第一章 电力机车主电路
交直型电力机车主电路与辅助电路
平波电抗器如何减小电流的脉动?
磁场分路电阻如何减少磁场电流脉动?
三、整流线路(续1)
调速要求:
01
在不中断主电路的情况下,尽量使牵引力变化平滑,有尽可多的级位均匀分布在整调范围内。
02
问题:
03
直流电机如何调速的?
04
四、调速方式
调速调压:在额定电压之下,改变电机电枢电压Ud实现电机调速; 弱磁调速:在端压达到额定电压后,削弱磁场进步提高速度。
01
下面将参这五个方面的内容进行详细分析。
02
主电路设计考虑的内容(续1)
交直型电力机车采用脉流牵引电机(直流电机)。
问题:
激磁方式
直流电机的激磁方式有几种?各有何种特点?
一、牵引电机的连接与激磁方式
02
特点:特性较硬,防空转性能好,但是其它性能(起动和恒功)较差;
并激(它激)
01
特点:起动力矩大、恒功性能好,有“牛马”特性,并联时负载分配较易均衡,但特性较软,防空转能力差;
QKT-18左旋到40º,TK39合,TK32合,TK31分, a1x1与o1-1,a2X2与o2-9电压相减。
U右=1040-1000=40(V)
U左=1040-7×125=165(V)
Ud=(0.9×40+ 0.9×165) /2=92.25(V) ΔUd= 0.9×165/2=56.25(V)
第一章 交直型电力机车主电路 和辅助电路
本章要点: 主电路设计考虑的主要因素 我国主要干线机车主电路 机车的牵引特性及制动特性 概念“粘着”、”“空转”、“滑行”、“辆重补偿” 主电路保护的种类与原理 机车辅助电路的结构与功能
第一节 概述
电力机车能量传递过程:
HXD1型电力机车-电气原理
Page 37
四、电气原理图说明
电气原理图电气设备代码
电气设备代码前缀” -”字母代码,依据标准DIN EN 61346 -2,具体电气设备清单见ZL功能区,举例如下: A 装配、子装配 C 电容 E 杂项,如照明装置、加热装置 K 传感器,接触器 L 互感器 M 电机 S 开关,转换器 T 变压器 X 端子、插头、插座 „„
一、主电路原理
高压隔离开关
网侧主要部件介绍
额定电压: 25 kV 额定电流:400 A
短时耐受电流:8 kA,1s
机械寿命:20000次 驱动方式:手动
一、主电路原理
网侧主要部件介绍
高压电缆总成
形式:单T型
电缆截面积:95mm2 额定电压:25kV 正常工作电压:17.5 kV~31 kV
一、主电路原理
主传动系统
网侧受流原理
升单个受电弓的 网侧电路原理图
升双受电弓的 网侧电路原理图
一、主电ቤተ መጻሕፍቲ ባይዱ原理
网侧检测原理
网侧电路中的高压电压互感器、原边电流互感器和回流电流互感器 等测量器件,用于向机车控制系统、牵引控制单元和能耗表等提供网侧 电压和电流信号。能耗表用于显示机车从电网取得的电能和机车再生制 动向电网反馈的电能。
一、主电路原理
网侧主要部件介绍
高压电压互感器
形式:干式 一次额定电压:25kV 额定频率:50 Hz/60 Hz
二次额定电压:150V
准确级次:C1. 05级 额定输出容量:2×10VA 爬电距离:875mm
一、主电路原理
主断路器(含接地开关)
网侧主要部件介绍
主断路器技术参数
额定电压:25kV
主变压器为卧式变压器,主变压器和谐振电抗器安装在变压器油箱内,采用油循环强迫 风冷。主变压器设有压力释放阀。
交直交型电力机车电气线路—交直交型电力机车主线路
网侧电路
1 网侧电路的组成 2 网侧电路的电流路径 3 网侧电路主要高压设备的功能 4 网侧电路的保护
1 网侧电路的组成
HXD3型电力机车网侧电路由受电弓AP1、AP2, 高压隔离开关QS1、QS2,高压电流互感器TA1,高 压电压互感器TV1,主断路器QF1,高压接地开关 QS10,避雷器F1,主变压器原边绕组AX,低压电流 互感器TA2 和回流装置EB1~6 等组成。
ቤተ መጻሕፍቲ ባይዱ
3 牵引变压器
牵引变压器主要电气参数:
(1)原边绕组
(3)辅助绕组
额定容量/kVA :8 900
额定容量/kVA :600
额定电压/kV :25
额定电压/V:470
额定电流/A :356
额定电流/A :2×638
(2)牵引绕组
短路阻抗 :5%
额定输出容量//kVA : 6×1 383 (4)谐振电抗器
0 0
6N 5N
4N 3N
2N
1N
20
40
7N 8N
9N
13N
10N
11N
12N
60
80
100
120
n 电力机车特性及其特性曲线
2. HXD3电力机车制动特性控制曲线(23t轴重)
600
500
400
300
200
100
0
0
20
40
60
80
100
120
n 电路分析
电路(课件)、部件(位置)图片
Pantograph
1 主电路结构
2 网侧电路
网侧电路由受电弓1AP、2AP,车顶高压隔离开关1QS、 2QS,主断路器QF(带接地装置)、避雷器1F、高压电压互感 器TV、原边电流互感器1TA、回流电流互感器2TA、接地装置 1E~6E和能耗表等组成,如图6.2所示。
铁路机车—电力机车的电气设备及其电路
任务3 电力机车
一 电力机车的结构组成及特点 二 电力机车的电气设备及电路 三 电力机车的制动系统组成
任务3 电力机车
电力机车的电气设备组成
电气设备包括:电气设备及连接导线。电气设备主要有牵引电机、 牵引变压器、整流硅机组及各种电器等。
电路分为:主电路、辅助电路及控制电路。
任务3 电力机车
电力机车的电气设备组成——主电路
该电路将产生机车牵引力和制动力的各种电气设备连成一个系统, 实现机车的功率传输。
电气设备包括:受电弓、主断路器、主变压器、牵引变流器、牵引 电机等。
任务3 电力机车
电力机车的电气设备组成——主电路
1.受电弓 机车顶部装有两套单臂受电弓,受电弓紧压接触网导线滑行摩擦从 电网上取组成——主电路
