Maxwell超级电容器基本原理及性能特点

合集下载

超级电容(法拉电容)原理、性能特点以及应用

超级电容(法拉电容)原理、性能特点以及应用

超级电容(法拉电容)原理、性能特点以及应用超级电容(又名法拉电容)原理,性能特点以及应用超级电容超级电容器是一种具有超级储电能力,可提供强大的脉冲功率的物理二次电源。

它是根据电化学双电层理论研制而成的,所以又称双电层电容器。

其基本原理为:当向电极充电时,处于理想极化电极状态的电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面上形成双电荷层,构成双电层电容。

由于两电荷层的距离非常小(一般 0.5mm 以下),再加之采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。

超级电容器的问世实现了电容量由微法级向法拉级的飞跃,彻底改变了人们对电容器的传统印象。

目前,超级电容器已形成系列产品,实现电容量 0.5-1000F ,工们电压 12-400V ,最大放电电流 400-2000A 。

性能特点:1. 具有法拉级的超大电容量;2. 比脉冲功率比蓄电池高近十倍;3. 充放电循环寿命在十万次以上;4. 能在 -40oC-60oC 的环境温度中正常使用;5. 有超强的荷电保持能力,漏电源非常小。

6. 充电迅速,使用便捷;7. 无污染,真正免维护。

应用: 超级电容器作为大功率物理二次电源,在国民经济各领域用途十分广泛。

在特定的条件下可以部分或全部替代蓄电池,应用在某些机电(电脉冲)设备上,可使其产生革命性进步。

1. 配合蓄电池应用于各种内燃发动机的电启动系统,如:汽车、坦克、铁路内燃机车等,能有效保护蓄电池,延长其寿命,减小其配备容量,特别是在低温和蓄电池亏电的情况下,确保可靠启动。

2. 用作高压开关设备的直流操作电源,铁路驼峰场道岔机后备电源,可使电源屏结构变得非常简单,成本降低,储能电源真正免维护。

3. 用作电动车辆起步,加速及制动能量的回收,提高加速度,有效保护蓄电池,延长蓄电池使用寿命,节能。

4. 代替蓄电池用于短距离移动工具(车辆),其优势是充电时间非常短。

5. 用于重要用户的不间断供电系统。

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理超级电容器,也被称为超级电容或者超级电容器电池,是一种能够快速存储和释放大量电能的电子设备。

