练习14_同底数幂的除法-(北师大版)(解析版)

合集下载

同底数幂的除法课件(北师大版七年级下)

同底数幂的除法课件(北师大版七年级下)
=10m-n
有n个10
2021/3/11
6
解题思路
解:(根据幂的定义) (3) (-3)m ÷ (-3)n
有m个(-3)
(-3) ● (-3) …… (-3)
= (-3) ● (-3) …… (-3)
= (-3) m-n
n个(-3)
2021/3/11
7
总结规律 ——幂的除法的一般规律
am ÷ a n
2021/3/11
2
每一滴可杀109个病毒 每升液体1012个病毒.
要把一升液体中所 有病毒全部杀死,
需要药剂多少滴?
除法运算:
1012
2021/3/11
÷ 109
= 103(滴)
3
做一做 计算下列各式,并说明理由(m>n)
(1) 108 ÷ 105 = (2) 10m ÷ 10n = (3) (-3)m ÷ (-3)n =
1.5 同底数幂的除法
2003年在广州地区流行
的“非典型肺炎”,经专家 的研究,发现是由一种“病 毒”引起的,现有一瓶含有 该病毒的液体,其中每升含 有1012个病毒。
医学专家进行了实验,
发现一种药物对它有特殊的 杀灭作用,每一滴这种药物, 可以杀死109个病毒。
要把一升液体中的所有
病毒全部杀死,需要这种药 剂多少滴?
(5)62m+1 ÷ 6 m = 62m+1-m= 6m+1
2021/3/11
13
习题 下面的计算是否正确?如有错误, 请改正:
(1) a6 ÷ a1 = a 错误,应等于a6-1 = a5
(2)b6 ÷ b3 = b2 错误,应等于b6-3 = b3 (3) a10 ÷a9 = a 正确.

专题14.7同底数幂的除法(解析版)

专题14.7同底数幂的除法(解析版)

专题14.7同底数幂的除法姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•浦城县期末)(13)0的值是()A.0B.1C.13D.以上都不是【分析】直接利用零指数幂的性质计算得出答案.【解析】(13)0=1.故选:B.2.(2021春•贵池区期末)下列计算结果是a5的是()A.a2+a3B.a10÷a2C.(a2)3D.a2•a3【分析】A:应用整式的加减法则进行计算即可得出答案;B:应用同底数幂除法法则进行即可得出答案;C:应用幂的乘方法则进行计算即可得出答案;D:应用同底数幂乘法法则进行计算即可得出答案.【解析】A:因为a2与a3不是同类项,所以A选项不合题意;B:因为a10÷a2=a10﹣2=a8,所以B选项不符合题意;C:因为(a2)3=a2×3=a6,所以C选项不符合题意;D:因为a2•a3=a2+3=a5,所以D选项符合题意.故选:D.3.(2021春•顺德区期末)若2a﹣3b=2,则52a÷53b=()A.5B.7C.10D.25【分析】同底数幂相除,底数不变,指数相减.据此计算即可.【解析】∵2a﹣3b=2,∴52a÷53b=52a﹣3b=52=25.故选:D.4.(2021春•高州市月考)如果a3÷a x﹣2=a6,那么x的值为()A.﹣1B.1C.2D.3【分析】同底数幂相除,底数不变,指数相减.据此计算即可.【解析】因为a3÷a x﹣2=a6,所以3﹣(x﹣2)=6,解得x=﹣1.故选:A.5.(2021•哈尔滨模拟)下列运算正确的是()A.a4•a2=a8B.a6÷a2=a3C.(2ab2)2=4a2b⁴D.(a3)2=a5【分析】分别根据同底数幂的乘法法则,同底数幂的除法法则,积的乘方运算法则以及幂的乘方运算法则逐一判断即可.【解析】A.a4•a2=a6,故本选项不合题意;B.a6÷a2=a4,故本选项不合题意;C.(2ab2)2=4a2b4,正确;D.(a3)2=a6,故本选项不合题意;故选:C.6.(2020秋•滨海新区期末)下列计算正确的是()A.(x3)2=x6B.(xy)2=xy2C.x2•x3=x6D.x6÷x2=x3【分析】分别根据幂的乘方运算法则,幂的乘方与积的乘方运算法则,同底数幂的乘法法则以及同底数幂的除法法则逐一判断即可.【解析】A、(x3)2=x6,故本选项符合题意;B、(xy)2=x2y2,故本选项不符合题意;C、x2•x3=x5,故本选项不符合题意;D、x6÷x2=x4,故本选项不符合题意.故选:A.7.(2021•深圳模拟)下列运算中,正确的是()A.(﹣m)6÷(﹣m)3=﹣m3B.(﹣a3)2=﹣a6C.(xy2)2=xy4D.a2•a3=a6【分析】分别根据同底数幂的除法法则,幂的乘方与积的乘方运算法则以及同底数幂的乘法法则逐一判断即可.【解析】A、(﹣m)6÷(﹣m)3=﹣m3,故本选项符合题意;B、(﹣a3)2=a6,故本选项不符合题意;C、(xy2)2=x2y4,故本选项不符合题意;D、a2•a3=a5,故本选项不符合题意;故选:A.8.(2020秋•静安区期末)如果a≠0,那么下列计算正确的是()A.(﹣a)0=0B.(﹣a)0=﹣1C.﹣a0=1D.﹣a0=﹣1【分析】根据a0=1(a≠0),00≠1,逐项判断即可.【解析】∵(﹣a)0=1,∴选项A不符合题意;∵(﹣a)0=1,∴选项B不符合题意;∵﹣a0=﹣1,∴选项C不符合题意;∵﹣a0=﹣1,∴选项D符合题意.故选:D.9.(2020•嘉定区二模)当x≠0时,下列运算正确的是()A.x3+x2=x5B.x3•x2=x6C.(x3)2=x9D.x3÷x2=x【分析】分别根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减进行计算即可.【解析】A、不能合并,故原题计算错误;B、x3•x2=x5,故原题计算错误;C、(x3)2=x6,故原题计算错误;D、x3÷x2=x,故原题计算正确;故选:D.10.(2018秋•安平县期末)若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有()A.5个B.4个C.3个D.2个【分析】分情况讨论:当x+1=0时;当x+6=1时,分别讨论求解.还有﹣1的偶次幂都等于1.【解析】如果(x+6)x+1=1成立,则x+1=0或x+6=1或﹣1,即x=﹣1或x=﹣5或x=﹣7,当x=﹣1时,(x+6)0=1,当x=﹣5时,1﹣4=1,当x=﹣7时,(﹣1)﹣6=1,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019•奉贤区二模)计算:m3÷(﹣m)2=m.【分析】根据同底数幂相除,底数不变,指数相减即可.【解析】m3÷(﹣m)2=m3÷m2=m.故答案为m.12.(2021春•南海区期末)计算(x2)3÷x4的结果是x2.【分析】先根据幂的乘方运算法则化简,再根据同底数幂的除法法则计算即可.【解析】(x2)3÷x4=x6÷x4=x2.故答案为:x2.13.(2021春•揭东区期末)已知x﹣y=3,则2x÷2y=8.【分析】根据同底数幂的除法法则解答即可.【解析】∵x﹣y=3,∴2x÷2y=2x﹣y=23=8.故答案为:814.(2020秋•浦东新区期末)若a m=6,a n=4,则a2m﹣n=9.【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可.【解析】∵a m=6,a n=4,∴a2m﹣n=(a m)2÷a n=62÷4=36÷4=9.故答案为:9.15.(2020秋•永吉县期末)计算:a6÷a3﹣2a3=﹣a3.【分析】依据同底数幂的除法以及合并同类项的法则进行计算即可.【解析】a6÷a3﹣2a3=a3﹣2a3=﹣a3,故答案为:﹣a3.16.(2019秋•遂宁期末)若3a=2,3b=5,则33a﹣2b=825.【分析】根据幂的乘方以及同底数幂的除法法则解答即可.【解析】∵3a=2,3b=5,∴33a﹣2b=(3a)3÷(3b)2=23÷52=825.故答案为:82517.(2020秋•齐齐哈尔期末)若2020m=6,2020n=4,则20202m﹣n=9.【分析】根据幂的乘方运算法则可得20202m=(2020m)2,再根据同底数幂的除法法则计算即可.【解析】因为2020m=6,2020n=4,所以20202m﹣n=(2020m)2÷2020n=62÷4=36÷4=9.故答案为:9.18.(2020秋•乌海期末)如果10x=7,10y=21,那么102x﹣y=73.【分析】根据幂的乘方以及同底数幂的乘法法则计算即可,同底数幂的除法法则:同底数幂相除,底数不变,指数相减;幂的乘方法则:幂的乘方,底数不变,指数相乘.【解析】∵10x=7,10y=21,∴102x﹣y=102x÷10y=(10x)2÷10y=72÷21=4921=73.故答案为:73.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.下列计算对不对?如果不对,应怎样改正?(1)a6÷a=a6;(2)83÷23=4;(3)54÷54=0;(4)(﹣b)4÷(﹣b)2=﹣b2【分析】(1)(2)(3)根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减,据此判断即可;(4)根据同底数幂的除法法则以及积的乘方运算法则判断即可.【解析】(1)错误,改正为:a6÷a=a5;(2)错误,改正为:83÷23=29÷23=26=64;(3)错误,改正为:54÷54=1;(4)错误,改正为:(﹣b)4÷(﹣b)2=(﹣b)2=b2.20.计算:(1)0.18÷0.16;(2)(−13)7÷(−13)4;(3)(a﹣b)3÷(a﹣b);(4)(xy)5÷(xy)3;【分析】(1)(3)根据同底数幂的除法法则计算即可;(2)(4)根据同底数幂的除法法则以及积的乘方运算法则计算即可.【解析】(1)原式=0.12=0.01;(2)原式=(−13)3=−127;(3)原式=(a﹣b)2=a2﹣2ab+b2;(4)原式=(xy)2=x2y2.21.计算(1)x12÷x4(2)(﹣y)3÷(﹣y)2(3)﹣(k6÷k6)(4)(﹣r)5÷r4(5)m÷m0(6)(mn)5÷(mn)【分析】(1)根据同底数幂的除法法则求出即可;(2)先算乘方,再算除法即可;(3)根据同底数幂的除法法则求出即可;(4)根据同底数幂的除法法则求出即可;(5)先根据零指数幂进行计算,再求出即可;(6)先根据同底数幂的除法法则进行计算,再根据积的乘方求出即可.【解析】(1)x12÷x4=x8;(2)(﹣y)3÷(﹣y)2=﹣y3÷y2=﹣y;(3)﹣(k6÷k6)=﹣1;(4)(﹣r)5÷r4=﹣r;(5)m÷m0=m÷1=m;(6)(mn)5÷(mn)=(mn)4=m4n4.22.已知(x﹣1)x+2=1,求整数x的所有取值.【分析】直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案.【解析】当x﹣1=1时,即x=2,则(2﹣1)4=1满足条件;当x﹣1=﹣1时,即x=0,则(0﹣1)2=1满足条件;当x﹣1≠0,且x+2=0时,则x=﹣2,则(x﹣1)0=1满足条件;故整数x的所有取值为:2,0,﹣2.23.(2021春•万柏林区校级月考)已知a x=2,a y=3,求下列代数式的值:(1)a2x+y;(2)a x﹣3y.【分析】(1)利用同底数幂的乘法的逆运算和幂的乘方的逆运算进行运算;(2)利用同底数幂的乘除法的逆运算和幂的乘方的逆运算进行运算;【解析】(1)原式=a2x•a y=(a x)2•a y=22×3=12;(2)原式=a x÷a3y=a x÷(a y)3=2÷33=227.24.(2017春•杭州期中)(1)已知4m=a,8n=b,用含a,b的式子表示下列代数式:①求:22m+3n的值②求:24m﹣6n的值(2)已知2×8x×16=223,求x的值.【分析】(1)分别将4m,8n化为底数为2的形式,然后代入①②求解;(2)将8x化为23x,将16化为24,列出方程求出x的值.【解析】(1)∵4m=a,8n=b,∴22m=a,23n=b,①22m+3n=22m•23n=ab;②24m﹣6n=24m÷26n=(22m)2÷(23n)2=22;(2)∵2×8x×16=223,∴2×(23)x×24=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.。

_北师大版七年级下册数学随堂小练 1.3同底数幂的除法(有答案)

_北师大版七年级下册数学随堂小练 1.3同底数幂的除法(有答案)

数学随堂小练北师大版(2012)七年级下册1.3同底数幂的除法一、单选题1.下列运算:①236a a a ⋅=,②326()a a =,③55a a a ÷=,④()333ab a b =,其中结果正确的个数为( )A.1B.2C.3D.42.下列运算正确的是()A. 224x x x +=B. 326x x x ⋅=C. 42222x x x ÷=D. ()2236x x =3.下列计算正确的是( )A. ()222x y x y +=+ B. 32361126xy x y ⎛⎫-=- ⎪⎝⎭C. 632x x x ÷=D.2=4.11日凌晨,阿里巴巴公布了2015双十一购物狂欢节的相关数据: 33分53秒时,成交额破200亿。

