太阳能电池基础知识
太阳能发电基础知识
太阳能发电基础知识太阳能发电是指通过太阳能将光能转化为电能的一种方式,是一种可再生能源的利用形式。
太阳能发电的过程主要包括光照吸收、光电转换和电能输出三个关键步骤。
本文将介绍太阳能发电的基础知识,包括太阳能的来源、太阳能光伏发电原理、主要的太阳能发电技术以及太阳能发电的优势和局限性。
一、太阳能的来源太阳是地球上最重要的能源来源之一,它以恒定不变的方式向地球释放出大量的能量。
太阳能的源头是核聚变反应,太阳核心中的氢原子核发生反应,释放出大量的能量,形成太阳辐射。
这些辐射以电磁波的形式传播到地球,为太阳能发电提供了无尽的能量。
二、太阳能光伏发电原理太阳能光伏发电是通过光电效应将太阳能转化为电能的一种技术。
太阳光中的光子进入太阳能电池板的半导体材料中,与材料中的原子碰撞后,电子得到激发并跳出原子束缚,形成电流。
这个过程中,太阳光的能量被转化为电子的动能,从而实现了光能到电能的转化。
三、太阳能发电技术目前,主要的太阳能发电技术包括晶体硅太阳能电池技术、薄膜太阳能电池技术以及集成光伏发电技术。
1. 晶体硅太阳能电池技术晶体硅太阳能电池是目前最主流的太阳能发电技术之一。
它采用单晶硅或多晶硅制成的太阳能电池片,具有较高的转换效率和较长的寿命。
晶体硅太阳能电池的制造成本相对较高,但其稳定性和可靠性较好,广泛应用于太阳能发电领域。
2. 薄膜太阳能电池技术薄膜太阳能电池采用非晶硅材料或其他半导体材料制成的薄膜电池片,具有较低的制造成本和灵活性。
它的转换效率相对较低,但适用于大面积的太阳能发电应用,例如建筑物外墙、屋顶等。
3. 集成光伏发电技术集成光伏发电技术是将太阳能电池板整合到建筑物、车辆或其他设备上,通过优化设计和布局,实现太阳能的最大化利用。
这种技术将太阳能发电与建筑、交通等领域的需求紧密结合,最大限度地提高了太阳能的利用效率。
四、太阳能发电的优势和局限性太阳能发电具有众多的优势,例如无噪音、零排放、可持续等,因此备受关注。
太阳能电池基础知识
第一:太阳能电池基础知识第一:太阳能电池基础知识(说明:文档中图形,稍后补上)编辑本段回目录太阳电池片的工作原理第1章1 半导体物理基础1.1 半导体的性质世界上的物体如果以导电的性能来区分,有的容易导电,有的不容易导电。
容易导电的称为导体,如金、银、铜、铝、铅、锡等各种金属;不容易导电的物体称为绝缘体,常见的有玻璃、橡胶、塑料、石英等等;导电性能介于这两者之间的物体称为半导体,主要有锗、硅、砷化镓、硫化镉等等。
众所周知,原子是由原子核及其周围的电子构成的,一些电子脱离原子核的束缚,能够自由运动时,称为自由电子。
金属之所以容易导电,是因为在金属体内有大量能够自由运动的电子,在电场的作用下,这些电子有规则地沿着电场的相反方向流动,形成了电流。
自由电子的数量越多,或者它们在电场的作用下有规则流动的平均速度越高,电流就越大。
电子流动运载的是电量,我们把这种运载电量的粒子,称为载流子。
在常温下,绝缘体内仅有极少量的自由电子,因此对外不呈现导电性。
半导体内有少量的自由电子,在一些特定条件下才能导电。
半导体可以是元素,如硅(Si)和锗(Ge),也可以是化合物,如硫化镉(OCLS)和砷化镓(GaAs),还可以是合金,如GaxAL1-xAs,其中x为0-1之间的任意数。
许多有机化合物,如蒽也是半导体。
半导体的电阻率较大(约10-5≤ρ≤107Ω⋅m),而金属的电阻率则很小(约10-8∼10-6Ω⋅m),绝缘体的电阻率则很大(约ρ≥108Ω⋅m)。
半导体的电阻率对温度的反应灵敏,例如锗的温度从200C升高到300C,电阻率就要降低一半左右。
金属的电阻率随温度的变化则较小,例如铜的温度每升高1000C,ρ增加40%左右。
电阻率受杂质的影响显著。
金属中含有少量杂质时,看不出电阻率有多大的变化,但在半导体里掺入微量的杂质时,却可以引起电阻率很大的变化,例如在纯硅中掺入百万分之一的硼,硅的电阻率就从2.14×103Ω⋅m减小到0.004Ω⋅m左右。
太阳能电池基本工作原理
太阳能电池基本工作原理
太阳能电池,又称太阳能光电池或光伏电池,是利用光电效应将太阳光转化为电能的装置。
其基本工作原理如下:
1. 光电效应:光电效应是指当光照射到物质表面时,光子能量被吸收,电子从物质中跃迁到导体能带中,产生电流的现象。
2. 半导体材料:太阳能电池一般采用半导体材料,如硅(Si)
或化合物半导体(如硒化铟镓,硒化铜铟锌等)。
半导体材料具有特殊的能带结构,当光照射到半导体上时,光子能量被吸收,激发半导体中的电子跃迁到导带中,产生电流。
3. P-N结构:太阳能电池一般采用P-N结构,即具有正(P型)和负(N型)电荷载体的区域。
在P-N结构中,阳极(P型)
富余电子,阴极(N型)富余空穴,形成电场。
光照射后,电子从P区跃迁到N区,被电场分离并产生电流。
4. 背电场:太阳能电池还有一个重要的设计是背电场结构。
在背电场结构中,阳极和阴极之间的电场将电子从阳极推向阴极,避免电子再次回到阳极,提高电池的效率。
5. 转化效率:太阳能电池的转化效率指光能转化为电能的比例。
转化效率受到多种因素的影响,如光照强度、光谱分布、温度等。
不同类型的太阳能电池具有不同的转化效率。
通过以上基本工作原理,太阳能电池将太阳能转化为直流电能,可以应用在太阳能发电系统、太阳能充电器等领域。
太阳能电池培训资料
太阳能电池的效率与限制因素
