深基坑支护结构

合集下载

深基坑支护结构类型及其与适用范围

深基坑支护结构类型及其与适用范围

深基坑支护结构类型及其与适用范围深基坑必须进行支护设计。

根据不同的基坑深度、地质、环境与荷载情况采用不同的支护结构。

常见的深基坑支护结构类型及其适用范围为:⑴深层搅拌桩支护[1]。

它是利用水泥、石灰等材料作为固化剂通过深层搅拌机械, 将软土与固化剂( 浆液或粉体) 强制搅拌, 利用固化剂与软土之间所产生的一系列物理化学反应, 使软土硬结成具有整体性、水稳定性与一定强度的桩体( 水泥土搅拌桩) , 利用搅拌桩作为基坑的支护结构。

水泥搅拌桩适宜于各种成因的饱与粘性土, 包括淤泥、淤泥质土、粘土与粉质粘土等, 加固深度可从数米至50~60 米。

由于其抗拉强度远小于抗压强度, 故常适用于基坑深度不大( 5~7 米) 、可采用重力式挡墙结构形式的基坑。

这种支护结构防水性能好,可不设支撑, 基坑能在开敞的条件下开挖, 具有较好的经济效益。

⑵排桩支护。

排桩包括钢板桩、钢筋混凝土板桩及钻孔灌注桩、人工挖孔桩等, 其支护形式包括:①柱列式排桩支护: 当边坡土质较好、地下水位较低时, 可利用土拱作用, 以稀疏的钻孔灌注桩或挖孔桩作为支护结构;②连续排桩支护: 在软土中常不能形成土拱, 支护桩应连续密排, 并在桩间做树根桩或注浆防水; 也可以采用钢板桩、钢筋混凝土板桩密排。

③组合式排桩支护: 在地下水位较高的软土地区, 可采用钻孔灌注桩排桩与水泥搅拌桩防渗墙组合的形式。

对于开挖深度小于6 米的基坑,在无法采用重力式深层搅拌桩的情况下, 可采用600mm 密排钻孔桩, 桩后用树根桩防护, 也可采用打入预制混凝土板桩或钢板桩, 板桩后注浆或加搅拌桩防渗, 顶部设圈梁与支撑; 对于开挖深度为6~10 米的基坑, 常采用800~1000mm 的钻孔桩, 后面加深层搅拌桩或注浆防水, 并设置2~3 道支撑; 对于开挖深度大于10 米的基坑,可采用地下连续墙加支撑的方法, 也可采用800~1000mm 大直径钻孔桩加深层搅拌桩防水, 设置多道支撑。

深基坑支护结构的设计计算

深基坑支护结构的设计计算

深基坑支护结构的设计计算深基坑支护结构设计计算是指在进行深基坑施工时,为了保证基坑的稳定和安全,需要设计合理的支护结构来抵抗土压力和地下水力,并进行相应的计算与分析。

