线l1上的点A为圆心.适当长为半径画弧,分别交直线l1.l2于点B.C,连接AC.BC.若∠ABC=67°,则∠1=( )A.23°B.46°C.67°D.78°5.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )A.105°B.100°C.95°D.90°6.等腰三角形两边长分别是2cm和5cm,则这个三角形周长是( )A.9cm B.9cm或12cm C.12cm D.14cm7.如图,OB.OC分别平分∠ABC和∠ACB,MN∥BC,若AB=6,AC=4,则△AMN的周长是( )A.5B.7C .9D.10第7题图第8题图第9题图第10题图8.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )A.40°B.36°C.30°D.25°9.如图,在平面直角坐标系中,点B.C在y轴上,△ABC是等边三角形,AB=4,AC与x轴的交点D为AC边的中点,则点D的坐标为( )A.(1,0)B.(2,0)C.(2,0)D.(,0)10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.B.3C.4D.2二.填空题(每小题3分,共15分)11.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为 .第11题图第12题图第13题图12.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有 个.13.如图,在△ABC中,AB=AC,D.E分别在BC.AC上,且AD=AE,若∠BAD=20°,则∠CDE= .14.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为 .第14题图第15题图15.如图,△ABC是边长3cm的等边三角形,动点P.Q同时从A.B两点出发,分别沿AB.BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P.Q两点停止当t时,△PBQ是直角三角形.三.解答题(本大题共8个小题,满分75分)16.(8分)作图题:如图,某地有两所学校M.N和两条交叉的公路AO.BO,现计划建一个体育馆,希望体育馆到两所学校的距离相同,到两条公路的距离也相同,请你用尺规作图的方法确定体育馆的具体位置.(要求:尺规作图,不用写出作法,但要保留作图痕迹)17.(9分)已知:如图,在平面直角坐标系中.(1)作出△ABC 关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );(2)直接写出△ABC的面积为 ;(3)在x轴上画点P,使PA+PC最小.18.(9分)如图,已知AB比AC长3cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是15cm,求AB和AC的长.19.(9分)已知BC=ED,AB=AE,∠B=∠E,F是CD的中点,求证:AF ⊥CD.20.(9分)如图,在△ABC中,AB=AC,AM是外角∠DAC的平分线.(1)实践与操作:尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法),作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE.(2)猜想并证明:∠EAC与∠DAC的数量关系并加以证明.21.(10分)如图,点D.E是等边△ABC的BC.AC上的点,且CD=AE,AD.BE相交于P点,BQ⊥AD.(1)求证:△ABE≌△ADC;(2)已知PE=2,AD=8,求PQ的长度.22.(10分)如图,在△ABC中,AD为∠BAC的平分线,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC交AC的延长线于F.(1)求证:BE=CF;(2)如果AB=6,AC=4,求AE,BE的长.23.(11分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与B.C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠ADB=115°时,∠BAD= °,∠DEC= °;(2)线段DC的值为多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠ADB的度数;若不可以,请说明理由.参考答案一.选择题1.A 2.C 3. B4.B 5.A 6.C 7.D8.B9.D10.D 二.填空题11.105°12.313.10°14.A15.1或2.三.解答题(共8小题)16.解:如图所示:,点P就是体育馆的具体位置.17.解:(1)如图所示:A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;故答案为:5;(3)如图所示:点P即为所求.18.解:∵DE是BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+AD+CD=AC+BD+AD=AC+AB,由题意得,,解得.∴AB和AC的长分别为9cm,6cm.19.解:如图,连接AC.AD,在△ABC和△AED中,,∴△ABC≌△AED(SAS).∴AC=AD.∴△ACD是等腰三角形.又∵点F是CD的中点,∴AF⊥CD.20.解:(1)如图所示:(2)猜想:∠EAC=∠DAC,理由如下:∵AB=AC∴∠B=∠C,∵∠DAC是△ABC的外角∴∠DAC=∠B+∠C=2∠C,∵EF垂直平分AC,∴EA=EC,∴∠EAC=∠C=∠DAC.21.解:(1)∵CD=AE,∴BD=CE,在△ABE和△ADC中,,∴△ABE≌△ADC(SAS);(2)∵△ABE≌△ADC,∴∠CAD=∠ABE,BE=AD=8,∵∠APE=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°,∴∠BPD=∠APE=∠BAC=60°,即∠BPD的度数为60°;∵BQ⊥AD,在Rt△BPQ中,∠BPQ=60°,∴∠PBQ=30°,∵PB=BE﹣PE=8﹣2=6,∴PQ=PB=3.22.解:(1)连接DB.DC,∵DG⊥BC且平分BC,∴DB=DC.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.∠AED=∠BED=∠ACD=∠DCF=90°在Rt△DBE和Rt△DCF中,Rt△DBE≌Rt△DCF(HL),∴BE=CF.(2)在Rt△ADE和Rt△ADF中∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.∵AC+CF=AF,∴AE=AC+CF.∵AE=AB﹣BE,∴AC+CF=AB﹣BE∵AB=6,AC=4,∴4+BE=6﹣BE,∴BE=1,∴AE=6﹣1=5.答:AE=5,BE=1.23.解:(1)25°,115°;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形状是等腰三角形.。