它采用了一种不同于传统电池的工作原理,使其具有高电容量、高能量密度和长寿命等优点。

本文将详细介绍超级电容器的工作原理及其相关技术。

1. 引言超级电容器是一种储存电能的设备,它主要由两个电极和介质组成。

与传统电容器不同的是,超级电容器的电极材料采用活性炭、金属氧化物等高表面积材料,以增加其电容量。

超级电容器以其高电容量和高功率密度的特点,被广泛应用于电动车辆、储能系统、风力发电站等领域。

2. 超级电容器的工作原理超级电容器的工作原理基于电荷的分离和储存。

当超级电容器处于放电状态时,正极电极上的正离子会向负极电极挪移,负离子则相反。

这个过程是通过电解质中的离子在电场作用下进行的。

当电荷在电极表面积增加时,电容量也会相应增加。

3. 超级电容器的构造超级电容器的构造通常包括电极、电解质和隔膜。

电极是超级电容器的核心部件,它由活性炭或者金属氧化物等高表面积材料制成。

电解质是指填充在电极之间的介质,它能够传导离子并分离正负电荷。

隔膜则用于隔离正负电极,防止直接接触。

4. 超级电容器的充放电过程超级电容器的充放电过程是通过控制电压和电流来实现的。

当超级电容器处于充电状态时,外部电源会提供电流,使正极电极上的离子向负极电极挪移,同时负离子也相反。

这个过程中,电极表面积的增加导致电容量的增加。

当超级电容器处于放电状态时,电极上的离子会回到原来的位置,释放储存的电能。

5. 超级电容器的性能参数超级电容器的性能参数包括电容量、电压范围、内阻和能量密度等。

电容量是指超级电容器可以存储的电荷量,通常以法拉(F)为单位。

电压范围是指超级电容器可以承受的最大电压。

内阻是指超级电容器内部电阻,影响其充放电效率。

能量密度是指单位体积或者质量的超级电容器可以存储的能量。

6. 超级电容器的应用超级电容器由于其特殊的性能优势,被广泛应用于各个领域。

超级电容器原理及电特性

超级电容器原理及电特性

超级电容器原理及电特性超级电容器(Supercapacitor)是一种高能量密度和高功率密度的电子储存设备,也被称为超级电容器或电化学电容器。

它是一种介于传统电容器和化学电池之间的电子器件,具有高容量和高电流输出的特性,在能量存储和释放方面相比传统的电池具有很大的优势。

超级电容器的原理是基于电荷在电解质中的吸附原理,它由两个带有相互交替排列的互连电极和电解质组成。

电极通常由活性材料制成,如活性炭、过渡金属氧化物、活性金属等。

电容器的两个电极中,一个电极带正电,一个带负电,当电解质通过电极时,正极会吸引负电荷,而负极则会吸引正电荷,从而形成了一个电荷分离的状态,储存着电能。

超级电容器与传统电容器的最大区别在于其电解质的性质。

超级电容器使用的电解质是有机盐溶液或聚合物溶液,相比之下,传统电容器使用的是固体或液体介质。

由于电解质的存在,超级电容器具有较高的离子导电性,使其能够在短时间内获得较大的充电和放电电流,从而实现高功率输出。

超级电容器的电特性主要包括容量、电压和内电阻。

容量是用来衡量超级电容器储存电能的大小,单位通常是法拉(F)。

对比传统电容器,超级电容器的容量通常要大得多,可以达到几千法拉甚至更高。

电压是电容器的工作电压范围,超级电容器的电压一般在1.2-2.7伏之间。

内电阻是超级电容器放电时的阻抗,也称为超级电容器的等效串联电阻。

内电阻较低则能够提供更大的电流输出。

超级电容器具有很多优点。

首先,它具有很高的循环寿命和快速充放电特性。

传统电池在充放电过程中会有能量损失,导致其循环寿命较短,而超级电容器可以进行数万次的充放电循环而不损失能量。

其次,超级电容器具有很高的功率密度,能够在短时间内释放出大量电能,因此在需要高功率输出的场合具有很大的优势。

此外,超级电容器具有良好的可靠性和环保性,不含重金属等有害物质,对环境友好。

然而,超级电容器的能量密度还不如传统电池高。

虽然超级电容器的容量较大,但其能量存储量仍然不及化学电池,这限制了其在一些应用中的使用。

Maxwell超级电容

Maxwell超级电容

什么是超级电容?
超级电容是:
100年的老技术, 因现代材料而加强 基于电解质的极化、高表面积电极及极小的充电点和分离 也就是电化学双层电容
电解质
C = er A/d
d最小化 A最大化
电解质
分离器
E = 1/2 CV2
金属箔
Ultracapacitors l Microelectronics l High-Voltage Capacitors
Ultracapacitors l Microelectronics l High-Voltage Capacitors
电力 vs 能量
电力和能源有什么不同?
Ultracapacitors l Microelectronics l High-Voltage Capactors l Microelectronics l High-Voltage Capacitors
特卡特培训
By:
麦克斯维尔技术 - 圣地亚哥
Ultracapacitors l Microelectronics l High-Voltage Capacitors
About Maxwell
电容器制造始于1965
生产设施:欧美及亚洲
麦克斯维尔是创新、高能效 储存及能源输送解决方案 的领先开发者及生产者
• 含水电解质: ESMA, Elit, Evan, Skeleton Technologies and Tavrima
• 优势:
• 高电解导电率 • 不需紧密密封以隔离 • 低环境影响
Energy Density
Safety System Cost Power Cost
Power Density Energy Cost

超级电容器小巧身材大能量存储

超级电容器小巧身材大能量存储

超级电容器小巧身材大能量存储在科技的不断进步中,越来越多的新型能量存储技术得到了广泛关注。

而其中,超级电容器作为一种高能量密度、高功率密度的能量存储设备,正逐渐成为重要的研究领域。

本文将介绍超级电容器的原理、特点以及未来的应用前景。

一、超级电容器的原理超级电容器,也被称为超级电容、超级电池,它是一种利用离子电荷在电极之间存储电能的电子器件。

超级电容器的核心部件是由两个电极和介质构成的双层电容器,电极通常采用活性碳材料,并通过电解质传导离子,从而实现电荷的储存和释放。

与传统电池相比,超级电容器具有以下几个特点:1. 高能量密度:由于采用高表面积电极和可逆离子传导的特殊介质,超级电容器能够存储更多的电荷,从而实现高能量密度的存储。