200亿用科学记数法表示为( )A.0.2×1010B.2×1010C.2×109D.20×1095.下列计算错误的是( )A. 2024a a a a ÷⋅=B. 202()1a a a ÷⋅=C. ()()871.5 1.5 1.5-÷-=-D. ()781.5 1.5 1.5-÷-=-6.下列运算正确的是( )A.a 6÷a 3=a 2B.3a-a=3C.(-a)2·a 3=a 5D.(a 2)3=a57.下列运算正确的是( )A.2a 5-3a 5=a 5B.a 2·a 3=a 6C.(-a 2)3=-a 5D.(-ab)4÷(-ab)2=a 2b 28.下列运算中,正确的是( )A. 336x x x +=B. 3627x x x ⋅=C. ()325x x =D. 21x x x -÷=9.下列计算正确的是( )A .842x x x ÷=B .3412x x x ⋅=C .326()x x =D .23246()x y x y -=-二、填空题10.2352()()a a a -÷⋅-=______.11.已知35,98x y ==,则23x y -=_______.12.若 ,==x y 3297 ,则 - 3x 2y 3 的值为_____.13.计算32a a a ÷⋅的结果等于_______.14.已知:23,25,275a b c ===.1.求22a 的值.2.求2c b a -+的值.3.试说明:2a b c +=.参考答案1.答案:B3.答案:D4.答案:B5.答案:D6.答案:C8.答案:D9.答案:C10.答案:3a -11.答案:5812.答案:8713.答案:2a14.答案:1.2222(2)39a a ===2.2222755345c b a c b a -+=÷⨯=÷⨯=3.∵222(5)25b ==∴2222232575a b a b +⨯==⨯=又∵275c =,∴222a b c +=,∴a b c +=.。

北师大版七年级册下数学1.3.1同底数幂的除法(教案)

北师大版七年级册下数学1.3.1同底数幂的除法(教案)
首先,我们要了解同底数幂除法的基本概念。同底数幂的除法是指当两个幂的底数相同时,我们可以直接将它们的指数相减。这个法则非常重要,因为它可以简化我们的计算过程。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有2^5 / 2^2,通过同底数幂除法,我们可以直接得到2^3。这个案例展示了同底数幂除法在实际中的应用,以及它如何帮助我们解决问题。
-同底数幂除法的应用:通过典型例题,重点训练学生将同底数幂除法应用于实际问题的能力,如科学计数法、比例计算等。
举例:讲解同底数幂除法概念时,可举例2^5 / 2^2 = 2^(5-2) = 2^3,强调指数相减的重要性。
2.教学难点
-理解同底数幂除法法则:学生可能难以理解为什么底数相同、指数相减的幂可以相除,需要通过具体实例和图形直观展示。
本节课的核心素养目标旨在培养学生具备扎实的数学基础和良好的数学思维能力,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
-同底数幂除法的概念:重点讲解同底数幂除法的定义,即a^m / a^n = a^(m-n),强调底数相同且指数相减的规律。
-同底数幂除法的运算性质:详细阐述同底数幂除法的运算性质,如负指数、零指数幂的特殊情况,以及如何与其他幂运算结合。
-难点2:讲解负指数和零指数幂时,可用2^0 = 1(任何数的零次幂都是1)和2^(-3) = 1 / 2^3(负指数表示倒数)来具体说明。
-难点3:针对高级运算,如(2^5 / 2^2) * (3^2 / 3^4),需要引导学生先进行同底数幂的除法运算,再进行乘法运算,即2^3 * 3^(-2) = 2^3 / 3^2。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

北师大版数学七年级下册《同底数幂的除法》教案

北师大版数学七年级下册《同底数幂的除法》教案

北师大版数学七年级下册《同底数幂的除法》教案一. 教材分析《同底数幂的除法》是北师大版数学七年级下册第9章幂的运算中的一节内容。

本节课主要让学生掌握同底数幂的除法法则,并能灵活运用该法则进行计算。

教材通过引入实际问题,引导学生探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在七年级上册已经学习了幂的定义、幂的运算性质等基础知识,对幂的概念有一定的了解。

但是,对于同底数幂的除法运算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,帮助学生理解和掌握同底数幂的除法运算。

三. 教学目标1.知识与技能目标:让学生掌握同底数幂的除法法则,能够正确进行同底数幂的除法运算。

2.过程与方法目标:通过探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的学习兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:同底数幂的除法法则。

2.难点:同底数幂的除法运算的灵活运用。

五. 教学方法采用问题驱动法、案例教学法、分组讨论法等多种教学方法,引导学生主动探究、合作交流,培养学生的数学素养。

六. 教学准备1.教师准备:熟练掌握同底数幂的除法运算,了解学生的学习情况,准备相关案例和问题。

2.学生准备:回顾幂的定义和运算性质,准备好笔记本和笔。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾幂的定义和运算性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示同底数幂的除法运算的案例,引导学生观察和分析,提出问题:“如何进行同底数幂的除法运算?”3.操练(10分钟)教师引导学生分组讨论,共同探讨同底数幂的除法法则。

学生在小组内进行练习,教师巡回指导。

4.巩固(10分钟)教师挑选几组学生代表的答案,进行讲解和分析,巩固学生对同底数幂的除法法则的理解。

5.拓展(10分钟)教师提出一些有关同底数幂的除法运算的实际问题,引导学生运用所学知识进行解决,提高学生的解决问题的能力。

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。

幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。

底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。

5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

三. 同底数幂的除法1。

同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。

在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。

第14讲:同底数幂的除法、零指数幂与负整数指数幂

第14讲:同底数幂的除法、零指数幂与负整数指数幂

第14讲:同底数幂的除法、零指数幂与负整数指数幂一、本讲知识标签同底数幂的除法:(≠0, 为正整数,并且). 同底数幂相除,底数不变,指数相减.零指数幂:即任何不等于零的数的零次方等于1.负整数指数幂:a-n=n a 1( a ≠0,n 为正整数)即:任何不为零的-n (n 为正整数)次幂等于这个数n 次幂的倒数要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.二、范例分析例1.已知,求的值.【分析】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到的值即可代入求值.解:由已知,得,即,,,解得,,.所以. 也可以直接做除法,然后比较系数和相同字母的指数得到的值.【变式】(1)已知,求的值. (2)已知,,求的值. (3)已知,,求的值.【答案】解:(1)由题意,知.∴ . ∴ ,解得.a m n ,m n >()010.a a =≠312326834m n ax y x y x y ÷=(2)n m n a +-m n a 、、312326834m n ax y x y x y ÷=31268329284312m n n ax y x y x y x y +=⋅=12a =39m =2812n +=12a =3m =2n =22(2)(23212)(4)16n m n a +-=⨯+-=-=m n a 、、1227327m m -÷=m 1020a =1105b =293a b ÷23m =24n =322m n -312(3)327m m -÷=3(1)2333m m --=3323m m --=6m =(2)由已知,得,即.由已知,得.∴ ,即.∴ ∴. (3)由已知,得.由已知,得.∴ .例2.已知2a=3,4b=6,8c=12,a 、b 、c 的关系.【分析】本题逆用幂的运算规律,同底数幂乘除的规律,巧妙地将3用2a 代替将6用22b 代换,化成2的幂,从而找出a 、b 、c 之间的关系.解:因为8c=12,所以(23)c=2×6,又因为4b=6,所以23c=2×4b=2×22b=22b+1,所以3c=2b+1因为4b=6,所以22b=2×3,又因为2a=3,所以22b=2×2a=2a+1,所以2b=a+1,所以3c-1=a+1,所以a-4b+3c=0.三、训练提高(一)选择题:1.(2015•下城区二模)下列运算正确的是( )A .(a3﹣a )÷a=a2B .(a3)2=a5C .a3+a2=a5D .a3÷a3=12.化简11)(--+y x 为( ) A 、y x +1 B 、y x 1+ C.、1+xy y D 、1+xy x 3.已知P=,那么P 、Q 的大小关系是( ) A.P>Q B.P=Q C.P<Q D.无法确定(二)填空题:4. 计算.5.(2015春•成都校级月考)(﹣a6b7)÷= . 1020a =22(10)20a =210400a =1105b =211025b =221101040025a b ÷=÷2241010a b -=224a b -=22222493333381a b a b a b -÷=÷===23m =3227m =24n =2216n =32322722216m n m n -=÷=9999909911,99Q =()()34432322396332x y x y x y x y x y xy -+÷=-+-6.若整数x 、y 、z 满足,则x=_______,y=_______,z=________.(三) 解答题:7.先化简,再求值:,其中=-5.8.已知a 、b 互为相反数,c 、d 互为倒数,12=-x ,2=y ,求22007)(y cd x b a --++ 的值.(4分)9.若2010=a , 1510-=b ,求b a 239÷的值.10.已知,求整数x.11.阅读下列材料:关于x 的方程:121212111,;222,;333,;x c x c x x c cx c x c x x c cx c x c x x c c +=+==+=+==+=+==的解是的解是的解是 …请观察上述方程与解的特征,比较关于x 的方程(0)m m x c m x c +=+≠与它们的关系,猜想它的解是什么?并加以验证.12.请你来计算:若1+x +x2+x3=0,求x +x2+x3+…+x2012的值.91016()()()28915x y x ⨯⨯=()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦a 2(1)1x x +-=。

北师大版数学七年级下册.1同底数幂的除法及零次幂和负整数指数幂课件

北师大版数学七年级下册.1同底数幂的除法及零次幂和负整数指数幂课件

0.50 = 1 (-1)0 = 1
( 1 )- 6 = 64 2
( 3 )- 3 = 6 4
4
27
10-5 = 1
100000
已知3m=2, 9n=10, 求33m-2n 的值.
解: 33m-2n =33m÷32n =(3m)3÷(32)n =(3m)3÷9n =23÷10 =8÷10 =0.8.
错误,应等于b6-3 = b3
正确
(4)(-bc )4÷ (-bc ) 2 = -b 2 c 2
错误,应等于(-bc )4-2= (-bc ) 2 = b 2 c 2
计算:
1
3 12 34

2-2315 -2312;
解:原式=38;
解:原式=﹣231155
312 212
=﹣ 8 ; 27
计算(结果用整数或分数表示):
(1)am-n的值; (2)a3m-3n的值.
解:(1)am-n=am÷an=8÷5 = 1.6;
(2)a3m-3n= a3m ÷ a3n
= (am)3 ÷(an)3
=83 ÷53
=512 ÷125
=
51 12
2 5
.
同底数幂的除法可以逆用:am-n=am÷an
新知探究2
做一做:
3
3
2
2
1
1
猜一猜: 0
本课小结
1.同底数幂的除法法则:
同底数幂相除, 底数不变,指数相减.
am an
= am-n
(a≠0, m、n为任意整数)
2.任何不等于零的数的零次幂都等于1.
a0=( 1a0)
3.负整数指数幂:
a-n
=
1 an

同底数幂除法(解析版)

同底数幂除法(解析版)