2.主断路器 是用来接通或断开电力机车高压电路,当主电路发生短路、接地或 整流调压电路、牵引电动机等设备发生故障时,自动切断机车电源。
任务3 电力机车
电力机车的电气设备组成——主电路
3.主变压器 用来把接触网上取得的25kV高压电变换为各种类型低压电,以满足 机车上牵引电机和各种辅助电气的工作需要。
5.牵引电机 安装在机车转向架上,通过传动装置与轮对相连。机车在牵引状态 时,牵引电机将电能转换成机械能,驱动机车运行。当机车在电气制动 状态时,牵引电机将列车的机械能转化为电能,产生列车的制动力。
任务3 电力机车
电力机车的电气设备组成——辅助电路
电源来自主变压器的辅助绕组,通过劈相机将单相交流电转变成三 相交流电后,供给辅机设备,包括:辅助滤波柜、电器柜、辅助机组、 空调及采暖设备、蓄电池充电机、库用插座等。
任务3 电力机车
电力机车的电气设备组成——控制电路
HXD1电力机车主电路
HXD1电力机车主电路图1 hxdl电力机车主电路原理图每台hxdl电力机车由两节机车构成,每节机车有一套完整的电传动系统。
该系统由一台拥有1个原边绕组、4个牵引绕组和两个2次谐振电抗器的主变压器通过2个pwn四象限变流器(4qc)向两个独立的中间电压直流环节供电。
每台转向架上的2个三相感应电动机作为一组负载,由连接在两个中间直流环节中的一个脉宽调制逆变器供电,主电路原理图如图1所示。
电力机车中牵引传动系统的等效电路如图2所示。
图2牵引传动系统等效电路图图2中,V s是牵引变电所大系统折算到机车变压器副边的电压值,是理想电压源,Z s是牵引变电所大系统到机车接入端口折算到变压器副边的阻抗,与系统短路容量等有关;V in是变压器原边折算到副边的电压值,Z in是变压器(含pwn交流电抗器)折算到变压副边的阻抗;V ac是pwm四象限变流器输入端的电压,i de是牵引电机逆变器直流侧的等效电流值2网侧电路网侧电路原理如图2所示,其主要功能是由网侧获取电能,属于25 kV电路。
每节机车网侧电路由一台受电弓、一台带高压接地装置的主断路器、一台避雷器、一台高压电压传感器、一台高压电流传感器、一台高压隔离开关、主变压器原边、回流侧互感器和接地碳刷等组成。
两节机车间网侧电路通过高压连接器相连。
髙伽吵f吐辭砸隔离开关贞空主变床器主变斥器2.1原边接地保护检测原边电流和回流电流的差值,当大于整定值时,判定为原边接地,主断路器进行分断保护。
2.2主变压器次边和主变流器短路保护如果变压器二次线圈或主变流器发生短路,则在检测到短路的瞬间断开主断。
由于变压器的高短路阻抗,从而限制了短路电流。
2.3硬短路保护电路中间直流电路中装有短路保护装置。
在出现贯穿短路时,主断路器将分断网侧电流;TCU将封锁四象限和PW逆变器的触发脉冲,并触发硬短路保护装置,用来吸收短路回路释放的能量。
2.31接地保护电路接地保护电路由跨接在中间电路的两个串联电阻和一个接地信号检测器组成。
SS4G 电力机车电路 (5)
第一章SS4G 电力机车电路第一节概述电力机车电路通常由控制电路、辅助电路、主电路、照明电路和电子控制电路组成。
控制电路是通过司机控制台上各按键开关和司机控制器手柄位置操纵而形成的电路。
辅助电路是有电源电路、负载电路和保护电路构成,为机车控制和主电路工作起辅助作用。
主电路是指牵引电动机及与其相关的电气设备连接而构成的电路,亦称牵引动力电路。
控制电路是通过司机控制台上各按键开关和司机控制器手柄位置操纵,使机车按照司机的意图运行,保证行车安全。
一、对控制电路的要求1、能改变机车运行状态,包括工况和方向的转换;2、能对牵引力、制动力和速度进行调节;3、能对各辅助机组的起动、运行和停止进行准确控制;4、能保证主电路、辅助电路有效有序的工作。
5、能保证各电器按一定次序动作。
6、能显示一些故障现象。
7、在发生某一故障时能进行切除或采取相应措施维持机车运行。
8、重联运行时既能单独操纵,又能重联操纵。
9、具有一定的安全保护装置,确保人身和行车安全。
10、电气制动和空气制动应具有一定安全防护装置。
11、操纵简单、安全可靠、经济适用、维修方便。
二、电力机车控制方法电力机车的控制有直接控制和间接控制两种;电压低、功率小的电器电路采用直接控制,即用手动方法直接控制。
高电压、大功率电器电路采用间接控制,即通过按键开关和司机控制器控制低压电器,再通过低压电器去控制高压电器电路。
三、电力机车电路通用符号及说明1、各电气设备在电气线路中应标明相应的设备代号。
2、不同导线在电气线路中应标明导线代号。
3、常开联锁(正联锁)、常闭联锁(反联锁)采用“上开下闭、左开右闭”的标注方法。
4、某些位置开关(联锁)不完全按“3”的方法标注,应根据实际分析。
5、凸轮控制器或鼓形控制器的触头闭合次序展开为一个平面的触头闭合电路图。
6、比较复杂的电器在电路中不易标出工作次序,一般采用附加工作位置图表。
7、固定位置的电气是:司机控制器在零位,位置转换开关在机车1端向前、牵引位;各按键开关在水平断开位;空气断路器在断开位;各闸刀开关在运行位;各保护自动开关在断开位。
电力机车控制-电力机车电气线路概述
二、辅助电路 辅助电路是指将辅助电机和辅助设备及其相关的电气设备连接而 成的线路。辅助电路的作用是保证主电路设备正常工作,改善司乘 人员工作条件。 辅助电路主要由供电线路、负载线路、保护线路三部分组成。 供电线路由牵引变压器辅助绕组提供单相380 V和220 V交流电源, 其中单相380 V交流电通过分相设备分成三相380 V交流电供给各辅 助机组。 负载线路包括三相负载和单相负载。三相负载主要有空气压缩机 电动机、通风机电动机、油泵电动机。单相负载主要有加热、取暖设 备及空调。 保护线路主要是在辅助系统发生过流、接地、过电压、欠电压和 单机过载故障时,使相应电器动作,从而达到及时保护的目的。