01
太阳能电池的效率是指将太阳能转换成电能的比率,通常在10%-20%之间。
02
限制太阳能电池效率的因素包括:太阳光的吸收率、温度、污染物等。
03
提高太阳能电池效率的方法包括:使用更高效的太阳能电池板、优化太阳能电 池板的角度和方向、保持太阳能电池板的清洁等。
03
太阳能电池的生产流程
我国太阳能电池产业发展迅速,产量和装机量均位居全球首位,技术水平不断提 升,产业链不断完善。
发展目标
我国政府提出了“千家万户沐光行动”和“光伏扶贫”等计划,目标是到2030年 ,太阳能电池装机容量达到500GW,可再生能源电力装机占电力总装机比重达 到35%左右。
太阳能电池技术的发展趋势与挑战
发展趋势
2023
太阳能电池培训资料
汇报人:
目录
• 太阳能电池简介 • 太阳能电池的工作原理 • 太阳能电池的生产流程 • 太阳能电池的材料与结构 • 太阳能电池市场与前景 • 太阳能电池的安装与维护
01
太阳能电池简介
太阳能电池的发展历程
1 2
第一代太阳能电池
硅太阳能电池,发展时间最长,技术最成熟, 目前占据主导地位。
农业和农村应用
移动能源
太阳能光伏发电系统为灌溉、温室等设施提 供电力,促进农业现代化。
太阳能充电站、太阳能汽车、太阳能船舶等 为移动设备提供清洁可再生的能源。
02
太阳能电池的工作原理
光电效应
1
光电效应是指光照射到物质表面时,物质会吸 收光能,并释放电子,产生电流。
2
在太阳能电池中,光电效应是利用光能转化为 电能的基本原理。
3
太阳能电池表面的太阳能吸收层会吸收太阳光 ,产生电子和空穴对,这些电子和空穴对进一 步形成电流。
太阳能电池基础知识定义及介绍
太阳能电池基础知识定义及介绍第一篇:太阳能电池基础知识定义及介绍太阳能电池基础知识定义及介绍中文名称:太阳能电池英文名称:solar cell 定义1:将太阳辐射直接转换成电能的器件。
所属学科:电力(一级学科);可再生能源(二级学科)定义2:以吸收太阳辐射能并转化为电能的装置。
所属学科:资源科技(一级学科);能源资源学(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。
以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。
目录历史太阳能电池的原理光—热—电转换光—电直接转换太阳能电池产业现状全球太阳能电池产业现状我国太阳能电池产业现状太阳能电池及太阳能发电前景简析太阳能电池的分类太阳能电池的分类简介(1)硅太阳能电池(2)多元化合物薄膜太阳能电池(3)聚合物多层修饰电极型太阳能电池(4)纳米晶太阳能电池(5)有机太阳能电池太阳能电池(组件)生产工艺封装流程:组件高效和高寿命如何保证:太阳电池组装工艺简介:太阳能电池阵列设计步骤太阳能电池发展市场太阳能电池发展市场简介利用太阳能电池的离网发电系统利用太阳能电池的并网发电系统新型太阳电池染料敏化太阳电池串叠型电池历史太阳能电池的原理光—热—电转换光—电直接转换太阳能电池产业现状全球太阳能电池产业现状我国太阳能电池产业现状太阳能电池及太阳能发电前景简析太阳能电池的分类太阳能电池的分类简介(1)硅太阳能电池(2)多元化合物薄膜太阳能电池(3)聚合物多层修饰电极型太阳能电池(4)纳米晶太阳能电池(5)有机太阳能电池太阳能电池(组件)生产工艺封装流程:组件高效和高寿命如何保证:太阳电池组装工艺简介:太阳能电池阵列设计步骤太阳能电池发展市场太阳能电池发展市场简介利用太阳能电池的离网发电系统利用太阳能电池的并网发电系统新型太阳电池染料敏化太阳电池串叠型电池展开编辑本段历史术语“光生伏打(Ph otovoltaics)”来源于希腊语,意思是光、伏特和电气的,来源于意大利物理学家亚历山德罗·伏特的名字,在亚历山德罗·伏特以后“伏特”便作为电压的单位使用。
太阳能电池基本原理
太阳能电池基本原理太阳能电池是将太阳能转化为电能的一种设备。
其基本原理是通过光电效应,将太阳光直接转化为电能。
下面将从几个步骤来阐述太阳能电池的基本原理。
一、光电效应光电效应是将光子能量转化为电子能量的过程。
当光子能量达到一定程度时,可以将电子从金属表面上释放出来,这个现象被称为“光电效应”。
光电效应是太阳能电池能够工作的基础。
二、半导体太阳能电池的主要材料是半导体。
半导体是介于导体和绝缘体之间的一类材料。
在太阳能电池中,半导体被掺杂成p型和n型材料。
p型半导体的材料中含有掺杂元素的空穴,n型半导体的材料中含有掺杂元素的自由电子,这种不同类型的半导体材料通过接触形成p-n结。
三、太阳能电池的原理当太阳光照射到太阳能电池上时,光子将经由计算机的帮助,穿过外表面玻璃接触到p-n结的p区。
此时,p型半导体材料中的空穴会将能量吸收,然后n型半导体中的自由电子会被激活,从而产生电流。
这样的过程就是太阳能电池的基本工作原理。
四、太阳能电池的制作太阳能电池的制作过程主要包括多个步骤,具体来说有以下几个步骤:(1)掺杂:尝试将半导体材料掺杂成p型和n型;(2)打沟槽:用磁力或者机械的方式在导体表面打沟槽,以便形成导线;(3)在导体表面涂抹:用具有导电性质的金属在导体表面形成电极;(4)密封:太阳能电池在制作完成后需要密封,以便保证其不会遭受氧化而失效。
总之,太阳能电池的基本原理是通过光电效应来转化太阳能为电能。
太阳能电池是一种高效的清洁能源,越来越多的人开始关注和使用太阳能电池,以减少对环境的影响。