同底数幂除法【知识梳理】一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a −÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【考点剖析】 题型一、同底数幂的除法例1、计算:(1)83x x ÷;(2)3()a a −÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫−÷− ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】解:(1)83835x x x x −÷==.(2)3312()a a a a −−÷=−=−.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y −÷===. (4)535321111133339−⎛⎫⎛⎫⎛⎫⎛⎫−÷−=−=−=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号. 【变式1】(2021•上海)计算:x 7÷x 2= .【分析】根据同底数幂的除法法则进行解答即可. 【解答】解:x7÷x2=x7﹣2=x5, 故答案为:x5.【点评】此题考查了同底数幂的除法,熟练掌握同底数幂相除,底数不变指数相减是解题的关键. 【变式2】(2022•浦东新区二模)计算:(﹣a 6)÷(﹣a )2= . 【分析】根据同底数幂相除的法则:底数不变,指数相减即可得出答案. 【解答】解:(﹣a6)÷(﹣a )2=﹣(a6÷a2)=﹣a4. 故答案为:﹣a4.【点评】本题考查了同底数幂的除法,同底数幂相除的法则:底数不变,指数相减. 【变式3】计算:(1)()()151233−÷−;(2)853377⎛⎫⎛⎫÷− ⎪ ⎪⎝⎭⎝⎭;(3)10010099÷.【答案】(1)27−;(2)27343−;(3)1.【解析】(1)()()()()151215123333327−−÷−=−=−=−;(2)858533333277777343−⎛⎫⎛⎫⎛⎫⎛⎫÷−===⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)100100100100099991−÷===.【总结】本题考查了同底数幂的除法,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式4】计算: (1)107a a ÷;(2)102102x x −÷;(3)()()75a a −÷−.【答案】(1)3a ;(2)1−;(3)2a .【解析】(1)1071073a a aa −÷==; (2)10210210210201x x x x −−÷=−=−=−;(3)()()()()757522a a a a a −−÷−=−=−=.【总结】本题考查了同底数幂的除法,同底数幂相除,底数不变,指数相减. 【变式5】计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−.【答案】(1)()5x y +;(2)222a ab b −+−.【解析】(1)()()()()1051055x y x y x y x y −+÷+=+=+;(2)()()()()()()9797972222a b b a b a b a b a b a a ab b −−÷−=−−÷−=−−=−−−+−.【总结】本题主要考查了同底数幂的除法. 题型二、科学记数法有关的同底数幂的除法例2.下雨时,常常是“先见闪电、后闻雷鸣”,这是因为光速比声速快的缘故.已知光在空气中的传播速度为8310⨯米每秒,而声音在空气中的传播速度约为300米每秒,你知道光速是声速的多少倍吗? 【答案】610.【解析】8631030010⨯÷=.【总结】本题考查了整式的除法,解题的关键是根据题意列出代数式,再根据除法运算法则求出答案. 【变式】月球距离地球大约53.8410⨯千米,一架飞机的速度约为2810⨯千米/时.如果乘坐此飞机飞行这么远的距离,大约需要多少时间? 【答案】480小时.【解析】()()()()52523.8410810 3.8481010480⨯÷⨯=÷⨯÷=(小时)【总结】本题考查了单项式除以单项式,用整式乘除法解决实际问题时要注意分清量与量之间存在的数量关系.题型三、同底数幂的除法的逆用例3、已知32m =,34n=,求129m n +−的值.【答案与解析】解:121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++−======.当32m =,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 【变式1】(2020秋•宝山区期末)如果2021a =7,2021b =2.那么20212a﹣3b= .【分析】根据幂的乘方以及同底数幂的除法法则计算即可,幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减. 【解答】解:∵2021a =7,2021b =2.∴20212a ﹣3b =20212a ÷20213b =(2021a )2÷(2021b )3=72÷23=.故答案为:.【点评】本题主要考查了同底数幂的除法以及幂的乘方,熟记相关运算法则是解答本题的关键.【变式2】已知2552m m⨯=⨯,求m 的值.【答案】解:由2552m m ⨯=⨯得1152m m −−=,即11521m m −−÷=,1512m −⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1,∴ 15522m −⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,即10m −=,1m =.题型四、同底数幂的除法有关的混合运算例4.(2020秋•浦东新区期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【分析】分别根据同底数幂的乘除法法则以及积的乘方运算法则化简后,再合并同类项即可. 【解答】解:a •a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式1】(2022y 3•y 5÷(﹣y )4= . 【分析】利用同底数幂的乘除法运算法则进行计算. 【解答】解:原式=﹣y3•y5÷y4=﹣y3+5﹣4=﹣y4, 故答案为:﹣y4.【点评】本题考查同底数幂的乘除法,掌握同底数幂的乘法(底数不变,指数相加),同底数幂的除法(底数不变,指数相减)的运算法则是解题关键. 【变式2】计算: (1)()623x x x ÷⋅;(2)()1243x x x ⋅÷.【答案】(1)x ;(2)13x . 【解析】(1)()6236236565x x x x x x x x x+−÷⋅=÷=÷==;(2)()124312*********x x x x x x x x x −+⋅÷=⋅=⋅==.【总结】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式3】.计算: (1)()()4334a a −÷−;(2)()()22237a a a a ⋅÷⨯−.【答案】(1)1−;(2)5a .【解析】(1)()()()433412121a a a a −÷−=÷−=−;(2)()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【总结】本题考查了同底数幂的乘法与除法,m nm na a a +⋅=,()nm mna a =,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠,注意负数的奇次幂还是负数.【变式4】计算:(1)()3232942x x x x x ⋅−+÷;(2)54189t t t t ⋅−÷.【答案】(1)5628x x −;(2)0.【解析】(1)()3232942323945655628828x x x x x x x x x x x x x +⨯−⋅−+÷=−+=−+=−;(2)5418954189990t t t t t tt t +−⋅−÷=−=−=. 【总结】本题考查了同底数幂的乘法与除法以及幂的乘方,注意法则的准确运用.【过关检测】一、单选题1.(2022秋·上海·七年级专题练习)下列计算正确的是( )A .235a a ()=B .3232a b a b −−()= C .448a a a += D .532a a a ÷=【答案】D【分析】利用合并同类项的法则,同底数幂的除法的法则,幂的乘方的法则,单项式乘多项式的法则对各项进行运算即可.【详解】解:A 、623a a ()=,故A 不符合题意;B 、3(a ﹣2b )=3a ﹣6b ,故B 不符合题意;C 、4442a a a +=,故C 不符合题意;D 、532a a a ÷=,故D 符合题意;故选:D .【点睛】本题主要考查幂的乘方,同底数幂的除法,单项式乘多项式,合并同类项,解答的关键是对相应的运算法则的掌握.2.(2023·上海·七年级假期作业)在下列运算中,计算正确的是( ) A .3262()x y x y −= B .339x x x ⋅= C .224x x x += D .62322x x x ÷=【答案】A【分析】按照幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除的运算法则.【详解】解:3262x y x y =(-),故A 正确,符合题意; 336x x x ⋅=,故B 错误,不符合题意; 2222x x x +=,故C 错误,不符合题意; 62422x x x ÷=,故D 错误,不符合题意;故选:A .【点睛】本题考查了幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除等运算,熟练掌握相关运算法则是解题关键.【答案】B【分析】根据幂的公式逆运算即可求解.【详解】∵3,2m nx x ==,∴23m nx−=(mx )2÷(nx )3=32÷23=98故选B【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.4.(2021秋·上海浦东新·七年级期末)下列运算中,正确的是( ) A .(﹣m )6÷(﹣m )3=﹣m 3 B .(﹣a 3)2=﹣a 6 C .(xy 2)2=xy 4 D .a 2•a 3=a 6【答案】A【分析】根据同底数幂的除法,幂的乘方,积的乘方,同底数幂的乘法逐项分析判断即可. 【详解】解:A 、(﹣m )6÷(﹣m )3=﹣m3,故本选项符合题意; B 、(﹣a3)2=a6,故本选项不符合题意; C 、(xy2)2=x2y4,故本选项不符合题意; D 、a2•a3=a5,故本选项不符合题意; 故选:A .【点睛】本题考查了幂的运算,掌握幂的运算是解题的关键. 5.(2023·上海·七年级假期作业)下列计算结果中,正确的是( ) A .a 3+a 3=a 6 B .(2a )3=6a 3 C .(a ﹣7)2=a 2﹣49 D .a 7÷a 6=a .【答案】D【分析】根据合并同类项法则、积的乘方的运算法则、完全平方公式、同底数幂的除法的运算法则逐项计算得出结果即可得出答案.【详解】解:A 、3332a a a +=,原计算错误,故此选项不符合题意;B 、33(2)8a a =,原计算错误,故此选项不符合题意;C 、22(7)1449a a a =−−+,原计算错误,故此选项不符合题意;D 、76a a a ÷=,原计算正确,故此选项符合题意.故选:D .【点睛】本题考查合并同类项、积的乘方、完全平方公式和同底数幂的除法.掌握各运算法则是解题关键. 6.(2023·上海·七年级假期作业)下列运算正确的是( ) A .()323a a = B .623a a a ÷= C .235a a a += D .235a a a ⋅=【答案】D【分析】根据幂的乘方,同底数幂的乘法和除法,以及合并同类项法则,逐一进行计算即可.【详解】解:A 、()326a a =,选项错误,不符合题意;B 、624a a a ÷=,选项错误,不符合题意;C 、235a a a +≠,选项错误,不符合题意;D 、235a a a ⋅=,选项正确,符合题意;故选D .【点睛】本题考查幂的乘方,同底数幂的乘法和除法,以及合并同类项法.熟练掌握相关法则,是解题的关键.二、填空题7.(2023·上海·七年级假期作业)42()()n n y y −÷−=________;4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−=⎣⎦⎣⎦___________.【答案】 2n y 9()a b −【分析】利用同底数幂的乘法、除法、幂的乘方化简,先算乘方,再算乘除.【详解】解:42()()n n y y −÷−=42()n n y −−=2()ny −=2n y ,4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−⎣⎦⎣⎦=124()()()a a b a b −⨯−÷−=124()()()a b a b a b −⨯−÷−=1214()a b +−−=9()a b −.故答案为:2n y ,9()a b −.【点睛】此题考查了同底数幂的乘法、除法、幂的乘方运算,解题的关键是掌握同底数幂的乘法、除法、幂的乘方的运算法则.8.(2023·上海·七年级假期作业)计算:结果用幂的形式表示94()()a b b a −÷−=_____. 【答案】5()a b −【分析】利用同底数幂的除法的法则进行运算即可.【详解】解:94()()a b b a −÷−94()()a b a b =−÷−5()a b =−.故答案为:5()a b −.【点睛】本题主要考查同底数幂的除法,解答的关键是对同底数幂除法法则的掌握.9.(2023秋·上海青浦·七年级校考期末)计算:()()2333142a b a b b −−−⋅÷=____________.(结果只含有正整数指数幂) 【答案】934b a【分析】根据幂的运算法则和整式的混合运算法则计算可得.【详解】解:()()2333142a b a b b −−−⋅÷293464a b a b b −−=⋅÷()492634a b +−−−=934a b −=394b a =.【点睛】本题主要考查整式的混合运算,解题的关键是熟练掌握幂的运算法则和整式的混合运算法则.10.(2022秋·上海·七年级专题练习)计算:62a a ÷(-)(-)=______. 【答案】4a −【分析】先依据公式得出正确的符号,再利用幂的除法公式计算.【详解】62624a a a a a −÷−−÷−()()=()=.故答案为:4a −.【点睛】本题考查幂的运算,正确运用公式是解题的关键.11.(2019秋·上海·七年级上海市张江集团中学校考期中)已知3m a =,5n a =,则32m n a +=_______________ 【答案】675【分析】根据幂的乘方以及同底数幂的乘法法则解答即可. 【详解】∵am=3,an=5,∴a3m+2n=(am)3•(an)2=33×52=27×25=675. 故答案为:675.【点睛】本题考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.【答案】9【分析】根据同底数幂除法的逆用、幂的乘方的逆用进行计算即可得.【详解】解:因为102a =,109b=,所以112210100100b aa b −=÷1222(10)(10)b a=÷1222(10)10b a ⨯=÷2210b=÷49=÷49=,故答案为:49.【点睛】本题考查了同底数幂除法的逆用、幂的乘方的逆用,熟练掌握各运算法则是解题关键.13.(2023秋·上海静安·七年级新中初级中学校考期末)若15m x =,5n x =,则m n x −等于_____. 【答案】3【分析】逆向运算同底数幂的除法法则计算即可.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.【详解】解:∵xm=15,xn=5, ∴xm-n=xm÷xn=15÷5=3. 故答案为:3.【点睛】本题考查了同底数幂的除法,掌握幂的运算法则是解答本题的关键.14.(2023·上海·七年级假期作业)已知5m a =,5n b =,则25m n +=______,235m n −=______.(请用含有a ,b 的代数式表示)【答案】 2a b /2ba 23a b【分析】逆用同底数幂的乘法,幂的乘方,同底数幂的除法运算法则,进行计算即可.【详解】解:∵5m a =,5nb =,∴()222255555m n m n m n a b+=⋅=⋅=;()()223232323355555m nmnm n a a b b −=÷=÷=÷=.故答案为:2a b ;23a b .【点睛】本题主要考查了同底数幂的乘法,同底数幂的除法,幂的乘方,解题的关键是熟练掌握同底数幂的乘法,幂的乘方,同底数幂的除法运算法则.15.(2023·上海·七年级假期作业)已知2m a =,3n a =,那么3m n a −=___________. 【答案】83【分析】根据同底数幂的除法底数不变指数相减,可得答案. 【详解】解:2m a =,3n a =,∴3m na−3mnaa =÷3()m na a =÷323=÷83=.故答案为:83.【点睛】本题考查了同底数幂的除法,逆用同底数幂除法的计算法则是解题关键.16.(2022秋·上海·七年级阶段练习)﹣y 3•y 5÷(﹣y )4=_____.【答案】﹣y4【分析】先计算幂的乘方,再计算同底数幂的乘、除法,注意负号的作用.【详解】解:﹣y3•y5÷(﹣y )4=﹣y8÷y4=﹣y4故答案为:﹣y4【点睛】本题考查幂的乘方、同底数幂的乘除法等知识,是基础考点,掌握相关知识是解题关键.17.(2022秋·七年级单元测试)已知5230x y −−=,则324x y ÷=________.【答案】8【分析】先求出523x y −=,然后逆用幂的乘方法则对所求式子变形,再根据同底数幂的除法法则计算.【详解】解:∵5230x y −−=,∴523x y −=,∴5253228324222x y x y x y −===÷=÷, 故答案为:8.【点睛】本题考查了代数式求值,涉及幂的乘方的逆用,同底数幂的除法,有理数的乘方运算,熟练掌握运算法则是解题的关键.18.(2023·上海·七年级假期作业)已知2320x y −−=,则927x y ÷的值为________.【答案】9【分析】先变形,再根据同底数幂的除法进行计算,最后整体代入求出即可.【详解】解:∵2320x y −−=,∴232x y −=,∴927x y ÷2333x y =÷233x y −=23=9= 故答案为9.【点睛】本题考查了同底数幂的除法、幂的乘方等知识点,能正确根据法则进行变形是解此题的关键.三、解答题19.(2023·上海·七年级假期作业)计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−. 【答案】(1)()5x y +(2)222a ab b −+− 【分析】(1)利用同底数幂的除法进行运算;(2)先将底数均化为a b −,再利用同底数幂的除法运算.【详解】(1)解:1055()()()x y x y x y +÷+=+;(2)解:97()()a b b a −÷−97()()a b a b ⎡⎤=−÷−−⎣⎦2()a b =−−222a ab b =−+−. 【点睛】本题考查了同底数幂的除法,熟练掌握相关运算规则是解题的关键.20.(2022秋·上海·七年级校考期中)计算:()()222334222a a a a a a +−−÷ 【答案】6a【分析】根据同底数幂乘法的法则,积的乘方的运算法则,同底数幂除法的运算法则先化简计算,然后合并同类项即可.【详解】解:()()222334222a a a a a a +−−÷668244a a a a =+−÷66644a a a =+−6a = 【点睛】本题考查了整式的混合运算,解题的关键是掌握相关公式并灵活运用.幂的乘方法则:底数不变,指数相乘.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. 21.(2023·上海·七年级假期作业)计算:(1)()()4334a a −÷−; (2)()()22237a a a a ⋅÷⨯−. 【答案】(1)1−(2)5a【分析】(1)先计算幂的乘方,再计算同底数幂的除法;(2)先计算同底数幂的乘法、乘方,再计算同底数幂的乘法与除法.【详解】(1)解:()()()433412121a a a a −÷−=÷−=−;(2)解:()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【点睛】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,()n m mn a a =,m n m n a a a −÷=(0a ≠,m ,n 都是正整数),注意负数的奇次幂还是负数.22.(2022秋·上海·七年级专题练习)已知3m =4,3n =5,分别求3m +n 与32m ﹣n 的值.【答案】20,165【分析】利用同底数幂的乘法的逆用法则,同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3334520m m n n +=⋅=⨯=;222233316(53)534m n m n m n −=÷=÷=÷=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.23.(2022秋·上海·七年级专题练习)已知34m =,35n =,分别求3m n +与23m n −的值.【答案】20,165【分析】同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3m n +33m n =⋅45=⨯20=;23m n −233m n =÷()233m n =÷245=÷165=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.24.(2022秋·上海·七年级校考期中)已知96,32b a ==,求323a b −的值. 【答案】43【分析】先根据幂的乘方求出3336,38b a ==,再逆用同底数幂的除法计算即可. 【详解】∵96,32b a ==, ∴233396,328b b a ====,∴3243863a b −=÷=.【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握运算法则是解题的关键.25.(2021秋·上海浦东新·七年级期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【答案】﹣7a8【分析】根据同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,最后合并同类项即可【详解】解:a•a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点睛】本题考查了同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,掌握幂的运算是解题的关键.26.(2023·上海·七年级假期作业)若32x =,35y =,求23x y −的值. 【答案】45【分析】逆用幂的乘方,除法法则计算即可.【详解】()22233333x y x y x y −=÷=÷,把32x =,35y =代入得()224333455x y x y −=÷=÷=.【点睛】本题考查了同底数幂的乘方与除法,熟练掌握运算法则是解题的关键.。