人教版八年级数学上册 第十三章达标测试卷附答案

人教版八年级数学上册 第十三章达标测试卷附答案

人教版八年级数学上册第十三章达标测试卷一、选择题(每题3分,共30分)1.下列图形中,是轴对称图形的是()2.点M(1,-2)关于x轴对称的点的坐标为()A.(1,2) B.(-1,-2) C.(-1,2) D.(-2,1) 3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为() A.18 B.24 C.30 D.24或30 4.等腰三角形的一个角为70°,则这个等腰三角形的顶角为() A.70°B.55°C.40°D.40°或70°5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线对称D.周长相等的两个三角形一定关于某条直线对称6.如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.14 C.15 D.16(第6题)(第7题)(第8题)(第9题)(第10题) 7.如图,在等边三角形ABC中,AB=10 cm,D是AB的中点,过点D作DE ⊥AC于点E,则EC的长是()A.2.5 cm B.5 cm C.7 cm D.7.5 cm 8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以40 n mile/h的速度向正北方向航行,2 h后到达灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A.40 n mile B.60 n mile C.70 n mile D.80 n mile 9.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC与∠ACB 的平分线,BD,CE相交于点F,则图中的等腰三角形有()A.6个B.7个C.8个D.9个10.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点是BC的中点,两边PE,PF分别交AB,AC于点E,F.给出以下四个结论:①AE=CF;②△PEF是等腰直角三角形;③S四边形AEPF =12S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与点A,B重合),上述结论中始终成立的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=________.(第11题)(第12题)(第13题)(第14题) 12.小明上午在理发店时,从镜子内看到背后的时钟的时针与分针的位置如图所示,此时的时间是________.13.如图,在正方形方格中,阴影部分是涂灰7个小正方形所形成的图案,再将方格内空白的1个小正方形涂灰,使得到的新图案(阴影部分)成为一个轴对称图形的涂法有________种.14.如图,在△ABC中,∠C=90°,∠B=30°,AB边的垂直平分线ED交AB 于点E,交BC于点D,若CD=3,则BD的长为________.15.如图,点D,E分别在等边三角形ABC的边AB,BC上,将△BDE沿直线DE翻折,使点B落在B1处.若∠ADB1=70°,则∠CEB1=________.(第15题)(第17题)(第18题)16.若等腰三角形的顶角为150°,则它一腰上的高与另一腰的夹角的度数为________.17.如图,在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC,则∠PCQ的度数为________.18.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB于点E,F.若点D为BC的中点,点M为线段EF上一动点,则△CDM周长的最小值为________.三、解答题(19题14分,20题8分,21,22题每题10分,其余每题12分,共66分)19.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)在图中作出△ABC关于y轴对称的△A1B1C1;(3)写出点A1,B1,C1的坐标.20.如图,P为∠MON的平分线上的一点,P A⊥OM于A,PB⊥ON于B.求证:OP垂直平分AB.21.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.22.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF的平分线上一点,且∠ADC=45°,CD交AB于点E.(1)求证AD=CD;(2)求AE的长.23.如图,△ABC是边长为3 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1 cm/s,当点P到达点B时,P,Q两点停止运动.设点P的运动时间为t s,则当t为何值时,△PBQ是直角三角形?24.如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)若BF⊥CE于点F,交CD于点G(如图①),求证AE=CG;(2)若AH⊥CE,垂足为H,AH的延长线交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.答案一、1.C 2.A 3.C 4.D 5.A 6.A 7.D 8.D 9.C 10.C二、11.40° 12.10:45 13.3 14.6 15.50° 16.60° 17.⎝ ⎛⎭⎪⎫3607°18.10 【点拨】如图,连接AD ,交EF 于点M ′,连接CM ′.∵直线EF 垂直平分AC , ∴AM ′=CM ′.∴当点M 与点M ′重合时,CM +MD 最短,即△CDM 的周长最小. ∵AB =AC ,D 为BC 的中点, ∴AD ⊥BC ,CD =BD .∴AD 是△ABC 的边BC 上的高.又∵△ABC 的底边BC 长为4,面积是16, ∴AD =16×2÷4=8.∴△CDM 周长的最小值为8+4÷2=10. 三、19.解:(1)S △ABC =12×5×3=152.(2)△A 1B 1C 1如图所示.(3)A 1(1,5),B 1(1,0),C 1(4,3).20.证明:∵OP 平分∠MON ,P A ⊥OM ,PB ⊥ON ,∴P A =PB .又∵OP =OP ,∴Rt △POA ≌Rt △POB (HL). ∴OA =OB . ∴OP 垂直平分AB . 21.(1)证明:∵AB =AC ,∴∠B =∠C .在△DBE 和△ECF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF (SAS). ∴DE =EF .∴△DEF 是等腰三角形.(2)解:由(1)可知△DBE ≌△ECF ,∴∠BDE =∠CEF . ∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C , ∴∠B =12×(180°-40°)=70°. ∴∠BDE +∠BED =110°. ∴∠CEF +∠BED =110°. ∴∠DEF =70°.22.(1)证明:如图,过点D 作DM ⊥AB ,DN ⊥BF ,垂足分别为M ,N .∵BD 平分∠ABF , ∴DM =DN .∵△ABC 为等腰直角三角形, ∴∠ABC =∠BAC =45°.∵∠ADC =45°,∴∠ADC =∠ABC ,又∵∠AED=∠CEB,∴∠BAD=∠BCD.又∵∠DMA=∠DNC=90°,∴△ADM≌△CDN(AAS).∴AD=CD.(2)解:∵AD=CD,∠ADC=45°,∴∠CAD=∠ACE=67.5°.又∵∠CAB=45°,∴∠AEC=67.5°.∴∠ACE=∠AEC.∴AE=AC=4.23.解:根据题意,得AP=t cm,BQ=t cm.在△ABC中,AB=BC=3 cm,∠B=60°,∴BP=(3-t)cm.在△PBQ中,BP=(3-t)cm,BQ=t cm,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°.当∠BQP=90°时,∠BPQ=30°,∴BQ=12BP,即t=12(3-t),解得t=1;当∠BPQ=90°时,∠BQP=30°,∴BP=12BQ,即3-t=12t,解得t=2.综上,当t=1或t=2时,△PBQ是直角三角形.24.(1)证明:∵点D是AB的中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.∴∠CAE=∠BCG.∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.又∵AC=CB,∴△AEC≌△CGB(ASA).∴AE=CG.(2)解:BE=CM.证明如下:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°.∴∠CMA=∠BEC.又∵AC=CB,∠ACM=∠CBE=45°,∴△BCE≌△CAM(AAS).∴BE=CM.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.2 2.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x2x-1+11-x的结果是()A.x+1 B.1x+1C.x-1 D.xx-18.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A.A B.B C.C D.D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,则可列方程为()A.300x=200x+30B.300x-30=200xC.300x+30=200x D.300x=200x-3010.如图,这是一个数值转换器,当输入的x为-512时,输出的y是()(第10题)A .-32 B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a +1aB.a a -1C.a a +1D.a -1a14.以下命题的逆命题为真命题的是( )A .对顶角相等B .同位角相等,两直线平行C .若a =b ,则a 2=b 2D .若a >0,b >0,则a 2+b 2>015.x 2+x x 2-1÷x 2x 2-2x +1的值可以是下列选项中的( ) A .2B .1C .0D .-116.定义:对任意实数x ,[x ]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是( ) A .3B .4C .5D .6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题) 24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD 上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A 【点拨】∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 【点拨】根据题意可得 12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)