光伏发电的基础知识
光伏发电的基础知识光伏发电是一种利用太阳能转化为电能的技术,它是一种可再生能源,被广泛应用于家庭、工业和商业等领域。
本文将介绍光伏发电的基础知识,包括光伏效应、光伏电池、光伏组件和光伏发电系统。
一、光伏效应光伏效应是指当光线照射在半导体材料上时,会产生光生电子和空穴对,从而产生电流。
这个效应最早由法国物理学家贝克勒尔于1839年发现。
当光线照射在半导体材料上时,光子的能量会被传递给半导体中的电子,使其跃迁到导带中,形成电流。
光伏效应是光伏发电的基础。
二、光伏电池光伏电池,也称为太阳能电池,是将光能直接转化为电能的装置。
光伏电池由多个薄片组成,每个薄片由两层半导体材料构成,一层为P型半导体,另一层为N型半导体。
当光线照射在光伏电池上时,光子的能量会被传递给半导体中的电子,使其跃迁到导带中,形成电流。
光伏电池的常见材料有单晶硅、多晶硅和非晶硅等。
三、光伏组件光伏组件是由多个光伏电池组装而成的装置,也被称为光伏板或太阳能板。
光伏组件的主要功能是将光能转化为直流电能。
光伏组件通常由玻璃、背板、电池片和边框等组成。
玻璃用于保护电池片,背板用于支撑和固定电池片,边框用于保护和加强光伏组件的结构。
四、光伏发电系统光伏发电系统是将光伏组件与其他组件相结合,形成一个完整的发电系统。
光伏发电系统主要由光伏组件、逆变器、电池储能系统和配电系统等组成。
光伏组件负责将光能转化为直流电能,逆变器用于将直流电能转化为交流电能,电池储能系统用于储存电能,配电系统用于将电能输送到需要的地方。
光伏发电系统可以实现自给自足,也可以将多余的电能卖给电网,实现发电与用电的平衡。
光伏发电技术已经取得了长足的发展,目前已经成为一种主流的清洁能源技术。
光伏发电具有环保、可再生、分布式等特点,可以有效减少对传统能源的依赖,降低碳排放,推动可持续发展。
随着技术的进步和成本的降低,光伏发电将在未来得到更广泛的应用。
光伏太阳能应用基础知识大全
光伏太阳能是一种利用太阳能将光能转换成电能的技术,它具有环保、可再生、长寿命等优点,在现代能源领域得到了广泛的应用。
以下是光伏太阳能应用基础知识的一些重要内容:
1.光伏电池:光伏电池是将太阳能转换成电能的核心部件,其工作原理是利用半导体材料的光生伏特效应将光能转换成电能。
2.太阳能电池组件:太阳能电池组件是由多个光伏电池组成的,可以将太阳能转换成直流电能。
3.逆变器:逆变器是将直流电能转换成交流电能的关键设备,可以将太阳能电池组件产生的直流电能转换成符合电网标准的交流电能。
4.光伏发电系统:光伏发电系统是由光伏电池组件、逆变器、电池组、监控系统等组成的,可以将太阳能转换成电能,并将电能储存起来或直接供应给电网。
5.光伏电站:光伏电站是由多个光伏发电系统组成的,可以将大面积的太阳能转换成电能,并将电能输送到电网中。
6.光伏应用领域:光伏技术可以应用于家庭、工业、商业、农业、交通等多个领域,可以用于发电、照明、空调、通信、监控等方面。
7.光伏发电的优势和不足:光伏发电具有环保、可再生、长寿命等优点,但其发电效率受天气、光照等因素影响较大,成本较高,存在着一定的局限性。
总之,光伏太阳能是一种重要的清洁能源,具有广泛的应用前景,在未来的能源领域中将发挥越来越重要的作用。
太阳能电池的基本原理及应用技巧
太阳能电池的基本原理及应用技巧1. 太阳能电池的基本原理1.1 直接转换式太阳能电池直接转换式太阳能电池是将太阳光直接转换为电能的一种装置。
目前最常见的一种直接转换式太阳能电池是硅晶太阳能电池。
其基本原理是利用太阳光中光子的能量将硅晶中的电子激发出来,形成电流。
当太阳光照射到硅晶太阳能电池上时,光子会与硅晶中的硅原子发生相互作用。
光子的能量将硅原子中的电子激发出来,形成电子-空穴对。
在太阳能电池的 p-n结中,电子-空穴对会被分离,电子会通过外部电路从n 区向p 区移动,形成电流。
1.2 间接转换式太阳能电池间接转换式太阳能电池是先将太阳光转换为其他形式的能量,再将这种能量转换为电能的一种装置。
一种常见的间接转换式太阳能电池是光化学太阳能电池。
其基本原理是利用太阳光激发光敏剂,产生电荷分离,形成电流。
当太阳光照射到光化学太阳能电池的光敏剂上时,光子会将光敏剂中的电子激发出来,形成电子-空穴对。
在光化学电池的电荷分离层中,电子-空穴对会被分离,电子会通过外部电路从光敏剂向电荷分离层移动,形成电流。
2. 太阳能电池的应用技巧2.1 太阳能电池组件的安装太阳能电池组件的安装是太阳能电池应用的重要环节。
在安装太阳能电池组件时,需要考虑以下几个因素:•光照条件:太阳能电池的效率受到光照条件的影响。
一般来说,太阳光越强,太阳能电池的输出功率越高。
因此,在安装太阳能电池组件时,需要选择光照条件较好的地方。
•温度:太阳能电池的效率也会受到温度的影响。
一般来说,太阳能电池在较高的温度下性能会下降。
因此,在安装太阳能电池组件时,需要考虑温度的影响,并采取相应的措施,如安装遮阳板等。
•朝向和倾斜角度:太阳能电池组件的朝向和倾斜角度也会影响其输出功率。
一般来说,太阳能电池组件的朝向应该朝向太阳,倾斜角度应该根据当地的纬度和季节进行调整。
2.2 太阳能电池系统的储能设备太阳能电池的输出功率受到光照条件的影响,因此,在夜间或光照不足的情况下,太阳能电池的输出功率会下降。
非晶硅薄膜太阳能电池基础知识