2. 高功率密度:超级电容器的电荷和放电速度非常快,可实现高功率的储存和释放,适合用于需要瞬间大功率输出的应用场景。

3. 长寿命:由于储存和释放过程中没有化学反应,超级电容器具有长寿命特点,能够进行数以百万次的充放电循环,大大提高了设备的使用寿命。

二、超级电容器的应用领域由于超级电容器具有独特的特点,它在多个领域中具有广泛的应用前景。

1. 新能源领域:超级电容器能够实现瞬时的大功率输出和快速充放电,因此被广泛应用于电动汽车、混合动力汽车等新能源车辆上,提供车辆启动、刹车能量回收等方面的支持。

2. 电子设备领域:超级电容器体积小、重量轻,适合用于便携式电子设备,如智能手机、平板电脑等。

超级电容器的高功率密度和长寿命特点,为电子设备提供了可靠的能量供应。

3. 工业应用领域:超级电容器在工业控制系统、电网调峰、储能电站等领域有着广泛的应用。

它能够应对电网负荷的瞬间变化,提供稳定的电能输出。

4. 军事应用领域:超级电容器的高功率密度和快速充放电特点,使其被广泛应用于军事装备领域。

例如,在雷达系统、激光武器等需要瞬时大功率输出的设备中,超级电容器发挥了重要的作用。

三、超级电容器的发展趋势随着科技的不断进步,超级电容器在未来有望出现更多的创新和应用。

超级电容器的原理与应用

超级电容器的原理与应用

超级电容器的原理与应用超级电容器,又称为超级电容、超级电容放电器,是一种新型电化学器件,它具有比传统电容器更高的电容量和能量密度,以及更高的功率密度。

这种电化学器件在现代电子设备、交通工具、能源储存系统等领域有着重要的应用。

本文将从超级电容器的原理、结构、特点以及应用领域等方面进行介绍。

一、超级电容器的原理超级电容器的工作原理基于电荷的吸附和离子在电解质中的迁移。

其正极和负极均采用多孔的活性碳材料,两者之间的电解质是导电液体。

当加上电压时,正负极之间形成两层电荷分布,即电荷层,进而形成电场。

电荷的吸附和电子的迁移使得电容器储存电能。

二、超级电容器的结构超级电容器的主要结构包括两块活性碳电极、电解质和两块集流体。

活性碳电极是超级电容器的核心部件,通过高度多孔的结构使得电极表面积大大增加,从而增加电容器的电容量。

电解质则起着导电和电荷传递的作用,而集流体则是用于导电的金属片或碳素片。

三、超级电容器的特点1.高功率密度:超级电容器具有较高的功率密度,能够在短时间内释放大量电能。

2.长循环寿命:相比于锂离子电池等储能装置,超级电容器具有更长的循环寿命。

3.快速充放电:超级电容器具有快速的充放电速度,适用于需要频繁充放电的场景。

4.环保节能:超级电容器不含有有害物质,具有较高的能源利用效率。

四、超级电容器的应用1.汽车启动系统:超级电容器作为汽车启动系统的辅助储能装置,能够有效提高发动机启动速度,降低能源消耗。

2.再生制动系统:超级电容器在电动汽车的再生制动系统中起到储能和释放能量的作用,提高能源回收效率。

3.电网能量储存:超级电容器可用作电网能量的储存装置,用于平衡电力需求与供给之间的波动。

4.工业自动化设备:超级电容器在工业自动化领域中广泛应用,用于缓冲电源波动和提供紧急供电。

5.医疗设备:超级电容器可用于医疗设备的储能,确保设备持续稳定运行。

结语超级电容器以其高功率密度、长循环寿命、快速充放电等特点在各个领域发挥着重要作用,为现代社会的能源存储和利用提供了新的技术解决方案。

超级电容器原理

超级电容器原理

超级电容器原理
超级电容器是一种特殊的电子元件,其原理是基于电容效应。

与普通电容器不同的是,超级电容器具有较高的电容量和能量储存能力。

超级电容器的基本原理是利用电荷在导体的两个电极板之间的存储能力。

当电容器与直流电源连接时,正极板吸引并储存了正电荷,而负极板则吸引并储存了负电荷,形成电场。

相比普通电容器,超级电容器的电极板和电解质涂层具有特殊的材料和结构。

首先,电极板会采用高表面积的材料,如活性炭或金属氧化物,以增加其与电解质的接触面积,从而增加电容量。

其次,电解质通常采用高离子导电率的液体或固体,以便电荷快速传输。

最后,电极板和电解质之间采用微孔结构或纳米级颗粒等形式,以便提供更多的电荷存储位置。

超级电容器的储能过程类似于电化学反应。

当电极板充满电荷后,存储的能量可通过电流的流动释放出来。

与传统电池不同的是,超级电容器具有快速充放电速度和长寿命的特点。

这使得超级电容器在许多领域中得到广泛应用,如电子设备、交通工具、储能系统等。

总的来说,超级电容器的原理是基于电容效应和高表面积电极的结构设计。

通过优化材料、结构和工艺,超级电容器具有高电容量、快速充放电速度和长寿命等优势,逐渐成为一种重要的能量储存装置。

超级电容器基本原理及性能特点

超级电容器基本原理及性能特点

聚焦超级电容选型与应用上网时间:2010-05-27 作者:Zoro 来源:电子元件技术网超级电容和电池都是能量的存储载体,但二者有不同的特点。

超级电容通过介质分离正负电荷的方式储存能量,是物理方法储能,电池是通过化学反应的方法来储能。

超级电容充放电次数可达百万次,而电池只有1000次,显然超级电容寿命要远大于电池,降低维护成本且有利于环保。

超级电容充放电速度快,能够在机车启动时提供能量,刹车时捕获能量,因为超级电容充放电的时间在1秒左右,正好与机车刹车或启动的时间匹配。

其他设备比如风力发电中,风轮机变桨的时候要提供能量也是在这个时间段。

而电池的充放电大概在1小时到10个小时左右,而传统用于滤波的电容,充放电为0.03秒。

超级电容放电速度快,而且容量大,能够瞬间释放巨大的能量,能够用作备用电源,在系统突然断电时,在极短时间内为系统提供能量。

超级电容也可以用作发动机或动力电池的辅助,提高发动机的运行效率和能量利用效率。

在系统启动时,超级电容将捕获的能量释放,满足峰值功率要求,从而减轻电池或发动机的负担。

除此之外,超级电容还能用于自动抄表系统中的智能电表(水表,燃气表)、相机闪光灯、混合动力汽车。

超级电容节能、环保、高效的特点迎合了当下节能减碳的设计诉求。

本期半月谈聚焦超级电容,通过以下三个方面介绍超级电容:超级电容器基本原理及性能特点超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。