八年级数学上册第十三章《轴对称》综合测试卷-人教版(含答案)一、选择题(每小题3分,共30分)1.(2022独家原创)下图是天气预报中的图形,其中是轴对称图形的为( )A BC D2.(2022独家原创)如图,在△ABC中,∠BAC=75°,∠ACB=35°,AC=8,∠ABC的平分线BD交边AC于点D,则AD+BD的长为( )A.10B.8C.6D.43.(2020湖南益阳中考)如图,在△ABC中,AC的垂直平分线交AB于点D,交AC于点E,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°4.(2021河北石家庄二十八中期中)如图,△ABC中,点D在AC上,连接BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,则图中共有等腰三角形( )A.0个B.1个C.2个D.3个5.如图,在棋盘中建立直角坐标系xOy,现将A,O,B三颗棋子分别放置在(-2,2),(0,0),(1,0)处.如果在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,则满足条件的棋子P的位置的坐标不正确的是( )A.(-2,3)B.(-3,2)C.(-2,-2)D.(0,-1)6.(2020湖北宜昌中考)如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l 为线段FG的垂直平分线.下列说法正确的是( )A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线7.(2020山东济南期末)如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=1,则AD的长为( )A.1.5B.2C.3D.48.如图,在△ABC中,AB=AC,∠C=70°,△AFG与△ABC关于直线DE成轴对称,∠CAE=10°,连接BF,则∠ABF的度数是( )A.30°B.35°C.40°D.45°第8题图第9题图9.如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB的长为半径画弧,再以点C为圆心,AC 的长为半径画弧,两弧交于点D,连接AD,与CB的延长线交于点E.下列结论错误的是( )A.CE垂直平分ADB.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形10.(2021河南郑州模拟)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列选项中结论错误的是( )A.EF=BE+CFB.∠BOC=90°+12∠AC.点O到△ABC各边的距离相等D.设OD=m,AE+AF=n,则S△AEF=mn二、填空题(每小题3分,共24分)11.(2021山东淄博中考)在直角坐标系中,点A(3,2)关于x轴的对称点为A1,将点A1向左平移3个单位得到点A2,则点A2的坐标为.12.(2022独家原创)如图,在3×3的方格图中,将其中一个小方格涂阴影,使整个图形为轴对称图形,这样的轴对称图形共有个.13.(2022黑龙江齐齐哈尔三中期中)如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为.14.(2019湖南永州中考)已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF= .15.(2021江苏苏州中考)如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B= °.16.(2022安徽芜湖一中期末)如图,已知点D、E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F是线段AD上的动点,则BF+EF的最小值为.17.如图,已知D为等边三角形纸片ABC的边AB上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F.把三角形纸片ABC分别沿DG,DE,GF按如图所示的方式折叠,则图中阴影部分是三角形.18.(2021四川绵阳模拟)如图,∠BOC=60°,点A是OB的反向延长线上的一点,OA=10 cm,动点P从点A出发沿AB以2 cm/s的速度移动,动点Q从点O出发沿OC以1 cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t= 时,△POQ是等腰三角形.三、解答题(共46分)19.(2019广西中考)(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.20.(6分)如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.21.(2022浙江温州期末)(8分)如图,在△ABC中,AB=AC,点E,F在边BC上,BE<BF.已知BE=CF.(1)求证:△ABE≌△ACF;(2)若点D在AF的延长线上,AD=AC,∠BAE=30°,∠BAD=75°,求证:AB∥DC.22.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF, BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=44°时,求∠DEF的度数.23.(2018浙江绍兴中考)(8分)数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°) 张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC 中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.24.(10分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形CBD,连接DA并延长,交y轴于点E.(1)求证:OC=AD;(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果改变,请说明理由;(3)当点C运动到什么位置时,以A、E、C为顶点的三角形是等腰三角形?参考答案1.C根据轴对称图形的定义可知,选项A中的图形不是轴对称图形,选项B中的图形不是轴对称图形,选项C中的图形是轴对称图形,选项D中的图形不是轴对称图形.故选C.2.B在△ABC中,∠BAC=75°,∠ACB=35°,∴∠ABC=180°-∠BAC-∠ACB=70°,∵BD平分∠ABC,∴∠DBC=1∠ABC=35°,2∴∠DBC=∠ACB,∴BD=CD,∴AD+BD=AD+CD=AC=8.故选B.3.B∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°-∠A-∠ACB=180°-50°-100°=30°,故选B.4.D图中共有等腰三角形3个.∵∠ADB=∠C+∠DBC,∠ADB=2∠C,∴∠DBC=∠C,∴△BCD是等腰三角形,∵∠ABD=2∠DBC,∴∠ABD=∠ADB,∴△ABD是等腰三角形,∵∠DBC=∠A,∴∠A=∠C,∴△ABC是等腰三角形,故选D.5.B满足条件的点P的位置如图所示,点P的坐标为(-2,3)或(3,2)或(-2,-2)或(0, -1),故选B.6.A设直线l与FG交于点O(图略),∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=GH+OG,即EO=OH,∴l为线段EH的垂直平分线,故选项A正确;∵EO≠OQ,∴l不是线段EQ的垂直平分线,故选项B错误;∵FO≠OH,∴l不是线段FH的垂直平分线,故选项C错误;∵l为直线,直线没有垂直平分线,∴EH不能平分直线l,故选项D错误.故选A.7.B ∵∠DBC=60°,∠C=90°,∴∠BDC=90°-60°=30°,∴BD=2BC=2×1=2, ∵∠C=90°,∠A=15°,∴∠ABC=90°-15°=75°, ∴∠ABD=∠ABC-∠DBC=75°-60°=15°, ∴∠ABD=∠A,∴AD=BD=2.故选B.8.C ∵△AFG 与△ABC 关于直线DE 成轴对称,∴△AFG ≌△ABC,∠GAE=∠CAE=10°,∴∠GAF=∠CAB,AB=AF,∵AB=AC,∠C=70°,∴∠ABC=∠ACB=70°,∴∠GAF=∠BAC=40°,∴∠BAF=40°+10°+10°+40°=100°,∵AB=AF,∴∠ABF=∠AFB=40°.故选C.9.D 由题意可得CA=CD,BA=BD,∴直线CB 是AD 的垂直平分线,即CE 垂直平分AD,故A 选项结论正确;∵AC=DC,CE ⊥AD,∴∠ACE=∠DCE,即CE 平分∠ACD,故B 选项结论正确;∵DB=AB,∴△ABD 是等腰三角形,故C 选项结论正确;∵AD 与AC 不一定相等,∴△ACD 不一定是等边三角形,故D 选项结论错误.故选D.10.D ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O, ∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF ∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC, ∴∠EOB=∠OBE,∠FOC=∠OCF, ∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF, 故A 选项结论正确;∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A,故B 选项结论正确;过点O 作OM ⊥AB 于M,ON ⊥BC 于N,连接OA,如图,∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O,∴ON=OD=OM,∴点O 到△ABC 各边的距离相等,故C 选项结论正确;∵OD=m,∴ON=OD=OM=m,∴S △AEF =S △AOE +S △AOF =12AE ·OM+12AF ·OD=12OD ·(AE+AF)=12mn,故D 选项结论错误.故选D.11.(0,-2)解析∵点A(3,2)关于x轴的对称点为A1,∴A1(3,-2),∵将点A1向左平移3个单位得到点A2,∴点A2的坐标为(0,-2).12.3解析将其中一个小方格涂阴影,使整个图形为轴对称图形,这样的轴对称图形有3个,如图.13.12解析∵D为BC的中点,且BC=6,∴BD=12BC=3,由折叠的性质知NA=ND,则△DNB的周长=ND+NB+BD=NA+NB+BD=AB+BD=9+3=12.14.4解析过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,DE⊥OA,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.15.54解析∵AF=EF,∴∠A=∠AEF,∵∠A+∠AEF=∠CFE=72°,∴∠A=12×72°=36°,在Rt△ABC中,∠C=90°,∴∠B=90°-36°=54°.16.6解析如图,连接CE交AD于点F,连接BF,∵△ABC是等边三角形,∴BF=CF,∴BF+EF=CF+EF=CE,此时BF+EF的值最小,最小值为CE的长,∵D、E分别是△ABC中BC、AB边的中点,∴AD=CE,∵AD=6,∴CE=6,∴BF+EF的最小值为6.17.等边解析∵三角形ABC为等边三角形,∴∠A=∠B=∠C=60°,根据题意知点B和点C经过折叠后分别落在了点I和点H处,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI,∴阴影部分是等边三角形,故答案为等边.或1018.103解析分情况讨论:①当点P在OA上时,如图所示,△POQ是等腰三角形,PO=QO;∵PO=AO-AP=(10-2t)cm,OQ=t cm,.∴10-2t=t,解得t=103②当点P在射线OB上时,如图所示,△POQ是等腰三角形.∵∠BOC=60°,∴等腰△POQ是等边三角形,∴PO=QO.∵PO=AP-AO=(2t-10)cm,OQ=t cm,∴2t-10=t,解得t=10.故当t=103或t=10时,△POQ是等腰三角形.19.解析(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)A1(2,3),A2(-2,-1).20.解析如图,延长AD交BC的延长线于点E.∵∠A=30°,∠B=90°,∴∠E=60°,AE=2BE,∵∠ADC=120°,∴∠EDC=60°,∴△EDC是等边三角形.设CD=CE=DE=x,∵AD=4,BC=1,∴AE=x+4,BE=x+1,∴2(x+1)=x+4,解得x=2,∴CD=2.21.证明(1)∵AB=AC,∴∠ABE=∠ACF,在△ABE 和△ACF 中,{AB =AC,∠ABE =∠ACF,BE =CF,∴△ABE ≌△ACF(SAS).(2)∵△ABE ≌△ACF,∴∠CAF=∠BAE=30°,∵AD=AC,∴∠ADC=∠ACD=75°,∴∠BAD=∠ADC,∴AB ∥CD.22.解析 (1)证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE 和△ECF 中,{BE =CF,∠DBE =∠ECF,BD =CE,∴△DBE ≌△ECF(SAS),∴DE=EF,∴△DEF 是等腰三角形.(2)∵△DBE ≌△ECF,∴∠BDE=∠CEF,∠BED=∠CFE,∵∠A+∠B+∠C=180°,∠A=44°,∴∠B=12×(180°-44°)=68°,∴∠BDE+∠BED=112°,∴∠BED+∠CEF=112°,∴∠DEF=180°-112°=68°.23.解析 (1)当∠A 为顶角时,∠B=12×(180°-80°)=50°, 当∠A 为底角时,若∠B 为顶角,则∠B=180°-80°-80°=20°, 若∠B 为底角,则∠B=∠A=80°,∴∠B 的度数为50°或20°或80°.(2)分两种情况:①当90≤x<180时,∠A 只能为顶角,∴∠B 的度数只有一个.②当0<x<90时,若∠A 为顶角,则∠B=(180−x 2)°,若∠A 为底角,则∠B=x °或∠B=(180-2x)°,∴当180−x 2≠180-2x 且180−x 2≠x 且180-2x ≠x,即x ≠60时,∠B 有三个不同的度数.综上,当0<x<90且x ≠60时,∠B 有三个不同的度数.24.解析 (1)证明:∵△AOB,△CBD 都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,在△OBC 和△ABD 中,{OB =AB,∠OBC =∠ABD,CB =DB,∴△OBC ≌△ABD(SAS),∴OC=AD.(2)点C 在运动过程中,∠CAD 的度数不会发生变化.理由如下: ∵△AOB 是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC ≌△ABD,∴∠BAD=∠BOC=60°,∴∠CAD=180°-∠OAB-∠BAD=60°.(3)∵∠OAB=∠BAD=60°,∴∠OAE=180°-60°-60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰, ∵A(1,0),∴OA=1,∵∠OEA=30°,∴AE=2OA=2,∴AC=AE=2,∴OC=OA+AC=1+2=3,∴当点C 的坐标为(3,0)时,以A,E,C 为顶点的三角形是等腰三角形.。

