真空镀膜与光学镀膜对比
光学镀膜工艺指导
光学镀膜工艺指导一、背景介绍光学镀膜工艺是一种重要的光学加工技术,可以在光学元件表面形成一层薄膜,用于改变光学器件的透射、反射、吸收等性能。
本文旨在提供光学镀膜工艺的指导,确保制备高质量的光学薄膜。
二、工艺流程光学镀膜工艺主要包括以下几个步骤:基片清洗、基片预处理、镀膜材料选择、膜层设计和计算、真空镀膜、后处理等。
1. 基片清洗基片清洗是镀膜工艺的首要步骤,它的目的是去除基片表面的污染物和气体,使得基片表面干净。
通常使用有机溶剂或无机酸碱溶液进行清洗,清洗后需要进行漂洗和烘干。
2. 基片预处理基片预处理是为了提高基片表面的附着性,常见的预处理方法有机械划伤、化学刻蚀等。
通过预处理,可以增加镀膜层与基片表面的结合力,提高镀膜层的附着性和耐磨性。
3. 镀膜材料选择镀膜材料的选择直接影响到膜层的光学性能。
根据不同的需求,可以选择金属、半导体、氧化物等材料进行镀膜。
在选择材料时,需要考虑其光学特性、机械性能、耐化学性能等因素。
4. 膜层设计和计算膜层设计是光学镀膜的关键步骤,通过对薄膜层厚度和折射率的设计和计算,可以实现所需的光学性能。
常用的方法有光学膜设计软件、等离子体监测仪等。
5. 真空镀膜真空镀膜是将镀膜材料蒸发或溅射到基片表面,形成一层薄膜的过程。
真空环境可以排除气体和灰尘对膜层质量的影响,确保膜层的均匀性和致密性。
镀膜方法包括电子束蒸发、磁控溅射等。
6. 后处理后处理是为了提高膜层的光学性能和机械性能,常见的后处理方法有退火处理、氧化处理等。
通过后处理可以降低膜层的内应力,提高膜层的抗氧化性和耐磨性。
三、工艺注意事项在进行光学镀膜工艺时,需要注意以下几个方面:1. 温度控制镀膜过程中应控制好温度,过高的温度会导致基片热变形、膜层结构破坏等问题,过低的温度则会影响薄膜的致密性。
因此,需要根据具体材料和工艺要求,控制适宜的温度范围。
2. 气压控制在真空镀膜中,气压是一个重要的参数。
过高的气压会导致气体对膜层的污染,过低的气压则会影响镀膜速率和膜层致密性。
真空蒸镀铝及保护膜的表面形貌和光学性能研究_令晓明 (1)
收稿日期:2011-04-13.基金项目:国家高新技术研究发展计划(2006A A 050203)资助;常州市创新基金(C N 20090025)资助。
作者简介:令晓明(1975-),男,甘肃省武山县人,博士研究生,从事真空薄膜技术与计算机控制研究。
真空蒸镀铝及保护膜的表面形貌和光学性能研究令晓明1,杨 帆2,成佰新2,范多旺1(1.兰州交通大学,国家绿色镀膜技术与装备工程技术研究中心,甘肃兰州730000;2.东南大学能源与环境学院,太阳能技术研究中心,江苏南京210096)摘 要:采用工业化生产流水线的真空蒸发镀膜工艺制备一系列太阳能利用铝反射镜,研究了基底材料对铝反射镜反射率的影响,利用理论分析结合试验,探讨了基底材料表面面型及微观粗糙度对真空蒸镀铝膜反射的影响。
光学反射率测量显示不同基底材料的平面铝反射镜的反射率存在较大的差异,其中在A B S 工程塑料上制备的铝反射膜的光学均匀性较理想,研究成果为实现低成本轻型铝太阳能反射镜的大规模生产提供了借鉴。
关键词:太阳能;铝反射镜;真空蒸镀;微观粗糙度中图分类号:O 484 文献标识码:A 文章编号:1006-7086(2011)02-0091-05D O I :10.3969/j .i s s n .1006-7086.2011.02.006T H ES T R U C T U R EA N DO P T I C A LP R O P E R T I E S O FA l A N DP R O T E C T I O NF I L MSB Y V A C U U M E V A P O R A T I O NL I N G X i a o -m i n g 1,Y A N G F a n 2,C H E N G B a i -x i n 2,F A N D u o -w a n g1(1.N a t i o n a l E n g i n e e r i n g R e s e a r c hC e n t e r f o r T e c h n o l o g ya n dE q u i p m e n t o f G r e e nC o a t i n g ,L a n z h o uJ i a o t o n g U n i v e r s i t y ,L a n z h o u 730070,C h i n a ;2.S o l a r E n e r g yR e s e a r c hC e n t e r ,S o u t h e a s t U n i v e r s i t y ,N a n j i n g 210096,C h i n a )A b s t r a c t :A l a n dt h ep r o t e c t i o nf i l m o nd i f f e r e n t s u b s t r a t em a t e r i a l sw e r ep r e p a r e db yi n d u s t r i a l v a c u u m e v a p o r a t i o nm a -c h i n e .T h e e f f e c t o f s u b s t r a t e m a t e r i a l s s u r f a c e r o u g h n e s s o n t h e o p t i c a l p r o p e r t i e s o f t h e A l f i l m s w e r e d e t a i l s t u d i e d .T h e r e -s u l t s s h o w