专题 同底数幂的除法-2023-2024学年七年级数学下册专项突破讲与练(北师大版)

专题 同底数幂的除法-2023-2024学年七年级数学下册专项突破讲与练(北师大版)

专题1.6同底数幂的除法(分层练习)一、单选题1.计算下列各式,结果正确的是()A .()011-=-B .01000=C .()011π-=D .()011x -=2.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A .9710-⨯B .8710-⨯C .90.710-⨯D .80.710-⨯3.下列各式计算结果为a 5的是()A .32a a +B .32a a ⋅C .()32a D .102a a ÷4.计算()32()x x x -⋅÷-的结果为()A .4x -B .5x -C .4x D .5x 5.若321x =,37y =,则3(x y -=)A .7B .3C .14D .21A .a b c d <<<B .c a d b <<<C .a d c b<<<D .b a d c<<<11.下列各式运算结果为6x 的是()A .24x x ⋅B .()42x C .122x x ÷D .33x x +12.已知2m a =-,5n a =,则32m n a -的值为()A .53-B .35C .825-D .25813.下列计算正确的是()A .()022-=-B .()1133--=C .623a a a ÷=D .2244a a -=14.化简222222333333++⨯⨯的结果为()A .1B .13C .19D .12715.氧气是由氧元素形成的一种单质,氧元素的原子半径约为1000.000074m ⋅⋅⋅ 个,则氧原子的半径用科学记数法表示为()A .107.410m -⨯B .117.410m-⨯C .127.410m-⨯D .100.7410m-⨯16.若()051x +=,则x 的取值范围为.17.已知2320x y --=,则927x y ÷的值为.18.已知:212m=,248n=,则2m n -=.19.已知5m a =,7n a =,则m n a +=,m n a -=.20.已知一种细胞的直径约为52.1310cm -⨯,请问52.1310-⨯这个数原来的数是.21.计算:20120242-⎛⎫+=⎪⎝⎭.26.满足等式()32x +27.计算:04|3π+-1a-⎛⎫三、解答题35.尝试解决下列有关幂的问题:(1)若1632793m m ⨯÷=,求m 的值;(2)已知2,3x y a a =-=,求32x y a -的值;(3)若n 为正整数,且24n x =,求()()223234nn x x -的值.36.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Nplcr ,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若()0,1xa N a a =>≠,那么x 叫做以a 为底N 的对数,记作:log a x N =.比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2525=.我们根据对数的定义可得到对数的一个性质:()()log log log 0,1,0,0a a a M N M N a a M N ⋅=+>≠>>;理由如下:设log a M m =,log a N n =,则m M a =,nN a =∴m n m n M N a a a +⋅=⋅=,由对数的定义得()log a m n M N +=⋅又∵log log a a m n M N +=+∴()log log log a a a M N M N ⋅=+解决以下问题:(1)将指数3464=转化为对数式:______.(2)仿照上面的材料,试证明:()log log log 0,1,0,0aa a MM N a a M N N=->≠>>.(3)拓展运用:计算333log 2log 6log 4+-.参考答案:)先化简绝对值、计算负整数指数幂和有理数的乘法,再计算加减.【点拨】本题主要考查同底数幂的乘除法,有理数的混合运算,解答的关键是对相应的运算法则的掌握.。

同底数幂的除法(经典) 知识讲解、巩固练习及答案

同底数幂的除法(经典) 知识讲解、巩固练习及答案

同底数幂的除法【学习目标】1. 会用同底数幂的除法性质进行计算.2. 掌握零指数幂和负整数指数幂的意义. 3.掌握科学记数法. 【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 要点二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式. 要点三、负整数指数幂任何不等于零的数的n -(n 为正整数)次幂,等于这个数的n 次幂的倒数,即1nnaa -=(a ≠0,n 是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.m n m n a a a +=(m 、n 为整数,0a ≠);()mm m ab a b =(m 为整数,0a ≠,0b ≠)()nm mn a a =(m 、n 为整数,0a ≠).要点诠释:()0na a -≠是n a 的倒数,a 可以是不等于0的数,也可以是不等于0的代数式.例如()1122xy xy -=(0xy ≠),()()551a b a b -+=+(0a b +≠). 要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na ⨯的形式,其中n 是正整数,1||10a ≤<(2)利用10的负整数次幂表示一些绝对值较小的数,即10na -⨯的形式,其中n 是正整数,1||10a ≤<.用以上两种形式表示数的方法,叫做科学记数法. 【典型例题】类型一、同底数幂的除法1、计算:(1)83x x ÷;(2)3()a a -÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】 解:(1)83835x x xx -÷==.(2)3312()a a aa --÷=-=-.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y -÷===.(4)535321111133339-⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-=-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.2、计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如1212(52)(25)a b b a -=-.(2)注意指数为1的多项式.如x y -的指数为1,而不是0. 【答案与解析】解:(1)5514()()()()x y x y x y x y --÷-=-=-.(2)1251257(52)(25)(25)(25)(25)a b b a b a b a b a -÷-=-÷-=- (3)64626426212(310)(310)(310)(310)910-⨯÷⨯=⨯=⨯=⨯.(4)3324[(2)][(2)]x y y x -÷-9898(2)(2)(2)2x y x y x y x y -=-÷-=-=-.【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算.3、已知32m =,34n =,求129m n+-的值.【答案与解析】 解: 121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++-======. 当32m=,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 举一反三:【变式】(2015春•苏州)已知以ma =2,na =4,ka =32.则32m n ka +-的值为 .【答案】解:3ma=32=8,2n a =24=16,32m n k a +-=3m a •2n a ÷k a =8×16÷32=4,故答案为:4.类型二、负整数次幂的运算4、计算:(1)223-⎛⎫- ⎪⎝⎭;(2)23131()()a b a b ab ---÷.【答案与解析】解:(1)222119434293-⎛⎫-=== ⎪⎝⎭⎛⎫- ⎪⎝⎭; (2)2313123330()()a b a b ab a b a b ab a b b -----÷===.【总结升华】要正确理解负整数指数幂的意义. 举一反三:【变式】计算:4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭.【答案】解: 4513012222( 3.14)2π----⎛⎫++⨯⨯+- ⎪⎝⎭45311111122116212223228=++⨯⨯+=++⨯⨯+1151611732832=+++= 5、 已知1327m=,1162n⎛⎫= ⎪⎝⎭,则n m 的值=________.【答案与解析】 解: ∵ 331133273m-===,∴ 3m =-. ∵ 122n n -⎛⎫= ⎪⎝⎭,4162=,∴ 422n -=,4n =-.∴ 4411(3)(3)81nm -=-==-. 【总结升华】先将127变形为底数为3的幂,122nn -⎛⎫= ⎪⎝⎭,4162=,然后确定m 、n 的值,最后代值求nm . 举一反三:【变式】计算:(1)1232()a b c --;(2)3232312b c b c ---⎛⎫⨯ ⎪⎝⎭;【答案】解:(1)原式424626b a b c a c--==.(2)原式8236981212888b b c b c b cc---=⨯==. 类型三、科学记数法6、(2014秋•福州)观察下列计算过程:(1)∵33÷53=332231333=⨯,33÷53=353-=23-,∴23-=(2)当a≠0时,∵2a ÷7a =27a a =225a a a ⨯=51a ,2a ÷7a =27a -=5a -,5a -=51a ,由此可归纳出规律是:pa-=1p a(a≠0,P 为正整数) 请运用上述规律解决下列问题:(1)填空:103-= ;259x x x ⨯÷= .(2)用科学记数法:3×410-= .(写成小数形式)(3)把0.00000002写成如(2)的科学记数法10na ⨯的形式是: . 【答案与解析】 解:(1)103-=1013; 259x x x ⨯÷ =259x +-=221x x-=; (2)3×410-=0.0003,(3)0.00000002=2×810-.【总结升华】本题考查用科学记数法表示较小的数,一般形式为10na ⨯,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【巩固练习】 一.选择题1. (2015•桂林)下列计算正确的是( )A .()25a=10a B .16x ÷4x =4x C .22a +23a =46a D .3b •3b =32b2.下列计算中正确的是( ).A.212a a xx x ++÷=B.()()6322xy xy x y÷=C.()12529x x x x ÷÷= D.()42332n n n n x x x x +÷=3.近似数0.33万表示为( )A .3.3×210- B .3.3000×310C .3.3×310D .0.33×4104.020122012(1)(0.125)8π-+⨯的结果是( )A .3B .23-C .2D .05..将201)3(,)2(,)61(---这三个数按从小到大的顺序排列为()A .21)3()61()2(-<<-- B .201)3()2()61(-<-<-C .12)61()2()3(-<-<-D .12)61()3()2(-<-<-6.下列各式中正确的有( )①21()9;3-=②224-=-;③01a =;④()111--=;⑤()2336-=.A .2个B .3个C .4个D .1个二.填空题7. =-+-01)π()21(______,()011 3.142--++=______.8. ()()532aa -÷-=__________,201079273÷÷=__________,02139⎛⎫+= ⎪⎝⎭______.9. ()3223a b-=______,()22a b---=______.10.一种细菌的半径为0.0004m ,用科学记数法表示为______m .11.“神威一号”计算机运算速度为每秒384000000000次,其运算速度用科学记数法表示,为______次/秒.12(2015春•江西)若ma =-2, na =-12-,则23m na -= . 三.解答题13.(2015春•吉州)已知2x =3,2y =5.求: (1)2x y +的值; (2)32x的值; (3)212x y +-的值.14.用小数表示下列各数:(1)8.5×310-(2)2.25×810-(3)9.03×510-15. 先化简,后求值:()()23424211212a b a b ab----⎛⎫--÷ ⎪⎝⎭,其中23a b ==-,.【答案与解析】 一.选择题1. 【答案】A ; 【解析】A 、()25a=10a ,正确; B 、16x ÷4x =12x ,错误;C 、22a +23a =25a ,错误; D 、3b •3b =6b b 3•b 3=b 6,错误;故选A.2. 【答案】C ; 【解析】21a a xx x ++÷=;()()6333xy xy x y ÷= ;()4235n n n n x x x x ÷= .3. 【答案】C ;【解析】0.33万=3300=3.3×310. 4. 【答案】C ;【解析】2012201220121(1)(0.125)8181128π⎛⎫-+⨯=+⨯=+= ⎪⎝⎭.5. 【答案】A ; 【解析】1021()6,(2)1,(3)96-=-=-=,所以210)3()61()2(-<<--.6. 【答案】D ;【解析】只有①正确;2124-=;()010a a =≠;()111--=-;()239-=. 二.填空题 7. 【答案】3;12; 【解析】()01111 3.1421122--++=-++=. 8. 【答案】7;27;10a ;【解析】201074030739273333327÷÷=÷÷==.9.【答案】6627a b ;42a b【解析】()632266627327a a ba b b --==;()422422a a b a b b----==.10.【答案】4410-⨯; 11.【答案】113.8410⨯; 12.【答案】-32; 【解析】解:()224mm a a,==()3318nn a a==-,23m n a -=4=﹣32.三.解答题13.【解析】 解:(1)2x y+=2x •2y=3×5=15;(2)32x=()32x =33=27;(3)212x y +-=()22x •2y÷2=23×5÷2=.14.【解析】解:(1)8.5×310-=0.0085 (2)2.25×810-=0.0000000225(3)9.03×510-=0.0000903 15.【解析】 解:原式4863482323444a ba b a b a b a b ------=-÷=-=-当23a b ==-,时,原式23412(3)27=-=-.。