人教版数学八年级上册第十三单元测试试卷(含答案)(1)

人教版数学八年级上册第十三单元测试试卷(含答案)(1)

人教版数学8年级上册第13单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列图标,可以看作是轴对称图形的是( )A.B.C.D.2.(3分)点P(﹣3,6)关于y轴的对称点在坐标为( )A.(﹣3,﹣6)B.(3,6)C.(﹣6,3)D.(6,﹣3)3.(3分)等腰三角形的周长为10cm,其中一边长为2cm,则其余两边长为( )A.4cm,4cm B.2cm,6cmC.5cm,3cm D.4cm,4cm或2cm,6cm4.(3分)如图,CB=CA,∠B=65°,AD∥BC,则∠CAD的度数为( )A.70°B.65°C.50°D.110°5.(3分)如图,在△ABC中,点D是AC的中点,分别以点A,C为圆心,大于12 AC的长为半径作弧,两弧交于F,直线FD交BC于点E,连接AE,若AD=2,△ABE 的周长为12,则△ABC的周长为( )A.13B.14C.15D.166.(3分)如图,在△ABC中,∠A=60°,∠BCA=90°,CD⊥AB于D,在下列结论中,正确的有( )①CD=12CB;②AC=12AB;③AD=12AC;④AD=12BD.A.①②③B.①②④C.①③④D.②③④7.(3分)如图,在△ABC中,∠B=∠ACB=50°,P是边AB上的一个动点(不与顶点A重合),则∠BPC的度数可能是( )A.50°B.80°C.100°D.130°8.(3分)已知在Rt△ABC中,∠C=90°,∠B=60°,AB=2,那么AC的长为( )A.2B C.1D.9.(3分)如图,在△ABC中,∠ABC=90°,∠C=30°,BC=6,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于12 BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论:①BE=DE=2;②DE垂直平分线段AC;③AB=3;④CD其中正确的个数是( )A.1个B.2个C.3个D.4个10.(3分)如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,BD平分∠ABC,如果点M,N分别为BD,BC上的动点,那么CM+MN的最小值是( )A.4B.4.8C.5D.6二、填空题(共5小题,满分15分,每小题3分)11.(3分)等腰三角形的周长为13,其中一边长为5,则该等腰三角形的底边长为 .12.(3分)在平面直角坐标系xOy中,若点A的坐标为(﹣3,3),点B的坐标为(2,1),存在x轴一点P,使AP+BP最小,则最小值是 ,点P坐标为 .13.(3分)如图,DE是△ABC的边AB的垂直平分线,垂足为点D,DE交AC于点E,且AC=7,△BEC的周长为11,则BC的长为 .14.(3分)若实数a、b满足等式|a−4|+0,且a,b恰好是等腰三角形ABC 的边长,则这个等腰三角形的周长是 .15.(3分)在Rt△ABC中,∠C=90°,AD平分∠CAB且交BC于点D,AC=12.BC =5.若M、N分别是AD、AC上的动点,则CM+MN的最小值为 .三、解答题(共10小题,满分75分)16.(7分)在一个等腰三角形中,一条边是3a+2b,另一条边是2a﹣2,那么这个等腰三角形的周长是多少?17.(7分)如图所示,∠AOB内有一点P,P1,P2分别是点P关于OA,OB的对称点,P1P2交OA于点M,交OB于点N,若P1P2=5cm,求△PMN的周长.18.(7分)如图,AB=BC,BD⊥AC于点D,∠ABC=50°,BE=DE,求∠AED的度数.19.(7分)如图,在边长为1个单位长度的小正方形组成的7×12的网格中,A,B均为格点(网格线的交点).(1)作线段A′B′,使A′B′与线段AB关于直线l对称;(2)连接BB′,仅用无刻度的直尺在BB′上找一点C,使得AC+B′C=BB′.20.(7分)如图,在△ABC中,∠BAC=∠ACB,点D是BC边上一点,且满足∠B=∠1,CE平分∠ACB交AD于点E.(1)若∠ADC=80°,求∠2的度数;(2)过点E作EF∥AB,交BD于点F,请说明∠FEC=3∠3.21.(7分)如图,在△ABC中,∠B=∠C,D为边BC上一点,CD=AC,连接AD.(1)用尺规作∠ADE=∠B,射线DE交线段AC于点E(不写作法,保留作图痕迹);(2)若AB=5,BD=3,求AE的长.22.(7分)如图所示,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(﹣3,0),B(﹣5,﹣2),C(﹣2,﹣5).(1)请画出与△ABC关于x轴对称的△AB'C';(2)在y轴上找一点P,使PA+PC最小,求点P的坐标.23.(8分)如图,在四边形ABCD中,DE垂直平分AB,DF垂直平分BC,垂足分别为E,F.(1)试说明DA=DC;(2)如果∠A=70°,∠C=60°,求∠ADC的度数.24.(9分)已知在平面直角坐标系中有A(﹣5,2),B(﹣3,5),C(2,﹣2)三点.请回答下列问题:(1)在如图坐标系内画出△ABC关于y轴对称的图形△A1B1C1,并直接写出各个顶点的坐标;(2)△ABC与△A1B1C1对应点的坐标的关系是 .(3)求△ABC的面积.25.(9分)如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A (1,1)B(4,2)C(2,3).(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;(2)在图中,若B2(﹣4,2)与点B关于一条直线成轴对称,则这条对称轴是 ,此时C点关于这条直线的对称点C2的坐标为 ;(3)求△A1B1C1的面积.参考答案一、选择题(共10小题,满分30分,每小题3分)1.D;2.B;3.A;4.C;5.D;6.A;7.C;8.B;9.C;10.B;二、填空题(共5小题,满分15分,每小题3分)11.5或312(34,0)13.4 14.2015.60 13;三、解答题(共10小题,满分75分)16.解:当腰长为3a+2b时,三角形的三边分别为3a+2b,3a+2b,2a﹣2,3a+2b+2a﹣2>3a+2b,能组成三角形,周长为:3a+2b+3a+2b+2a﹣2=8a+4b﹣2;当腰长为2a﹣2时,三角形的三边分别为2a﹣2,2a﹣2,3a+2b,无法判断2a﹣2+2a ﹣2是否大于3a+2b,∴此三角形的周长为8a+4b﹣2.17.解:∵P1,P2分别是点P关于OA、OB的对称点,∴PM=MP1,PN=NP2;∴△PMN的周长=PM+MN+PN=P1M+MN+NP2=P1P2=5cm,∴△PMN的周长为5cm.18.解:∵AB=BC,BD⊥AC于点D,∴∠ABD=∠CBD,∵BE=DE,∴∠ABD=∠EDB,∴∠CBD=∠EDB,∴DE∥BC,∴∠AED=∠ABC=50°.19.解:(1)如图,线段A′B′即为所求;(2)如图,点C 即为所求.20.解:(1)∵∠ADC =∠B +∠1,∠B =∠1,∴2∠B =80°,∴∠B =40°,∵∠BAC =∠ACB ,∴∠ACB =(180°﹣40°)÷2=70°,∵CE 平分∠ACB ,∴∠2=∠3=35°;(2)设∠B =x ,则∠1=x ,∵EF ∥AB ,∴∠DEF =∠1=x ,∴∠ACB =90°−12x ,∴∠2=∠3=45°−14x ,∴∠DEC =180°﹣(∠EDC +∠DCE )=180°﹣(2x +45°−14x )=135°−74x ,∴∠FEC =∠FED +∠CED =x +135°−74x =135°−34x ,∴∠FEC =3∠3.21.解:(1)作图如图1所示,∠ADE即为所作;(2)如图2,∵∠B=∠C,AB=5,∴AC=AB=5,∵CD=AC,∴CD=AC=AB=5,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠CDE,∠ADE=∠B,∴∠CDE=∠BAD,在△ABD和△DCE中,∠BAD=∠CDEAB=DC,∠B=∠C∴△ABD≌△DCE(ASA),∴CE=BD,∵BD=3,∴CE=3,∴AE=AC﹣CE=5﹣3=2.22.解:(1)如图,△AB'C'为所作;(2)点A关于y轴对称点A'的坐标为(3,0),设直线A'C的解析式为y=kx+b,根据题意得3k+b=0−2k+b=−5解得k=1b=−3,∴直线A'C的解析式为y=x﹣3,当x=0时,y=﹣3,∴满足条件的点P的坐标为(0,﹣3).23.解:(1)如图,连接DB,∵DE垂直平分AB,DF垂直平分BC,∴DA=DB,DC=DB,∴DA=DC;(2)∵DA=DB,∠A=70°,∴∠DBA=∠A=70°,∵DC=DB,∠C=60°,∴∠DBC=∠C=60°,∴∠ABC=∠DBA+∠DBC=130°,∵∠A+∠ABC+∠C+∠ADC=360°,∴∠ADC=100°.24.解:(1)如图所示,△A1B1C1即为所求;A1(5,2),B1(3,5),C1(﹣2,﹣2).(2)△ABC 与△A 1B 1C 1对应点的坐标的关系是横坐标互为相反数,纵坐标相同.故答案为:横坐标互为相反数,纵坐标相同;(3)△ABC 的面积=7×7−12×2×3−12×4×7−12×5×7=14.5.25.解:(1)如图,△A 1B 1C 1为所作;(2)这条对称轴是y 轴,C 点的对称点C 2的坐标为(﹣2,3);故答案为:y 轴,(﹣2,3);(3)△A 1B 1C 1的面积=2×3−12×2×1−12×2×1−12×1×3=2.5.。