n t h a t t h e r e f l e c t i v i t y o f A l f i l m s w e r e m u c h d i f f e r e n t o nd i f f e r e n t s u b s t r a t e m a t e r i a l s ,t h e r e f l e c t i v i t y a n d o p t i c a l u -n i f o r m o f A l f i l m s o n AB S e n g i n e e r i n g p l a s t i c i s p e r f e c t .T h e r e s e a r c hr e s u l t s w i l l h e l p t o f a b r i c a t e l o wc o s t a n d l a r g e s c a l e A l r e f l e c t o r .K e yw o r d s :s o l a r e n e r g y ;A l r e f l e c t o r ;v a c u u m e v a p o r a t i o n ;r o u g h n e s s1 引 言进入21世纪以来,在有限资源和环保要求的双重制约下发展经济已成为全球的热点问题。
简述真空蒸发镀膜技术的特点及分类
简述真空蒸发镀膜技术的特点及分类真空蒸发镀膜技术是一种常用的表面处理技术,通过在真空环境下加热材料,使其蒸发并沉积在基材表面形成薄膜的过程。
该技术具有许多特点,并可以根据不同的应用需求进行分类。
真空蒸发镀膜技术的特点如下:1. 高纯度:在真空环境下进行材料蒸发,可以避免杂质的污染,制备出高纯度的薄膜。
2. 薄膜均匀性好:通过调节蒸发源的位置和角度,可以在基材表面均匀沉积薄膜,使得薄膜的厚度均匀一致。
3. 膜层致密性好:由于真空环境下的蒸发可以减少气体的存在,使得薄膜的密度较高,致密性好,可以提高薄膜的物理性能。
4. 可控性强:通过调节蒸发源的温度和蒸发速率,可以控制薄膜的成分和厚度,实现对薄膜性能的调控。
5. 适用性广泛:真空蒸发镀膜技术可以用于各种基材的表面处理,包括金属、陶瓷、玻璃等材料。
根据不同的应用需求,真空蒸发镀膜技术可以分为以下几类:1. 光学薄膜:光学薄膜是真空蒸发镀膜技术中应用最广泛的一类。
通过控制薄膜的厚度和折射率,可以制备出具有特定光学性能的薄膜,如反射膜、透明导电膜等。
2. 保护膜:真空蒸发镀膜技术可以制备出具有优良耐腐蚀性能的薄膜,用于保护基材表面不受外界环境的侵蚀。
例如,在金属表面镀覆一层铬膜,可以提高金属的耐腐蚀性能。
3. 功能膜:真空蒸发镀膜技术可以制备出具有特定功能的薄膜,如硬质涂层、磁性薄膜、防反射膜等。
这些功能膜可以赋予基材特殊的性能,扩展其应用领域。
4. 生物医学膜:真空蒸发镀膜技术可以制备出生物相容性好、具有生物医学功能的薄膜,如生物陶瓷涂层、生物可降解薄膜等。
这些薄膜可以用于医疗器械、组织工程等领域。
真空蒸发镀膜技术具有高纯度、薄膜均匀性好、膜层致密性好、可控性强和适用性广泛等特点。
根据不同的应用需求,可以将其分类为光学薄膜、保护膜、功能膜和生物医学膜等。
随着科学技术的不断发展,真空蒸发镀膜技术在材料科学、光学工程、生物医学等领域的应用前景将更加广阔。
光学镀膜膜层硬度
光学镀膜膜层硬度
光学镀膜膜层硬度是指光学器件表面经过镀膜处理后所形成的膜层的硬度。
光
学器件在镀膜后能够提高其光学性能和耐磨性,同时保护器件的表面不受外界环境的影响。
膜层硬度是评价光学薄膜质量的一个重要指标,它直接影响到光学器件的使用
寿命和稳定性。
一般来说,膜层硬度越高,耐磨性越好,器件的使用寿命也就越长。
影响光学镀膜膜层硬度的因素有很多,主要包括镀膜材料的选择、真空镀膜工
艺以及后续的热处理等。
在选择镀膜材料时,可以通过提高材料的硬度和抗氧化性来增加膜层的硬度。
真空镀膜工艺的优化也是提高膜层硬度的关键,例如合理选择工艺参数、控制镀层的厚度均匀性等。
热处理可以进一步增强膜层的结构稳定性和硬度。
此外,膜层的硬度也受到基片材料的影响。
选择高硬度的基片材料可以提高膜
层的整体硬度,从而增加器件的耐磨性。
总而言之,光学镀膜膜层硬度是一个关键的性能指标,不仅影响器件的光学性能,还决定了器件的使用寿命和稳定性。
通过合理选择材料、优化工艺以及进行适当的热处理等方法,可以有效提高光学镀膜膜层的硬度,从而提升器件的性能和可靠性。
光学镜片镀膜方法
光学镜片镀膜方法
哇塞,光学镜片镀膜,这可真是个超级有趣的领域呢!你知道吗,就好像给镜片穿上了一件神奇的外衣。
镀膜的方法那可真是五花八门。
有一种叫真空镀膜,就如同一位技艺高超的魔法师,在真空中施展魔法,让各种材料神奇地附着在镜片上。
这可不是随便就能做到的,需要极其精密的设备和高超的技术才行呀!想想看,在那真空的环境里,材料分子乖乖地排列组合,多有意思啊!
还有化学镀膜呢,就好像一场奇妙的化学反应大冒险。
各种化学物质相互作用,在镜片表面形成那薄薄的一层镀膜。
这过程就像烹饪一道美味佳肴,需要恰到好处的配料和火候呢!要是稍微有点差错,可就前功尽弃啦。
离子镀膜也不甘示弱呀,它就像是一群活力四射的离子在镜片上欢快地舞蹈。
这些离子带着满满的能量,为镜片带来独特的性能。
是不是很神奇呢?
每种镀膜方法都有它的独特之处,都能为镜片赋予不同的特性和功能。
这不就跟我们人一样嘛,每个人都有自己的个性和优点。
我们选择镀膜方法的时候,不就像在给自己挑选合适的衣服一样吗?要根据不同的需求和场景来决定呀。
而且,这些镀膜方法还在不断发展和进步呢!就像我们的生活也在一天天变得更好。
未来,说不定会有更加令人惊叹的镀膜技术出现,那时候的光学镜片又会有怎样的神奇表现呢?真的让人好期待啊!