(1)切断机车的总电源。 (2)切断故障电路的电源。 (3)仅给司乘人员以某种信号引起注意。 (4)在故障发生后自动予以调整。
一、过电流保护 过电流是指电气设备过载、设备及电路短路引起的电流剧增。过 电流容易造成电气设备的绝缘老化,设备烧损,严重时引起火灾。过 流保护包括过载保护和短路保护两种。机车上通常采用断路器、自动 开关和熔断器进行过电流保护。
交-直型电力机车采用接地继电器进 行保护,如图2所示。正常运行时,接地 继电器J中不通过电流而处于释放状态。 当主电路中任一点接地时,直流电源E通 过接地继电器J与接地点构成回路,使接 地继电器J动作。
图2 接地保护装置
电气线路常用的联锁
机车控制电路必须设置机械联锁和电气联锁,以满足主、辅线 路对控制电路的要求,如电器按一定的次序动作,司机按一定的顺 序操作等。
三、零电压和欠电压保护
零电压和欠电压的产生是由于接触网的电压突然失压或过 低。当接触网电压消失时,机车因无电要停止运行,如果网压 又突然恢复,会造成很大的电气和机械冲击,这是不允许的。 如果接触网电压过低,机车就不能以正常功率运行,辅助机组 不能正常工作,再生制动时很容易发生逆变失控。
SS4G与SS9电力机车主电路分析
SS9电力机车是:交流供电—直(脉)流牵引电动机驱动的 交直型电力机车。
AP QF
整
牵
流
引
柜
变
V
压Hale Waihona Puke 器TM单相工频25KV 交流电
平
波
电
M
抗
_
器
1、调压方式:相控调压(无级调压) 2、磁场削弱方式:晶闸管分路无极磁场削弱
满磁场削弱系数 0.87
最深削弱磁场系数 0.49
3、电气制动方式:电阻制动
当机车速度处于(81-170)km/h时,机车处于全电阻制动状态 当机车速度处于(15-81)km/h时,机车处于加馈电阻制动状态
4、检测及保护方式
交流电量的检测一般采用互感器,直流电量的检测一般采用传感器。 机车保护主要有过流,接地,欠压及其他特殊保护。
5、供电方式及牵引电动机型式、连接方式
4、检测及保护方式
交流电量的检测一般采用互感器,直流电量的检测一般采用传感器。 机车保护主要有过流,接地,欠压及其他特殊保护。
5、供电方式及牵引电动机型式、连接方式
轴式:2(B0-B0)
半集中供电(前后转向架独立供电)
牵引电动机为串励牵引电机,一节 车一号转向架牵引电机1M、2M并 联由700V供电,二号转向架牵引
AP QF
整
牵
流
引
柜
变
V
压
器
TM
单相工频25KV 交流电
平
波
电
M
抗
_
器
1、调压方式:相控调压(无级调压) 2、磁场削弱方式:电阻分路法削磁
固定削磁系数0.96 一级削磁系数0.70 二级削磁系数0.54 三级削磁系数0.45
交直型电力机车电气线路—主电路保护电路
2 主接地保护电路
主牵引回路正常时,由于只有1 点接地,接地保护电路 中流过的电流为零,接地信号检测传感器无信号输出。
当主电路某一点接地时则形成回路,接地检测回路有故 障电流流过,传感器输出电流信号,使保护装置动作,其动 作保护值为10A。保护发生时,四象限脉冲整流器和逆变器 的门极均被封锁,输入回路中的工作接触器断开,同时向微 机控制系统发出跳主断信号。
此时司机可将故障支路的变流器切除,机车还剩5/6 的 牵引动力,继续维持机车运,回段后再作处理。若确认只有 一点接地,也可将控制电器柜上对应的接地开关打至“中立 位”,继续维持机车运行,回段后再作处理。
3 牵引电动机过流保护
在每组牵引变流器的输出回路中,设有输出电流互感 器CTU、CTW,对牵引电机过载及牵引电机三相不平衡起控 制和监视保护作用。牵引电机过载保护的动作值为1400 A 。
5 库内动车
库内电源通过单相插座送到二、五位牵引电动机的牵 引变流器环节,进行库内动车作业。机车共设置2 个主电 路入库插座和2 个主电路入库转换开关,方便库内动车需 要。当需要用牵引电动机M2 动车时,在主电路入库插座 XSM1 处接入库内动车电源引线,转换主电路入库转换开关 QS3,再闭合地面电源,通过操纵司机控制器机车便可以向 前、后移动;当需要用牵引电动机M5 动车时,在主电路入 库插座XSM2 处接入库内动车电源引线,转换主电路入库转 换开关QS4,再闭合地面电源,通过操纵司机控制器机车便 可以向前、后移动。
当保护发生时,四象限脉冲整流器和逆变器的门极均 被封锁,输入回路中的工作接触器断开,同时主变流器控 制单元向微机柜TCMS 发出CI 过流信息,实施跳主断。
4 牵引变流器的检修安全联锁保护
在检查或操作牵引变流器之前,须断开真空主断路 器,降下受电弓,然后闭合主变流器的试验开关,通过 司机台上的微机显示屏确认设备内的电容器已放电完毕 (小于36V)或观察故障显示灯中的“预备”灯灭后,才 能进行检查操作,否则中间回路的支撑电容上有很高的 电压,未及时放完会危及人身安全。
电力机车工作原理
sn
D
0
C
sN nN
?几个关键点 : ?起动点 :A ?最大转矩点 :B ?额定工作点 :C
sm nm
B
10
A TN Tst
Tem Tmax
第一章 电力机车工作原理 ?电动(0<S<1) ,发电(s<0),制动(s>1)三种运行状态
第一章 电力机车工作原理
人为地改变电动机地任一个参数(如U1、f1、 p、定子回路电阻或电抗、转子回路电阻或 电抗的机械特性称为人为机械特性。
? 第一节 直直型电力机车工作原理
第一章 电力机车工作原理
? 一、直-直型电力机车工作原理
第一章 电力机车工作原理
? 直流电力机车的特点: ? (1)结构简单,造价低,经济性好。 ? (2)牵引性能好,调速方便。 ? (3)控制简单,运行可靠。 ? (4)供电效率低。 ? (5)基建投资大。 ? (6)效率低,有级调速。
第一章 电力机车工作原理
异步 电 动 机 的 矩 速 特 性