1.非晶硅太阳电池原理非晶硅太阳电池是20世纪70年代中期发展起来的一种新型薄膜太阳电池,与其他太阳电池相比,非晶硅电池具有以下突出特点:1).制作工艺简单,在制备非晶硅薄膜的同时就能制作pin结构。
2).可连续、大面积、自动化批量生产。
3).非晶硅太阳电池的衬底材料可以是玻璃、不锈钢等,因而成本小。
4).可以设计成各种形式,利用集成型结构,可获得更高的输出电压和光电转换效率。
5).薄膜材料是用硅烷SiH4等的辉光放电分解得到的,原材料价格低。
1.非晶硅太阳电池的结构、原理及制备方法非晶硅太阳电池是以玻璃、不锈钢及特种塑料为衬底的薄膜太阳电池,结构如图1所示。
为减少串联电阻,通常用激光器将TCO膜、非晶硅(A-si)膜和铝(Al)电极膜分别切割成条状,如图2所示。
国际上采用的标准条宽约1cm,称为一个子电池,用内部连接的方式将各子电池串连起来,因此集成型电池的输出电流为每个子电池的电流,总输出电压为各个子电池的串联电压。
在实际应用中,可根据电流、电压的需要选择电池的结构和面积,制成非晶硅太阳电池。
1.1 工作原理非晶硅太阳电池的工作原理是基于半导体的光伏效应。
当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场Vb的作用下,光生电子和空穴被分离,空穴漂移到P边,电子漂移到N边,形成光生电动势VL, VL 与内建电势Vb相反,当VL = Vb 时,达到平衡; IL = 0, VL达到最大值,称之为开路电压Voc ; 当外电路接通时,则形成最大光电流,称之为短路电流Isc,此时VL= 0;当外电路加入负载时,则维持某一光电压VL和光电流IL。
其I--V特性曲线见图3非晶硅太阳电池的转换效率定义为:Pi是光入射到电池上的总功率密度,Isc是短路电流密度,FF为电池的填充因子,Voc 为开路电压,Im 和 Vm 分别是电池在最大输出功率密度下工作的电流密度和电压。
目前,子电池的开路电压约在0.8V—0.9V之间,Isc达到13mA/cm2,FF在0.7-0.8之间,η达到12%以上。
了解太阳能电池知识点总结
了解太阳能电池知识点总结太阳能电池是利用太阳能直接将太阳光转化为电能的一种设备。
随着环境污染和能源短缺问题日益突出,人们对太阳能电池的探究和应用越来越重视。
本文将从太阳能电池的原理、种类、工作原理、效率和应用范围等方面进行深度解析,让读者对太阳能电池有更全面的了解。
太阳能电池的原理主要是光伏效应。
光伏效应是指当太阳光照耀到半导体材料上时,能量会导致半导体中电子跃迁,形成电子空穴对,从而产生电压和电流。
太阳能电池的原理与平凡的电池不同,平凡的电池是通过化学反应产生电能,而太阳能电池则是通过光能转化为电能。
太阳能电池主要分为晶体硅太阳能电池和非晶硅太阳能电池两种类型。
晶体硅太阳能电池是最早进步的太阳能电池,由单晶硅或多晶硅制成。
晶体硅太阳能电池的效率较高,但制造成本也较高。
而非晶硅太阳能电池则由非晶硅制成,制造成本低,但效率相对较低。
太阳能电池的工作原理可以简易概括为将太阳光转化为电能。
当太阳光照耀到太阳能电池上时,光子的能量被半导体材料吸纳后,会产生电子-空穴对。
通过PN结,电子和空穴会分别往两个不同方向挪动,产生电流。
最终,这些电流会通过导线传输到负载上,完成太阳能电池的工作。
太阳能电池的效率是衡量其性能的重要指标。
理论上,太阳能电池的效率可以达到33.7%,但实际上目前的太阳能电池效率大约在15%至23%之间。
太阳能电池的效率受多种因素影响,比如材料的选择、制备工艺、辐射条件等。
提高太阳能电池的效率是科学家们的重要探究方向之一。
太阳能电池的应用范围分外广泛。
目前主要应用领域包括太阳能发电、太阳能热水器、太阳能路灯、太阳能风扇等。
太阳能发电是最为常见的应用方式,可以为家庭和商业建筑提供清洁能源。
太阳能热水器则利用太阳能将水加热,用于家庭生活。
太阳能路灯和太阳能风扇则利用太阳能供电,缩减对传统能源的依靠。
总之,了解太阳能电池的原理、种类、工作原理、效率和应用范围等知识点是必不行少的。
太阳能电池作为一种清洁、可再生的能源设备,具有巨大的潜力和进步空间。
太阳能电池基础知识
一,基础知识(1)太阳能电池的发电原理太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置.●半导体的光电效应所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子.光激励核核电子空穴电子●PN 结合型太阳能电池电子对太阳能电池是由P 型半导体和N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子,当P 型和N 型半导体结合时在结合处会形成电势当芯片在受光过程中,带正电的空穴往P 型区移动,带负电子的电子往N 型区移动,在接上连线和负载后,就形成电流..-+-N 型PN结+-++-+-+-N 区------PN 结合+-++-+-+-电势++++++P 区-+-P 型(2)太阳能电池种类硅半导体结晶类非晶类单晶硅电池多晶硅电池非晶硅电池转换效率:17%转换效率:14%转换效率:6-7%空间用民用民用※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于 其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有 广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料. 