下面将从设计原则、支护结构类型、计算方法和实例分析等方面进行详细介绍。

设计原则:1.充分了解地质环境:通过钻孔、地质勘探等手段对周边地质环境进行充分了解,确定基坑边坡的稳定性和地下水情况等。

2.综合考虑安全和经济性:在满足基坑稳定要求的前提下,尽量优化支护结构的形式和尺寸,使其既能保证施工安全,又能降低成本。

3.遵循现场施工管理规范:根据施工组织方案和现场管理要求,进行支护结构设计,确保施工操作的可行性和安全性。

支护结构类型:常见的深基坑支护结构主要有以下几种类型:1.土方支撑法:包括开挖后土侧临时支护、钢支撑、混凝土支撑、钻孔锚杆支护等。

2.桩承台围护法:采用桩承台、连续墙等结构形式围护基坑。

3.地下连续墙法:采用成排的连续墙围护基坑,形成闭合空间。

4.排浆松土法:通过水平和垂直排浆井人工排除地下水,减小土体侧压力。

5.钢结构支护法:采用钢桩和钢板桩等结构形式围护基坑。

计算方法:1.土体侧压力计算:根据基坑周边土体的物理力学参数和基坑的几何形状,采用经验公式或数值模拟方法计算土体的侧压力。

2.支护结构稳定性计算:根据支护结构的形式和受力状况,进行结构的静力分析和稳定性校核,计算结构内力和变形等。

3.变形计算:根据支护结构的刚度和土体的变形特性,利用有限元分析方法或基于弹性平衡原理的计算方法,对基坑的变形进行计算。

实例分析:以一些深基坑工程为例,具体讲解支护结构设计计算的流程和方法。

1.地质环境调查:通过钻孔和地质勘探,了解地质层位、土壤性质、地下水位等信息。

2.施工组织方案:根据地质环境和工程要求,制定合理的施工组织方案,确定基坑开挖的顺序和方法。

3.土体侧压力计算:根据开挖的深度和基坑周围土体的物理力学参数,计算土体的侧压力,并确定开挖时的土压力分布。

深基坑支护结构分类

深基坑支护结构分类

较强的抗渗性能和承载能力。
常用类型
水泥土搅拌桩墙
通过搅拌桩机将水泥和土混合搅拌,形成连续的墙体。
水泥土高压喷射注浆墙
利用高压喷射技术将水泥和土混合物喷注到地层中,形成连续墙体。
应用场景
பைடு நூலகம்
适用于各种土质条件,如软土、 砂土、黏性土等。
广泛应用于建筑工程、市政工程 、水利工程等领域的基坑支护。
在基坑深度小于6m的工程中应 用较为广泛,而对于基坑深度超 过6m的工程,则需要采取其他
特点
地下连续墙具有刚度大、承载能力强、施工速度快、对周边环境影响小等优点, 适用于各种复杂的地质条件和施工环境。
常用类型
桩排式地下连续墙 钢筋混凝土桩和墙组成,具有较高的抗弯刚度。
一般适用于基坑深度小于10m,且对周围环境保护要求不高的工程。
常用类型
组合式地下连续墙 采用预制钢筋混凝土方桩或钻孔灌注桩,以增加刚度。
坑支护的常用结构。
环境保护区
对于环境保护区,土钉墙的施工速 度快、对环境影响小,可有效保护 周边环境。
轻型荷载建筑
对于轻型荷载建筑,土钉墙具有较 高的承载力和抗剪强度,能够满足 建筑的安全性和稳定性要求。
05 排桩墙
定义与特点
定义
排桩墙支护结构是由一系列排列紧密的 桩体组成的支护墙体,通常采用钢筋混 凝土灌注桩或预制桩作为结构主体。
VS
特点
排桩墙支护结构具有较高的支护能力,能 够承受较大的土压力,同时施工方便、速 度快,适用于各种复杂的地质条件。
常用类型
悬臂式排桩墙
利用桩体的悬臂作用承受 土压力,适用于较浅的基 坑。
锚杆式排桩墙
在桩体中加入锚杆,通过 锚杆的拉力增强桩体的稳 定性,适用于较深的基坑 。

深基坑支护结构设计的优化方法8篇

深基坑支护结构设计的优化方法8篇

深基坑支护结构设计的优化方法8篇第1篇示例:深基坑支护是指在进行基坑开挖施工过程中为了防止地基塌方、保护周边建筑物和道路安全而采取的支护措施。

深基坑开挖和支护工程是城市建设中常见的施工项目,而深基坑支护结构设计的优化方法成为了工程领域中的研究热点。

深基坑支护结构设计的优化方法包括多个方面,例如支护结构的选择、设计参数的优化、施工工艺的优化等。

在选择支护结构时,需要考虑地下水位、土质情况、周边建筑物、施工工艺等因素,以便选择最合适的支护结构类型。

设计参数的优化包括墙体厚度、支撑间距、钢筋配筋等参数的优化,以提高支撑结构的安全性和经济性。

而施工工艺的优化可以通过优化施工顺序、采用先进的施工技术等手段来提高深基坑支护工程的施工效率和质量。

在深基坑支护结构设计的优化方法中,最重要的是要充分考虑地质条件和周边环境,以便选择最适合的支护结构类型。

还需要充分利用先进的计算机软件和施工技术,以实现对设计参数和施工工艺的优化。

通过系统的研究和实践,不断改进深基坑支护结构的设计和施工方法,可以有效提高支护结构的安全性和经济性,为城市建设提供更可靠的保障。

在深基坑支护结构设计的优化方法中,需要充分考虑地质条件和周边环境。

地质条件主要包括土质情况、地下水位和地表荷载等因素。

土质情况对支护结构的稳定性和变形有着直接影响,需要通过地质勘察和试验数据来评价土的承载力和变形特性。

地下水位对基坑开挖和支护工程的施工和稳定性都有很大影响,需要根据地下水位情况选择适当的支护结构类型和设计参数。

地表荷载主要包括来自道路、建筑物、地铁等周边结构的荷载,需要通过结构分析和计算来评价其对支护结构的影响。

在选择支护结构类型时,需要充分考虑地质条件和周边环境因素。

深基坑支护结构种类繁多,包括钢支撑、混凝土墙、挡墙、桩墙等各种类型,需要根据具体的地质条件和施工要求来选择最适合的支护结构类型。

钢支撑结构适用于较宽的基坑和较小的变形要求,能够快速安装和拆除,适合于快速施工的项目;混凝土墙结构适用于较深的基坑和较大的变形要求,能够提供较大的稳定性和承载力,适合于长期固定的项目;桩墙结构适应于较软的土层和需要较高的承载能力和变形控制的项目,能够提供较好的抗浪涌能力,适合于复杂环境下的项目。

