数理统计的起源
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程文化2-数理统计的起源
数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效
的收集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议.
数理统计的发展大致可分为古典时期、近代时期和现代时期三个阶段.
古典时期(19世纪以前).这是描述性的统计学形成和发展阶段,是数理统计的萌芽时期.在这一时期里,瑞土数学家雅各布·伯努利(Jakob Bernoulli,1654-1705)较早地系统论证了大数定律.1763年,英国数学家贝叶斯(Thomas Bayes,1701-1761)提出了一种归纳推理的理论,后被发展为一种统计推断方法―
贝叶斯方法,开创了数理统计的先河.法国数学家棣莫佛(de Moivre,1667-1754)于1733年首次发现了正态分布的密度函数并计算出该曲线在各种不同区间内的概率,为整个大样本理论奠定了基础.1809年,德国数学家高斯(Gauss.Garl Friedrich,1777-1855,德国)和法国数学家勒让德(Adrien Marie Legendre1752-1833)各自独立地发现了最小二乘法,并应用于观测数据的误差分析.在数理统计的理
论与应用方面都作出了重要贡献,他不仅将数理统计应用到生物学,而且还应用到教育学和心理学的研究.并且详细地论证了数理统计应用的广泛性,高斯曾预言:"统计方法,可应用于各种学科的各个部门."
近代时期(19世纪末至1845年).数理统计的主要分支建立,是数理统计的形成时期.上一世纪初,由于概率论的发展从理论上接近完备,加之工农业生产迫切需要,推动着这门学科的蓬勃发展.
1889年,英国数学家皮尔逊(Karl Pearson,1857-1936)提出了矩阵估计法,次年
又提出了频率曲线的理论,并于1900年在德国大地测量学者赫尔梅特(F.Helmert)1876年研究正态总体的样本方差时发现的一个十分重要的分布的基础上提出了
检验,这是数理统计发展史上出现的第一个小样本分布.
1908年,英国的统计学家戈塞特(W.S.Gosset,1876-1937)创立了小样本检验代替了大样本检验的理论和方法(即t分布和t检验法),这为数理统计的另一分支---多元分析奠定了理论基础.
1912年,英国统计学家费歇(R.A.Fisher,1890-1962)推广了t检验法,同时发展了显著性检验及估计、方差分析等数理统计新分支.
这样,数理统计的一些重要分支如假设检验、回归分析、方差分析、正交设
计等都有了决定其基本面貌的内容和理论框架.数理统计成为应用广泛、方法独特的一门数学学科.
现代时期(1945年以后).美籍数理统计学家瓦尔德(A.Wald,1902-1950)致力于用数学方法使统计学精确化、严密化,取得了很多重要成果.他发展了决策理论,提出了一般的判别问题,创立了序贯分析理论,提出了著名的序贯概率比检验
法(比如,用于贵重产品的抽样检查与验收).瓦尔德的两本著作《序贯分析》和《统计决策函数论》,被认为是数理发展史上的经典之作.统计决策理论从人与大自
然进行博弈的观点出发,把形形色色的统计问题纳入一个统一的模式之下,对战后数理统计许多分支的发展产生了很大的影响,特别是参数估计这个分支.
随着概率论的高速发展,随机过程的统计逐步形成了内容丰富的重要分支.其中,线性滤波理论占据了显著地位,它是40年代维纳-柯尔莫哥洛夫滤波理论(N.Wiener,A.H.Kolmogorov)和60年代卡尔曼滤波理论(Rudolf E.Kalman)向非线性领域的扩展.苏联学者李普泽尔(R.S.Liptser)和希拉也夫(A.N.Shiryaev)在1974年写的专著《随机过程的统计》系统论述了这方面的理论.
统计学发展在趋于成熟并得到大量应用后,一些回避不了的弱点开始显露并逐渐为人们所重视.传统的统计方法不能充分利用过去经验积累起来的知识,小样本问题里表现出来难以克服的局限性,这一点在可靠性统计问题中特别突出.二战后数理统计的发展中,一个引人注目的现象是贝叶斯学派的崛起.他们用独到的方法,加入了过去积累的经验因素,在应用中常能得到意想不到的效果.虽然如此,贝叶斯方法仍存在很多困难,先验分布的客观性常引起非议.贝叶斯学派的观点还难以被广大统计工作者普遍接受,因此和传统学派的争论仍将长期存在.目前情况,后者大体上仍处于支配地位.
随着计算机技术的进步和广泛使用,统计学又产生了一些新的分支和边缘性的新学科,如最优设计和非参数统计推断等,不仅使得过去难于计算的问题能够解决,而且有利地促使了那些能有效利用现代计算机强大计算能力的统计学新理论、新方法的纷纷问世,例如自助法(bootstarp)、投影寻踪法(projection pursuit)、蒙特卡罗法(Monte Carlo Method)等.统计的应用范围愈来愈广泛,已渗透到许多科学领域,应用到国民经济各个部门,成为科学研究不可缺少的工具.