专题02 同底数幂的除法(四大题型,40题)(解析版) 七年级数学下册

专题02 同底数幂的除法(四大题型,40题)(解析版) 七年级数学下册

原创精品资源学科网独家享有版权,侵权必究!1专题02同底数幂的除法(除法、逆运算、混合运算、零指数幂40题)目录一、同底数幂的除法运算,10题,难度三星........................................................................................................1二、同底数幂除法的逆用,10题,难度三星........................................................................................................8三、幂的混合运算,10题,难度三星..................................................................................................................14四、零指数幂,10题,难度三星 (23)一、同底数幂的除法运算,10题,难度三星1.(2023下·四川达州·七年级校考期末)下列计算正确的是()A .5552x x x ⋅=B .325a a a +=C .2383()ab a b =D .4222()()bc bc b c -÷-=【答案】D【分析】分别运用同底数幂的乘法,合并同类项法则,幂的乘方和同底数幂的除法运算即可.【详解】解:A 、5510x x x ⋅=,所以此选项错误;B 、32a a +,不能运算,所以此选项错误;C 、2363()a b a b =,所以此选项错误;D 、42222()()()bc bc bc b c -÷-=-=,所以此选项正确,故选:D .【点睛】此题考查了同底数幂的乘法,合并同类项法则,幂的乘方和同底数幂的除法运算,掌握运算法则是解题的关键.2.(2024下·全国·七年级假期作业)下列计算错误的是()A .2571a a a-÷=B .()63123b a ba-=C .232461b a a b -⎛⎫= ⎪⎝⎭D .()()8322228b a b a ba---⋅=【答案】C【分析】根据同底数幂的除法运算,积的乘方运算,负整数指数幂的运算法则,进行运算,即可一一判定.【详解】C解:A.25771a a a a --÷==,正确,故该选项不符合题意;原创精品资源学科网独家享有版权,侵权必究!3原创精品资源学科网独家享有版权,侵权必究!5329444=⨯-⨯512=.【点睛】本题考查同底数幂的乘除法,幂的乘法以及积的乘方,掌握同底数幂的除法法则,幂的乘法以及积的乘方法则是解题的关键.9.(2024下·全国·七年级假期作业)按要求解答下列各小题.(1)已知1012m =,103n =,求10m n -的值;(2)如果33a b +=,求327a b ⨯的值;(3)已知682162m m ⨯÷=,求m 的值.【答案】(1)4(2)27(3)1m =-【分析】(1)根据同底数幂相除的运算法则即可得到答案;(2)将27b 变成底数为3的幂,根据同底数幂相乘的法则即可得到答案;(3)将8,16m 变为底数为2的幂,再根据同底数幂相乘及相除的法则即可得到答案.【详解】(1)解:∵1012m =,103n =,∴4101210310m m n n -÷==÷=;(2)解:由题意可得,33327333a b a b a b +⨯=⨯=,∵33a b +=,∴3327327a b ⨯==;(3)解:由题意可得,36344222821622m m m m m m +-=÷=⨯=⨯÷,∴346m m +-=,解得1m =-.【点睛】本题考查同底数幂乘除的法则:同底数幂相乘底数不变指数相加,同底数幂相除底数不变指数相减.10.(2024下·全国·七年级假期作业)定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷写作2③,读作“2的圈3次方”,(3)(3)(3)(3)-÷-÷-÷-写作(3)-④,读作“(3)-的圈4次方”.原创精品资源学科网独家享有版权,侵权必究!74=二、同底数幂除法的逆用,10题,难度三星原创精品资源学科网独家享有版权,侵权必究!922261248n p n p +=⋅=⨯= ,()44422381mm ===,422n p m +∴≠,4n p m ∴+≠,故④错误,不符合题意;∴正确的有:①②③,故答案为:①②③.【点睛】本题主要考查了同底数幂的除法的逆运算、同底数幂的乘法的逆运算及幂的乘方的逆运算,熟练掌握运算法则是解题的关键.13.(2024下·全国·七年级假期作业)对于整数a 、b 定义运算:()()b m a n a b a b =+※(其中m 、n 为常数),如2332(3)(2)m n =+※.(1)填空:当1m =,2023n =时,2)(1=※__________;(2)若1410=※,2215=※,求214m n +-的值.【答案】(1)3(2)81【分析】(1)根据新定义的运算方法计算即可;(2)根据条件结合新定义的运算方法判断出49n =,46m =,可得结论.【详解】(1)解:112202321(2)(1)=+※21=+3=,故答案为:3;(2)1410= ※,2215=※,41(1)(4)10m n +=,225(2)(2)1n m +=,整理得:49n =,4415m n +=,解得:46m =,2124444m n m n +-=⨯÷2(4)44m n =⨯÷2694=⨯÷81=.【点睛】本题考查新定义运算和幂的运算法则,包括幂的乘方,同底数幂相乘的逆用,同底数幂相除的逆用,实数的混合运算,解题的关键是理解题意,灵活运用幂的运算法则解决问题.原创精品资源学科网独家享有版权,侵权必究!11原创精品资源学科网独家享有版权,侵权必究!13(2) 4216y x ==,442162y x ∴===,24x y ∴=±=,,当24x y ==,时,222410x y +=+⨯=,当24x y =-=,时,22246x y +=-+⨯=,∴2x y +的值为10或6;(3) 75p =,57q =,()()()5735353535755735575757p q ∴=⨯=⨯=⨯=.【点睛】本题主要考查了同底数幂的除法的逆用、幂的乘方的逆用、已知字母的值求代数式的值,熟练掌握运算法则是解题的关键.三、幂的混合运算,10题,难度三星原创精品资源学科网独家享有版权,侵权必究!15原创精品资源学科网独家享有版权,侵权必究!17原创精品资源学科网独家享有版权,侵权必究!19原创精品资源学科网独家享有版权,侵权必究!21计算,同时注意计算中需注意的事项是本题的解题关键.四、零指数幂,10题,难度三星原创精品资源学科网独家享有版权,侵权必究!23原创精品资源学科网独家享有版权,侵权必究!252()m n=⋅a a2=⨯28=⨯48=.32【点睛】本题主要考查了实数的运算,有理数的乘方法则,负整数指数幂的意义和零指数幂的意义,幂的乘方与同底数幂的乘法法则,熟练掌握上述法则与性质是解题的关键.原创精品资源学科网独家享有版权,侵权必究!27。

第一章第03讲 同底数幂的除法(6类热点题型讲练)(解析版)--初中数学北师大版7年级下册

第一章第03讲 同底数幂的除法(6类热点题型讲练)(解析版)--初中数学北师大版7年级下册

第03讲同底数幂的除法(6类热点题型讲练)1.经历同底数幂的除法法则的探索过程,理解同底数幂的除法法则;2.理解零次幂和负整数指数幂的意义,并能进行负整数指数幂的运算;3.会用同底数幂的除法法则进行计算.知识点01同底数幂的除法m n m n a a a -÷=(其中,m n 都是正整数).即同底数幂相除,底数不变,指数相减.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)逆用公式:即=m n m n aa a -÷(,m n 都是正整数).知识点02零指数幂:01a =(a ≠0)知识点03负指数幂:1p p a a-=(a ≠0,p 是正整数)题型01同底数幂的除法【例题】(2023上·八年级课时练习)计算:(1)()()()722ab ab ab -÷-÷-;(2)()243m m ÷;(3)()()426x x x -⋅÷-.【答案】(1)33a b -(2)5m (3)4x -【分析】(1)把()ab -当作一个整体,根据同底数幂的除法法则计算,再利用积的乘方法则计算即可;(2)先根据幂的乘方法则计算,再根据同底数幂的除法法则计算;(3)先根据同底数幂的乘法法则计算同时根据有理数乘方进行运算,再根据同底数幂的除法法则计算即可.【详解】(1)解:()()()722ab ab ab -÷-÷-()722ab --=-()3ab =-33a b =-;(2)()243m m ÷83m m =÷5m =;(3)()()426x x x -⋅÷-84x x =-÷4x =-.【点睛】本题考查整式的乘除混合运算,掌握相应的运算法则、掌握运算顺序是解题的关键.【变式训练】1.(2023上·全国·八年级课堂例题)计算:(1)93m m -÷;(2)63()()a a -÷-;(3)2366m m +÷.【答案】(1)6m -(2)3a -(3)36m +【分析】(1)根据同底数幂的除法运算即可求解;(2)根据同底数幂的除法运算即可求解;(3)根据同底数幂的除法运算即可求解.【详解】(1)解:93m m -÷93m -=-6m =-.(2)解:63()()a a -÷-63()a -=-3()a =-3a =-.(3)解:2366m m +÷236m m +-=36m +=.【点睛】本题主要考查整式的乘除法的运算,掌握其运算法则是解题的关键.2.(2023上·全国·八年级课堂例题)计算:(1)1023a a a ÷÷;(2)255a a a ⋅÷;(3)()()5222x y x y ÷;(4)432()()()p q q p p q -÷-⋅-.【答案】(1)5a (2)2a (3)63x y (4)3()p q --【分析】(1)利用同底数幂的除法法则计算即可;(2)利用同底数幂的乘法和除法法则计算即可;(3)利用积的乘方和同底数幂的除法法则计算即可;(4)先把()q p p q -=--,底数p q -作为一个整体,利用同底数幂的乘法和除法计算即可;【详解】(1)解:310231025a a a a a --÷=÷=.(2)解:225755a a a a a a ⋅÷÷==.(3)解:()()10542635222x x y x y y x y y x =÷÷=.(4)解:3432432()()()()())(()p q q p p q p q p q p p q q -÷-⋅--÷-⋅-=-=--.【点睛】本题考查了同底数幂的乘法,同底数幂的除法,积的乘方,熟练运用这些运算法则是解题的关键.题型02同底数幂除法的逆用1.(2023下·安徽安庆·七年级校考期中)已知3x a =,5y a =,求:(1)x y a -的值;∴1n =.【点睛】本题主要考查了同底数幂乘除法的逆运算,幂的乘方和幂的乘方的逆运算,熟知相关计算法则是解题的关键.题型03幂的混合运算【例题】(2023·上海·七年级假期作业)计算:(1)()()4334a a -÷-;(2)()()22237a a a a ⋅÷⨯-.【答案】(1)1-(2)5a 【分析】(1)先计算幂的乘方,再计算同底数幂的除法;(2)先计算同底数幂的乘法、乘方,再计算同底数幂的乘法与除法.【详解】(1)解:()()()433412121a a a a -÷-=÷-=-;(2)解:()()()22223757210725a a a a a a a a a -+⋅÷⨯-=÷⋅==.【点睛】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,()nm mn a a =,m n m na a a -÷=(0a ≠,m ,n 都是正整数),注意负数的奇次幂还是负数.【变式训练】(1)2642135(2)5x x x x x ⋅--+÷(2)253()()[()]a b b a a b -⋅-÷--;(3)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.【答案】(1)82x (2)4()a b -(3)2a -,-25.【分析】(1)先算幂的乘方,再算乘除,最后计算加减即可求解;(2)把()a b -作为一个整体,从左往右计算,即可求解;(3)先算括号内的,再计算除法,最后再代入求值,即可求解.【详解】(1)原式88845x x x =-+8(145)x =-+82x =;(2)原式253()()[()]a b a b a b =---÷--4()a b =-.(3)原式=()61264594a a a a -÷÷=6444a a -÷=2a -,当a =-5时,原式=-25.【点睛】本题主要考查了幂的混合运算,零指数幂,负整数指数幂,熟练掌握幂的运算法则,零指数幂,负整数指数幂法则是解题的关键.题型04零指数幂题型05负整数指数幂题型06用科学计数法表示绝对值小于1的数1.(2023上·黑龙江佳木斯·八年级统考期末)纳米是一种长度单位,1纳米910-=米,冠状病毒的直径约为一、单选题1.(2023上·河南濮阳·八年级校联考期中)下列各式运算结果为6x 的是()A .24x x ⋅B .()42x C .122x x ÷D .33x x +【答案】A 【分析】直接根据同底数幂的乘除法,幂的乘方,合并同类项的运算法则计算各项,即可得到答案.【详解】解:A .24246x x x x +⋅==,故选项符合题意;B .()428x x =,故选项不符合题意;C .12210122x x x x -÷==,故选项不符合题意;D .3332x x x +=,故选项不符合题意.故选:A .2.(2023上·四川宜宾·八年级统考期中)下列计算正确的是()A .426235a a a +=B .824a a a ÷=C .53822a a a ⋅=D .()236ab a b=【答案】C 【分析】本题考查的是合并同类项,同底数幂的除法,乘法运算,积的乘方运算,根据各自的运算法则逐一分析即可,熟记运算法则是解本题的关键.【详解】解:A 、42a 与23a 不是同类项,不能合并,不符合题意;B 、826a a a ÷=,故本选项计算错误,不符合题意;C 、53822a a a ⋅=,计算正确,符合题意;D 、()2362a b a b =,故本选项计算错误,不符合题意;故选:C .3.(2023上·吉林松原·八年级校联考期末)经测算,一粒芝麻的质量约为0.00000201kg ,数据0.00000201用科学记数法表示为()A .320.110-⨯B .42.0110-⨯C .50.20110-⨯D .62.0110-⨯【答案】D【分析】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.00000201 2.0110-=⨯.故选:D .4.(2023上·河南濮阳·八年级校联考期中)若()021x +=,则x 的取值范围是()A .2x ≥-B .2x ≤-C .2x ≠-D .2x =-【答案】C 【分析】本题考查零指数幂的意义,根据零指数幂的定义即可判断.【详解】解:根据零指数幂的意义,20x +≠,∴2x ≠-.故选:C .5.(2023上·河南新乡·八年级校考阶段练习)下列四个算式:①()()4322x x x -÷-=-;②()()2122242n n x x x +--÷-=-;③()2522a b a b a ÷=;④()2642221832a b a b a b ÷-=.其中计算不正确的是()A .①②B .①③C .②④D .②③【答案】B【分析】本题考查幂的运算,涉及同底数幂的除法、积的乘方、幂的乘方等知识,是基础考点,掌握相关知识是解题关键.根据同底数幂的除法、积的乘方、幂的乘方法则逐个解题【详解】解:①()()43222x x x -÷-=-,错误,②()()2122242n n x x x +--÷-=-,正确,③()2522a b a b a ÷=,错误,④()2642221832a b a b a b ÷-=,正确故①③错误,故选:B .【答案】2【分析】本题主要考查了整式的加减计算,同底数幂除法的逆运算,先分别表示出经过取走和取出后,甲、乙、丙三个袋子中的球数分别为个,由此得到292y -【详解】解:经过取走和取出后,()22525x y y +-+=+∵一共有29295++=∴最后三个袋子中的球都是∴2125922x y =+-,∴82126y x ==,,∴22216x y x y -=÷=故答案为:2.。