深基坑支护结构

深基坑支护结构

结论与展望
深基坑支护结构是保障工程施工安全和保持土壤稳定的重要手段。未来的研 究可以继续探索新的支护结构方法和技术。
1 混凝土拱形支护结构
混凝土拱形支护结构广泛应用于大型基坑支护工程。
2 钢筋混凝土桩墙
钢筋混凝土桩墙以其良好的承载能力和稳定性被广泛采用。
3 土壤钉墙
土壤钉墙是用土壤钉将挖方土体和支撑结构连接在一起,增加整体稳定性。
支护结构的设计原则
安全性
支护结构设计要确保工程安全,应考虑地层条件、自然环境和施工要求。
经济性
设计中要找到合适的支护结构类型和方法,以最小的成本达到工程要求。
可行性
设计要充分考虑实际条件和施工技术,保证支护结构的可行性。
施工安全与质量控制
1
准备பைடு நூலகம்作
进行地质勘探、支护结构设计和进场准备。
2
支护材料选择
选择符合要求的支护材料,保证施工安全和质量。
3
施工过程
施工过程中要进行质量检测、监督和控制,确保施工质量。
深基坑支护结构
深基坑支护结构是用于保护建筑工程中深度挖掘的结构。不同类型的支护结 构适用于不同地质条件和工程要求。
支护结构的定义
支护结构是指在土方开挖施工过程中,为了防止地面变形、倒塌及保证土壤的稳定而采取的措施和工程。
支护结构分类
1 土方支护结构
2 特殊支护结构
常见的土方支护结构有土壤挡墙、土壤钉墙、 护岩网等。
特殊支护结构包括深圳式护壁、开挖式支护 结构等。这些结构适用于复杂地质条件和大 型基坑项目。
应用案例分析
护坡施工案例
介绍护坡施工中常用的支护结构 方法和实际应用。
土钉墙施工案例
探讨土钉墙的施工过程和地下土 壤的稳定性分析。

深基坑支护结构设计的优化方法8篇

深基坑支护结构设计的优化方法8篇

深基坑支护结构设计的优化方法8篇第1篇示例:深基坑支护结构设计的优化方法随着城市建设的不断发展,深基坑工程在城市建设中扮演着重要的角色。

深基坑工程是指地下结构物深度超过一定范围,需要对周边土体进行支护和加固的工程。

在深基坑工程中,基坑支护结构设计的优化是提高工程施工效率和确保工程安全的关键。

本文将从不同的角度探讨深基坑支护结构设计的优化方法。

在深基坑工程中,基坑支护结构设计的基本原则是保证工程施工的安全性和稳定性。

基坑支护结构设计的基本原则包括以下几点:1. 根据地质条件确定支护结构类型:在进行基坑支护结构设计时,首先要根据地质勘察结果确定地下结构的地质条件,包括土层性质、地下水位等信息,以选择合适的支护结构类型。

2. 合理确定基坑支护结构的深度:基坑支护结构的深度应根据周边土体的承载能力和基坑深度等因素综合考虑,避免过度挖掘导致地基沉降或支护结构失稳。

3. 选择合适的支护材料和施工工艺:基坑支护结构设计应根据具体情况选择合适的支护材料和施工工艺,确保支护结构的稳定性和耐久性。

2. 地下水位控制:地下水位是影响基坑支护结构稳定的重要因素,过高的地下水位容易导致基坑支护结构失稳。

在基坑支护结构设计中需要采取有效的地下水位控制措施,如井点降水、深井抽水等。

3. 优化支护结构类型:在进行基坑支护结构设计时,应根据地质条件和基坑深度选择合适的支护结构类型,如横向支撑结构、嵌岩支护结构等,避免因支护结构类型选择不当导致工程事故。

4. 采用新型支护材料:随着科技的发展,新型支护材料的不断推出,如钢筋混凝土、高分子材料等,这些新型支护材料具有更好的抗压强度和耐用性,可以提高基坑支护结构的稳定性和安全性。

5. 结构优化设计:在进行基坑支护结构设计时,可以采用计算机模拟分析等方法,对支护结构进行优化设计,提高支护结构的承载能力和稳定性,减少施工成本和工程周期。

三、总结深基坑支护结构设计的优化是保障工程安全和提高施工效率的关键。

深基坑支护结构类型及其与适用范围

深基坑支护结构类型及其与适用范围

深基坑支护结构类型及其与适用范围深基坑必须进行支护设计。

根据不同的基坑深度、地质、环境与荷载情况采用不同的支护结构。

常见的深基坑支护结构类型及其适用范围为:⑴深层搅拌桩支护[1]。

它是利用水泥、石灰等材料作为固化剂通过深层搅拌机械, 将软土和固化剂( 浆液或粉体) 强制搅拌, 利用固化剂和软土之间所产生的一系列物理化学反应, 使软土硬结成具有整体性、水稳定性和一定强度的桩体( 水泥土搅拌桩) , 利用搅拌桩作为基坑的支护结构。