总之,光学镜片镀膜方法真的是一个充满魅力和无限可能的领域。
我们应该好好去探索和研究,让这些方法为我们的生活带来更多的便利和惊喜。
大功率激光器件的光学镀膜要求
大功率激光器件的光学镀膜要求随着大功率激光在金属材料加工领域的日益广泛应用,二氧化碳激光器,固体激光器和光纤激光器市场得到了迅速发展。
中国作为制造大国,各种材料加工更离不开激光设备。
目前国内激光厂家在光学模块和系统组装上有明显优势,然而在高功率激光芯片和精密光学器件技术发展方面却略显滞后。
也许基础理论大家都知道,研发实验室也能做出几个样品,但是在实现批量生产的道路上却十分艰难。
实现商用需要很好的控制成本,管理不同批次产品的可靠性,唯有一点一滴的解决问题,精益求精的完善工艺,才能走向市场。
由于本公司主要专注于大功率激光级别的光学薄膜生产,因此本文从实际出发,讨论各种激光元件在光学镀膜中遇到的问题和解决思路,此处仅为一家之言,欢迎同行补充。
当然,我们也很期待中国有自己的激光芯片。
图1.激光用于金属板材切割激光系统中的光学元件主要包含光纤,准直透镜,全反镜,聚焦透镜和保护镜等,每种元件在激光开启工作过程中都要承受很大的激光能量冲击。
为了减少镜片的菲涅尔干涉,很多光学元件都需要两面镀减反膜,反射镜则需要镀全反膜。
生产高功率级别的光学薄膜是一项复杂的工作,这里非常关键的是“大功率”作为重点应用领域,光学薄膜不仅要满足透射和反射率的要求,还必须承受大功率高密度激光能量连续冲击而不至于损坏。
特别是在千瓦级的激光器系统,光学元器件的膜层激光损伤阈值变得举足轻重。
这是与光通信器件是有明显区别的,激光在光通信光纤内传输的功率一般小于0.5瓦,激光所产生的热效应可以忽略不计,然而在工业光纤内却高达5千瓦,热效应几乎成为最头疼的问题.图2.真空镀膜总的来说,激光系统中的光学元件薄膜生产需要考虑四个方面的要求,镀膜精度,激光损伤阈值,激光吸收热效应和基材清洁度。
基于这里特别的要求,大功率激光领域的光学薄膜已经不是单纯的考虑镀膜设备和工艺,而是综合膜系设计,光学损伤测试,基片清洁目检,膜料选择,膜层沉积环境控制和后期处理等多方面因素进行开发生产,很多普通的光学镀膜厂家也难以具备这个能力。
NCVM和OPVM的工艺对比
叠层
面漆
中漆 NCVM
NCVM
底漆-UV
底漆-色漆 Primer
PC基材
面漆
OPVM
注塑+喷涂底漆/色漆 /UV+OPVM+喷涂中漆+面漆 +3D镭雕+丝印+CNC +组装 (A70A)
中漆 OPVM 底漆-UV 底漆-色漆 Primer PC基材
OPVM工艺流程 上镀膜 治具
预估综合良率在50%左右
素材
Primer
色漆
UV底
OPVM镀膜
中漆
面漆
下镀膜 治具
出货全检贴保护膜
印刷
CNC开孔
光哑镭雕
效果图实物图Fra bibliotek 谢 谢TCL集团股份有限公司
@TCL创意感动生活
备注
产能
风险点
较大 使用插架,空间利用率好
较小 使用蒸镀伞,空间利用率差
两种镀膜方式针对一体式电池盖(A70A类似设计),侧面镀膜效果均不理想(侧边镭 雕)
NCVM vs OPVM
镀膜方式 工艺流程
注塑+喷涂底漆/色漆 /UV+NCVM+喷涂中漆+面漆 +3D镭雕+丝印+CNC+组装 (A70A)
NCVM vs OPVM
什么是OPVM(离子辅助镀)? 在电子束热蒸发镀膜基础上(可蒸发高熔点靶材),增设离子源产生高能离子束,在 热蒸发进行同时,用离子束轰击正在生长的膜层,使其稳定性提高,达到改善膜层的 光学/机机械性能的目的。 镀炉底部有设计旋转式多个坩埚,可以放置不同靶材,通过交替加热的方式一次可以 做到多层镀膜,满足光学性能要求。 原理图 设备照片
光学镀膜分类
一、耐磨损膜(硬膜)无论是无机材料还是有机材料制成的眼镜片,在日常的使用中,由于与灰尘或砂砾(氧化硅)的摩擦都会造成镜片磨损,在镜片表面产生划痕。
与玻璃片相比,有机材料制成的硬性度比较低,更易产生划痕。
通过显微镜,我们可以观察到镜片表面的划痕主要分为二种,一是由于砂砾产生的划痕,浅而细小,戴镜者不容易察觉;另一种是由较大砂砾产生的划痕,深且周边粗糙,处于中心区域则会影响视力。
(1)技术特征1)第一代抗磨损膜技术抗磨损膜始于20世纪70年代初,当时认为玻璃镜片不易磨制是因为其硬度高,而有机镜片则太软所以容易磨损。
因此将石英材料于真空条件下镀在有机镜片表面,形成一层非常硬的抗磨损膜,但由于其热胀系数与片基材料的不匹配,很容易脱膜和膜层脆裂,因此抗磨损效果不理想。
2)第二代抗磨损膜技术20世纪80年代以后,研究人员从理论上发现磨损产生的机理不仅仅与硬度相关,膜层材料具有“硬度/形变”的双重特性,即有些材料的硬度较高,但变形较小,而有些材料硬度较低,但变形较大。
第二代的抗磨损膜技术就是通过浸泡工艺法在有机镜片的表面镀上一种硬度高且不易脆裂的材料。
3)第三代抗磨损膜技术第三代的抗磨损膜技术是20世纪90年代以后发展起来的,主要是为了解决有机镜片镀上减反射膜层后的耐磨性问题。
由于有机镜片片基的硬度和减反射膜层的硬度有很大的差别,新的理论认为在两者之间需要有一层抗磨损膜层,使镜片在受到砂砾磨擦时能起缓冲作用,并而不容易产生划痕。
第三代抗磨损膜层材料的硬度介于减反射膜和镜片片基的硬度之间,其磨擦系数低且不易脆裂。
4)第四代抗磨损膜技术第四代的抗膜技术是采用了硅原子,例如法国依视路公司的帝镀斯(TITUS)加硬液中既含有有机基质,又含有包括硅元素的无机超微粒物,使抗磨损膜具备韧性的同时又提高了硬度。
现代的镀抗磨损膜技术最主要的是采用浸泡法,即镜片经过多道清洗后,浸入加硬液中,一定时间后,以一定的速度提起。
这一速度与加硬液的黏度有关,并对抗磨损膜层的厚度起决定作用。
af真空镀膜工艺
af真空镀膜工艺AF真空镀膜工艺是一种常用的表面处理技术,广泛应用于光学、电子、材料等领域。
本文将介绍AF真空镀膜工艺的原理、应用及其优势。
一、AF真空镀膜工艺的原理AF真空镀膜工艺是指在真空环境下,利用物理或化学的方法将一层或多层材料沉积在基板表面,形成一种具有特定功能的薄膜。
该工艺主要包括蒸发、溅射和离子镀三种方式。
1. 蒸发镀膜:将待镀材料置于加热源中,使其升华并沉积在基板表面。
这种方式适用于高熔点材料的镀膜,如金属和氧化物材料。
2. 溅射镀膜:通过物理碰撞的方式使材料从靶上脱落,并在基板表面沉积。
这种方式适用于大多数材料的镀膜,如金属、合金和化合物材料。
3. 离子镀膜:利用离子轰击的方式使材料离子化,并在基板上形成薄膜。
这种方式适用于高质量的镀膜,如光学薄膜和陶瓷薄膜。
二、AF真空镀膜工艺的应用AF真空镀膜工艺在各个领域都有广泛的应用。
1. 光学领域:AF真空镀膜工艺可以制备具有特定光学性质的薄膜,如反射镜、透镜、滤光片等。
这些光学元件广泛应用于激光器、光纤通信、太阳能电池等领域。
2. 电子领域:AF真空镀膜工艺可以制备导电薄膜、隔热薄膜和保护膜等。
这些薄膜常用于液晶显示器、太阳能电池、半导体器件等电子产品中。
3. 材料领域:AF真空镀膜工艺可以改善材料的表面性能,如硬度、耐磨性和抗腐蚀性等。
这些材料广泛应用于航空航天、汽车制造、工具制造等行业。
三、AF真空镀膜工艺的优势AF真空镀膜工艺相比传统的表面处理方法具有以下优势。
1. 高纯度:在真空环境下进行镀膜,可以避免杂质的污染,获得高纯度的薄膜。
2. 高均匀性:通过控制沉积速率和沉积时间,可以获得均匀的薄膜厚度和成分。
3. 高精度:AF真空镀膜工艺可以控制薄膜的厚度和成分,从而实现对光学、电学和磁学性能的精确调控。
4. 环保节能:AF真空镀膜工艺不需要使用有害溶剂和化学试剂,减少了对环境的污染,并且能耗较低。
5. 多功能性:AF真空镀膜工艺可以制备多层复合膜、多层堆积膜和纳米薄膜等,满足不同领域的需求。
一篇文章看懂光学膜的发展史!