2022年人教版八年级上册数学第十三章综合测试试卷及答案

2022年人教版八年级上册数学第十三章综合测试试卷及答案
2
-22-
第十三章 综合练习
(2)同(1)得∠BAD=∠BDA,∠EAC=∠C.
∵∠BAE=n°,即∠BAD+∠DAE=n°,
且∠BDA=∠DAC+∠C=∠DAE+2∠EAC,
∴∠DAE+2∠EAC+∠DAE=n°,
∴∠DAE+∠EAC=1 n°,即-
第10题图
-10-
第十三章 综合练习
11.如图为3×3的方格纸,在其中一个空白小方格中画上半径 相等的圆,使整个图形为轴对称图形,则这样的轴对称图形共 有 3 个.
第11题图
-11-
第十三章 综合练习
12. 如图1,正△ABC的面积为1,把它的各边延长一倍得到正 △A1B1C1,再把正△A1B1C1的各边延长一倍得到正△A2B2C2 (如图2),如此进行下去,…… (1)正△A1B1C1的面积为 7 ; (2)正△AnBnCn的面积为 7n .(用含n的式子表示,n为正整数)
8.如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,
E,F分别为BC和CD上的动点,连接AE,AF,EF.当△AEF的周
长最小时,∠EAF的度数为( C )
A.60°
B.90°
C.100° D.120°
第8题图
-9-
第十三章 综合练习
二、填空题(本大题共4小题,每小题5分,满分20分) 9.点(2022,2023)关于x轴对称的点的坐标是 (2022,-2023) . 10.如图,在△ABC中,AB的垂直平分线交BC于点D,交AB于点 F,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE.若 △ADE的周长为8,则BC的长为 8 .
-3-
第十三章 综合练习
3.如果△ABC与△A1B1C1关于y轴对称,已知点A(-4,6), B(-6,2),C(2,1),现将△A1B1C1向左平移5个单位长度,再 向下平移3个单位长度后得到△A2B2C2,则点B2的坐标为

人教版八年级上册数学第13章《轴对称》测试题【含答案】

人教版八年级上册数学第13章《轴对称》测试题【含答案】

一、选择题(每小题3分,共24分)1.下列交通标志图案是轴对称图形的是()2.下列图形中对称轴只有两条的是()3.如图1,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性 B.用字母表示数C.随机性 D.数形结合4.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18C.20 D.16或205.如图2,△ABC与△A′B′C′关于直线l对称,且∠A′=78°,∠C=48°,则∠ABC的度数为()A.48°B.54°C.74°D.78°6.图3是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分线段EGC.连接BG,CE,其交点在AF上D.△DEG是等边三角形7.在平面直角坐标系xOy中,点P(-3,8)关于y轴的对称点的坐标为()A.(-3,-8)B.(3,8)C.(3,-8)D.(8,-3)8.如图4,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使点B落在AC边上的点E处,则∠CED的度数是()A.30°B.40°C.50°D.70°二、填空题(每小题4分,共32分)9.如果一个三角形是轴对称图形,且有一个角是60°,那么这个三角形是________三角形.10. 已知M,N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN的关系是________. 11.如图5,在△ABC中,AB=AC,∠B=50°,则∠A=________.12.如图6,在△ABC中,AB=AC=3 cm,AB的垂直平分线MN交AC于点N,交AB于点M.已知△BCN的周长是5 cm,则BC的长是________cm.13.如图7,A,B,C三个居民小区的位置呈三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在________________.14.如图8,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有________个.15.观察规律,并填空:16.如图9,O为△ABC内一点,O与D关于AB对称,O与E关于BC对称,O与F关于AC对称,∠BAC=40°,∠ABC=80°,∠ACB=60°,则∠ADB+∠BEC+∠CFA=_________.三、解答题(共64分)17.(9分)请在如图10所示的三个2×2的方格中各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)18.(8分)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图11所示的三个汉字可以看成是轴对称图形,请在方框中再写出4个类似轴对称图形的汉字.19.(12分)如图12,在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.20.(11分)如图13,在△ABC中,点D,E分别是AB,AC边的中点,请你在BC边上确定一点P,使△PDE的周长最小,在图中作出点P.21.(12分)如图14,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线DE交AB于点E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.22.(12分)如图15,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE,则线段AE与BC有什么位置关系?请说明理由.第十三章轴对称测试题一、1.B 2.C 3.A 4.C 5.B 6.D 7.B 8.D二、9.等边 10. 相等 11.80° 12.213. AB,BC,CA垂直平分线的交点处14. 6 15. 16. 360°三、17.解:答案不唯一,如图1所示.18.解:答案不唯一,如中、田、日、吕、呆等.19.(1)证明:因为BD=AB,所以∠BAD=∠BDA.因为DE⊥BC,所以∠BDE=90°.又∠BAC=90°,所以∠EAD=∠EDA.所以AE=DE,即△ADE是等腰三角形.(2)还有三个等腰三角形,△ABD、△ABC、△CDE.20.解:如图2,作点D关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求作.21.解:(1)因为DE垂直平分AC,所以CE=AE,即△ACE是等腰三角形.所以∠ECD =∠A=36°.(2)因为AB=AC,∠A=36°,所以∠B=∠ACB=(180°-36°)÷2=72°.因为∠ECD=36°,所以∠BEC=∠A+∠ECD=72°,即∠BEC=∠B.所以BC=CE=5.22.解:AE∥BC.理由:因为△ABC和△DEC是等边三角形,所以BC=AC,CD=CE,∠ABC=∠BCA=∠ECD =60°.所以∠BCA-∠DCA=∠ECD-∠DCA,即∠BCD=∠ACE.在△ACE和△BCD中,AC=BC,∠ACE=∠BCD,CE=CD,所以△ACE≌△BCD.所以∠EAC=∠B=60°.所以∠EAC=∠ACB.所以AE∥BC.。