水泥搅拌桩适宜于各种成因的饱和粘性土, 包括淤泥、淤泥质土、粘土和粉质粘土等, 加固深度可从数米至50~60 米。

由于其抗拉强度远小于抗压强度, 故常适用于基坑深度不大( 5~7 米) 、可采用重力式挡墙结构形式的基坑。

这种支护结构防水性能好,可不设支撑, 基坑能在开敞的条件下开挖, 具有较好的经济效益。

⑵排桩支护。

排桩包括钢板桩、钢筋混凝土板桩及钻孔灌注桩、人工挖孔桩等, 其支护形式包括:①柱列式排桩支护: 当边坡土质较好、地下水位较低时, 可利用土拱作用, 以稀疏的钻孔灌注桩或挖孔桩作为支护结构;②连续排桩支护: 在软土中常不能形成土拱, 支护桩应连续密排, 并在桩间做树根桩或注浆防水; 也可以采用钢板桩、钢筋混凝土板桩密排。

③组合式排桩支护: 在地下水位较高的软土地区, 可采用钻孔灌注桩排桩与水泥搅拌桩防渗墙组合的形式。

对于开挖深度小于6 米的基坑,在无法采用重力式深层搅拌桩的情况下, 可采用600mm 密排钻孔桩, 桩后用树根桩防护, 也可采用打入预制混凝土板桩或钢板桩, 板桩后注浆或加搅拌桩防渗, 顶部设圈梁和支撑; 对于开挖深度为6~10 米的基坑, 常采用800~1000mm 的钻孔桩, 后面加深层搅拌桩或注浆防水, 并设置2~3 道支撑; 对于开挖深度大于10 米的基坑,可采用地下连续墙加支撑的方法, 也可采用800~1000mm 大直径钻孔桩加深层搅拌桩防水, 设置多道支撑。

深基坑的支护结构

深基坑的支护结构
深基坑工程具有开挖面积小,但开挖深度大,支护结构复杂,技术要求高,施工 难度大等特点。
支护结构的类型与功能
钢板桩支护
地下连续墙支护
由打入土中的钢板桩和锚拉系统组成,具有 施工简单、投资经济等优点,但易受地下水 影响,拔桩时对土体产生扰动。
具有刚度大、抗侧力强、墙体接头密封性好 等优点,适用于各种深基坑施工。
总结深基坑支护结构的关键技术与经验
• 信息化施工:通过现场监测,实时反馈施工过程中的问 题,指导后续施工。
总结深基坑支护结构的关键技术与经验
经验总结
土压力监测:通过土压力监测,可以更准确地了解土 压力分布和变化,指导后续设计。
支护结构类型选择:根据工程地质条件、周边环境等 因素,选择合适的支护结构类型。
全性。
支护结构的选型和设计需要根 据深基坑的实际情况进行选择 和优化,以确保施工的顺利进
行和周围环境的安全。
支护结构的施工质量直接影响 到深基坑的稳定性和安全性, 因此需要进行严格的施工质量
控制和管理。
02
深基坑支护结构的选型与 设计
支护结构的选型原则与依据
安全性
支护结构应能够承受可能出现 的最大荷载,并具有足够的稳 定性,以防止结构失效和周围
工程实例一:某地铁站深基坑支护结构设计
• 锚索施工时,确保锚固段穿越稳定土层,并控制张拉力。
• 施工过程中进行实时监测,确保支护结构的安全性。
工程实例二
01
1. 工程概述
• 某商业综合体位于市中心繁华地段,基坑深度达10米。
02
• 由于周边环境复杂,需采取严格的支护措施。
03
工程实例二
2. 支护结构设计
• 设置钢筋混凝土支撑体系,包括 水平支撑和垂直支撑。