⼀篇⽂章看懂光学膜的发展史!偏光⽚、扩散膜、导光板、背板膜、锂电隔膜、窗膜、⽔处理膜、胶黏膜.....这些薄膜们是被谁发明的?发明之初是怎样设计的?它们的诞⽣背后⼜有怎样的故事?今天我们就⼀起来了解⼀下最初始的功能薄膜。
偏光⽚⽬前最通⽤的偏光膜是兰特在1938年所发明的H⽚,其制法如下:⾸先把透明塑料板(通常⽤PVA)浸渍在I2/KI的⽔溶液中,使碘离⼦扩散渗⼊内层的PVA,微热后拉伸,PVA板变长的同时也变得⼜窄⼜薄。
PVA分⼦本来是任意⾓度⽆规则性分布的,受⼒拉伸后就逐渐⼀致地偏转于作⽤⼒的⽅向,附着在PVA上的碘离⼦也跟随着有⽅向性,形成了碘离⼦的长链。
因为碘离⼦有很好的起偏性,它可以吸收平⾏于其排列⽅向的光束电场分量,只让垂直⽅向的光束电场分量通过,制成具有偏光作⽤的偏光膜。
⽽实际应⽤于光电⾏业的偏光⽚产业最早萌芽于⽇本,1999年5⽉,我国台湾省第⼀家偏光⽚⼚商⼒特光电投产,标志着⽇本⼚商独占偏光⽚市场的时代结束,但⼒特的技术依然来源于⽇本⼚商的技术授权。
⽽韩国则于2000 年初开始进军TFT⽤偏光板市场,⾸家⼚商LG化学于2000年3⽉量产,年产能125万⽚。
我国偏光⽚项⽬始于1994年,该年,深纺集团公司决定上马偏光⽚项⽬,由美国ADS公司提供⽣产设备与技术并参股,成⽴了盛波公司。
但由于美⽅技术⼈员对技术掌握不够,经两年多调试未⽣产出⼀张合格产品。
1997年美⽅撤股退出合作。
此后经过盛波科研⼈员的努⼒,在1998年底公司终于成功开发出合格产品。
⽬前,⽼牌的偏光⽚⽣产⼚商如⽇东电⼯已经开始转型不再开出新的产能,LG化学和住友化学也放慢了扩张步伐。
韩国ACE和⽇本三⽴⼦因为资⾦问题,新线项⽬也处于停滞。
现在⽇系原料⼚认为最有发展前景的还是⼤陆市场及本⼟的偏光⽚⼚。
扩散膜扩散膜具有扩散光线的作⽤,即光线在其表⾯会发⽣散射,将光线柔和均匀的散播出来;多数扩散膜的基本结构是在透明基材上如PET两⾯涂光学散光颗粒。
光学镀膜工艺指导
光学镀膜设备简介
2-1-4-2镀膜机的膜厚监控仪器 被应用在镀膜机膜厚监控上的仪器有三种: 光学 监控,石英监控,时间监控 ,而我们常见的只有两种: 光学监控和石英监控。 2-1-4-2-1光学监控:直接在镀膜机内安装 一台光谱仪,直接量测监控片。当监控片某些光学 特性符合时,代表膜层厚度已经到达。镀膜机停止 镀膜,完成一层的膜层产制。当下一个膜层开始镀 制时,使用一个新的监控片。因此一台镀膜机可以 镀多少层的产品,原则上取决于监控片的容纳数量, 适用于蒸镀多层介质膜。
光学镀膜 AR coating工艺指导
熒茂科技有限公司
MILDEX Tech Inc
工程一部
工艺简介目录
1-光学镀膜原理 2-光学镀膜设备简介 3-镀膜靶材介绍 4-ARcoating 原理 5-ARcoating的设计方法
.
ห้องสมุดไป่ตู้学镀膜原理
1-1光学镀膜之真空镀膜:
1-1-1真空镀膜主要指一类需要在较高真空度下进行的镀 膜,具体包括很多种类,包括真空离子蒸发,磁控溅射,MBE 分子束外延,PLD激光溅射沉积等很多种。主要有两类分成蒸 发和溅射两种。 需要镀膜的被成为基片,镀的材料被成为靶材或药材。 基片与靶材同在真空腔中。 1-1-2蒸发镀膜一般是加热靶材使表面组分以原子团或离 子形式被蒸发出来,并且沉降在基片表面,通过成膜过程(散 点-岛状结构-迷走结构-层状生长)形成薄膜。 1-1-3对于溅射类镀膜,可以简单理解为利用电子或高能 激光轰击靶材,并使表面组分以原子团或离子形式被溅射出来, 并且最终沉积在基片表面,经历成膜过程,最终形成薄膜。
光学镀膜设备简介
2-1-2-1-1电子枪加热优点和缺点 优点:经设计旋转式坩埚机制,可以蒸镀不同靶材材料的多层膜膜层。 可适当微调电子束轰击位置, 大幅提高膜层厚度的均匀性,可蒸发 高熔点的材料。 缺点:电子枪需要大量的电能消耗,因为需要使用10000~15000 伏特的电压持续数个小时,导致电子枪蒸镀系统,所耗的能量高于其 它方法。
玻璃光学镀膜
玻璃光学镀膜1 玻璃光学镀膜的定义玻璃光学镀膜是指将不同的材料在玻璃表面反复涂覆,形成多层薄膜的技术,用于增强玻璃的光学性能。
通常使用的材料包括金属、氟化物和氧化物等。
2 玻璃光学镀膜的作用玻璃经过光学镀膜后,可以增强其表面反射和透射功效,提高光的透过率、反射率和色散性。
因此,在电子、通信、太阳能、航空、安全等领域,玻璃光学镀膜发挥着非常广泛的应用价值。
3 玻璃光学镀膜的分类根据功能不同,玻璃光学镀膜可分为各种类型。
常见的玻璃光学镀膜大致可以分为以下几种:1. 全反射玻璃:用于制作反光镜和平板反射器等光学器件。
2. 透镜玻璃:用于生产光学透镜器件,如摄影镜头、望远镜、显微镜等。
3. 滤光镀膜玻璃:用于实现特定的色彩过滤功能,以满足特殊要求的视觉效果。
4. 消光玻璃:消除反射、折射和眩光,用于生产液晶显示器、军用光学仪器等。
玻璃光学镀膜过程分为抛光处理、清洗、真空镀膜和检测四个步骤。
1. 抛光处理:首先需要通过精确的抛光工艺,使制品表面平整振光,以确保涂层的质量。
2. 清洗:将抛光后的玻璃表面清洗干净,以去除任何残留物,确保涂层粘附性和均匀性。
3. 真空镀膜:根据需要,选取不同材料进行真空镀膜。
在真空镀膜室中,将准备好的薄膜材料放置在电子束或电弧枪中,并通过高温加热将材料蒸发到玻璃表面形成多层复合涂层。
4. 检测:检测涂层表面的均匀性、透过率、反射率等参数,并根据需要进行二次涂层更正。