化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用.※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时 以氧化状态的硅原料是世界上第二大的储藏物质.※京瓷公司早在上世纪的八十年代就认识到多晶硅太阳能电池的光阔前景和美好未来,率先 开启多晶硅太阳能电池的工业化生产大门.现在已经是行业的龙头,同时多晶硅太阳能电 池也结晶类太阳能电池的主流产品(太阳能电池的 70%以上).(3)多晶硅太阳能电池的制造方法破锭(150mm *155mm )N 极烧结 电极 印刷 ( 正 反压芯片串,并联,形成设计需要 的 电 流( 一片芯 片 的 电 封 装 工 艺组配叠片层压玻璃(防冲 EVA(缓冲) 芯片(发电) EVA(缓冲) 背垫(防湿)模拟光源,输出测试边框安装(4)太阳能电池关连的名称和含义●转换效率太阳能电池的转换效率是指电池将接收到的光能转换成电能的比率输出功率 转换效率 = 100%太阳能电池板被照射的太阳能※标准测试状态 由于太阳能电池的输出受太阳能的辐射强度,温度等自然条件的影响,为了表述太 阳能电池的输出和评价其性能,设定在太阳能电池板的表面温度为 25 度,太阳能辐 射强度为 1000 w/㎡、分光分布 AM1.5 的模拟光源条件下的测试为标准测试状态.大气层AM1 θ=90 度AM1.5(标准测定状态) 地面θ=41.8 度0 度 25 度 50 度 75 度分光分布小知识晶硅类理论转换效率极限为 29%,而现在的太阳能电池的转换效率为 17%~19%,因此,太 阳能电池的技术上还有很大的发展空间.●太阳能电池输出特性【太阳能电池电流---电压特性(I-V 曲线)】短路电流 I sc最佳输出动作电流 电流Ipm最大输出动作电压 V pm最佳动作点 最大输出最大输出(PM):最大输出电压(Vpm) 最大输出电流( Ipm ) 开路电压(Voc ):开路状态的太阳能电池端子间的电压 短路电流(Isc ):太阳能电池端子间的短路电流 最大输出电压(V pm):最大输出状态时的动作电压 最大输出电流(Ipm ):最大输出状态时的动作电流电压开路电压 Voc【日照强度变化和 I-V 曲线】【温度变化和 I-V 曲线】1000W/㎡ 800W/㎡ 600W/㎡电流电流400W/㎡电压电压【日照强度—最大输出特性 】【温度-最大输出特性】120最 100 大80输 60 出 40 %20200 400 600 800 1000 1200日照强度(W/㎡)120最100大 80 输 60出 %20-25255075100温度(度)●太阳能电池的短路电流和日照强度成正比●太阳能电池对环境的贡献①对防止地球温暖化,减轻对地球环境的贡献●太阳能电池的输出随着池片的表面温度上升而下降,●输出随着季节的温度变化而变化●在同一日照强度下,冬天的输出比夏天高从太阳能发电系统排放的二氧化碳,即使是考虑其生产过程的排放量,也绝对少于传统的燃料发电设备,是防止地球温暖化的环保设备.同时在发电时,不排放氧化硫,氧化氮等污染物,减轻了对环境的压力.例:3kW 太阳能发电系统对环境污染物的削减量Co2NOxSOx石油替代量:729L/年减排放CO2能力:540kg-C/ 年森林面积换算:5544 ㎡②对能源和节能的贡献太阳能电池2。
太阳能电池组件基本知识
太阳能电池组件基本知识太阳能电池组件(Solar Module)也叫太阳能光伏组件(PV Module),通常还简称为电池板或光伏组件。
太阳能电池组件是把多个单体的太阳能电池⽚根据需要串并联起来,并通过专⽤材料和专门⽣产⼯艺进⾏封装后的产品。
按电池技术路线划分,主要分为晶体硅电池、薄膜电池和聚光电池。
单晶与多晶,是晶体硅电池技术路线上的两兄弟,因晶格排列不同⽽区分。
源于半导体技术的晶体硅光伏诞⽣时只有转换率⾼的单晶硅,由于成本⾼,10年前开始多晶路线逐渐占据主导。
近年来,随着分布式光伏的发展和领跑者对效率的要求,单晶硅全产业链更多参与者的推动,单晶和多晶产品的性价⽐差距在缩⼩。
1、电池组件的主要原材料及部件光伏玻璃:电池组件采⽤的⾯板玻璃是低铁超⽩绒⾯钢化玻璃。
⼀般厚度为3.2mm和4mm,建材型太阳能电池组件有时要⽤到5~10mm厚度的钢化玻璃,但⽆论厚薄都要求透光率在90%以上。
低铁超⽩就是说这种玻璃的含铁量⽐普通玻璃要低,从⽽增加了玻璃的透光率。
同时从玻璃边缘看,这种玻璃也⽐普通玻璃⽩,普通玻璃从边缘看是偏绿⾊的。
钢化处理是为了增加玻璃的强度,抵御风沙冰雹的冲击,起到长期保护太阳能电池的作⽤。
对⾯板玻璃进⾏钢化处理后,玻璃的强度可⽐普通玻璃提⾼3~4倍。
EVA胶膜:⼄烯与醋酸⼄烯脂的共聚物,是⼀种热固性的膜状热熔胶,是⽬前太阳能电池组件封装中普遍使⽤的黏结材料。
太阳能电池组件中要加⼊两层EVA胶膜,两层EVA胶膜夹在⾯板玻璃、电池⽚和TPT背板膜之间,将玻璃、电池⽚和TPT黏合在⼀起。
它和玻璃黏合后能提⾼玻璃的透光率,起到增透的作⽤,并对太阳能电池组件功率输出有增益作⽤。
背板材料:太阳能电池组件的背板材料根据太阳能电池组件使⽤要求的不同,可以有多种选择。