地下建筑结构-第十讲-深基坑支护工程

地下建筑结构-第十讲-深基坑支护工程
2)基坑开挖深度大于、等于10米时; 3)距基坑边两倍开挖深度范围内有历史文物、近代优秀建 筑物,重要管线等需严加保护时; 二级:除一级和三级以外的均属二级基坑工程; 三级:开挖深度小于7米,且周围环境无特别要求时;
对于抗隆起,抗倾覆等稳定性验算,按不同等级的坑基规定了 不同的安全系数。
每个工程应根据自己的具体情况,侧重于破坏产生的后果,综 合各种因素决定重要性等级及0取值。
图 1.3-8 土钉墙围护示意图
门架式围护结构
1) 门架式围护结构
门架式围护结构示意图如1.3-9所示。目前在工程中常用钢筋 混凝土灌注桩、压顶梁和联系梁形成空间门架式围护结构体系。 它的围护深度比悬臂式围护结构深。研究表明:前后排桩桩距B小 于4d(d为桩径)时,刚架空间效应差;B>8d时,联系梁只起拉 杆作用,刚架空间效应也差。
(a) 剖面
(b) 平面
门架式围护结构
属悬臂型,其变形较 大。门架式围护结构 适用于开挖深度已超 过悬臂式围护结构的 合理围护深度的基坑 工程。
图 1.3-9 门架式围护结构示意图
门架式围护结构
2)沉井围护结构
采用沉井结构形成围护体系。
3)SMW工法柱列式挡墙
将支承荷载与防渗结合起来,使之同时具有承力与防渗两种功 能的支护形式,即是劲性水泥搅拌桩法,日本称为SMW工法,即在水 泥土搅拌桩内插入H型钢或者其他种类的受拉材料,形成承力和防水 的复合结构(图1.3-10)。
如基坑平面形状成近似正方形可采用拱圈作支撑,但需注 意土压力的平衡。
拉锚式围护结构
1.3.5 拉锚式围护结构 拉锚式围护结构由围护体系和锚固体系两部分组成,围护结
构体系同于内撑式围护结构。 锚固体系:
锚杆式(单层、二层、多层)——需地基土提供较大锚固力; 地面拉锚式——需有足够场地设置锚固物;

深基坑支护结构优化设计

深基坑支护结构优化设计

深基坑支护结构优化设计
支护结构经济性评价
支护结构经济性评价
▪ 支护结构经济性评价的重要性
1. 支护结构经济性评价是深基坑支护设计的重要环节,能够有 效降低工程成本,提高经济效益。 2. 通过经济性评价,可以对支护结构的材料、工艺、施工方法 等进行优化,从而达到降低成本、提高效率的目的。 3. 支护结构经济性评价还可以为决策者提供科学依据,帮助他 们做出最优的决策。
模糊逻辑优化设计
1. 模糊逻辑是一种处理不确定性信息的方法,它通过定义模糊集和模糊规则,使得系统能够处理不 精确的数据和知识。 2. 在深基坑支护结构优化设计中,可以利用模糊逻辑来处理设计参数的不确定性和复杂性,从而得 到更优的设计方案。 3. 模糊逻辑已经成为一种重要的优化工具,在土木工程等领域得到了广泛应用。
感谢聆听
深基坑支护结构设计原则
▪ 深基坑支护结构设计原则
1. 安全性:深基坑支护结构设计应确保施工过程中的安全,防止坍塌、滑坡等事故 的发生。 2. 稳定性:深基坑支护结构设计应保证其在各种工况下的稳定性,包括地下水位变 化、地震等。 3. 经济性:深基坑支护结构设计应考虑经济因素,尽可能降低施工成本,提高经济 效益。 4. 环保性:深基坑支护结构设计应考虑环保因素,尽可能减少对周围环境的影响。 5. 可施工性:深基坑支护结构设计应考虑施工条件,尽可能简化施工流程,提高施 工效率。 6. 可维护性:深基坑支护结构设计应考虑后期维护,尽可能降低维护成本,提高维 护效率。
深基坑支护结构优化设计
支护结构类型及其特点
支护结构类型及其特点
▪ 支撑结构类型
1. 土钉墙:采用钢筋混凝土或钢支撑与土体共同作用,具有施 工速度快、经济性好等优点。 2. 钢支撑:采用钢制支撑结构,具有承载能力强、稳定性好等 优点。 3. 混凝土支撑:采用混凝土支撑结构,具有承载能力强、稳定 性好等优点。 4. 混凝土防渗墙:采用混凝土防渗墙,具有防渗效果好、稳定 性好等优点。 5. 地下连续墙:采用地下连续墙,具有承载能力强、稳定性好 等优点。 6. 钢筋混凝土支撑:采用钢筋混凝土支撑结构,具有承载能力 强、稳定性好等优点。