第一章 电力机车工作原理
? 运行特性: ? 要求:恒转距启动,恒功率运行。 ? 图中,额定功率以下采用恒磁通控制,额定
功率以上采用恒功率控制。
第一章 电力机车工作原理
? 2、直流电力机车的基本特性: ? (1)速度特性 ? 定义:机车运行速度与牵引电动机电枢电流的
第一章 电力机车工作原理
? 系统的工作特点: ? (1)功率/体积比大。 ? (2)交流电机维修量小。 ? (3)机车具有优良的牵引和制动运行性
能。 ? (4)简化了主电路。 ? (5)减少了对信号和通信设备的干扰。
第一章 电力机车工作原理
? 三、电力机车的硬件配置 ? 1、车顶高压设备: ? 功能:通过弓网接触,使机车获得电能。 ? 2、车内变流设备: ? 功能;实现电能形式的转换,以满足调速和
HXD1电力机车主电路
HXD1电力机车主电路图1 hxd1电力机车主电路原理图每台hxd1电力机车由两节机车构成,每节机车有一套完整的电传动系统。
该系统由一台拥有1个原边绕组、4个牵引绕组和两个2次谐振电抗器的主变压器通过2个pwm四象限变流器(4qc)向两个独立的中间电压直流环节供电。
每台转向架上的2个三相感应电动机作为一组负载,由连接在两个中间直流环节中的一个脉宽调制逆变器供电,主电路原理图如图1所示。
电力机车中牵引传动系统的等效电路如图2所示。
图2 牵引传动系统等效电路图图2中,v s是牵引变电所大系统折算到机车变压器副边的电压值,是理想电压源,z是牵引变电所大系统到机车接入端口折算到变压器副边的阻抗,与系统短路容s量等有关;v in是变压器原边折算到副边的电压值,z in是变压器(含pwm交流电抗器)折算到变压副边的阻抗;v ac是pwm四象限变流器输入端的电压,i dc是牵引电机逆变器直流侧的等效电流值2 网侧电路网侧电路原理如图2 所示, 其主要功能是由网侧获取电能, 属于25 kV 电路。
每节机车网侧电路由一台受电弓、一台带高压接地装置的主断路器、一台避雷器、一台高压电压传感器、一台高压电流传感器、一台高压隔离开关、主变压器原边、回流侧互感器和接地碳刷等组成。
两节机车间网侧电路通过高压连接器相连。
2.1 原边接地保护检测原边电流和回流电流的差值, 当大于整定值时,判定为原边接地, 主断路器进行分断保护。
2.2 主变压器次边和主变流器短路保护如果变压器二次线圈或主变流器发生短路, 则在检测到短路的瞬间断开主断。
由于变压器的高短路阻抗, 从而限制了短路电流。
2.3 硬短路保护电路中间直流电路中装有短路保护装置。
在出现贯穿短路时, 主断路器将分断网侧电流; TCU 将封锁四象限和PWM逆变器的触发脉冲, 并触发硬短路保护装置, 用来吸收短路回路释放的能量。
2.31 接地保护电路接地保护电路由跨接在中间电路的两个串联电阻和一个接地信号检测器组成。
电力机车主电路的发展概述(1)
电力机车主电路的发展概述电力机车(electric locomotive)本身不带原动机、靠接受沿线接触网送来的电流作为能源、由牵引电动机驱动车轮的机车。
所需的电能,可以由多种形式(火力、水力、风力、核能等)转换而来。
电力机车具有功率大、热效率高、速度快、过载能力强和运行可靠边等主要优点,而且不污染环境,特别适用于运输繁忙的铁路干线和隧道多、坡度大的山区铁路。
发展概况【top】最早造出第一台标准轨距电力机车的是苏格兰人R·戴维森,时间是1842年,由40组蓄电池供电,但没有实用价值。
1879年5月,德国人W·VON西门子设计制造了一台能拉乘坐18人的三辆敞开式“客车”的电力机车,它由外部150V直流发电机通过第三轨供电,这是电力机车首次成功的试验。
1881年,法国在巴黎展出了第一条由架空导线供电的电车线路,这就为提高电压,采用大功率牵引电动机创造条件。
1895年,美国在巴尔的摩—俄亥俄间5. 6 km长的遂道区段修建了直流电气化铁路,在该区段上运行的干线电力机车自重97 t,采用675 V直流电,功率为1 070 kW。
1903年德国的三相交流电力机车创造了每小时210km 的高速记录。
中国最早使用电力机车在1914年,是抚顺煤矿使用的1 500 V直流电力机车。
1958年中国成功地生产出第一台电力机车,从采用引燃管整流器到硅整流器,机车性能不断改进和提高,到1976年制成韶山型(SS1型)131号时已基本定型。
截止到1989年停止生产,SS1型电力机车总共制造出厂926台,成为中国电气铁路干线的首批主型机车。
1966年SS2型机车制成。
1978年研制成功的SS3型机车,不仅改善了牵引性能,还把机车的小时功率从4 200kW提高到4 800kW,载止到1997年底,共生产了987台,成为中国第二种主型电力机车。
1985年又研制成功了SS4型8轴货运电力机车,它是国产电力机车中功率最大的一种(6 400kW),已成为中国重载货运的主型机车。
SS3-4000教案
SS3-4000系电力机车电气线路第一章电路分类电力机车电气线路的定义:就是将各电气设备在电方面连接起来构成一个整体,用以实现一定的功能。
SS3-4000系电力机车上各种电机、电器设备按其功能和作用、电路电压等级,分别组成三个独立的电路系统,称为主线路、辅助线路和控制线路(含电子电路)。
三个电路在电方面基本相互隔离,而通过电—磁、电—空、电—机械传动方式相互联系起来,以达到自动或间接控制协调工作的目的,保证司机能正常地操纵机车运行。
一、主线路:1.定义:是指将牵引电动机及与其相关的电气设备用导线(或铜排)连接而成的线路。
注:该线路的电压为接触网电压与牵引电动机电压,电流为变压器绕组电流与牵引电动机电流。
2.组成:主要由受电弓、主断路器、高压电流互感器、主变压器、硅整流装置、牵引电机、高压电器柜、平波电抗器、制动电阻柜及电路保护装置等组成。
3.特点:高电压、大电流(又称高压电路)。