5 玻璃光学镀膜的应用领域玻璃光学镀膜技术被广泛应用于各种领域。
以下是玻璃光学镀膜的一些典型应用领域:1. 光学仪器领域:透镜、反光镜、平板反射器、不凝膜等。
2. 电子领域:显示器、传感器、太阳能电池、光纤通讯等。
3. 医疗领域:医疗仪器、激光仪器、显微镜、眼镜镜片等。
4. 建筑领域:特种玻璃、隔音玻璃、防紫外线玻璃等。
随着科技进步,玻璃光学镀膜的应用领域不断扩展,技术也不断创新。
未来,玻璃光学镀膜的发展趋势主要表现在以下几个方面:1. 新材料的应用:随着新材料的研究和开发,玻璃光学镀膜将更广泛地应用于各种新领域。
光学镀膜工艺指导
THANKS FOR WATCHING
感谢您的观看
使其原子或分子在基材表面沉积形成薄膜。
输标02入题
真空镀膜机主要分为蒸发镀膜和溅射镀膜两种类型, 其中蒸发镀膜是最早的镀膜技术,溅射镀膜则具有更 高的沉积速率和更均匀的膜层质量。
01
03
真空镀膜机适用于各种光学薄膜的制备,如增透膜、 反射膜、滤光片、保护膜等,广泛应用于光学仪器、
照明、显示等领域。
04
电和装饰。
介质镀层材料
MgF2镀层
具有高透光性和低折射率,常 用于红外光学镜头。
SiO2镀层
具有低折射率和化学稳定性, 常用于保护和增透膜层。
TiO2镀层
具有高折射率和优异的光学性 能,常用于增透和反射膜层。
ZrO2镀层
具有高硬度、高折射率和优异 的化学稳定性,常用于硬涂层
和光学薄膜。
特殊镀层材料
包装与运输
将合格的光学元件进行包 装,确保其在运输过程中 不受损坏。
05 光学镀膜质量检测与控制
膜层厚度检测
总结词
膜层厚度是影响光学镀膜质量的关键因素,必须进行精确检 测。
详细描述
光学镀膜的厚度需控制在一定的范围内,以确保其光学性能 的稳定。常用的膜层厚度检测方法包括干涉法、椭圆偏振法 、X射线荧光法等。这些方法可以精确测量膜层的厚度,为调 整和控制镀膜工艺提供依据。
01
02
03
抗反射涂层
通过在镜头表面形成微结 构,减少反射并提高透光 率。
多层镀膜
通过多层不同材料的叠加, 实现多种光学性能的优化 组合。
光学薄膜
在光学元件表面沉积薄层 材料,实现特定光学性能 的增强或改变。
03 光学镀膜设备
常见塑胶和金属加工工艺20110628
范例讲解 若是空气的折射率是 1.0 ,镀膜的折射率 nc (例如:1.5) ,玻璃的折射率 n (例如:1.8) (1)由空气直接进入玻璃 穿透率= 4×1.0×1.8 / ( 1+1.8 )2=91.84% (2)由空气进入镀膜后再进入玻璃 穿透率=[ 4×1.0×1.5 / ( 1+1.5 )2] × [ 4×1.5×1.8 / ( 1.5+1.8 )2]=95.2% 可见有镀膜的玻璃会增加透光度。此外由此公式,我们可以计算光线穿透镜片的两面,发现即使一片完 美的透镜(折射率1.8),其透光度约为85%左右。若加上一层镀膜(折射率1.5),则透光度可达91%。 可见光学镀膜的重要性。 镀膜的厚度 最后我们要探讨的是镀膜厚度的不同,会有什么影响?我们已经知道透光度与镀膜 的折射率有关,但是却无关于它的厚度。可是我们若能在镀膜的厚度上下点功夫,会发现反射光A与反射光B 相差 nc×2D 的光程差。如果 nc×2D=(N+ 1/2)λ 其中 N= 0,1,2,3,4,5..... λ为光在空气中的波长 则会造成该特定波长的反射光有相消的效应,因此反射光的颜色会改变。 例如,镀膜的厚度若造成绿色光的相消,则反射光会呈现红色的。市面上许多看似红色镜片的望远镜都 是用这个原理制作的。尽管如此,透射 光却没有偏红的现象。 在许多复杂的光学系统里,反射光的抑制是十分重要的功课。因此一组镜片之间,会利用不同的镀膜厚 度来消去不同频率的反射光。所以越高级的光学系统,发现反射光的颜色也会越多。
常见的塑胶&金属工艺简介
一.光学镀膜 二.溅镀 三.离子镀 四.蒸镀 五.水电镀 六.热转印 七.阳极处理 八.烫金
Editor: Jian Wu
பைடு நூலகம்
一.光学镀膜
光学镀膜方式
光学镀膜方式光学镀膜是一种将薄膜沉积在光学元件表面的方法,以改变光学元件的光学性质。
这种技术可以用于制造各种类型的光学器件,如反射镜、透镜和滤波器等。
下面将详细介绍几种常见的光学镀膜方式。
1. 热蒸发法热蒸发法是一种常见的光学镀膜方式,它通过加热材料使其升华并沉积在基底表面上。
这种方法通常使用电子束或电阻加热来升华材料,并使用真空室来控制反应环境。
在真空室中,基底和材料被放置在靶极上,然后加热到高温使材料升华并沉积在基底表面上。
这种方法可以制造高品质、均匀且厚度控制精确的薄膜。
2. 磁控溅射法磁控溅射法是一种将材料沉积在基底表面上的方法,通过使用高能离子撞击靶材使其升华并沉积在基底表面上。
这种方法使用真空室来控制反应环境,并通过调节离子束的能量和角度来控制薄膜的厚度和均匀性。
磁控溅射法可以制造高品质、均匀且良好附着力的薄膜。
3. 电弧离子镀法电弧离子镀法是一种将材料沉积在基底表面上的方法,通过使用高能电弧撞击靶材使其升华并沉积在基底表面上。
这种方法也使用真空室来控制反应环境,并通过调节电弧能量和角度来控制薄膜的厚度和均匀性。
电弧离子镀法可以制造高品质、均匀且良好附着力的薄膜。
4. 溅射离子镀法溅射离子镀法是一种将材料沉积在基底表面上的方法,通过使用高能粒子撞击靶材使其升华并沉积在基底表面上。
这种方法也使用真空室来控制反应环境,并通过调节粒子束的能量和角度来控制薄膜的厚度和均匀性。