深基坑支护结构土压力分布特点

深基坑支护结构土压力分布特点

深基坑支护结构土压力分布特点深基坑的支护结构对土体施加着巨大的力,以保持基坑的稳定。

土压力分布是指在深基坑支护结构周围土体中的作用力分布情况。

深基坑支护结构土压力分布的特点如下:1.土压力的大小随着深度的增加而增加。

由于土体的自重和孔隙水压的作用,土体会对支护结构施加垂直于土壤面的压力,这种压力随着深度的增加而增大。

2.土压力非线性分布。

在深基坑支护结构周围的土体中,土压力的分布并不是均匀的,而是呈现出非线性分布。

通常,在基坑挖掘下部土壤中,土压力急剧增加,达到最大值;而在上部土壤中,土压力的增加速率会减缓。

3.土压力分布的偏斜。

由于基坑施工过程中存在的工作面和支护结构的不对称性,土压力会偏斜到一侧,使得支护结构一侧的土压力大于另一侧。

4.土压力分布的非对称性。

由于地下水位、土壤类型等因素的影响,土压力分布往往呈现出非对称性。

即使是在相同条件下,不同侧面的土压力大小也会不同。

5.土压力分布的横向变化。

在靠近支护结构面的地方,土压力会迅速增加,呈现出较大的横向变化。

这是由于土体的受限性和支护结构的刚度等因素引起的。

为了减小土压力对支护结构的影响,需要采取一定的技术措施。

常用的措施包括增加基坑的支撑刚度,减小基坑的开挖深度,增加支撑结构的数量和间距等。

此外,还可以采用地下连续墙、挡土墙等支护结构来改变土压力的分布,以提高支护结构的稳定性。

综上所述,深基坑支护结构土压力分布的特点是:土压力大小随深度增加而增大,土压力非线性分布,土压力分布偏斜和非对称,以及土压力分布横向变化。

深入了解土压力分布的特点有助于合理设计和施工深基坑支护结构,确保基坑的稳定和安全。

深基坑支护结构与主体结构相结合的方式与特点

深基坑支护结构与主体结构相结合的方式与特点

深基坑支护结构与主体结构相结合的方式与特点随着城市建设的不断发展,越来越多的高层建筑、地下商场、地铁等工程需要在城市中扎根,而这些工程往往需要进行深基坑的开挖。

深基坑的开挖不仅需要考虑到地质条件,还需要考虑到周边建筑物的安全和保护。

因此,在深基坑的施工中,支护结构是不可或缺的一部分。

近年来,越来越多的工程采用深基坑支护结构与主体结构相结合的方式,以达到更好的支护效果和更高的安全性能。

本文将探讨深基坑支护结构与主体结构相结合的方式及其特点。

一、深基坑支护结构的分类深基坑支护结构按照其结构形式可分为四类:土方支护结构、桩墙支护结构、薄壁支护结构和混凝土支护结构。

1. 土方支护结构土方支护结构是利用土方自身的强度来支撑周边土体的一种支护结构。

土方支护结构的优点是施工简便、成本低廉、安全可靠。

其缺点是施工周期长、对土质要求高、受外力影响大。

2. 桩墙支护结构桩墙支护结构是利用钢筋混凝土桩与混凝土墙板组成的一种支护结构。

桩墙支护结构的优点是支护效果好、适用范围广、施工周期短。

其缺点是成本较高、对土质要求高、施工难度大。

3. 薄壁支护结构薄壁支护结构是利用薄壁钢板或钢筋混凝土板组成的一种支护结构。

薄壁支护结构的优点是支护效果好、施工周期短、适用范围广。

其缺点是成本较高、对土质要求高、受外力影响大。

4. 混凝土支护结构混凝土支护结构是利用钢筋混凝土板与钢筋混凝土桩组成的一种支护结构。

混凝土支护结构的优点是支护效果好、适用范围广、施工周期短。

其缺点是成本较高、对土质要求高、施工难度大。

二、深基坑支护结构与主体结构相结合的方式深基坑支护结构与主体结构相结合的方式是指在深基坑的开挖和支护过程中,将支护结构和主体结构相结合,使其成为一个整体,以达到更好的支护效果和更高的安全性能。

深基坑支护结构与主体结构相结合的方式主要有以下几种:1. 深基坑支护结构与地下室结构相结合在深基坑的开挖和支护过程中,可以将地下室结构作为支护结构的一部分,使其成为一个整体。