4.作用:产生机车牵引力和制动力(称动力电路)。
5.分类:按电压等级分:网侧(25KV)高压电路、调压整流电路和牵引制动电路三级。
二、辅助电路:1.定义:是指将辅助电动机和辅助设备及与其相关的电气设备连接而成的线路。
2.组成:主要由供给三相交流电的劈相机和各辅助机械—牵引通风机、空气压缩机、制动风机、油泵及司机室热风机、电热玻璃、自用电插座和各相应的各电磁接触器等组成。
(因为是专向各辅助机械供电的电路,故称辅助电路。
)3.分类:按电压等级分一般为交流380V、220V或直流几百伏。
三、控制电路1.定义:是指将司机控制器、低压电器及主电路、辅助电路中的电磁线圈等在电方面连接起来所组成的线路。
通过控制线路可以使主线路和辅助线路中的电器协调动作。
2.特点:一般采用低压直流电源,电压值为50~110V(又称低压线路)。
我国生产的电力机车其控制线路的电压为110V。
根据机车的运行情况,对机车的电气线路提出一定要求,机车主线路本身应满足以下几方面的要求:1.由于主线路是高压线路,因此在升弓带电情况下,要保证工作人员与高压带电部分隔离。
HXD1型电力机车-电气原理ppt课件
一、主电路原理
➢ 高压电压互感器
网侧主要部件介绍
形式:干式 一次额定电压:25kV 额定频率:50 Hz/60 Hz 二次额定电压:150V 准确级次:C1. 05级 额定输出容量:2×10VA 爬电距离:875mm
Page 16
一、主电路原理
➢主断路器(含接地开关)
BVAC.N99D主断路器 BTE25.04D高压接地开关
额定效率:≥96% 谐振电抗器电感值:2×0.27 mH
主变压器为卧式变压器,主变压器和谐振电抗器安装在变压器油箱内,采用油循环强迫 风冷。主变压器设有压力释放阀。
第Pa1g2e页 12
一、主电路原理
➢ 牵引变流器柜
Page 13
主传动系统-主要部件介绍
牵引变流器主要参数
额定输入电压:AC 970/50Hz
Page 9
一、主电路原理
➢ 主电路介绍 网压通过网侧回路的高压部件输入主变压器; 1)主变压器通过两个4象限斩波器(4QS)向两个独立的中间电压直流 环节供电; 2)一个脉宽调制逆变器向一个牵引电机供电,实现轴控; 3)四象限斩波器和脉宽调制逆变器采用水冷IGBT模块,模块等级为 3.3kV。 4)中间直流电路环节还连接有谐波吸收电路,过压保护电路、接地 检测电路; 5)主变流器可通过调节cosφ来实现对电抗负载的补偿,以提高功率 因素; 6)具有库内动车功能。
Page 3
一、主电路原理
➢主传动系统原理
主传动系统
主电路由网侧电路、主变压器、牵引变流器和牵引电机组成。
Page 4
一、主电路原理
➢ 网侧电路原理
爱爱爱
Page 5
主传动系统
主要功能:从网侧获取电 能。每节机车网侧电路由1台 受电弓、1台主断路器(带高 压接地装置)、1台避雷器、1 台高压电压互感器、1台高压 电流互感器、1台高压隔离开 关、牵引变压器原边、接地回 流互感器和接地碳刷等组成。 两节机车间的网侧电路通过车 顶高压连接器相连。
HXD3型电力机车电路分析
HXD3型电力机车电路分析摘要随着交流技术,微机控制技术的发展,交流传动系统的研究和开发已引起世界各国的高度重视。
交流传动系统无论是在性能指标,装置体积,设备维护还是节能乃至环保等均体现出巨大优势。
HXD3型电力机车主传动系统和副主传动系统均采用了交流传动技术和微机网络控制技术,整个电气系统的设计起点高,技术领先的原则,并充分考虑大型货运电力机车的实际需要,采用先进,成熟,可靠的技术,按照标准化,系列化,模块化,信息化的总体要求,进行全方位设计的。
本文对HXD3型电力机车电气系统的组成做了简要的阐述,对机车整体的电路部分按照主电路,辅助电路,控制电路分类做了系统的分析,并对其中关键电气部件做了说明。
关键词:HXD3; 电路分析;电力机车;交流传动技术HXD3型电力机车电路图目录摘要 ....................................................................................................................................... - 0 -第一章绪论 ........................................................................................................................... - 3 -1.1电力机车的概念 ......................................................................................................... - 3 -1.2历史沿革..................................................................................................................... - 4 -1.3电力机车的类型 ......................................................................................................... - 4 -1.4选题意义..................................................................................................................... - 5 -第二章HXD3电力机车电气系统的组成 ............................................................................ - 6 -2.1电气系统的设计概念 ................................................................................................. - 6 -2.2电气系统的组成 ......................................................................................................... - 6 -2.3HXD3电力机车的电气线路 ........................................................................................ - 7 -2.3.1主电路及其部件 ...................................................................................................... - 8 -(1)网侧电路................................................................................................................... - 9 -(2)主变压器................................................................................................................. - 10 -(3)牵引变流器和牵引电动机电路............................................................................. - 10 -(4)保护电路................................................................................................................. - 11 -2.3.2辅助电路................................................................................................................ - 11 -(1)三相辅助电路......................................................................................................... - 11 -(2)辅助变流器............................................................................................................. - 12 -(3)辅助变流器供电电路............................................................................................. - 13 -(4)辅助电动机电路..................................................................................................... - 13 -(5)辅助电动机电路的保护系统................................................................................. - 13 -2.3.3控制电路................................................................................................................ - 15 -(1)控制电源电路(DC110V电源装置)................................................................... - 15 -(2)DC110V电源装置电气系统构成........................................................................... - 16 -(3)电源输入电路......................................................................................................... - 17 -(4)DC110V输出回路................................................................................................... - 18 -(5)控制电路................................................................................................................. - 19 -(6)DC110V电源装置控制系统................................................................................... - 