超级电容与电池的比较相对铅酸电池、镍镉电池、锂离子电池,超级电容具有节能、超长使用寿命、安全、环保、宽温度范围、充电快速、无需人工维护等优点。

本文通过图表来对比各种不同储能产品的特点。

超级电容的典型应用与选型超级电容容量大,充放电速度快,而且充放电循环可达百万次,非常适合用作备用电源和提供峰值功率。

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理引言概述:超级电容器是一种新兴的电子元件,具有高能量密度、快速充放电和长寿命等特点,被广泛应用于电子设备、汽车、航空航天等领域。

本文将详细介绍超级电容器的工作原理。

一、电容器基本原理1.1 电容器的定义和结构电容器是一种能够存储电荷的电子元件,由两个导体板和介质组成。

导体板上的电荷会在两板之间形成电场,存储电能。

1.2 电容器的充放电过程充电过程:当电容器接入电源时,电荷从电源流入导体板,导体板上的电荷逐渐增加,电场强度增大,电容器储存的电能增加。

放电过程:当电容器与电源断开连接时,导体板上的电荷会通过电路释放出来,电场强度减小,电容器储存的电能逐渐减小。

1.3 电容器的电容量和电压电容量是电容器存储电荷的能力,单位为法拉(F)。

电容量越大,电容器存储的电能越多。

电压是电容器两板之间的电势差,单位为伏特(V)。

电压越高,电容器存储的电能越大。

二、超级电容器的结构和特点2.1 超级电容器的结构超级电容器由两个电极和电解质组成。

电极通常采用活性炭材料,具有大表面积和高导电性。

电解质是一种能够导电的液体或者固体,能够提高电容器的电导率和存储电荷的能力。

2.2 超级电容器的高能量密度超级电容器的电极具有大表面积,能够存储更多的电荷,因此具有高能量密度。

相比之下,传统电容器的电能密度较低。

2.3 超级电容器的快速充放电由于超级电容器的电极和电解质具有低电阻性质,电荷在电容器内部的传输速度非常快,因此具有快速充放电的特点。

三、超级电容器的工作原理3.1 双电层电容效应超级电容器的电极表面存在双电层结构,即电极表面的电荷分布形成两层电荷层。

这种双电层结构使得超级电容器能够存储更多的电荷。

3.2 电化学反应超级电容器的电解质能够发生电化学反应,将电能转化为化学能。

这种反应可以增加电容器的电能存储能力。

3.3 电容器的电压稳定性超级电容器具有较好的电压稳定性,即在充放电过程中,电容器的电压变化较小。

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理引言概述:超级电容器是一种能够快速存储和释放大量电荷的电子元件,具有高能量密度和高功率密度的特点。