⼀般有钢化玻璃、有机玻璃、铝合⾦、TPT复合胶膜等⼏种。
⽤钢化玻璃背板主要是制作双⾯透光建材型的太阳能电池组件,⽤于光伏幕墙、光伏屋顶等,价格较⾼,组件重量也⼤。
非晶硅太阳能电池基础知识
由太阳电池的输出特性曲线可以看出:虽然在同样的光照下同一块太 阳电池负载不同,太阳电池的输出功率也不同,
A点:负载电阻RA,RA.VA/Id(1/RA的斜率)此时太阳电池的输出功率为: PA=Id*VA
B点:“负载电阻为RB的输出功率为PB=IdVB,显然PB>PA P点:输出功率最大,Vm=Im-Vm称作
ቤተ መጻሕፍቲ ባይዱ
1、晶体硅太阳电池 2、非晶硅太阳电池
1、短路电流Isc ----- 在一定的光照下通常取AM1.5=100mw/cm²输 出端短路时,太阳电池的输出电流。
2、开路电压Voc---在一定的光照(AM1.5)输出端开路时,太阳电池 的两端的电压。
3、填充因子 FF 填充因数FF定义为:FF=Pm / (Isc * Voc) =(Im * Vm) /
非晶硅太阳能电池基础知识
太阳能电池是能把光能直接转换成电能的半导体器件,主要是 半导体材料制造成的。
太阳电池把光能转化成电能,包括下面三个过程; 1、太阳光或其他光照射到太阳能电池的表面。 2、太阳能电池的半导体能吸收光子,并激发出电子-空穴对,
这些电子空穴对被太阳电池的内建场分离,分离的条件: a、有内建电场; b、电子空穴有足够长的寿命和迁移率,使μt足够大, μt
太阳能电池基础知识
一,基础知识(1)太阳能电池的发电原理太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置.●半导体的光电效应所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子.光激励核核电子空穴电子●PN 结合型太阳能电池电子对太阳能电池是由P 型半导体和N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子,当P 型和N 型半导体结合时在结合处会形成电势当芯片在受光过程中,带正电的空穴往P 型区移动,带负电子的电子往N 型区移动,在接上连线和负载后,就形成电流..-+-N 型PN结+-++-+-+-N 区------PN 结合+-++-+-+-电势++++++P 区-+-P 型(2)太阳能电池种类硅半导体结晶类非晶类单晶硅电池多晶硅电池非晶硅电池转换效率:17%转换效率:14%转换效率:6-7%空间用民用民用※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于 其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有 广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料. 化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用.※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时 以氧化状态的硅原料是世界上第二大的储藏物质.※京瓷公司早在上世纪的八十年代就认识到多晶硅太阳能电池的光阔前景和美好未来,率先 开启多晶硅太阳能电池的工业化生产大门.现在已经是行业的龙头,同时多晶硅太阳能电 池也结晶类太阳能电池的主流产品(太阳能电池的 70%以上).(3)多晶硅太阳能电池的制造方法破锭(150mm *155mm )N 极烧结 电极 印刷 ( 正 反压芯片串,并联,形成设计需要 的 电 流( 一片芯 片 的 电 封 装 工 艺组配叠片层压玻璃(防冲 EVA(缓冲) 芯片(发电) EVA(缓冲) 背垫(防湿)模拟光源,输出测试边框安装(4)太阳能电池关连的名称和含义●转换效率太阳能电池的转换效率是指电池将接收到的光能转换成电能的比率输出功率 转换效率 = 100%太阳能电池板被照射的太阳能※标准测试状态 由于太阳能电池的输出受太阳能的辐射强度,温度等自然条件的影响,为了表述太 阳能电池的输出和评价其性能,设定在太阳能电池板的表面温度为 25 度,太阳能辐 射强度为 1000 w/㎡、分光分布 AM1.5 的模拟光源条件下的测试为标准测试状态.大气层AM1 θ=90 度AM1.5(标准测定状态) 地面θ=41.8 度0 度 25 度 50 度 75 度分光分布小知识晶硅类理论转换效率极限为 29%,而现在的太阳能电池的转换效率为 17%~19%,因此,太 阳能电池的技术上还有很大的发展空间.●太阳能电池输出特性【太阳能电池电流---电压特性(I-V 曲线)】短路电流 I sc最佳输出动作电流 电流Ipm最大输出动作电压 V pm最佳动作点 最大输出最大输出(PM):最大输出电压(Vpm) 最大输出电流( Ipm ) 开路电压(Voc ):开路状态的太阳能电池端子间的电压 短路电流(Isc ):太阳能电池端子间的短路电流 最大输出电压(V pm):最大输出状态时的动作电压 最大输出电流(Ipm ):最大输出状态时的动作电流电压开路电压 Voc【日照强度变化和 I-V 曲线】【温度变化和 I-V 曲线】1000W/㎡ 800W/㎡ 600W/㎡电流电流400W/㎡电压电压【日照强度—最大输出特性 】【温度-最大输出特性】120最 100 大80输 60 出 40 %20200 400 600 800 1000 1200日照强度(W/㎡)120最100大 80 输 60出 %20-25255075100温度(度)●太阳能电池的短路电流和日照强度成正比●太阳能电池对环境的贡献①对防止地球温暖化,减轻对地球环境的贡献●太阳能电池的输出随着池片的表面温度上升而下降,●输出随着季节的温度变化而变化●在同一日照强度下,冬天的输出比夏天高从太阳能发电系统排放的二氧化碳,即使是考虑其生产过程的排放量,也绝对少于传统的燃料发电设备,是防止地球温暖化的环保设备.