溅射离子镀法可以制造高品质、均匀且良好附着力的薄膜。
总之,光学镀膜是一种非常重要的技术,它可以用于制造各种类型的光学器件。
不同的光学镀膜方式具有不同的优缺点,需要根据具体应用场景选择合适的方法。
第十二篇真空镀膜的标准
第十章真空镀膜工艺为使光学零件能满足在光电仪器及元器件中所需的光学,电学,物理性能,而可以在其表面上镀一层,多层乃至上百层的薄膜。
例如增透膜、反射膜、分光膜、滤光膜、电热膜、保护膜、偏振膜等。
光学零件的镀膜主要分物理和化学镀膜两类。
由于真空技术和膜系监控技术的发展,较易获得性能稳定,结构复杂的膜层。
故在生产中多以真空镀膜法为主。
按照薄膜的使用性能分类,常见的膜层有:增透膜,反射膜,分光膜,滤光膜,电热膜,导电膜及保护膜等。
按照薄膜的结构可以分为单层膜,双层膜及多层膜等。
下面我们将就真空镀膜的基本知识作一些介绍。
一、真空的获得1.真空的基本知识“真空”是指压力低于一个大气压的任何气态的空间。
在这种空间中气体是比较稀薄的,至少比大气要稀薄,但是绝对的“真空”,即没有任何气态微粒的空间是找不到的,就是在远离地球一万公里处、每立方厘米也有3~4千个空气的分子。
由于真空度大小仍然是气体压力大小的问题,所以计量压强的单位也就是计量真空度的单位。
国际标准单位为帕斯卡(Pa),也可用“托”(Torr)、“巴”(bar)和“毫巴”(mbar)来计量,他们之间的关系如下式:1标准大气压=1.01×105帕斯卡(Pa)=760托(Torr)=1.01×103毫巴2.为什么需在真空中镀膜在常压下蒸镀膜料无法形成理想的薄膜,事实上,如在压力不够低(或者说真空度不够高)的情况下同样得不到好的结果,比如在102 托数量级下蒸镀铝,得到的膜层不但不光亮,甚至发灰、发黑,而且机械强度极差,用松鼠毛刷轻轻一刷即可将铝层破坏。
蒸镀必须在一定的真空条件下进行,这是因为:(1).较高的真空度可以保证汽化分子的平均自由程大于蒸发源到基底的距离。
由于气体分子的热运动,分子之间的碰撞也是极其频繁的,所以尽管气体分子运动的速度相当的高(可达每秒几百米),但是由于它在前进的过程中要与其它分子多次碰撞,一个分子在两次连续碰撞之间所走的距离被称为它的自由程,而大量分子自由程的统计平均值就被称为分子的平均自由程。
光学真空镀膜技术
光学真空镀膜技术
嘿,同学们!今天来跟大家唠唠光学真空镀膜技术。
这玩意儿可神奇啦!简单来说,就是在真空环境里给各种光学元件穿上一层特殊的“衣服”。
这层“衣服”能让光学元件拥有各种超厉害的性能,比如提高反射率、增强透过率、改变颜色等等。
想象一下,就像给手机贴个超级厉害的膜,让它变得更酷炫更强大!
光学真空镀膜技术的原理
光学真空镀膜技术的原理其实不难理解。
在真空环境里,把要镀的材料加热变成蒸汽,这些蒸汽就会像小精灵一样飞到光学元件的表面,然后乖乖地贴上去,形成一层薄薄的膜。
这个过程就像是在一个没有干扰的魔法空间里,让一切都变得有序又神奇。
比如说蒸发镀膜,就是把材料加热到蒸发,然后它们就自然而然地附着在元件上啦。
还有溅射镀膜,通过用离子撞击材料,把材料“打”出来再附着上去。
是不是很有趣?
光学真空镀膜技术的应用
光学真空镀膜技术的应用那可太广泛啦!在我们日常生活中,像手机摄像头的镜片、眼镜片,还有各种光学仪器里,都有它的身影。
比如说在望远镜里,通过镀膜可以让我们看得更清楚,看到更远的星星。
在激光设备里,镀膜能让激光更强大更稳定。
还有在装饰方面,能让珠宝首饰变得更加闪亮夺目,让人爱不释手。
光学真空镀膜技术就像是一个神奇的魔法,让我们的生活变得更加精彩和便利!同学们,你们是不是也觉得很神奇呢?。
真空镀膜和光学镀膜有什么不同
真空镀膜和光学镀膜有什么不同?真空镀膜主要利用辉光放电(glow discharge)将氩气(Ar)离子撞击靶材(target)表面, 靶材的原子被弹出而堆积在基板表面形成薄膜。
溅镀薄膜的性质、均匀度都比蒸镀薄膜来的好,但是镀膜速度却比蒸镀慢很多。
新型的溅镀设备几乎都使用强力磁铁将电子成螺旋状运动以加速靶材周围的氩气离子化, 造成靶与氩气离子间的撞击机率增加,提高溅镀速率。
一般金属镀膜大都采用直流溅镀,而不导电的陶磁材料则使用RF交流溅镀,基本的原理是在真空中利用辉光放电(glowdischarge)将氩气(Ar)离子撞击靶材(target)表面,电浆中的阳离子会加速冲向作为被溅镀材的负电极表面,这个冲击将使靶材的物质飞出而沉积在基板上形成薄膜。
一般来说,利用溅镀制程进行薄膜披覆有几项特点:(1)金属、合金或绝缘物均可做成薄膜材料。
(2)再适当的设定条件下可将多元复杂的靶材制作出同一组成的薄膜。
(3)利用放电气氛中加入氧或其它的活性气体,可以制作靶材物质与气体分子的混合物或化合物。
(4)靶材输入电流及溅射时间可以控制,容易得到高精度的膜厚。
(5)较其它制程利于生产大面积的均一薄膜。
(6)溅射粒子几不受重力影响,靶材与基板位置可自由安排。
(7)基板与膜的附着强度是一般蒸镀膜的10倍以上,且由于溅射粒子带有高能量,在成膜面会继续表面扩散而得到硬且致密的薄膜,同时此高能量使基板只要较低的温度即可得到结晶膜。
(8)薄膜形成初期成核密度高,可生产10nm以下的极薄连续膜。
(9)靶材的寿命长,可长时间自动化连续生产。
(10)靶材可制作成各种形状,配合机台的特殊设计做更好的控制及最有效率的生产。
光学镀膜一、耐磨损膜(硬膜)无论是无机材料还是有机材料制成的眼镜片,在日常的使用中,由于与灰尘或砂砾(氧化硅)的摩擦都会造成镜片磨损,在镜片表面产生划痕。