3-2深基坑排桩支护结构

3-2深基坑排桩支护结构
3=709.4kNm 至此计算完毕,接着可按最大弯矩选择适当的桩径、桩距和配
筋。但尚应注意计算所得Mmax是每延米桩排的弯矩值,应乘以 桩距,并乘以荷载分项系数1.25之后,才是单桩弯矩设计值。
• (四)钢筋混凝土悬臂桩排结构设计要求 • 1.悬臂钢筋混凝土桩的配筋应按钢筋混凝土受弯构件
计算和配筋,并应按规定采取构造措施。圆形截面桩 宜均匀配筋,在土质较好或采用人工挖孔桩确有施工 保证可采用不均匀配筋,将抗弯钢筋集中布置在受拉 边的弯矩作用平面左右各45°范围内,以增大抵抗力 矩。 • 2.钢筋混凝土锁口梁厚度一般可为400~500mm,平 面上外包桩体并突出50~100mm,沿基坑周边形成 封闭结构。锁口梁按水平面内作用有正负弯矩的受弯 构件配筋,每侧不宜少于3φ16,梁截面的总配筋率 不小于0.4%,角撑可按构造设计为钢构件或钢筋混 凝土构件。 • 3.支护的钢筋混凝土桩采用疏排布置时,在各桩中间 的空隙部位或桩背后适当布置止水桩,防止渗水和土 体从桩间流失。也可在基坑开挖过程中逐步砌筑砖拱 防渗。无论采用何种方式,其强度和构造应保证能可 靠地将土水压力传递给桩身。
• 多层锚杆支护结构是超静定问题,根据实际支护中 的实测资料可按下列假定将超静定问题简化为静定 问题进行计算: (1)各层锚杆所在点均为不动支点; (2)支护桩的下端按简支端考虑; (3)在自上至下逐层计算过程中,某一层锚固 力一旦确定,在后续的计算中保持不变。
• 如图3-12所示,对于第i层支撑(锚杆)计算如下:
• (3)多支撑结构:当基坑开挖深度较深时,可 设置多道支撑,以减少挡墙的压力。
• 一、无支撑排桩支护结构
• 无支撑排桩支护结构也亦即悬臂式桩排支 护结构(悬臂板桩的变位及土压力分布图 见图3-6),可由多种桩型组成,本节只 涉及相间或密排插入基坑底面以下一定深 度的钢筋混凝土桩,桩顶设置钢筋混凝土 锁口梁,桩体承受水平推力,锁口梁调节 各桩受力和水平位移的支护结构体系。挡 土深度视地质条件和桩径而异,一般不宜 超过6m。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)非重力式支护结构挡墙的破坏
Ⅱ非重力式支护结构的稳定性破坏 2 挡墙倾覆 3 坑底隆起 如挖土深度大,由于 卸土过多,在墙后土 重及地面荷载作用下 引起坑底隆起。
(一)非重力式支护结构挡墙的破坏
Ⅱ非重力式支护结构的稳定性破坏 4 管涌 在砂土区,当地下水 较高坑较深时,在动 水压力作用下,地下 水绕过支护墙连砂土 一同涌入基坑。
需正确的计算入土深度
(一)非重力式支护结构挡墙的破坏
Ⅰ强度破坏(非重力式) 3支护墙的平面变形过大 或弯曲破坏支护墙截面 过小、土压力估不准、 墙后增大量地面荷载或 挖土超深,需准确计算 最大弯矩值以验算截面。
(一)非重力式支护结构挡墙的破坏
Ⅱ非重力式支护结构的稳定性破坏 1 墙后土体整体滑动失稳 拉锚的长度不够、 软粘腿发生圆弧 滑动,引起支护 结构
• 包括 强度破坏
稳定性破坏。
• Ⅰ强度破坏(非重力式)
• 1 拉锚破坏或支撑压曲
• 地面荷载增加过多、
土压力过大使拉杆断裂,
或锚固失败、腰梁破坏、
内支撑受压失稳。
(一)非重力式支护结构挡墙的破坏
Ⅰ强度破坏(非重力式) 2 支护墙体底部走动支 护墙入土深度不够或挖 土过深以及水的冲刷均 可产生这种破坏。
(二) 钢筋混凝土支撑
有角撑、对撑、桁架式支撑,还有圆形、 拱形和椭圆形等形状的支撑。
圆形支撑
第二节 支护结构计算
一. 支护结构的破坏形式和计算内容 • 支护结构可分为两类:
– 重力式支护结构 – 非重力式支护结构
• 重力式包括深层搅拌水泥土桩挡墙
– 旋喷桩帷幕墙
• 非重力式包括钢板桩、钢筋混凝土预制 桩、钻孔灌注桩挡墙、地下连续墙等。
天津市的华联商厦、紫金花园、鸿吉大 厦、津汇广场等很多工程均采用地下连 续墙方法施工。
( 六) 深层搅拌水泥土桩挡墙
深层搅拌水泥土桩挡墙是用特制的进入 土深层的深层搅拌机将喷出的水泥浆固 化剂与地基土进行原位强制搅拌制成水 泥土桩,相互搭接,硬化后即形成具有 一定强度的壁状挡墙,既可挡土又可形 成隔水帷幕。