它在电子设备、新能源领域等方面有着广泛的应用。

本文将详细介绍超级电容器的工作原理。

正文内容:1. 超级电容器的基本构造1.1 构成超级电容器的两个电极超级电容器由两个电极组成,分别为正极和负极。

正极通常由活性炭制成,负极则由活性炭或者金属氧化物制成。

这两个电极之间通过电解质分隔,形成电容。

1.2 电解质的作用电解质是超级电容器中的重要组成部份,它能够传导电荷并分隔正负极。

常见的电解质有有机溶液和聚合物凝胶等。

电解质的选择对超级电容器的性能有着重要影响。

1.3 外壳和连接器超级电容器通常需要外壳来保护内部结构,并通过连接器与外部电路相连。

外壳材料的选择应具有良好的绝缘性和耐高温性能,连接器则应具备低电阻和高可靠性。

2. 超级电容器的工作原理2.1 双电层电容效应超级电容器的存储机制主要依靠双电层电容效应。

当电极与电解质接触时,电解质中的离子会吸附在电极表面,形成一个电荷分布层,称为电极双电层。

电极双电层的形成使得超级电容器能够存储电荷。

2.2 电导电容效应除了双电层电容效应外,超级电容器还利用电导电容效应来存储电荷。

电导电容效应是指电解质中离子的迁移速度和浓度变化引起的电容效应。

通过调节电解质的组成和浓度,可以改变电容器的电荷存储能力。

2.3 充放电过程超级电容器的工作过程包括充电和放电两个过程。

在充电过程中,电荷从电源流入电容器,使得电极双电层的电荷分布发生变化。

在放电过程中,电荷从电容器流出,使得电极双电层的电荷分布恢复到初始状态。

3. 超级电容器的性能特点3.1 高能量密度超级电容器具有较高的能量密度,能够存储更多的电荷。

这使得它在能量存储和释放方面具有优势,适合于一些需要瞬间高能量输出的场合。

3.2 高功率密度超级电容器具有较高的功率密度,能够快速充放电。

与传统电池相比,它能够在短期内输出更高的电流,满足高功率需求。

揭秘:Maxwell超级电容器核心技术

揭秘:Maxwell超级电容器核心技术

揭秘:Maxwell超级电容器核心技术超级电容器是利用活性炭多孔电极和电解质组成的双电层结构获得超大的电容量的。

与利用化学反应的蓄电池不同,超级电容器的充放电过程始终是物理过程,性能十分稳定,故而安全系数高、低温性能好、寿命长且免维护。

超级电容器的核心元件是电极,电极的制造工艺目前分为干电极与湿电极两种技术。

干电极技术是仅通过干混活性碳粉和粘合剂加工成电极。

湿电极技术在制作电极的过程中,除了活性碳粉和粘合剂还需加入液态的溶剂。

由于液态溶剂会影响超级电容器的工作性能,因此还需使用烘箱对其进行干化处理,将溶剂从电极中去除。

这意味和干电极技术相比,湿电极技术工序更长,而且有额外的生产成本。

另外,烘干处理很难将溶剂彻底去除。

在超级电容器工作过程中,溶剂杂质会发生反应产生额外物质,影响电极和电解质的性能。

而反应产生的气体更会加速超级电容器的老化。

因此,采用湿电极技术的超级电容器相对寿命较短,可靠性低,稳定性差。

下表列出采用干电极工艺和湿电极工艺的具体比较:在生产成本上干电极技术也独具优势。

业界领先的超级电容器厂商 Maxwell 表示,他们从椰子壳、杏仁壳、麦子等多种材料中来提取超级电容器中的核心材料 -- 碳,这些新材料的应用也是降低成本的一种方式。

Maxwell 还拥有集中在电极的研发、生产和制造上大部分专利技术,超过35项专利技术及专有干电极工艺造就了其超级电容器的卓越性能优势。

采用这种工艺可以生产出拥有总成本最低的电容器单体。

由于使用的是无溶剂残留的高纯度材料,这种方式也更为绿色环保和节约能源、并且可以达到百分之百的回收再利用。

Maxwell 超级电容器专利干电极工艺流程在中国,超级电容器最为广泛的应用就是城市混合动力客车制动能量回收系统。

据统计,目前 Maxwell 在中国超容混合动力客车的保有量已超过一万辆,宇通,金龙、金旅、海格、南车等国内知名的十多家车企都已将超容成功应用于新能源汽车上,节能减排,省油环保效果卓著。

Maxwell超级电容

Maxwell超级电容

工业
消费者
Ultracapacitors l Microelectronics l High-Voltage Capacitors
SITRபைடு நூலகம்S® SES - 解决方案
储能系统: 基站或在车上
时间 t1 1号车刹车 储能系统储存刹车能量
时间 t2 2号车加速 储能系统放出能量
应用: 交替送出储存的刹车能量,用于车辆再加速
• 超级电容的表现在传统电容器和电化学单元之 间. • 快充快放能力 • 高可逆过程, 10万个周期 • 能力比单元低
仅有单元能力的~10%
• 能量比电解电容更高 • 出色的低温表现
Ultracapacitors l Microelectronics l High-Voltage Capacitors
应用
汽车
14/42 V系统 HEV 电力子系统
牵引Traction
回复制动 电压稳定 柴油机启动
大单元
消费电子 工业
电力质量 Pitch systems Actuators AMR PDAs 数码相机 对讲机 扫描器 玩具
小单元
Ultracapacitors l Microelectronics l High-Voltage Capacitors
超级电容市场
超级电容全球市场
消费品
数码相机
PDA 玩具 记忆备份
工业
应急电源UPS 风力发电 固定式燃料单元 自动化/机器人
运输
电动巴士/卡车
发动机启动 轻量电动车
当地电力
铁路
Ultracapacitors l Microelectronics l High-Voltage Capacitors

超级电容器简介

超级电容器简介

超级电容器简介(Maxwell)随着社会经济的发展,人们对于绿色能源和生态环境越来越关注,超级电容器作为一种新型的储能器件,因为其无可替代的优越性,越来越受到人们的重视。

在一些需要高功率、高效率解决方案的设计中,工程师已开始采用超级电容器来取代传统的电池。

电池技术的缺陷Li离子、NiMH等新型电池可以提供一个可靠的能量储存方案,并且已经在很多领域中广泛使用。

众所周知,化学电池是通过电化学反应,产生法拉第电荷转移来储存电荷的,使用寿命较短,并且受温度影响较大,这也同样是采用铅酸电池(蓄电池)的设计者所面临的困难。

同时,大电流会直接影响这些电池的寿命,因此,对于要求长寿命、高可靠性的某些应用,这些基于化学反应的电池就显出种种不足。

超级电容器的特点和优势超级电容器的原理并非新技术,常见的超级电容器大多是双电层结构,同电解电容器相比,这种超级电容器能量密度和功率密度都非常高。

同传统的电容器和二次电池相比,超级电容器储存电荷的能力比普通电容器高,并具有充放电速度快、效率高、对环境无污染、循环寿命长、使用温度范围宽、安全性高等特点。

除了可以快速充电和放电,超级电容器的另一个主要特点是低阻抗。

所以,当一个超级电容器被全部放电时,它将表现出小电阻特性,如果没有限制,它会拽取可能的源电流。

因此,必须采用恒流或恒压充电器。

10年前,超级电容器每年只能卖出去很少的数量,而且价格很贵,大约1~2美元/法拉,现在,超级电容器已经作为标准产品大批量供应市场,价格也大大降低,平均0.01~0.02美元/法拉。