与玻璃片相比,有机材料制成的硬性度比较低,更易产生划痕。
通过显微镜,我们可以观察到镜片表面的划痕主要分为二种,一是由于砂砾产生的划痕,浅而细小,戴镜者不容易察觉;另一种是由较大砂砾产生的划痕,深且周边粗糙,处于中心区域则会影响视力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真空镀膜主要利用辉光放电(glowdischarge)将氩气(Ar)离子撞击靶材(target)表面,靶材的原子被弹出而堆积在基板表面形成薄膜。
溅镀薄膜的性质、均匀度都比蒸镀薄膜来的好,但是镀膜速度却比蒸镀慢很多。
新型的溅镀设备几乎都使用强力磁铁将电子成螺旋状运动以加速靶材周围的氩气离子化,造成靶与氩气离子间的撞击机率增加,提高溅镀速率。
一般金属镀膜大都采用直流溅镀,而不导电的陶磁材料则使用RF交流溅镀,基本的原理是在真空中利用辉光放电(glowdischarge)将氩气(Ar)离子撞击靶材(target)表面,电浆中的阳离子会加速冲向作为被溅镀材的负电极表面,这个冲击将使靶材的物质飞出而沉积在基板上形成薄膜。
一般来说,利用溅镀制程进行薄膜披覆有几项特点:(1)金属、合金或绝缘物均可做成薄膜材料。
(2)再适当的设定条件下可将多元复杂的靶材制作出同一组成的薄膜。
(3)利用放电气氛中加入氧或其它的活性气体,可以制作靶材物质与气体分子的混合物或化合物。
(4)靶材输入电流及溅射时间可以控制,容易得到高精度的膜厚。
(5)较其它制程利于生产大面积的均一薄膜。
(6)溅射粒子几不受重力影响,靶材与基板位置可自由安排。
(7)基板与膜的附着强度是一般蒸镀膜的10倍以上,且由于溅射粒子带有高能量,在成膜面会继续表面扩散而得到硬且致密的薄膜,同时此高能量使基板只要较低的温度即可得到结晶膜。
(8)薄膜形成初期成核密度高,可生产10nm以下的极薄连续膜。
(9)靶材的寿命长,可长时间自动化连续生产。
(10)靶材可制作成各种形状,配合机台的特殊设计做更好的控制及最有效率的生产。
光学镀膜一、耐磨损膜(硬膜)无论是无机材料还是有机材料制成的眼镜片,在日常的使用中,由于与灰尘或砂砾(氧化硅)的摩擦都会造成镜片磨损,在镜片表面产生划痕。
与玻璃片相比,有机材料制成的硬性度比较低,更易产生划痕。
通过显微镜,我们可以观察到镜片表面的划痕主要分为二种,一是由于砂砾产生的划痕,浅而细小,戴镜者不容易察觉;另一种是由较大砂砾产生的划痕,深且周边粗糙,处于中心区域则会影响视力。
(1)技术特征1)第一代抗磨损膜技术抗磨损膜始于20世纪70年代初,当时认为玻璃镜片不易磨制是因为其硬度高,而有机镜片则太软所以容易磨损。
因此将石英材料于真空条件下镀在有机镜片表面,形成一层非常硬的抗磨损膜,但由于其热胀系数与片基材料的不匹配,很容易脱膜和膜层脆裂,因此抗磨损效果不理想。
2)第二代抗磨损膜技术20世纪80年代以后,研究人员从理论上发现磨损产生的机理不仅仅与硬度相关,膜层材料具有“硬度/形变”的双重特性,即有些材料的硬度较高,但变形较小,而有些材料硬度较低,但变形较大。
第二代的抗磨损膜技术就是通过浸泡工艺法在有机镜片的表面镀上一种硬度高且不易脆裂的材料。
3)第三代抗磨损膜技术第三代的抗磨损膜技术是20世纪90年代以后发展起来的,主要是为了解决有机镜片镀上减反射膜层后的耐磨性问题。
由于有机镜片片基的硬度和减反射膜层的硬度有很大的差别,新的理论认为在两者之间需要有一层抗磨损膜层,使镜片在受到砂砾磨擦时能起缓冲作用,并而不容易产生划痕。
第三代抗磨损膜层材料的硬度介于减反射膜和镜片片基的硬度之间,其磨擦系数低且不易脆裂。
4)第四代抗磨损膜技术第四代的抗膜技术是采用了硅原子,例如法国依视路公司的帝镀斯(TITUS)加硬液中既含有有机基质,又含有包括硅元素的无机超微粒物,使抗磨损膜具备韧性的同时又提高了硬度。
现代的镀抗磨损膜技术最主要的是采用浸泡法,即镜片经过多道清洗后,浸入加硬液中,一定时间后,以一定的速度提起。
这一速度与加硬液的黏度有关,并对抗磨损膜层的厚度起决定作用。
提起后在100 °C左右的烘箱中聚合4-5小时,镀层厚约3-5微米。
(2)测试方法判断和测试抗磨损膜耐磨性的最根本的方法是临床使用,让戴镜者配戴一段时间,然后用显微镜观察并比镜片的磨损情况。
当然,这通常是在这一新技术正式推广前所采用的方法,目前我们常用的较迅速、直观的测试方法是:1)磨砂试验将镜片置于盛有砂砾的宣传品内(规定了砂砾的粒度和硬度),在一定的控制下作来回磨擦。
结束后用雾度计测试镜片磨擦前后的光线漫反射量,并且与标准镜片作比较。
2)钢丝绒试验用一种规定的钢丝绒,在一定的压力和速度下,在镜片表面上磨擦一珲的次数,然后用雾度计测试镜片磨擦前后的光线漫反射量,并且与标准镜片作比较。
当然,我们也可以手工操作,对二片镜片用同样的压力磨擦同样的次数,然后用肉眼观察和比较。
上述两种测试方法的结果与戴镜者长期配戴的临床结果比较接近。
3)减反射膜和抗磨损膜的关系镜片表面的减反射膜层是一种非常薄的无机金属氧化物材料(厚度低于1微米),硬且脆。
当镀于玻璃镜片上时,由于片基比较硬,砂砾在其上面划过,膜层相对不容易产生划痕;但是减反射膜镀于有机镜片上时,由于片基较软,砂砾在膜层上划过,膜层很容易产生划痕。
因此有机镜片在镀减反射膜前必须要镀抗磨损膜,而且两种膜层的硬度必须相匹配。
二、减反射膜(1)为什么需要镀减反射膜?1)镜面反射光线通过镜片的前后表面时,不但会产生折射,还会产生反射。