(完整版)《同底数幂的乘法、积的乘方、幂的乘方》专项练习

(完整版)《同底数幂的乘法、积的乘方、幂的乘方》专项练习

同底数幂的乘除法、积的乘方、幂的乘方专项练习一、同底数幂的乘法:n m a a a n m n m ,(+=⋅是正整数)1。

公式及其推广:m n p m n p a a a a ++=p n m ,,(是正整数)2.公式顺用:例1、计算(1) 21n n n a a a ++ (2)232)()(x x x -⋅⋅- (3)432111()()()101010-- (4)34(2)(2)(2)x y x y y x --- (5)2132()()()n n a a a ++---练习(1)若,1032x x x m m =-则整式=+-1322m m (2)若,1282)8(22-=⋅-⋅+n n 则=n(3)n 为正整数=-+-+n n 212)2(2)2(,3。

公式的逆用例2。

若,64412=+a 解关于x 的方程)1(532-=+x x a 二、幂的乘方:p n m a a a p n m mn n m ,,(])[(,)(=是正整数)1.公式的应用例3.计算:(1)34()x - (2)34[()]x -练习:计算下列各题253(1)()x x - 2844(2)()()x x 2332222(3)()()(2)y y y y +-2.公式的逆用例4.(1)已知,3,2==n n y x 求n n y x )()(23的值;(2)已知,310,210==b a 求b a 3210+的值;(3)若,0352=-+y x 求y x 324⋅的值; (4)若,)()(963131y x y x n m =⋅+-求n m +的值.三、积的乘方:n c b a abc b a ab n n n n n n n ()(,)(==是正整数)1.公式的顺用例5.计算:(1)52)(b x - 322(2)(2)()ab ab 23(3)3()x x --练习:计算2233(1)()()(5)ab a b ab -- 122(2)()()n n n c d c d -2。

七年级数学下册第一章整式的乘除1、3同底数幂的除法第2课时零指数幂与负整数指数幂习题新版北师大版

七年级数学下册第一章整式的乘除1、3同底数幂的除法第2课时零指数幂与负整数指数幂习题新版北师大版

*13.下列各式的计算中,不正确的个数是( ) ①100÷10-1=10; ②10-4×(2×7)0=1 000; ③(-0.1)0÷(-2-1)-3=8; ④(-10)-4÷(-10-1)-4=-1. A.4 B.3 C.2 D.1
【点拨】①100÷10-1=1÷110=10,正确; ②10-4×(2×7)0=1104×1=0.000 1,不正确; ③(-0.1)0÷(-2-1)-3=1÷(-23)=1÷(-8)=-18,不正确; ④(-10)-4÷(-10-1)-4=10-4÷104=10-8,不正确.故选 B.
解:设 M=1+3-1+3-2+…+3-2 024,①
则 3M=3+1+3-1+…+3-2 023,②
②-①得
2M=3-3-2
024,即
M=3-32-2
024
.
所以原式=3-3-2 2
024
.
(2)1+3-1+3-2+…+3-n.
解:设 N=1+3-1+3-2+…+3-n,① 则 3N=3+1+3-1+…+3-n+1,② ②-①得 2N=3-3-n,即 N=3-23-n.所以原式=3-23-n.
【点拨】本题探索使等式成立的 x 的值时,运用了分类讨论思想, 在讨论时要考虑周全. 解:①当 2x+3=1 时,x=-1; ②当 2x+3=-1 时,x=-2,但是指数 x+2 023=2 021 为奇数, 所以舍去; ③当 x+2 023=0 时,x=-2 023,且 2×(-2 023)+3≠0, 所以符合题意.综上所述,x 的值为-1 或-2 023.
A.2a5-a B.2a5-1a C.a5
D.a6
*7.若(t-3)2-2t=1,则t可以取的值有( C ) A.1个 B.2个 C.3个 D.4个

北师大版七下数学同底数幂的除法教学课件

北师大版七下数学同底数幂的除法教学课件
1.3 同底数幂的除法
一、导入
1.同底数幂乘法法则:
am an amn (m, n都是正整数)
2.幂的乘方法则:
(am )n amn (m, n都是正整数)
3.积的乘方法则:
(ab)n anbn (n是正整数)
做一做: 如何计算下列各式?
(1)108 105
(2)10m 10n
(3)(3)m (3)n
例1 计算
(1) 8
3
(2)
10
(((123)))(解解4解)::解:2:aaxa87 610a23ax4a3
3
822aaa3aaaaaxx37875415637031
(3) 2a7 2a4
(4) x6 x
例2 计算
(1) a 5 a3
(3(()21解)):解解::abaa465aaa2 3 b 2 aaa64 baa52a22 a3
253
10 (2)107
103
4
___________;
1073
a (3)a7 a3
4
_________
a0
. a73
你能发现什么规律?
三、学习同底数幂除法法则
一般地,设m、n为正整数,且
m>n,a 0 有:
am an amn
这就是说,同底数幂相除, 底数不变,指数相减.
a a a a 典型例题
b2
4
b3
2
(7) x5 x
(8) 163 43
(9)m10 m5 m2
例4 计算
分析:本例的
(1) 273 92 312
(2) 82m 42m1
每个小题,由 于底数不同, 不能直接运用

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。

同底数幂的除法专项练习题 (有答案)

同底数幂的除法专项练习题    (有答案)
所以4m2﹣25n2=(2m)2﹣(5n)2=(2m+5n)(2m﹣5n)=7×2=14.
15. (1)m9÷m7=m9﹣7=m2;(2)(﹣a)6÷(﹣a)2=(﹣a)6﹣2=a4; (3)(x﹣y)6÷(y﹣x)3÷(x﹣y)=(x﹣y)6÷[﹣(x﹣y)]3÷(x﹣y)=﹣(x﹣
y)6﹣3﹣1=﹣(x﹣y)2. 16.∵2m=8=23,2n=4=22,∴m=3,n=2,(1)2m﹣n=23﹣2=2;(2) 2m+2n=23+4=27=128. 17.(1)∵xm=8,xn=5,∴xm﹣n=xm÷xn,=8÷5=

(2)∵10m=3,10n=2,∴103m=(10m)3=33=27,102n=(10n)2=22=4,∴103m﹣ 2n=103m÷102n=27÷4=
18.∵am=4,an=3,∴am﹣3k+2n=am÷a3k•a2n=am÷(ak)3•(an)2=4÷23×32=
19.(﹣3x2n+2yn)3÷[(﹣x3y)2]n=﹣27x6n+6y3n÷(﹣x3y)2n=﹣ 27x6n+6y3n÷x6ny2n=﹣27x6yn 20.∵an=2,am=3,ak=4,∴a2n+m﹣ 2k=a2n•am÷a2k=(an)2•am÷(ak)2=4×3÷16=
(3) (6)x6÷x2•x
参考答案:
1.(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m6 2.3(x2)3•x3﹣(x3)3+(﹣x)2•x9÷x2=3x6•x3﹣x9+x2•x9÷x2=3x9﹣x9+x9=3x9. 3.∵am=3,an=4,∴a2m﹣n=a2m÷an=(am)2÷an=32÷4=