在最近几年中,超级电容器已经开始进入很多应用领域,如消费电子、工业和交通运输业等领域。

图1 超级电容器循环寿命长,具有很高的功率密度、安全性和效率超级电容器的结构虽然,目前全球已有许多家超级电容器生产商,可以提供许多种类的超级电容器产品,但大部分产品都是基于一种相似的双电层结构,超级电容器在结构上与电解电容器非常相似,它们的主要区别在于电极材料,如图2所示。

超级电容器的原理与应用

超级电容器的原理与应用

超级电容器的原理与应用一、超级电容器的原理超级电容器,也称为超级电容、超级电容器或超级电容模块,是一种储存电能的新型电子元器件。

与传统的电池不同,超级电容器的储能机制是基于电荷的分离和积累。

超级电容器的核心结构是电极材料和电解质。

电极材料通常采用碳材料,如活性炭或金属氧化物,具有高比表面积和良好的导电性。

而电解质则采用离子液体或聚合物凝胶等。

当超级电容器接通电源时,电解质中的离子开始在电极材料表面游动,负离子向正电极游动,正离子向负电极游动。

这一过程导致电荷在电极上分离和积累,储存电能。

超级电容器具有以下几个特点: 1. 高功率密度:超级电容器的充放电速度极快,可以在很短的时间内释放大量电能,在一些需要高功率输出的应用中有着广泛的应用前景。

2. 长寿命:超级电容器的充放电循环次数可达百万甚至千万次,远远超过传统电池,有更长的使用寿命。

3. 耐高温:超级电容器的工作温度范围通常较宽,能够在较高温度下正常工作,并且不会出现着火爆炸等危险。

4. 环境友好:超级电容器不含有污染环境的重金属和有害物质,对环境友好。

二、超级电容器的应用由于超级电容器具有独特的特点和优势,其在各个领域有着广泛的应用。

1. 环境和新能源领域超级电容器在环境和新能源领域的应用较为广泛,主要体现在以下几个方面:- 电动车辆:超级电容器可以作为电动车辆的辅助动力装置,提供高功率的瞬时能量,增加电动车辆的加速性能和续航里程。

- 电网调峰:超级电容器可以储存多余的电能,在高峰时段释放,起到调节电网负荷的作用,提高电网的稳定性。

- 可再生能源储能:超级电容器可以作为太阳能光伏电池和风力发电机等可再生能源的储能装置,平衡能源的供需,提高能源利用效率。

2. 电子产品领域超级电容器在电子产品领域的应用也有较多的场景: - 智能手机和平板电脑:超级电容器可以作为移动设备的备用电源,提供快速充电和长时间待机的功能,增强用户体验。