同时在发电时,不排放氧化硫,氧化氮等污染物,减轻了对环境的压力.例:3kW 太阳能发电系统对环境污染物的削减量Co2NOxSOx石油替代量:729L/年减排放CO2能力:540kg-C/ 年森林面积换算:5544 ㎡②对能源和节能的贡献太阳能电池2。
太阳能电池组件基本知识
5、太阳能电池组件中 的潜在问题
第十八页,编辑于星期三:十三点 十五分。
①、组件功率负偏差 ② 、电池片逆电流 ③ 、EVA黄变、脱层、气泡 ④ 、TPT折皱
⑤ 、接线盒防水性和电极接触强度 ⑥ 、铝边框强度和耐腐蚀性
第十九页,编辑于星期三:十三点 十五分。
⑦ 、组件电绝缘性 ⑧ 、玻璃透光率及玻璃强度
⑦组件电绝缘性能差,采用绝缘性差的背板,当
电压过高时造成组件背板击穿,引起短路事故, 导致工程瘫痪;同时工程并网运行时产生漏电, 严重时会造成人员伤亡
第二十九页,编辑于星期三:十三点 十五分。
原因分析
• 使用低质量、耐压在600V以下的TPT背板 • 对TPT没有绝缘和耐压检测能力,对于低质量
的TPT无法控制
第五页,编辑于星期三:十三点 十五分。
3、标准晶体硅太阳电池组件分类、 封装结构及材料
a、标准晶体硅太阳电池组件分类 b、标准晶体硅太阳电池组件封装结构
c、标准晶体硅太阳电池组件封装材料
第六页,编辑于星期三:十三点 十五分。
太阳电池组件分类
单晶硅组件
多晶硅组件
第七页,编辑于星期三:十三点 十五分。第ຫໍສະໝຸດ 页,编辑于星期三:十三点 十五分。
3.TPT(聚氟乙烯复合膜):用于太阳电池组 件封装的TPT至少应该有三层结构:外层保护层 PVF具有良好的抗环境侵蚀能力,中间层为聚脂 薄膜具有良好的绝缘性能,内层PVF需经表面处 理和EVA具有良好的粘接性能。
另外其颜色为白色,对阳光起反射作用,因 此对组件的效率略有提高,并因其具有较高 的红外发射率,还可降低组件的工作温度, 提高组件的效率。
第十二页,编辑于星期三:十三点 十五分。
电池片筛选
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)太阳能电池的发电原理
太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置.
●半导体的光电效应所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电
子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子.
●PN 结合型太阳能电池
电子对
太阳能电池是由P 型半导体和N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子,当P 型和N 型半导体结合时在结合处会形成电势当芯片在受光过程中,带正电的空穴往P 型区移动,带负电子的电子往N 型区移动,在接上连线和负载后,就形成电流..
-+-N 型
+-+
+-+
-+-N 区
------
PN 结合
+-+
+-+
-+-
电势
++++++
P 区
-+-P 型
(2)太阳能电池种类
单晶硅电池空间用
※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于 其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有 广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料. 化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用.
※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时 以氧化状态的硅原料是世界上第二大的储藏物质.
※京瓷公司早在上世纪的八十年代就认识到多晶硅太阳能电池的光阔前景和美好未来,率先 开启多晶硅太阳能电池的工业化生产大门.现在已经是行业的龙头,同时多晶硅太阳能电 池也结晶类太阳能电池的主流产品(太阳能电池的 70%以上).
(3)多晶硅太阳能电池的制造方法
破锭(150mm*155mm)
N 极烧结
电极 印刷 ( 正 反
组配叠片层压
模拟光源,输出测试
边框安装
(4)太阳能电池关连的名称和含义
●转换效率
太阳能电池的转换效率是指电池将接收到的光能转换成电能的比率
输出功率
转换效率= 100%
太阳能电池板被照射的太阳能
※标准测试状态由于太阳能电池的输出受太阳能的辐射强度,温度等自然条件的影响,为了表述太阳能电池的输出和评价其性能,设定在太阳能电池板的表面温度为
25 度,太阳能辐射强度为1000 w/㎡、分光分布AM1.5 的模拟光源条件下的测试
为标准测试状态.