第13章 轴对称 人教版数学八年级上册单元闯关双测卷A(含答案)

第13章 轴对称 人教版数学八年级上册单元闯关双测卷A(含答案)

第十三章轴对称(测基础)——2023-2024学年人教版数学八年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.在平面直角坐标系中,已知点A与点B关于x轴对称,点B与点C关于y轴对称,点A的坐标为,则点C的坐标为( )A. B. C. D.2.如图,AD是等边的中线,,则的度数为( )A.30°B.20°C.25°D.15°3.如图,在的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是( )A.点AB.点BC.点CD.点D4.中国的剪纸艺术远流长,是中国传统民间社会的一种特有的民俗文化形式,是中华优秀传统文化的重要组成部分,至今已有3000多年的历史.下列剪纸艺术图案中,是轴对称图形的是( )A. B. C. D.5.如图,,若MP和NQ分别垂直平分AB和AC,则的度数是( )A. B. C. D.6.如图,是等腰三角形,,,平分.点D是射线BP 上一点,如果点D满足是等腰三角形,那么的度数是( )A.或B.,或C.或D.,或7.在中.,于点D.若.则AD等于( )A. B. C. D.8.如图,在中,,,面积是10.AB的垂直平分线ED分别交AC,AB边于E、D两点,若点F为BC边的中点,点P为线段ED上一动点,则周长的最小值为( )A.5B.7C.10D.149.如图,已知周长是10,、分别平分和,于D,且,则的面积是( )A.1B.8C.2D.510.如图,点C为线段AB上一点,和是等边三角形.下列结论:①;②;③是等边三角形;④.其中正确的是( )A.①B.①②C.①②③D.①②③④二、填空题(每小题4分,共20分)11.若等腰三角形的两边长分别为3cm和8cm,则它的周长是__________.12.如图,在中,,,EF垂直平分线段BC,P是直线EF上的任意一点,则周长的最小值是______.13.如图,在中,,,为等边三角形,连接BD,则的面积为_______________.14.如图所示,在等边三角形ABC中,AB边上的高,E是CD上一点,现有一动点Р沿着折线运动,在BE上的速度是每秒3个单位长度.在CE上的速度是每秒6个单位长度.则点Р从B到C的运动过程中最少需________秒.15.在中,AD,CE是它的两条中线,,P为AD上一动点,当的长最小时,等于图中的线段__________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)如图,在下列带有坐标系的网格中,的顶点都在边长为1的小正方形的顶点上.(1)直接写出坐标:A______,B______;(2)画出关于y轴对称的(点D与点A对应).(3)求的面积.17.(8分)已知:如图,在中,,,分别以A、B为圆心,大于长为半径画弧,两弧相交于点M、N,过点MN作直线交AB于点D,交BC于点E,连接AE,求证:AE平分.18.(10分)如图,在中,,D为CA延长线上一点,于点E,交AB于点F,若.求证:(1)是等腰三角形.(2).19.(10分)如图,在中,,,点O在BC边上运动(点O 不与点B,C重合),连接AO.作,交AB于点D.(1)当时,判断的形状并证明.(2)在点O的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不可以,请说明理由.20.(12分)如图,在等边三角形ABC中,AD是的平分线,E是AD上一点,以BE为一边,在BE下方作等边三角形BEF,连接CF.(1)求证:;(2)求的度数.21.(12分)在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位长度的速度从点A向点B移动,设运动时间为t秒.(1)如图(1),若,,求t的值;(2)如图(2),若点P从点A向点B运动,同时点Q以每秒2个单位长度的速度从点B经点C向点A运动,当t为何值时,为等边三角形?答案以及解析1.答案:B解析:,故选B.2.答案:D解析:AD是等边的中线,,,,,,.故选:D.3.答案:D解析:如图所示,原点可能是D点.4.答案:D解析:选项A、B、C均不能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以不是轴对称图形,选项D能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以是轴对称图形.故选D.5.答案:D解析:,,又MP,NQ为AB,AC的垂直平分线,,,,.故选D.6.答案:D解析:,,.平分,.要使是等腰三角形,可分以下三种情况讨论:①当时,如图(1),此时,.②当时,如图(2),此时.③当时,如图(3),此时.综上所述,若是等腰三角形,则的度数是,或.7.答案:C解析:如图,,,,,,,,.故选:C8.答案:B解析:如图,连接AF,AP.,,,,,,DE垂直平分线段AB,,的周长,,的最小值为5,的周长的最小值为7.故选:B.9.答案:D解析:解:过O作于E,于F,连接OA,,分别平分和,于D,,,即,的周长为10,,,故选D.10.答案:D解析:(1),是等边三角形,,,,,即在和中,,,,①正确;,,又,,在和中,,,,为等腰三角形,又,为等边三角形,所以②③④正确,故选D.11.答案:解析:等腰三角形的两边长分别为和当腰长是时,则三角形的三边是,,,不满足三角形的三边关系;当腰长是时,三角形的三边是,,,三角形的周长是.故答案为:.12.答案:15解析:如图,连接PC.EF垂直平分线段BC,,,的最小值为9,的周长的最小值为,故答案为:15.13.答案:1解析:如图,过点D作交于E,是等边三角形,,,,,,,故答案为:1.14.答案:5解析:过点B作于F,交CD于E,如下图所示,是等边三角形,,,CD平分,,,P沿着折线运动的时间,根据垂线段最短可知,当时,P沿着折线运动的时间最短,BF、CD是等边三角形的高,,点Р从B到C的运动过程中最少需(秒).故答案为5.15.答案:CE解析:如图,连接PC.,,,,,,P、C、E共线时,的值最小,最小值为CE的长度,故答案为:CE.16.解析:(1)根据坐标系可得:,,故答案为:,;(2)如图所示,即为所求,(3)的面积为:. 17.解析:证明:在中,,,,由作图可知MN是AB的垂直平分线,,,,,AE平分.18.解析:(1),.,,,.,,,是等腰三角形.(2)如图,过点A作于点H,,.由(1)知,.在和中,.,,.19.解析:(1)为直角三角形.证明:,,,.,,,是直角三角形.(2)的形状可以是等腰三角形.分三种情况讨论:①当时,,.②当时,,.③当时,,此时,点O与点C重合,不合题意.综上所述,的度数为或.20.解析:(1)证明:是等边三角形,,是等边三角形,,,,在和,,.(2)解:在等边中,AD是的平分线,,,,,.21.答案:(1)(2)当时,为等边三角形解析:(1)是等边三角形,,,.,,是等边三角形,.由题意可知,则,,解得.(2)①当点Q在边BC上时,此时不可能为等边三角形.(2)当点Q在边AC上时,如图,若为等边三角形,则,由题意可知,,,即,解得,当时,为等边三角形.。