北师大版数学七年级下册第一章整式的乘除第3节同底数幂的除法课后练习

北师大版数学七年级下册第一章整式的乘除第3节同底数幂的除法课后练习

第一章整式的乘除第3节同底数幂的除法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.下列计算正确的是( )A .3412a a a ⋅=B .()326a a =C .()2222a a =D .4442a a a ÷= 2.下列计算错误的是( )A .325a a a ⋅=B .2222a a a +=C .()326a a -=D .826a a a ÷= 3.下列计算正确的是( )A .336a a a +=B .3225()xy x y =C .624a a a ÷=D .()2231931m m m +=++ 4.运算结果为6a 的式子是( )A .32a a ⋅B .()32aC .122a a ÷D .7a a - 5.下列计算中,正确的是( )A .33a a ÷=B .23a a a +=C .()235a a =D .426a a a ⋅= 6.下列运算正确的是( )A .()123a a =B .221a a -=C .623a a a ÷=D .()224ab ab = 评卷人得分二、填空题 7.计算423287x y x y -÷的结果等于___________.8.已知28m =,31n =,则n m -=____.9.2﹣2+|3﹣2|=_____.10.计算()()2201901130142π-⎛⎫-+--= ⎪⎝⎭________. 11.已知23x =,25y =,则212x y +-=_______.12.若6m a =,4n a =,则2m n a -=__.评卷人得分三、解答题 13.计算:1020201( 3.14)2(1)2π-⎛⎫-+---- ⎪⎝⎭.14.根据题意,完成下列问题.(1)若8,2322m n ==,求22m n -的值;(2)已知2330x y +-=,求48x y ⋅的值;(3)已知22332510x x x ++-⋅=,求x 的值.15.已知53a =,52b =,572c =.(1)求25a 的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系为_______.16.计算 (1)101|2|(2)3π-⎛⎫---+- ⎪⎝⎭; (2)()()254822()x x x x +-⋅÷-17.小明和小红在计算100101133⎛⎫-⨯ ⎪⎝⎭时,分别采用了不同的解法.小明的解法:10010010010110010011133333(1)33333⎡⎤⎛⎫⎛⎫⎛⎫-⨯=-⨯⨯=-⨯⨯=-⨯= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 小红的解法:()100100100101101110110010111333333333--⎛⎫⎛⎫-⨯=⨯=⨯=⨯= ⎪ ⎪⎝⎭⎝⎭.请你借鉴小明和小红的解题思路,解决下列问题:(1)若4310a b -+=,求2213927a b +⨯÷的值;(2)已知x 满足24222296x x ++-=,求x 的值.18.(1)填空()10222-=()21222-= ()32222-=(2)探索(1)中式子的规律,试写出第n 个等式,并说明理由.(3)计算234991*********+++++⋯++;19.计算(1)23a a ⋅(2)()322y y ⋅ (3)3236415x y x y ⎛⎫-- ⎪⎝⎭(4)852()()()x y y x y x -÷-⋅-.20.(1)()()13011273π-⎛⎫-+-+-- ⎪⎝⎭ (2)()22436310a a a a ⋅+--21.(1)若34213927m m +-⋅÷的值为81,试求m 的值;(2)已知4434,381m m n -==,求2008n 的值.22.观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;① 22x ,33x -,45x ,59x -,617x ,733x -,⋯;①根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第①行的第9个单项式为_______;第①行的第10个单项式为_______;(3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.23.(1)若2x a =,3y a =,求x y a -的值; (2)计算2310012222++++⋅⋅⋅+的值.24.阅读材料,求1+2-1+2-2+…+2-2 016的值.解:设S=1+2-1+2-2+…+2-2016,①则2S=2+1+2-1+…+2-2 015,①①-①得S=2-2-2 016.请你仿此计算:(1)1+3-1+3-2+…+3-2 016;(2)1+3-1+3-2+…+3-n(n为正整数).25.x n+1·x n-1÷(x n) 2 (x≠0)参考答案:1.B【解析】【分析】根据运算法则逐一计算判断即可【详解】①347⋅=,a a a①A式计算错误;①()326=,a a①B式计算正确;①()22=,24a a①C式计算错误;①44a a÷=,22①D式计算错误;故选B【点睛】本题考查了同底数幂的乘法,幂的乘方,积的乘方,单项式除以单项式,熟练掌握公式和运算的法则是解题的关键.2.C【解析】【分析】根据运算法则逐一计算判断即可【详解】①325⋅=,a a a①A式计算正确,不符合题意;①222+=,a a a2①B式计算正确,不符合题意;①()326a a-=-,①C式计算错误,符合题意;①826a a a ÷=,①D 式计算正确,不符合题意;故选C【点睛】本题考查了整式的加减,幂的乘方,同底数幂的除法,熟练掌握运算的法则和化简的方法是解题的关键.3.C【解析】【分析】根据合并同类项的法则判断A ;根据积的乘方法则判断B ;根据同底数幂的除法法则判断C ;根据完全平方公式判断D .【详解】A 、3332a a a +=,计算错误,故本选项不符合题意;B 、()2326xy x y =,计算错误,故本选项不符合题意; C 、624a a a ÷=,计算正确,故本选项符合题意;D 、22(31)961m m m +=++,计算错误,故本选项不符合题意; 故选:C .【点睛】本题考查了合并同类项,积的乘方,同底数幂的除法,完全平方公式,掌握公式与法则是解题的关键.4.B【解析】【分析】先将选项中的式子进行化简算出正确的结果,然后进行对照即可解答本题.【详解】解:A .33522a a a a +⋅==,故不符合题意;B .()23236a a a ⨯==,符合题意; C .12210122=a a a a -=÷ ,故不符合题意;D . 7a 与a -无法合并,故不符合题意;故选:B【点睛】本题考查幂的乘方与积的乘方、合并同类项、同底数幂的乘除法,解题的关键是明确它们各自的计算方法.5.D【解析】【分析】分别根据同底数幂的除法,合并同类项,幂的乘方,同底数幂的乘法法则逐项判断即可.【详解】A 、32a a a ÷=,原计算错误,不符合题意;B 、a 和2a 不是同类项,不能合并,不符合题意;C 、()236a a =,原计算错误,不符合题意; D 、426a a a ⋅=,正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的除法,幂的乘方,同底数幂的乘法,解题的关键是掌握运算法则.6.B【解析】【分析】按照幂的运算法则计算判断即可.【详解】①()212=a a , ①选项A 错误;①221a a -=, ①选项B 正确;①6642-2=a a a a ÷=,①选项C 错误;①()2224ab a b =,①选项D 错误;故选B .【点睛】本题考查了同底数幂的乘方,同底数幂的除法,积的乘方,负整数指数幂的运算,熟练掌握各类运算的法则是解题的关键.7.4xy -【解析】【分析】利用同底数除法的法则计算即可【详解】解:423287x y x y -÷=-4x 4-3y 2-1=-4xy故答案为:-4xy【点睛】本题考查同底数除法法则,正确使用法则是关键 8.-3【解析】【分析】现将8化成32,在利用零指数,得出m ,n 的值计算即可【详解】解:①28m =,38=2①322m =①m =3①031=①n =0①n -m =0-3=-3故答案为:-3【点睛】本题考查乘方的含义,零指数.灵活应用概念是关键.9.934- 【解析】【分析】先算负指数、绝对值,再进行计算即可.【详解】解:2﹣2+|3﹣2|=1234+- =934-; 故答案为:934-. 【点睛】本题考查了实数的混合运算,解题关键是熟练运用相关法则计算负指数和绝对值. 10.2.【解析】【分析】 先计算有理数的乘方、负整数指数幂、零指数幂,再计算有理数的加法即可得.【详解】解:原式141=-+-,2=故答案为:2.【点睛】本题考查了有理数的乘方、负整数指数幂、零指数幂,熟记各运算法则是解题关键. 11.452. 【解析】【分析】逆用同底数幂乘法法则以及逆用幂的乘方的运算法则即可求得答案.【详解】解:①23x =,25y =,①212x y +-=()2222x y ⨯÷=32×5÷2=452故答案为:452. 【点睛】本题考查了同底数幂的除法,幂的乘方,掌握运算法则是解题关键.12.9【解析】【分析】根据幂的运算的逆运算,把所求式子变成幂的运算即可.【详解】6m a =,4n a =,222()643649m n m n a a a -∴=÷=÷=÷=.故答案为:9.【点睛】 本题考查了幂的运算的逆运算,解题关键是灵活运用幂的运算的逆运算,把所求式子转换成幂的运算.13.0【解析】【分析】根据实数的运算法则计算.【详解】解:原式1221=+--0=.【点睛】本题考查实数的混合运算,熟练掌握负整数指数幂和零指数幂运算、绝对值运算和负数的偶次幂运算是解题关键.14.(1)2;(2)8;(3)52. 【解析】【分析】(1)先逆用同底数幂的乘法公式、同底数幂的除法公式和幂的乘方公式,将22m n -转化为()222m n ÷的形式,再代入8,2322m n ==进行计算即可;(2)先求出233x y +=,再利用幂的乘方公式和同底数幂的乘法公式将48x y ⋅转化为232x y +的形式,最后代入数值运算即可;(3)先逆用积的乘方公式将2225x x ++⋅转化为210x +,然后得到关于x 的一元一次方程后求解即可.【详解】解:(1)①8,2322m n ==,①()22222283264322m n m n -=÷=÷=÷=;①22m n -的值为2.(2)①2330x y +-=,①233x y +=,①232334822228x y x y x y +⋅=⋅===;①48x y ⋅的值为8.(3)①2222510x x x +++⋅=,①2331010x x +-=,①233x x +=-,①52x =, ①x 的值为52. 【点睛】本题综合考察了同底数幂的乘法公式以及逆用、同底数幂的除法公式的逆用、幂的乘方公式及其逆用、积的乘方公式及其逆用等知识,要求学生能理解并熟记公式,能灵活运用公式对代数式进行变形等,考察了学生对基础知识的理解与公式的掌握,本题蕴含了整体代入的思想方法.15.(1)9;(2)108;(3)c =2a +3b【解析】【分析】(1)根据幂的乘方直接解答即可;(2)根据同底数幂的乘除法进行解答即可;(3)根据幂的乘方法则以及同底数幂的乘法法则,即可得到结论.【详解】解:(1)①5a=3,①25a=(5a)2=32=9;(2)①5a=3,5b=2,5c=72,①5a b c-+=5a×5c÷5b=.3×72÷2=108;(3)①72=32×23=(5a)2×(5b)3=2+35a b,572c=①2+35a b=5c,①c=2a+3b;故答案为:c=2a+3b.【点睛】本题主要考查同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.16.(1)-2;(2)103x【解析】【分析】(1)原式根据绝对值的代数意义,零指数幂的运算法则以及负整数指数幂的运算法则化简各项,然后再进行加减运算即可;(2)原式根据积的乘方运算法则,单项式乘以单项式、单项式除以单项式运算法则化简各项后再合并即可得到答案.【详解】解:(1)11 |2|(2)3π-⎛⎫---+-⎪⎝⎭=2-1-3 =-2;(2)()()254822()x x x x +-⋅÷- =481024x x x x -⋅÷=101224x x x -÷=10104x x -=103x【点睛】此题主要考查了整式的运算,熟练掌握运算法则是解答此题的关键.17.(1)27;(2)32x =. 【解析】【分析】(1)根据同底数幂的乘法和除法化简2213927a b +⨯÷,然后再计算即可;(2)将24222296x x ++-=化成2222222926x x ++-=⨯,然后得到22232x +=,然后再化成指数相同计算即可.【详解】解:(1)2213927a b +⨯÷()()21223333a b +=⨯÷2423333a b +=⨯÷4433a b +-=4343a b -+=①4310a b -+=①431a b -=-①原式1433327-+===;(2)①24222296x x ++-=①2222222926x x ++-=⨯①()22222196x +-=⨯①229326x +⨯=①22232x +=①22522x +=①225x +=①32x =. 【点睛】本题考查了同底数幂的运算,熟悉相关性质是解题的关键.18.(1)0, 1,2;(2)2n -2n -1=2n -1,理由见解析;(3)2101-1.【解析】【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得2n -2n -1=2n -1,然后利用提2n -1可以证明这个等式成立; (3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式,相减即可.【详解】解:(1)21-20=2-1=20,22-21=4-2=21,23-22=8-4=22;故答案为: 0, 1,2;(2)第n 个等式为:2n -2n -1=2n -1,①左边=2n -2n -1=2n -1(2-1)=2n -1,右边=2n -1,①左边=右边,①2n -2n -1=2n -1;(3)设a =20+21+22+23+…+299+2100.①则2a =21+22+23+…+299+2100+2101①由①-①得:a =2101-1①20+21+22+23+…+298+2100=2101-1.【点睛】此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:2n -2n -1=2n -1成立.19.(1)5a ;(2)8y ;(3)64691125x y x y --;(4)5()y x - 【解析】【分析】(1)直接利用同底数幂的乘法计算即可;(2)先计算幂的乘方,再计算同底数幂的乘法;(3)直接利用积的乘方计算即可;(4)先利用乘方的符号法则将底数化为相同,再利用同底数幂的乘、除法计算即可.【详解】解:(1)原式=235a a +=;(2)原式=62y y ⋅=8y ;(3)原式=64691125x y x y --; (4)原式=852()()()y x y x y x -÷-⋅-=852()y x -+-=5()y x -.【点睛】本题考查幂的相关运算.主要考查同底数幂的乘、除法,幂的乘方和积的乘方.(4)中注意底数互为相反数时可先将底数化为相同在利用同底数幂的乘、除法计算.20.(1)9-;(2)0.【解析】【分析】(1)分别化简绝对值,计算乘方、零指数幂和负整数指数幂,再相加减即可; (2)分别计算同底数幂的乘法、积的乘方,再合并同类项即可.【详解】解:(1)原式=1(8)13+-+-=9-;(2)原式=666910a a a +-=0.【点睛】本题考查同底数幂的乘法、积的乘方、零指数幂和负整数指数幂等.熟练掌握相关运算法则,并能熟练运用是解题关键.21.(1)m =52;(2)2008. 【解析】【分析】(1)由33•9m +4÷272m -1的值为81,易得3+2(m +4)-3(2m -1)=4,继而求得答案;(2)由4434,381m m n -==易得34n =81=34,继而求得n =1,则可求得2008n 的值. 【详解】解:(1)①33•9m +4÷272m -1=33•32(m +4)÷33(2m -1)=33+2(m +4)-3(2m -1)=81=34,①3+2(m +4)-3(2m -1)=4,解得:m =52; (2)①3m =4,①44443334381m n m n n -=÷=÷=, ①34n =81=34,①4n =4,解得:n =1,①2008n =2008.【点睛】此题考查了同底数幂的乘法运算、幂的乘方以及同底数幂的除法.此题难度适中,注意掌握指数的变化是解此题的关键.22.(1)8128x ;(2)9512x -,11513x -;(3)12.【解析】【分析】(1)观察第①行的前四个单项式,归纳类推出一般规律即可得;(2)分别观察第①行和第①行的前四个单项式,归纳类推出一般规律即可得;(3)先计算整式的加减进行化简,再将x 的值代入即可得.【详解】(1)第①行的第1个单项式为112x x -=,第①行的第2个单项式为221222x x -=,第①行的第3个单项式为313342x x -=,第①行的第4个单项式为414482x x -=,归纳类推得:第①行的第n 个单项式为12n n x -,其中n 为正整数,则第①行的第8个单项式为81882128x x -=,故答案为:8128x ;(2)第①行的第1个单项式为()122x x -=-,第①行的第2个单项式为()22242x x =-,第①行的第3个单项式为()33382x x --=,第①行的第4个单项式为()444162x x -=,归纳类推得:第①行的第n 个单项式为()2n n x -,其中n 为正整数,则第①行的第9个单项式为()9992512x x -=-,第①行的第1个单项式为()()11211112211x x -+-+=-,第①行的第2个单项式为()()21132213211x x +---+=-, 第①行的第3个单项式为()()11433135211x x -+-+=-, 第①行的第4个单项式为()()41154419211x x +---+=-,归纳类推得:第①行的第n 个单项式为()()111211n n n x --++-,其中n 为正整数, 则第①行的第10个单项式为()()10101101111121513x x --+-=-+, 故答案为:9512x -,11513x -; (3)由题意得:()89998102221A x x x =-++,当12x =时,()99108981112221222A ⎛⎫⎛⎫⎛⎫=⨯-⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎝⎭⨯⎭, 101111242=-++, 101142=-+, 则910111151224424A ⎛⎫⎛⎫+=⨯-++ ⎪ ⎪⎝⎭⎝⎭, 910122=⨯,12=. 【点睛】本题考查了单项式的规律型问题、整式的化简求值,正确归纳类推出一般规律是解题关键.23.(1)23;(2)10121-.【解析】【分析】(1)逆用同底数幂的除法的运算法则解答即可;(2)设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+, 把这两个式子相减即可求解.【详解】(1)①2x a =,3y a =,①23x y x y a a a -=÷=; (2) 设S=2310012222++++⋅⋅⋅+,则2S=231012222+++⋅⋅⋅+,①S=2S-S=10121-.【点睛】本题考查了同底数幂的除法及同底数幂的乘法的应用,熟练运用法则是解决问题的关键. 24.(1)-2?0163-3 2(2) -3-32n 【解析】【详解】试题分析:(1)类比题目中的解题方法计算即可;(2)类比题目中的解题方法计算即可. 试题解析:(1)设M=1+3-1+3-2+…+3-2 016,①则3M=3+1+3-1+…+3-2 015,①①-①得2M=3-3-2 016,即M=-20163-32. (2)设N=1+3-1+3-2+…+3-n ,①则3N=3+1+3-1+…+3-n+1,①①-①得2N=3-3-n,即N=-3-32n.点睛:本题是一道阅读理解题,根据题目中所给的运算顺序或解题方法解决所给的问题,是处理这类问题的基本思路.25.1【解析】【详解】试题分析:根据幂的混合运算,先算同底数幂相除及幂的乘方,再算同底数相乘即可.试题解析:x n+1·x n-1÷(x n) 2 =x(n+1)+(n-1)-2n=x0=1。