- 无线通信:超级电容器可以用于储存和供应脉冲电流,提高通信设备的传输速率和稳定性。

超级电容原理

超级电容原理

超级电容器原理电化学双层电容器(EDLC)因超级电容器被我们所熟知。

超级电容器利用静电极化电解溶液的方式储存能量。

虽然它是一个电化学器件,但它的能量储存机制却一点也不涉及化学反应。

这个机制是高度可逆的,它允许超级电容器充电放电达十万甚至数百万次。

超级电容器可以被视为在两个极板外加电压时被电解液隔开的两个互不相关的多孔板。

对正极板施加的电势吸引电解液中的负离子,而负面板电势吸引正离子。

这有效地创建了两个电荷储层,在正极板分离出一层,并在负极板分离出另外一层。

传统的电解电容器存储区域来自平面,导电材料薄板。

高电容是通过大量的材料折叠。

可能通过进一步增加其表面纹理,进一步增加它的表面积。

过去传统的电容器用介质分离电极,这些介质多数为:塑料,纸或薄膜陶瓷。

电介质越薄,在空间受限的区域越可以获得更多的区域。

可以实现对介质厚度的表面面积限制的定义。

超级电容器的面积来自一个多孔的碳基电极材料。

这种材料的多孔结构,允许其面积接近2 000平方米每克,远远大于通过使用塑料或薄膜陶瓷。

超级电容器的充电距离取决于电解液中被吸引到电极的带电离子的大小。

这个距离(小于10埃)远远小于通过使用常规电介质材料的距离。

巨大的表面面积的组合和极小的充电距离使超级电容器相对传统的电容器具有极大的优越性。

超级电容器内部结构超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。

由于制造商或特定的应用需求,这些材料可能略有不同。

所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。

图1. 超级电容器结构超级电容器的部件从产品到产品可以有所不同。

这是由超级电容器包装的几何结构决定的。

对于棱形或正方形封装产品部件的摆放,内部结构是基于对内部部件的设置,即内部集电极是从每个电极的堆叠中挤出。

这些集电极焊盘将被焊接到终端,从而扩展电容器外的电流路径。

对于圆形或圆柱形封装的产品,电极切割成卷轴方式配置。

揭秘:Maxwell超级电容器核心技术

揭秘:Maxwell超级电容器核心技术

揭秘:Maxwell超级电容器核心技术超级电容器是利用活性炭多孔电极和电解质组成的双电层结构获得超大的电容量的。

与利用化学反应的蓄电池不同,超级电容器的充放电过程始终是物理过程,性能十分稳定,故而安全系数高、低温性能好、寿命长且免维护。

超级电容器的核心元件是电极,电极的制造工艺目前分为干电极与湿电极两种技术。

干电极技术是仅通过干混活性碳粉和粘合剂加工成电极。

湿电极技术在制作电极的过程中,除了活性碳粉和粘合剂还需加入液态的溶剂。

由于液态溶剂会影响超级电容器的工作性能,因此还需使用烘箱对其进行干化处理,将溶剂从电极中去除。

这意味和干电极技术相比,湿电极技术工序更长,而且有额外的生产成本。

另外,烘干处理很难将溶剂彻底去除。

在超级电容器工作过程中,溶剂杂质会发生反应产生额外物质,影响电极和电解质的性能。

而反应产生的气体更会加速超级电容器的老化。

因此,采用湿电极技术的超级电容器相对寿命较短,可靠性低,稳定性差。

下表列出采用干电极工艺和湿电极工艺的具体比较:在生产成本上干电极技术也独具优势。

业界领先的超级电容器厂商 Maxwell 表示,他们从椰子壳、杏仁壳、麦子等多种材料中来提取超级电容器中的核心材料 -- 碳,这些新材料的应用也是降低成本的一种方式。

Maxwell 还拥有集中在电极的研发、生产和制造上大部分专利技术,超过35项专利技术及专有干电极工艺造就了其超级电容器的卓越性能优势。

采用这种工艺可以生产出拥有总成本最低的电容器单体。

由于使用的是无溶剂残留的高纯度材料,这种方式也更为绿色环保和节约能源、并且可以达到百分之百的回收再利用。

Maxwell 超级电容器专利干电极工艺流程在中国,超级电容器最为广泛的应用就是城市混合动力客车制动能量回收系统。

据统计,目前 Maxwell 在中国超容混合动力客车的保有量已超过一万辆,宇通,金龙、金旅、海格、南车等国内知名的十多家车企都已将超容成功应用于新能源汽车上,节能减排,省油环保效果卓著。