20 -HXD3型电力机车电路图分析(7)司机指令与信息显示电路..................................................................................... - 22 -(8)机车逻辑控制和保护电路..................................................................................... - 23 -(9)辅助变流器控制电路............................................................................................. - 23 -(10)牵引变流器控制电路........................................................................................... - 24 -(11)机车照明电路和辅助设备控制........................................................................... - 24 -结论 ................................................................................................................................. - 25 -致谢 ................................................................................................................................. - 26 -参考文献 ......................................................................................................................... - 27 -HXD3型电力机车电路图第一章绪论1.1电力机车的概念英文名称:Electric locomotives电力机车是指从外界撷取电力作为能源驱动的铁路机车,电源包括架空电缆、第三轨、电池等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U 2Id
4 3 4
2 2 U2 P U d Id 2
1 co s 1 Id 2
P S
2 3 C O S
( 4 3
ud ud 0
3 4
1 4
co s
• 1.2基于调压开关结构的主电路
• 5 测量系统——直流电流和电压的测量均采 用霍尔传感器,交流电流和电压的测量采用交 流互感器,使高压电路与测量控制系统隔离, 以利于司机安全,并且使控制、测量、保护一 体化,同时提高了控制精度; • 6 保护系统——机车采用双接地保护,每 一台转向架电气回路单元各接一台主接地继电 器,以利于查找接地故障。
1
从上两个式看出基波电流与电压的相位移为零,即 cos 1 =1
P U 2 I 1 co s 1 U 2 I 1
S U 2I U 2Id
P S I1 Id 0 .9
• 二、全控桥式整流整流电路的功率因数: i波形付氏展开式
i 4
I d [sin ( w t )
• 三、8G型机车主电路 • 前苏联生产,87到90年共进100台,现属太 原北机务段(易货货易) • 调压开关式主电路
• 1.3 相控结构式主电路 • 采用相控式主电路与TK式主电路相比有以 下优点:
①平滑调压,无力矩冲击,较好利用粘着力,起动 牵引力上升10%; ②范围内的牵引力和速度的任意调节,以致实现自 动控制; ③调压调速的快速性,坡道地区,节能20~30%; ④取消笨重的TK设备,无触点切换,减少电磁波对 人体的危害。
( )
1 2
(1 co s )
• 四、两段控桥式整流整流电路的功率因数:
I1 1
0
i1 d w t
2
1
U1 KT
[ (
0
Id 2KT
) dw t
2
(
Id KT
)dw t
Id KT
4 3 4
S U 1 I1
Id
4 3 4
4 牵引电动机供电方式——采用转向架独立供电方 式,即每台转向架有三台并联的牵引电动机,由一 组整流器供电。优点是当一台转向架的整流电路故 障时,可保持1/2的牵引能力,实现机车故障运行; 前后两个转向架可进行各架轴重转移电气补偿,即 对前转向架减荷后转向架增荷,以充分利用粘着, 发挥最大牵引能力;实现以转向架供电为基础的电 气系统单元化供电控制系统,装置简单。
1 3
sin 3( w t ) ]
P U 2 I 1 co s 1
I 1 0 .9 I d
co s 1 co s
I 1 co s 1 Id 0 .9 co s
S U 2I
P S
U d U d 0 co s
0 .9
Ud U d0
整流调压电路
D1 u/4 u/4 D2 D3 T2 T4 T5 T1 T3
u/2 T6
D4
• 三、8K型机车主电路 西欧50HZ集团进口(法国为主),运行 在大秦线。 • 整流调压电路
T11
T13
P.C T12 T14
M1
T21 D23
M2
Rsh T221 D241 T223 M2 T243 M1
Z
电路为中抽式不可控整流电路,Z 为整流硅,G为过滤硅, a1x1(a2x2)固定绕组Ua=1040V。 1O1(9O2)为可调绕组,: Ur=8*125=1000V(8段组成)。 两绕组反接时:Uo=Ua-Ur 见 (b)图 正接时:Uo=Ua+Ur 见(c) 图