人教版八年级数学上册第十三章达标测试卷及答案

人教版八年级数学上册第十三章达标测试卷及答案

第十三章达标测试卷一、选择题(每题3分,共30分)1.下列四个交通标志图中为轴对称图形的是()2.已知点P(3,-2)与点Q关于x轴对称,则点Q的坐标为() A.(-3,2) B.(-3,-2)C.(3,2) D.(3,-2)3.一个等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为() A.16 B.21C.27 D.21或274.等腰三角形的一个角为50°,则这个等腰三角形的顶角为() A.50°B.65°C.80°D.50°或80°5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线对称D.周长相等的两个三角形一定关于某条直线对称6.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40 n mile 的速度向正北方向航行,2 h后到达灯塔P的北偏东40°方向的N处,则N 处与灯塔P的距离为()A.40 n mile B.60 n mileC.70 n mile D.80 n mile(第6题) (第7题) (第8题)7.如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.14 C.15 D.168.如图,若△ABC是等边三角形,AB=6,BD是∠ABC的平分线,延长BC到E,使CE=CD,则BE的长为()A.7 B.8 C.9 D.109.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD =3 cm,则AB的长度是()A.3 cm B.6 cm C.9 cm D.12 cm(第9题) (第10题)10.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,分别交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE的周长等于AB+AC.其中正确的是()A.①②③B.②③④C.①③④D.①②④二、填空题(每题3分,共24分)11.若点M(m,-n)与点N(3,m-1)关于y轴对称,则mn=________,直线MN与x轴的位置关系是________.12.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=________.(第12题) (第13题) (第14题)13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.14.如图,在△ABC中,∠C=90°,∠B=30°,AB边的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为________.15.如图,在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC,则∠PCQ的度数为________.(第15题) (第17题) (第18题)16.若等腰三角形的顶角为150°,则它一腰上的高与另一腰的夹角的度数为________.17.如图,点D,E分别在等边三角形ABC的边AB,BC上,将△BDE沿直线DE翻折,使点B落在B1处.若∠ADB1=70°,则∠CEB1=________.18.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为________.三、解答题(19~22题每题8分,25题14分,其余每题10分,共66分) 19.如图,已知AB=AC,AE平分∠DAC,那么AE∥BC吗?为什么?20.如图,在四边形ABCD中,已知A(4,4),B(1,3),C(1,0),D(3,1),在平面直角坐标系内分别作出四边形ABCD关于x轴和y轴对称的图形.21.如图,P为∠MON的平分线上的一点,P A⊥OM于A,PB⊥ON于B.求证:OP垂直平分AB.22.如图,在△ABC中,∠C=2∠A,BD平分∠ABC交AC于D.求证AB=BC +CD.23.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.24.如图,已知点D为等腰直角三角形ABC内一点,AC=BC,∠ACB=90°,∠CAD=∠CBD=15°,E为AD的延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证ME=BD.25.(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.求证DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D,E是过点A的直线m上的两动点(D,A,E三点互不重合),且△ABF和△ACF均为等边三角形,连接BD,CE.若∠BDA=∠AEC =∠BAC,试判断△DEF的形状,并说明理由.答案一、1.D 2.C 3.C 4.D 5.A 6.D 7.A 8.C 9.D 10.C 二、11.-12;平行 12.40° 13.3 14.6 15.⎝ ⎛⎭⎪⎫3607° 16.60° 17.50°18.10 点拨:如图,连接AD ,交EF 于点M ′,连接CM ′,当点M 与点M ′重合时CM +MD 最短,因此△CDM 周长最小.∵直线EF 垂直平分AC , ∴AM ′=CM ′.∵AB =AC ,D 为BC 的中点, ∴AD ⊥BC ,CD =BD .∴AD 是△ABC 的边BC 上的高.又∵△ABC 的底边BC 长为4,面积是16,∴AD =16×2÷4=8. ∴△CDM 周长的最小值为8+4÷2=10. 三、19.解:AE ∥BC .理由如下:∵AB =AC ,∴∠B =∠C .由三角形的外角性质得∠DAC =∠B +∠C =2∠B .∵AE 平分∠DAC ,∴∠DAC =2∠DAE ,∴∠B =∠DAE . ∴AE ∥BC .20.解:如图,四边形A 1B 1C 1D 1为四边形ABCD 关于x 轴对称的图形,四边形A 2B 2C 2D 2为四边形ABCD 关于y 轴对称的图形.(第20题)21.证明:∵OP 平分∠MON ,P A ⊥OM ,PB ⊥ON ,∴P A =PB . 又OP =OP ,∴Rt △POA ≌Rt △POB (HL ). ∴OA =OB . ∵OP 平分∠MON , ∴OP 垂直平分AB .22.证明:延长BC 至点E ,使BE =BA ,连接DE . ∵BD 平分∠ABC ,∴∠ABD =∠EBD . 又AB =EB ,BD =BD , ∴△ABD ≌△EBD (SAS ). ∴∠A =∠E .∵∠ACB =2∠A ,∴∠ACB =2∠E . ∵∠ACB =∠E +∠CDE , ∴∠CDE =∠E .∴CD =CE . 又∵AB =BE ,BE =BC +CE , ∴AB =BC +CD .23.(1)证明:∵AB =AC , ∴∠B =∠C .在△DBE 和△ECF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF (SAS ).∴DE =EF .∴△DEF 是等腰三角形.(2)解:由(1)可知△DBE ≌△ECF ,∴∠1=∠3. ∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C , ∴∠B =12(180°-40°)=70°. ∴∠1+∠2=110°. ∴∠3+∠2=110°.∴∠DEF =70°.24.证明:(1)∵AC =BC ,∠ACB =90°,∴∠BAC =∠ABC =45°. ∵∠CAD =∠CBD =15°, ∴∠BAD =∠ABD =30°. ∴AD =BD .又∵AC =BC ,∠CAD =∠CBD , ∴△ADC ≌△BDC (SAS ). ∴∠ACD =∠BCD =45°, ∴∠ADC =∠BDC =120°. ∵∠ADC +∠CDE =180°, ∴∠CDE =60°,∴∠BDE =120°-60°=60°. ∴∠BDE =∠CDE , 即DE 平分∠BDC . (2)连接CM .∵DC =DM ,∠CDE =60°, ∴△CDM 为等边三角形. ∴∠CMD =60°,CD =CM , ∴∠CME =120°, ∴∠CME =∠BDC . ∵CE =CA , ∴∠CAE =∠E . ∵∠CAE =∠CBD , ∴∠E =∠CBD . 在△CME 和△CDB 中,⎩⎨⎧∠E =∠CBD ,∠CME =∠CDB ,CM =CD ,∴△CME ≌△CDB (AAS ). ∴ME =BD .25.(1)证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∴∠BAD+∠DBA=90°.∴∠CAE=∠DBA.又∵AB=AC,∴△BDA≌△AEC(AAS).∴BD=AE,AD=EC.∴DE=AD+AE=EC+BD,即DE=BD+CE.(2)解:成立.证明如下:∵∠BDA=∠BAC,∴∠DAB+∠DBA=∠DAB+∠CAE,∴∠DBA=∠CAE.又∵∠BDA=∠AEC,AB=AC,∴△BDA≌△AEC(AAS).∴BD=AE,AD=EC.∴DE=AE+AD=BD+CE.(3)解:△DEF是等边三角形.理由如下:由(2)知△BDA≌△AEC,∴∠BAD=∠ACE,AD=EC. 又∵△ABF和△ACF是等边三角形,∴FC=F A,∠AFC=∠FCA=∠F AB=60°.∴∠BAD+∠F AB=∠ACE+∠FCA,即∠DAF=∠ECF.∴△F AD≌△FCE(SAS).∴FD=FE,∠DF A=∠EFC.又∵∠EFC+∠AFE=60°,八年级数学上册第十三章达标测试卷及答案∴∠DF A+∠AFE=60°.∴∠DFE=60°.∴△DEF是等边三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上学期第十三章测试卷一、单选题(共11题;共22分)1.下列四个图案中,不是轴对称图案的是()A. B. C. D.2.下列图形中,不是轴对称图形的是()A. B. C. D.3.下列图形中,不是轴对称图形的是()A. B. C. D.4.如图,在△ABC中,∠B=30°,BC 的垂直平分线交AB于E,垂足为D,如果ED=5,则EC的长为()A. 5B. 8C. 9D. 105.如图,,,,若,则()A. B. C. D.6.从平面镜里看到背后墙上电子钟的示数如图所示,这时的正确时间是( )A. 21:05B. 21:15C. 20:15D. 20:127.已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰长和底边BC的长分别是( )A. 22cm和16cmB. 16cm和22cmC. 20cm和16cmD. 24cm和12cm8.如图,∠AOB=30°,M,N分别是边OA,OB上的定点,P,Q分别是边OB,OA上的动点,记∠OPM=α,∠OQN=β,当MP+PQ+QN最小时,则关于α,β的数量关系正确的是()A. β﹣α=60°B. β+α=210°C. β﹣2α=30°D. β+2α=240°9.如图,Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是( )A. 2cmB. 4cmC. 6cmD. 8cm10.如图,P为∠AOB内一定点,M、N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=()A. 40°B. 45°C. 50°D. 55°11.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A. B. 2 C. D.二、填空题(共8题;共16分)12.如图,在平面直角坐标系中,O 是原点,已知A(4,3),P 是坐标轴上的一点,若以O,A,P 三点组成的三角形为等腰三角形,则满足条件的点P 共有________ 个.13.如图,△ABC中,AB=AC,AD是BC边上的中线,若∠BAC=70º,则∠BAD=________º.14题15题14.如图,在等腰三角形中,平分,于点D,腰的长比底多,的周长和面积都是,则________.15.如图,已知中,,点是线段上的一动点,过点作交于点,并使得,则长度的取值范围是________.16.如图,∠AOB=40°,M、N分别在OA、OB上,且OM=2,ON=4,点P、Q分别在OB、OA上,则MP+PQ+QN的最小值是________.17题18题17.如图,中,边AB的垂直平分线分别交AB、BC于点D、E,连接若,,则的周长为________.18.如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是________.19.定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为2 时,称点M为PQ的等高点”,称此时MP+MQ的值为PQ的“等高距离”.已知P(1,2),Q(3,4),当PQ的“等高距离”最小时,则点M的坐标为________.三、解答题(共4题;共17分)20.如图,在四边形ABCD中,AB=AD,∠ABC=∠ADC.求证:BC=DC.21.一个等腰三角形的一边长为8cm,周长为20cm,求其他两边的长.22.如图,在△ABC 中,AB=AC,∠BAC=120°,D 为BC 的中点,DE⊥AC 于点E,AE=2,求CE 的长.23.如图,在△ABC中,∠ABC>60°,∠BAC<60°,以AB为边作等边△ABD(点C、D在边AB的同侧),连接CD,(Ⅰ)若∠ABC=90°,∠BAC=30°,求∠BDC的度数;(Ⅱ)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由;(Ⅲ)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立。