超级电容器的原理和特点

超级电容器的原理和特点

超级电容器的原理和特点一、超级电容器的原理超级电容器的工作原理是基于电荷在电解质中的吸附和解吸附机制。

其结构由正负两个电极和之间的电解质组成。

其中,正负两个电极间通过电解质产生的电场会引起电解质中的正负离子在电极表面上的吸附和解吸附。

当电容器充电时,正极电极表面吸附负离子,负极电极表面吸附正离子,这相当于电容器储存了电荷。

当电容器放电时,负极电极表面的负离子和正极电极表面的正离子解吸附,电荷释放。

二、超级电容器的特点1.高储能密度:相比于传统电容器和储能器件,超级电容器具有高储能密度的优势。

这是因为超级电容器采用了特殊的电极材料和电解质,提供了更大的电极表面积,从而能够储存更多电荷。

2.快速充放电:超级电容器具有快速充放电的特点,充电时间通常可以达到几秒至几分钟,而传统电池通常需要几个小时。

这是因为超级电容器可以利用其高电导率将电荷迅速传递到电极表面,从而实现快速充放电。

3.长寿命和可靠性:由于超级电容器不涉及化学反应,因此其使用寿命远远超过传统电池。

此外,由于超级电容器的电化学反应可逆,因此超级电容器可以进行数百万次的充放电循环,而不会降低其性能。

4.宽温度范围:超级电容器能够在极端温度下正常工作,在-40℃至70℃的温度范围内,其性能基本保持不变。

这种特点使得超级电容器在一些特殊工况下的应用得以实现。

5.环境友好:超级电容器不使用有害的化学物质,不产生有毒废弃物,具有较低的环境污染风险。

与传统电池相比,超级电容器更加环保。

6.可充电性:与传统的干电池相比,超级电容器具有可充电性。

这意味着超级电容器可以通过外部电源进行充电,并能够进行多次循环充放电。

总结:超级电容器具有高储能密度、快速充放电、长寿命和可靠性、宽温度范围、环境友好、可充电性等特点。

这些特点使得超级电容器在一些领域具有广泛的应用前景,如电动车、智能电网、可再生能源储能等领域。

随着科学技术的发展,超级电容器的性能将会更加优化,其应用范围也将进一步拓展。

Maxwell超级电容器基本原理及性能特点

Maxwell超级电容器基本原理及性能特点

Maxwell超级电容器基本原理及性能特点Maxwell超级电容器结构超级电容的容量比通常的电容器大得多。

由于其容量很大,对外表现和电池相同,因此也有称作“电容电池”。

超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。

超级电容器原理电化学双层电容器(EDLC)因超级电容器被我们所熟知。

超级电容器利用静电极化电解溶液的方式储存能量。

虽然它是一个电化学器件,但它的能量储存机制却一点也不涉及化学反应。

这个机制是高度可逆的,它允许超级电容器充电放电达十万甚至数百万次。

超级电容器可以被视为在两个极板外加电压时被电解液隔开的两个互不相关的多孔板。

对正极板施加的电势吸引电解液中的负离子,而负面板电势吸引正离子。

这有效地创建了两个电荷储层,在正极板分离出一层,并在负极板分离出另外一层。

传统的电解电容器存储区域来自平面,导电材料薄板。

高电容是通过大量的材料折叠。

可能通过进一步增加其表面纹理,进一步增加它的表面积。

过去传统的电容器用介质分离电极,这些介质多数为:塑料,纸或薄膜陶瓷。

电介质越薄,在空间受限的区域越可以获得更多的区域。

可以实现对介质厚度的表面面积限制的定义。

超级电容器的面积来自一个多孔的碳基电极材料。

这种材料的多孔结构,允许其面积接近2000平方米每克,远远大于通过使用塑料或薄膜陶瓷。

超级电容器的充电距离取决于电解液中被吸引到电极的带电离子的大小。

这个距离(小于10埃)远远小于通过使用常规电介质材料的距离。

巨大的表面面积的组合和极小的充电距离使超级电容器相对传统的电容器具有极大的优越性。

超级电容器内部结构超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。

由于制造商或特定的应用需求,这些材料可能略有不同。

所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Maxwell超级电容器基本原理及性能特点Maxwell超级电容器结构
超级电容的容量比通常的电容器大得多。

由于其容量很大,对外表现和电池相同,因此也有称作“电容电池”。

超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。

超级电容器原理
电化学双层电容器(EDLC)因超级电容器被我们所熟知。

超级电容器利用静电极化电解溶液的方式储存能量。

虽然它是一个电化学器件,但它的能量储存机制却一点也不涉及化学反应。

这个机制是高度可逆的,它允许超级电容器充电放电达十万甚至数百万次。

超级电容器可以被视为在两个极板外加电压时被电解液隔开的两个互不相关的多孔板。

对正极板施加的电势吸引电解液中的负离子,而负面板电势吸引正离子。

这有效地创建了两个电荷储层,在正极板分离出一层,并在负极板分离出另外一层。

传统的电解电容器存储区域来自平面,导电材料薄板。

高电容是通过大量的材料折叠。

可能通过进一步增加其表面纹理,进一步增加它的表面积。

过去传统的电容器用介质分离电极,这些介质多数为:塑料,纸或薄膜陶瓷。

电介质越薄,在空间受限的区域越可以获得更多的区域。

可以实现对介质厚度的表面面积限制的定义。

超级电容器的面积来自一个多孔的碳基电极材料。

这种材料的多孔结构,允许其面积接近2000平方米每克,远远大于通过使用塑料或薄膜陶瓷。

超级电容器的充电距离取决于电解液中被吸引到电极的带电离子的大小。

这个距离(小于10埃)远远小于通过使用常规电介质材料的距离。

巨大的表面面积的组合和极小的充电距离使超级电容器相对传统的电容器具有极大的优越性。

超级电容器内部结构
超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。

由于制造商或特定的应用需求,这些材料可能略有不同。

所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。

图1. 超级电容器结构
超级电容器的部件从产品到产品可以有所不同。

这是由超级电容器包装的几何结构决定的。

对于棱形或正方形封装产品部件的摆放,内部结构是基于对内部部件的设置,即内部集电极是从每个电极的堆叠中挤出。

这些集电极焊盘将被焊接到终端,从而扩展电容器外的电流路径。

对于圆形或圆柱形封装的产品,电极切割成卷轴方式配置。

最后将电极箔焊接到终端,使外部的电容电流路径扩展。

Maxwell超级电容器结构
图2. 超级电容器电极
图3.电极——制胜的关键
如上图2所示,为Maxwell超级电容的电极,这被认为是他们超级电容器技术的最关键部分。

这个电极是由铝,碳元素制成,其中树脂作为粘合剂,纸作为隔膜。

超级电容器的特点
(1)充电速度快,充电10秒~10分钟可达到其额定容量的95%以上;
(2)循环使用寿命长,深度充放电循环使用次数可达1~50万次,没有“记忆效应”;
(3)大电流放电能力超强,能量转换效率高,过程损失小,大电流能量循环效率≥90%;
(4)功率密度高,可达300W/KG~5000W/KG,相当于电池的5~10倍;
(5)产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源;
(6)充放电线路简单,无需充电电池那样的充电电路,安全系数高,长期使用免维护;
(7)超低温特性好,温度范围宽-40℃~+70℃;
(8)检测方便,剩余电量可直接读出;
(9)容量范围通常0.1F--1000F 。

法拉(farad),简称“法”,符号是F
1法拉是电容存储1库仑电量时,两极板间电势差是1伏特1F=1C/1V
1库仑是1A电流在1s内输运的电量,即1C=1A•S。

1库仑=1安培•秒
1法拉=1安培•秒/伏特。

相关文档
最新文档