o1 26反
DC 1~o2
DC
反接图
26正
o2
DC 9~o2
x1 DC
a1
正接图
级数
具体调压原理为下: 闭合开关 绕组联接 输出电压
波形
1.接地保护电路
N3
N2 -
300
88
Ud
DC110v
+ N1
二、SS3型机车主电路 吸取SS2失败的经验,采用过渡型主 电路,即主变压器次边同时采用调压开关 和可控硅调压技术,具体即由调压开关实 现八段调压,每段内再由SCR平滑调压 。
• 不可控整流:高压侧,低压侧(调压开关) • 可控整流:无级调速,二段半控桥,三段不等分 桥 • 主电路分为原边电路,次边电路,电机负载回路, 电气制动电路和保护电路。 • 现在均为低压侧调压,故原边电路较为简单,通 常为: 受电弓 主回路器 电流互感器(电压互感器) 原边绕组 接地 次边:重点讨论整流电路。
• 一、两段半控桥调压整流原理 在调压范围在的情况下,为了改善调压整 流电路的功率系数,通常采用多段桥电路. 二、三、四段最为常见,下图为两段半控 桥原理电路。
T1
D1
• 第一段: • 第二段:
T2
D2
T3
Ud
D3 D4
T4
• 两段波形的关键是:RM2工作时要维持 RM1满开放。 • 目前采用两段相控调压的主电路的车型有: SS5、SS6、SS7、6G、8K。
二、SS4型机车主电路
• 主电路特点: 1、主传动形式: 采用传统交直传动形式,串励式脉流牵引电动 机,具有较成熟的经验,控制系统较简单。 2、牵引供电方式: 采用一台转向架两台牵引电机并联,由一台主 整流器供电,即“转向架独立供电方式”具有灵 活性:一个整流器故障其它可运行。
3、整流调压电路: 初期主电路,采用了不等分经济四段桥半控式 整流调压电路,比传统的四段控制半控桥,节约 了一半的二极管,晶闸管,并可减少主变压器抽 头,简化变压器结构,但必须采用较复杂的开关 式控制电路。为了简化控制系统,避免开关式控 制电路带来的操作过电压,后期生产的采用了三 段不等分半控整流调压电路。与经济四段桥比较, 尽管功率因数较低,但提高了系统的可靠性。 4、电制动方式: 采用传统电阻制动方式,每一节车四台牵引电 机主极绕组串联,由一台励磁半控桥整流供电。 两级电阻制动,在34Km/h自动切换。
• 三、半控桥式整流整流电路的功率因数:
求S:
I 1
Id dw t
2
1
I d ( ) I d
2
1
( )
S U 2I U 2Id
1
( )
P S
2 (1 co s )
( )
Ud U d0
2 2
Ud U d0
第一章 电力机车主电路 本章首先介绍决定主电路形式的主要 五个因素。接着以典型机车为例全面分 析国内现有机车主电路的结构,原理及 特点。
• 1.1概述
主电路的核心是完成功率传递,即能 量转换(电—机)首先确定的是能量形式, 电能:直,交(单,三), 电机:直,交 解决以下五个方面内容
• 一、调速方式: 控制的主要内容,由电机学知:
一、SS1型机车主电路 调压整流电路 重点解决增加调压级数和减少变压 器抽头的矛盾。措施是利用固定绕组和 可调绕组的正反接及其波不对称过滤方 法。
a1
x1
1 2 3 4
31 32 33 34 35 38
8
o1
47
o2 16
43 48 46
12 11 10 9
42 41 40
x2
a2
39
G
26反
26反
a1
绕组电压分配: a1x1=1110V x1 b1b5=4*277.5= 1110V
U =277.5=1/8U
10 b1 b2 2 4 b3 b4 b5 6 5 7 8 3
1 9 T1 D3 D1
T2
D4
D2
1、调压过程: 第一段: 第二段: 第三段: 第四段: 第五段: 第六段: 第七段: 第八段:
二、主电路的构成 ㈠ 网侧电路
网侧电路见图。其主要功能是由接触网取得电能,因而属于25kV 电路。网侧电路又称高压电路,在主变压器高压绕组AX的A侧为高压部分, 主要设备有受电弓1~2AP、高压隔离开关17QS、18QS、真空断路器4QF、 高压电压互感器6TV、高压电流互感器7TA、避雷器5F、主变压器的高压 绕组AX。 低压部分有:电流互感器9TA、网压表103PV、104PV、电度表105PJ、 自动开关102QA、接地碳刷110E~160E及变压器100TV。 网侧电流从接触网流入升起的受电弓,经主断路器4QF、高压隔离 开关17QS(或18QS)、主变压器的高压绕组(A-X)进入车体,通过车体与 转向架的软连线、接地电刷110E~160E、轮对、钢轨,返回变电所。高压 电压互感器6TV接在主断路器主触头之前,在其二次侧通过保护用自动开 关102QA,接有安装于司机室内的网压表103PV、104PV,电度表105PJ 的电压线圈。升起受电弓,• 可判断接触网是否有电。在接地端X处,接有 就 交流电流互感器9TA(300A/5A),• 电度表提供电流信号。 为 在主断隔离开关与主阀之间接有避雷器5F,用于抑制操作过电压及 运行时的雷击过电压。高压电流互感器7TA是原边电流的测量装置,其作 用为原边的过流保护。高压隔离开关17QS、18QS用于隔离故障受电弓。
实际电路复合触头由两个触头并联工作,以 提高可靠性。加+的编号同时工作。两个触 头有两种接法,如下图:
闭口桥
2 12
开口桥
2 12
• 2.开关转换过程 • 通过控制可控硅,使TK转到无流转换。 • (1)12段: 先闭TK3,不可控先导通,旁路了 TK2,使TK2无流满开(有释能回路),封锁T3、 4的情况下,闭合TK4. • (2)23段:转换时条件是SCR满开放,故流经 TK3的电流几乎为零,等于无流,经由TK4流过。 闭合TK5,不可控先导通,旁路TK4,断TK4无 流。封锁SCR,闭合TK6。无流转换 • (3)其他段转换类似。