这种在镜片前表面产生的反射光会使别人看戴镜者眼睛时,看到的却是镜片表面一片白光。
拍照时,这种反光还会严重影响戴镜者的美观。
2)"鬼影"眼镜光学理论认为眼镜片屈光力会使所视物体在戴镜者的远点形成一个清晰的像,也可以解释为所视物的光线通过镜片发生偏折并聚集于视网膜上,形成像点。
但是由于屈光镜片的前后表面的曲率不同,并且存在一定量的反射光,它们之间会产生内反射光。
内反射光会在远点球面附近产生虚像,也就是在视网膜的像点附近产生虚像点。
这些虚像点会影响视物的清晰度和舒适性。
3)眩光象所有光学系统一样,眼睛并不完美,在视网膜上所成的像不是一个点,而是一个模糊圈。
因此,二个相邻点的感觉是由二个并列的或多或少重叠的模糊圈产生的。
只要二点之间的距离足够大,在视网膜上的成像就会产生二点的感觉,但是如果二点太接近,那么二个模糊圈会趋向与重合,被误认为是一个点。
对比度可以用来反映这种现象,表达视力的清晰度。
对比值必须大于某一确定值(察觉阈,相当于1-2)才能够确保眼睛辨别二个邻近点。
对比度的计算公式为:D=(a-b)/(a+b)其中C为对比度,二个相邻物点在视网膜上所成像的感觉最高值为a,相邻部份的最低值为b。
如果对比度C值越高,说明视觉系统对该二点的分辨率越高,感觉越清晰;如果二个物点非常接近,它们的相邻部分的最低值比较接近于最高值,则C值低,说明视觉系统对该二点感到不清晰,或不能清晰分辨。
让我们来模拟这样一个场景产:夜晚,一位戴眼镜的驾车者清晰地看见对面远处有二辆自行车正冲着他的车骑过来。
此时,尾随其后的汽车的前灯在驾车者镜片后表面上产生反射:该反射光在视网膜上形成的像增加了二个被观察点的强度(自行车车灯)。
所以,a段和b段的长度增加,即然分母(a+b)增加,而分子(a-b)保持不变,于是就引起了C值的减少。
对比减小的结果会令驾驶员最初产生的存在二个骑车人的感觉重合成为单一的像,就好比区分它们的角度被突然减小!4)透过量反射光占入射光的百分比取决于镜片材料的折射率,可通过反射量的公式进行计算。
反射量公式:R=(n-1)平方/(n+1)平方R:镜片的单面反射量n:镜片材料的折射率例如普通树脂材料的折射率为1.50,反射光R=(1.50-1)平方/(1.50+1)平方=0.04=4%。
镜片有两个表面,如果R1为镜片前表面的量,R2为镜片后表面的反射量,则镜片的总反射量R=R1+R2。
(计算R2的反射量时,入射光为100%-R1)。
镜片的透光量T=100%-R1-R2。
由此可见,高折射率的镜片如果没有减反射膜,反射光会对戴镜者带来的不适感比较强烈。
(2)原理减反射膜是以光的波动性和干涉现象为基础的。
二个振幅相同,波长相同的光波叠加,那么光波的振幅增强;如果二个光波原由相同,波程相差,如果这二个光波叠加,那么互相抵消了。
减反射膜就是利用了这个原理,在镜片的表面镀上减反射膜,使得膜层前后表面产生的反射光互相干扰,从而抵消了反射光,达到减反射的效果。
1)振幅条件膜层材料的折射率必须等于镜片片基材料折射率的平方根。
2)位相条件膜层厚度应为基准光的1/4波长。
d=λ/4 λ=555nm时,d=555/4=139nm对于减反射膜层,许多眼镜片生产商采用人眼敏感度较高的光波(波长为555nm)。
当镀膜的厚度过薄(〈139nm),反射光会显出浅棕黄色,如果呈蓝色则表示镀膜的厚度过厚(〉139nm)。
镀膜反射膜层的目的是要减少光线的反射,但并不可能做到没有反射光线。
镜片的表面也总会有残留的颜色,但残留颜色哪种是最好的,其实并没有标准,目前主要是以个人对颜色的喜好为主,较多为绿色色系。
我们也会发现残留颜色在镜片凸面与凹面的曲率不同也使镀膜的速度不同,因此在镜片中央部分呈绿色,而在边缘部分则为淡紫红色或其它颜色。
3)镀减反射膜技术有机镜片镀膜的难度要比玻璃镜片高。
玻璃材料能够承受300 °C以上的高温,而有机镜片在超过100 °C时便会发黄,随后很快分解。
可以用于玻璃镜片的减反射膜材料通常采用氟化镁(MgF2),但由于氟化镁的镀膜工艺必须在高于200°C的环境下进行,否则不能附着于镜片的表面,所以有机镜片并不采用它。
20世纪90年代以后,随着真空镀膜技术的发展,利用离子束轰击技术,使得膜层与镜片的结合,膜层间的结合得到了改良。
而且提炼出的象氧化钛,氧化锆等高纯度金属氧化物材料可以通过蒸发工艺镀于树脂镜片的表面,达到良好的减反射效果。
以下对有机镜片的减反射膜镀膜技术作一介绍。
1)镀膜前的准备镜片在接受镀膜前必须进行预清洗,这种清洗要求很高,达到分子级。
在清洗槽中分别放置各种清洗液,并采用超声波加强清洗效果,当镜片清洗完后,放进真空舱内,在此过程中要特别注意避免空气中的灰尘和垃圾再黏附在镜片表面。
最后的清洗是在真空舱内,在此过程中要特别注意避免空气中的灰尘和垃圾再黏附在镜片表面。
最后的清洗是在真空舱内镀前进行的,放置在真空舱内的离子枪将轰击镜片的表面(例如用氩离子),完成此道清洗工序后即进行减反射膜的镀膜。
2)真空镀膜真空蒸发工艺能够保证将纯质的镀膜材料镀于镜片的表面,同时在蒸发过程中,对镀膜材料的化学成分能严密控制。
真空蒸发工艺能够对于膜层的厚度精确控制,精度达到。
3)膜层牢固性对眼镜片而言,膜层的牢固性是至关重要的,是镜片重要的质量指标。
镜片的质量指标包括镜片抗磨损、抗文化馆、抗温差等。
因此现在有了许多针对性的物理化学测试方法,在模拟戴镜者的使用条件下,对镀膜镜片进行膜层牢度质量的测试。