一. 挡墙的选型 (一) 钢板桩
1.槽钢钢板桩 2. 热轧锁口钢板桩 (二) 钢筋混凝土板桩 (三) 钻孔灌注桩挡墙 (四) H型钢支柱(或钢筋混凝土桩支柱) (五) 地下连续墙 (六) 深层搅拌水泥土桩挡墙 (七) 旋喷桩帷幕墙
(一) 钢板桩
1.槽钢钢板桩 由槽钢并排或正反扣搭接组成。 槽钢长6~8m,多用于深度不超过4m的 基坑。
顶部宜设一道支撑或拉锚。
2 热轧锁口钢板桩
其形式有U型、Z型、一字型、H型和组 合型。
U型
Z型
一字型
(二)钢筋混凝土板桩
该板桩截面带企口,有一定的挡水作用, 顶部设圈梁,用后不再拔除,永留地基 土中。适于3—6m基坑,但应用较少。
(三) 钻孔灌注桩挡墙
常用Φ600—1000mm,是支护结构中应用 最多的一种。宜形成排桩挡墙,顶部浇筑 钢筋混凝土圈梁。但施工难以做到相切, 挡水效果差。
二 非重力式支护结构计算
(一)支护结构承受的荷载 • 支护结构承受的荷载一般包括
– 土压力 – 水压力 – 墙后地面荷载引起的附加荷载。
二 非重力式支护结构计算
(四)H型钢支柱(钢筋混凝土桩支 柱)、木挡板支护墙
该类支护结构适用于土质较好、地下水 位较低的地区。型钢或支柱按一定间距 打入,支柱间设木挡板或其它挡土设施。
(五)地下连续墙
地下连续墙已是目前深基坑的主要支护 结构之一。在地下结构层数多的深基坑 的施工非常有利。地下连续墙常是采用 “逆筑法”的支护结构的首选。
采用深基坑随着基础埋深加大给施工带 来很多困难,尤其在城市建筑物密集地 区,施工场地的狭小,邻近建筑物、道 路和管线纵横交错,多数情况下不能放 坡开挖,需要采用支护结构,这就是本 章所要研究的问题。
应力圆与土的抗剪强度
τf
tg c
φ B
C O
c
σ
O1
σ3 σ1
支护结构的设计和施工,影响因素众多, 不少高层建筑的支护结构费用已超过工 程桩基的费用。为此,对待支护结构的 设计和施工均应采取极慎重的态度,在 保证施工安全的前提下,尽量做到经济 合理和便于施工。
第一节 支护结构的选型
• 支护结构包括挡墙和支撑(或拉锚)两 部分。
• 档墙或支撑中任何一部分的选型不当或 产生破坏(包括变形过大),都会导致 整个支护结构的失败。
• 支护结构的型式 – 放坡开挖 – 悬臂式支护结构 – 内撑式支护结构 – 拉锚式支护结构 – 土钉墙支护结构 – 环梁护壁支护结构 – 其它形式支护结构
补偿性基础,即以天然地面到建筑物基础埋置 深度之间的土体重量,来补偿一部分建筑物的 荷重,故高层基础埋深均较大。但基础埋深加 大给施工带来很多困难,尤其是在城市建筑物 密集地区,施工现场附近有建筑物、道路和地 下管线纵横交错,很多情况下不允许采用较经 济的放坡开挖,而需要在人工支护条件下进行
基坑开挖,本章即要研究这个问题。
• 支撑系统有
– 基坑内支撑 – 基坑外拉锚(顶部拉锚土层锚杆拉锚)
• 常用的有
– 钢结构支撑 – 钢筋混凝土支撑
(一) 钢结构支撑
1 钢管支撑 对撑
(一) 钢结构支撑
1 钢管支撑 角撑
钢管支撑示意图
(一) 钢结构支撑
2 型钢支撑
型钢支撑主要采用H型钢,用螺栓连接, 为工具式钢支撑,现场组装方便,可重 复使用。

( 七) 旋喷桩帷幕墙
旋喷桩帷幕墙是钻孔后,将钻杆从地基 土深处逐渐上提,同时利用插入钻杆端 部的旋转喷嘴,将水泥浆固化剂喷入地 基土中,形成水泥土桩,桩体相连形成 帷幕墙。 旋喷桩帷幕墙可用作支护结构挡墙,也 可用于挡水。
二. 支撑(拉锚)的选型
• 当基坑深度较大,悬臂挡墙的强度和变 形不能满足要求时,需增设支撑系统。
(二)重力式支护结构的破坏
• 重力式支护结构的破坏包括
– 强度破坏 – 稳定性破坏
• 其强度破坏只是水 泥土抗剪强度不足, 产生剪切破坏,为 此需验算最大剪应力 处的墙身应力。
(二)重力式支护结构的破坏
• 重力式支护结构的稳定性破坏包括:
– 1. 倾覆 – 2. 滑移 – 3. 土体整体滑动失稳 – 4. 坑底隆起 – 5. 管涌
相关文档
最新文档