幂的逆用专题训练(解析版)

幂的逆用专题训练(解析版)

专题14 幂的逆用专题训练【知识点睛】❖ 幂的运算法则逆运用:()()()()()()n m n m n n n n m n m n m n m a a a ab b a a a a a a ÷====-+432·1·;;;【类题训练】1.已知m 、n 均为正整数,且2m +3n =5,则4m •8n =( )A .16B .25C .32D .64【分析】根据幂的乘方以及同底数幂的乘法法则解答即可.【解答】解:∵m 、n 均为正整数,且2m +3n =5,∴4m •8n =22m •23n =22m +3n =25=32.故选:C .2.计算()2021×()2022×(﹣1)2023的结果是( )A .B .C .D .【分析】先根据积的乘方的逆运算进行计算,再根据有理数的乘方进行计算,最后根据有理数的乘法求出答案即可.【解答】解:()2021×()2022×(﹣1)2023=(×)2021××(﹣1)=12021××(﹣1)=﹣1××1=﹣,故选:D .3.计算(﹣0.125)2021×26063=( )A .1B .﹣1C .8D .﹣8【分析】根据积的乘方与幂的乘方解决此题.【解答】解:(﹣0.125)2021×26063 ====(﹣1)2021=﹣1.故选:B.4.已知a=2﹣55,b=3﹣44,c=4﹣33,d=5﹣22,则这四个数从小到大排列顺序是()A.a<b<c<d B.d<a<c<b C.a<d<c<b D.b<c<a<d 【分析】直接利用幂的乘方运算法则以及负指数幂的性质、分数的性质统一各数指数,进而比较即可.【解答】解:∵a=2﹣55=(2﹣5)11=,b=3﹣44=(3﹣4)11=,c=4﹣33=(4﹣3)11=,d=5﹣22=(5﹣2)11=∴b<c<a<d.故选:D.5.已知x m=a,x n=b,m,n均为正整数,则x2m+n的值为()A.2ab B.2a+b C.a2b D.a2+b【分析】逆向运用同底数幂的乘法法则以及利用幂的乘方运算法则解答即可.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.【解答】解:∵x m=a,x n=b,m,n均为正整数,∴x2m+n=x2m•x n=(x m)2•x n=a2b.故选:C.6.已知32m=5,32n=10,则9m﹣n+1的值是()A.B.C.﹣2D.4【分析】由于已知的底数是3,而要求的代数式的底数是9,所以把要求代数式的底数变为3,利用积的乘方法则、逆用同底数幂的乘除法法则,变形结果后代入求值.【解答】解:原式=[(3)2]m﹣n+1=32m﹣2n+2=32m÷32n×32∵32m=5,32n=10,∴原式=5÷10×9=.故选:A.7.若x=2m+1,y=4m﹣3,则下列x,y关系式成立的是()A.y=(x﹣1)2﹣4B.y=x2﹣4C.y=2(x﹣1)﹣3D.y=(x﹣1)2﹣3【分析】根据幂的乘方法则可得y=4m﹣3=22m﹣3,由x=2m+1可得2m=x﹣1,再根据幂的乘方计算即可.【解答】解:∵x=2m+1,∴2m=x﹣1,∴y==4m﹣3=22m﹣3=(x﹣1)2﹣3,故选:D.8.已知a,b,c为自然数,且满足2a×3b×4c=192,则a+b+c的取值不可能是()A.5B.6C.7D.8【分析】将原方程化为2a+2c•3b=26•3,得到a+2c=6,b=1,再根据a,b,c为自然数,求出a,c的值,进而求出答案.【解答】解:根据题意得:2a+2c•3b=26•3,∴a+2c=6,b=1,∵a,b,c为自然数,∴当c=0时,a=6;当c=1时,a=4;当c=2时,a=2;当c=3时,a=0,∴a+b+c不可能为8.故选:D.9.若a m=5,a n=2,则a3m+2n=.【分析】根据同底数幂的乘法法则以及幂的乘方运算法则计算即可.【解答】解:因为a m=5,a n=2,所以a3m+2n=a3m•a2n=(a m)3•(a n)2=53×22=125×4=500.故答案为:500.3.计算82021×(0.125)2022=【分析】利用积的乘方的法则进行求解即可.【解答】解:82021×(0.125)2022=82021×(0.125)2021×0.125=(8×0.125)2021×0.125=12021×0.125=1×0.125=0.125.故答案为:0.125.10.已知x2n=2,则(x3n)2﹣(x2)2n的值为.【分析】利用幂的乘方变形,把x2n=2看作一个整体,代入求的数值即可.【解答】解:∵x2n=2,∴(x3n)2﹣(x2)2n=(x2n)3﹣(x2n)2=8﹣4=4.故答案为:4.11.27×9×3=3x,则x=.【分析】利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而要可求解.【解答】解:∵27×9×3=3x,∴33×32×3=3x,则33+2+1=3x,36=3x,∴x=6.故答案为:6.12.如果等式(2a﹣1)a+2=1成立,则a的值为.【分析】根据零指数幂:a0=1(a≠0)可得a+2=0,且2a﹣1≠0,1的任何次方都是1可得2a﹣1=1,再解即可.【解答】解:由题意得:①2a﹣1=1,解得:a=1,②a+2=0,且2a﹣1≠0,解得:a=﹣2,③当a=0时,原式=1.故答案为:0或1或﹣2.13.计算:(1)﹣12021﹣0.5﹣1﹣(﹣)﹣2+(π+2)0;(2)(﹣)2017×(2)2018.(3)0.44×0.24×12.54﹣.【分析】(1)根据有理数的乘方的定义,负整数指数幂的定义以及零指数幂的定义计算即可;(2)积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此计算即可.(3)逆用积的乘方的运算法则对式子进行运算,再用负整数指数幂的运算法则运算,最后进行减法运算即可.【解答】解:(1)原式=﹣1﹣2﹣9+1=﹣11;(2)原式=====.(3)=(0.4×0.2×12.5)4﹣(﹣2﹣1)﹣3=14﹣(﹣23)=1+8=9.14.计算:(1)(0.5×3)199×(﹣2×)200(2)0.259×220×259×643.(3)(×××…××1)10•(10×9×8×…×3×2×1)10【分析】(1)根据积的乘方的运算法则求解;(2)根据幂的乘方和积的乘方运算法则求解.(3)根据幂的乘方与积的乘方的运算法则计算可得【解答】解:(1)原式=(0.5×3)199×(﹣2×)199×(﹣2×)=(0.5×﹣2)199×(3×)199×(﹣2×)=;(2)原式=0.518×220×518×218=0.518×218×518×218×22=(0.5×2×5×2)18×4=4×1018.(3)原式=(×××…××1×10×9×8×…×3×2×1)10=110=1.15.(1)已知a m=3,a n=4,求a2m+3n的值:(2)已知9n+1﹣32n=72,求n的值.【分析】(1)利用幂的乘方与积的乘方,同底数幂的乘法求解即可;(2)利用幂的乘方与积的乘方,同底数幂的乘法求解即可.【解答】解:(1)a2m+3n=(a m)2•(a n)3=32×43=576.(2)∵9n+1﹣32n=72,∴9n×9﹣9n=72,8×9n=72,∴n=1.16.已知3m=4,3n=5,分别求3m+n与32m﹣n的值.【分析】利用同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对所求的式子进行整理,再代入运算即可.【解答】解:当3m=4,3n=5时,3m+n=3m×3n=4×5=20;32m﹣n=32m÷3n=(3m)2÷3n=42÷5=16÷5=.17.5.(1)已知a+3b=4,求3a×27b的值;(2)已知n是正整数,且x3n=2,求(3x3n)2+(﹣2x2n)3的值.【分析】(1)利用幂的乘方与积的乘方和同底数幂的乘法法则,利用整体代入的方法解答即可;(2)利用幂的乘方与积的乘方法则与合并同类项的法则,用整体代入的方法解答即可.【解答】解:(1)原式=3a×(33)b=3a×33b=34=81.(2)原式=9x6n﹣8x6n=x6n=(x3n)2=22=4.18.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.【分析】(1)根据同底数幂的乘法法则及幂的乘方法则将原式化简为(x2n)2,再把x2n =4代入进行计算即可;(2)根据同底数幂的乘法法则及幂的乘方法则将原式化简为9(x2n)3﹣13(x2n)2,再把x2n=4代入进行计算即可.【解答】解:(1)∵x2n=4,∴x n﹣3•x3(n+1)=x n﹣3•x3n+3=x4n=(x2n)2=42=16;(2)∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368.19.阅读,学习和解题.(1)阅读和学习下面的材料:比较355,444,533的大小.分析:小刚同学发现55,44,33都是11的倍数,于是把这三个数都转化为指数为11的幂,然后通过比较底数的方法,比较了这三个数的大小.解法如下:解:∵355=(35)11=24311,444=(44)11=25611,533=(53)11=12511,∴533<355<444.学习以上解题思路和方法,然后完成下题:比较34040,43030,52020的大小.(2)阅读和学习下面的材料:已知a m=3,a n=5,求a3m+2n的值.分析:小刚同学发现,这些已知的和所求的幂的底数都相同,于是逆用同底数幂和幂的乘方公式,完成题目的解答.解法如下:解:∵a3m=(a m)3=33=27,a2n=(a n)2=52=25,∴a3m+2n=a3m•a2n=27×25=675.学习以上解题思路和方法,然后完成下题:已知a m=2,a n=3,求a2m+3n的值.(3)计算:(﹣16)505×(﹣0.5)2021.【分析】(1)运用类比的方法把4040化为4×1010,3030化为3×1010,2020化为2×1010,并运用幂的乘方的逆运算可得结论;(2)根据幂的乘方法则、同底数幂的乘法法则把原式变形,把已知数据代入计算即可;(3)根据幂的乘方和有理数的乘方可得结论.【解答】解:(1)∵34040=(34)1010=811010,43030=(43)1010=641010,52020=(52)1010=251010,且81>64>25,∴34040>43030>52020;(2)∵a m=2,a n=3,∴a2m+3n=(a m)2•(a n)3=22×33=4×27=108;(3)(﹣16)505×(﹣0.5)2021=﹣24×505×(﹣0.5)2021=﹣22020×(﹣0.5)2021=(2×0.5)2020×=.20.阅读:已知正整数a、b、c,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂a b和c b,当a>c时,则有a b>c b,根据上述材料,回答下列问题.(1)比较大小:520420(填写>、<或=).(2)比较233与322的大小(写出比较的具体过程).(3)计算42021×0.252020﹣82021×0.1252020.【分析】(1)根据同指数的幂底数越大幂越大,可得答案.(2)根据幂的乘方,可得指数相同的幂,根据底数越大幂越大,可得答案;(3)逆向运用积的乘方运算法则解答即可.【解答】解:(1)∵5>4,∴520>420,故答案为:>;(2)∵233=(23)11=811,322=(32)11=911,又∵811<911,∴233<322;(3)42021×0.252020﹣82021×0.1252020==4×12020﹣8×12020=4﹣8=﹣4.21.若a m=a n(a>0,a≠1,m、n都是正整数),则m=n,利用上面结论解决下面的问题:(1)如果2x•23=32,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)若x=5m﹣2,y=3﹣25m,用含x的代数式表示y.【分析】根据幂的乘方与积的乘方进行计算即可.【解答】解:(1)∵2x•23=32,∴2x+3=25,∴x+3=5,∴x=2;(2)∵2÷8x•16x=25,∴2÷23x•24x=25,∴21﹣3x+4x=25,∴1+x=5,∴x=4;(3)∵x=5m﹣2,∴5m=x+2,∵y=3﹣25m,∴y=3﹣(5m)2,∴y=3﹣(x+2)2=﹣x2﹣4x﹣1.22.规定两数a,b之间的种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=;(5,1)=;(2,)=;(2)小明在研究这种运算时发现一个特例:对任意的正整数n,(3n,4n)=(3,4).小明给了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4)请根据以上规律:计算:(16,10000)﹣(64,1000000).(3)证明下面这个等式:(3,20)﹣(3,4)=(3,5).【分析】(1)根据题目中的规定,进行运算即可得出结果;(2)(16,10000)可转化为(24,104),(64,1000000)可转化为(26,106),从而可求解;(3)设(3,20)=x,(3,4)=y,则3x=20,3y=4,从而可得3x÷3y=5,得3x﹣y =5,即有(3,5)=x﹣y,从而得证.【解答】解:(1)∵53=125,∴(5,125)=3;∵50=1,∴(5,1)=0;∵,∴(2,)=﹣2.故答案为:3,0,﹣2;(2)(16,10000)﹣(64,1000000)=(24,104)﹣(26,106)=(2,10)﹣(2,10)=0;(3)证明:设(3,20)=x,(3,4)=y,则3x=20,3y=4,∴3x÷3y,=20÷4,=5,∴3x﹣y=5,∴(3,5)=x﹣y,又∵(3,20)﹣(3,4)=x﹣y,∴(3,20)﹣(3,4)=(3,5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档