四、作图题(共1题;共10分)24.如图,已知A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(5,2)(1)在图中画出△ABC关于y轴对称的△A′B′C′,写出点A′,B′,C′的坐标;(2)求△ABC的面积;五、综合题(共3题;共35分)25.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.26.如图,在等边三角形中,,点是边上的一点,过点作交于点,过点作,交的延长线于点.(1)求证:是等腰三角形;(2)点满足什么条件时,点是线段的三等分点?并计算此时的面积.27.如图(1)如图1,在AB直线一侧有C,D两点,在AB上找一点P,使C,D,P三点组成的三角形的周长最短,找出此点并说明理由:(2)如图2,在∠AOB内部有一点P,是否在OA,OB上分别存在点E,F,使得E,F,P三点组成的三角形的周长最短,找出E,F两点,并说明理由:(3)如图3,在∠AOB内部有两点M,N,是否在OA,OB上分别存在点E,F,使得E,F,M,N,四点组成的四边形的周长最短,找出E,F两点,并说明理由.答案一、单选题1. C2. C3. C4. D5. D6. A7. A8. B9. D 10. A 11. A二、填空题12. 8. 13. 35 14. 15. 16. 17. 11 18. 19. (4,1)或(0,5)三、解答题20. 解: 连接BD ∵AB=AD ∴∠ABD=∠ADB 又∵∠ABC=∠ADC ∴∠DBC=∠BDC ∴BC=DC21. 解:①底边长为8cm,则腰长为:(20﹣8)÷2=6,所以另两边的长为6cm,6cm,能构成三角形;②腰长为8cm,则底边长为:20﹣8×2=4,底边长为4cm,另一个腰长为8cm,能构成三角形.因此另两边长为6cm、6cm或8cm、4cm.22. 解:如图,连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,AD⊥BC,∠BAD=∠DAC=60°,∴∠ADE=90°-∠DAE=30°,∴AD=2AE=4,∴AC=2AD=8,∴CE=AC-AE=8-2=6.23. 解:(Ⅰ)∵△ABD是等边三角形∴∠BAD=∠ABD=60°,AB=AD又∵∠BAC=30°∴AC平分∠BAD∴AC垂直平分BD∴CD=CB∴∠DBC=∠DBC=∠ABC∠ABD=90°-60°=30°(Ⅱ)△ABC是等腰三角形理由:设∠BDC=x,BAC=2x有∠CAD=60°-2X∠ADC=60°+x∴∠ACD=180°-∠CAD-∠ADC=60°+X∴∠ACD=∠ADC∴AC=AD∵AB=AD∴AB=AC∴△ABC是等腰三角形(Ⅲ)当∠BCD=150°时,∠BAC=2∠BDC恒成立如图,作等边△BCE,连接BE∴BC=EC,∠BCE=60°∴∠BCD=150°∵∠ECD=360°-∠BCD-∠BCE=150°∴∠DCE=∠DCB又∵CD=CD∴△BCD≌△ECD∴∠BDC=∠EDC∴∠BDE=2∠BDC又∵∠BAC=∠BDE=60°∵∠BAC=2∠BDC四、作图题24. (1)解:A′(﹣2,4),B′(3,﹣2),C′(﹣5,2)(2)解:S△ABC=6×8﹣×2×3﹣×4×8﹣×5×6=14 .五、综合题25. (1)解:∵DE垂直平分AC,∠A=36°∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5(2)解:∵AB=AC,∠A=36°,∴∠B=(180°-36°)÷2=72°.∵∠BEC=∠A+∠ECA=72°,∴CE=CB,∴BC=EC=526. (1)证明:∵是等边三角形,∴,∵,∴∵∴∴∵是的外角,且,∴,∴,∴,∴是等腰三角形. (2)解:是的中点(或).过点作,交于点∵,∴,∴是等边三角形.当点是的中点时,在中,,,∴,∴.∴.27. (1)解:作点C关于直线AB的对称点C',连接DC',交AB于点P,在AB上取点P'(异于点P),连接CP,C'P,C'P',DP',∴CP=C'P,DP'=C'P',∴△CDP的周长为CP+CD+PD=C'P+CD+PD=C'D+CD,此时此三角形的周长最小.∵在△C'P'D中,C'P'+DP'+CD>C'D+CD,∴△CDP的周长小于△C'P'D的周长;(2)解:作点P关于OA的对称点C,作点P关于OB的对称点D,连接CD,交OA于点E,角OB于点F,则点E,F就是所求作的点,∴CE=PE,PF=DF,∴△PEF的周长为PE+EF+PF=CE+EF+DF=CD,两点之间线段最短,因此此时△PEF的周长最小.在OA,OB上分别取不同于点E和点F的点E',F',∴CE'=PE',PF'=DF'∴PE'+E'F'+PF'=CE'+E'F'+DF'>CD,即PE+EF+PF<PE'+E'F'+PF'.(3)解:作点M关于OA的对称点C,点N关于OB对称点D,连接CD教OA于点E,交OB于点F,则点E,F就是所求作的点.∴CE=EM,FN=FD,∴四边形MEFN的周长为MN+ME+EF+NF=MN+CE+EF+FD=CD+MN,此时四边形MEFN的周长最短.在OA,OB上分别取不同于点E和点F的点E',F',∴CE'=ME',PF'=NF'∴ME'+E'F'+NF'+MN=CE'+E'F'+DF'+MN>CD+MN,即MN+ME+EF+NF<ME'+E'F'+NF'+MN.。

相关文档
最新文档