大气层
地面
分光分布
●太阳能电池输出特性
【太阳能电池电流---电压特性(I-V 曲线)】
电流
电流
电流
【日照强度—最大输出特性 】
【温度-最大输出特性】
120
最 100 大 80 输 60 出 40 %
20
200 400 600 800 1000 1200
日照强度(W/㎡)
最 100 大 80 输 60 出 %
200
●太阳能电池对环境的贡献
①对防止地球温暖化,减轻对地球环境的贡献
从太阳能发电系统排放的二氧化碳,即使是考虑其生产 过程的排放量,也绝对少于传统的燃料发电设备,是防 止地球温暖化的环保设备.同时在发电时,不排放氧化 硫,氧化氮等污染物,减轻了对环境的压力.
例:3kW 太阳能发电系统对环境污染物的削减量
Co2
NO x SO x
石油替代量:729L/年
减排放 CO 2 能力:540kg-C/ 年
森林面积换算:5544 ㎡
②对能源和节能的贡献
太阳能电池 2。
2 年的发电量即可收回制造太阳能电池时使用的电力
(5)独立电源太阳能发电系统构成
专用设备
直流
有蓄 电
流负荷
交流负荷
部品名称:
太阳能电池----吸收太阳能,将光能转换成直流电能 控制器----控制蓄电池的充放电深度,延长蓄电池寿命.
蓄电池----储存太阳能电池板产生的电能,在必要时,向负荷提供直流电力 逆变器----将直流输入电力转换成交流电力输出
(1)总体设计思路
1)程序图 简单的来说,太阳能独立电源系统的容量是由设备安装场所的日照量,负荷的消费电力 两大因素决定.在程序图内还需再适当地考虑若干安全因素,设备的效率等因素.
(2)设计顺序
1)确定安装地点的日照量 Q’(mWh/cm 2.day )
太阳能独立电源系统的太阳能电池方阵为了尽可能多接收日照,通常是按一定的倾角 安装的.一般方阵是以安装纬度设置倾角. 安装面日照量的计算方法:(通常采用查询当地日照记录方法)
Q’=Q×K 1×1.16×
公式(1)
cos|(θ―δ)|
符号含义
Q : 水平面的月平均日照量(cal /cm 2
*day) K 1 : 日照修正系数(一般为 0.9)
1.16 : 单位变换定数(cal /cm
2.day → mWh/cm 2
) θ : 设置场所的纬度
β : 太阳能电池方阵的倾斜度(相对于水平面) δ : 太阳的月平均赤纬度〔°〕 赤纬表白 (表
一)
Jan Feb Mar Apr May Jun Jul Aug Sep Qct Nov Dec -21°
-13°
-2°
+10°
+15°
+23°
+21°
14°
3°
-9°
-18°
-23°
注:在南半球时,上述的符号相反
如果只有日照时间的数据,日照量可以按以下方式进行换算:
Q = Q 0*(a+b *S/S o )
Qo :大气圈外的日照量(理论值;1.382kW/㎡) S :被记录的日照时间(日出到日没时间) So
:可照时间(日出到日没时间)
a,b :需要根据当地气候,纬度,季节而定
2)确定负荷的消费电力
消费电力是负荷的『日平均消费电力』,为了计算『日平均消费电力』,必须了解负荷的 使用时间.
日平均消费电力计算表白 (表 2)
负荷名称 照明
收音机
电视机
照明
平均消费电力(W /h)
功率(w /h ) 100 2 0 0 300 1 0 0 使用时间(h ) 6 6 6 6
消耗电力(w ) 600 1 2 0 0 18 00 6 0 0
1 75
W
300
200
100
P L :平均消費電力(175W)
6 12 18
24
時間(h)
3)确定太阳能电池板容量Pm(Wp)
太阳能电池容量计算按下列方式计算
Pm=2400/Q’min*P
L
*1/(K) 公式2
符号含义
Q’min :前述安装面日照量Q’的年最小值(mWh/cm2.day)
P L :平均消费电力(W)
K :系数((K1*K2*K3*K4*K5*K6*K7*K8*K9)
k1:充电效率(0.97) k2:太阳能电池板脏污系数(0.9) k3:电池板温
度补正系数(0.9) k4:直并联接线损失系数(1)-12V(0.90,24V(0.95)
k5:最佳输出补正系数(0.9) k6:蓄电池充放电效率(0.9) k7:逆变器效率(视
容量和设备而定) k8:变压器效率(视容量和设备而定)
k9:DC线损(0.95)
(参考1)
PV(太阳能电池输出)的额定输出功率是在日照量 100mW/cm2,芯片温度为 25 度的条件下测定的,输出功率是根据日照的强度发生变化的.为了区别PV 和柴油发电机的容量标志,故用Wp 来表示太阳能电池的峰值输出.
(参考2)折损系数k=((K
1
*K
2
*K
3
*K
4
*K
5
*K
6
*K
7
*K
8
*K
9
)
100mW/cm2
Wp
W
100mW/cm2参照图(a)
等价日照量
假设在日照量为400Wh/m2.day 的情
况,相当于在1000W/m2 的日照强度
4 个小时的日照,也就是说,这天除4
小时输出以外以外,其他时间的输出
功率为零. (参照图(b))
实际的日照量(400mWh/cm2.day)假设,PV 的容量按平均消费电力来设置的话,系统只能带动负荷 4 个小时的运作.为了保
证其他 20 小时的负荷使用,PV 的容量的设置必须放大.其放大倍率为(100*24/(100*4).故公式(2)的右边为2400/Q’min.
5)蓄电池容量Be(AH)
蓄电池的容量由下列公式(3)计算决定
Be=(P L*24*D)/(K b*V) 公式(3)
符号含义
D :连续不日照天数(一般在3 至7 天)
K b :安全系数(放电深度(一般为70%),逆变器效率(根据厂家数据),线损(一般为5%)等)
V :系统电压(V)
人与人之间的距离,不可太近。
人与人之间的距离也不可太远。