数理统计的起源
数理统计学的诞生
数理统计学的诞生当你漫步在森林公园或在水库边领略自然风光的时候,你是否知道森林中的树有多少棵,水库里到底有多少条鱼?这些都无法具体去数,具体去量。
而当我们必须知道某一无法具体测量的事物的量时,就可以用一种可行的数学方法来计算,那就是数理统计。
从一个总体中抽取样本,将收集来的样本数据加以整理,并从中得出认识总体的结论,这是科学研究工作和日常生活中屡见不鲜的手段。
数理统计是现代数学中一个非常活跃的分支,它在20世纪获得巨大的发展和迅速普及,被认为是数学史上值得提及的大事。
然而它是如何产生的呢?随着生物学发展而产生的数学方法莱尔根据各个地层中的化石种类和现仍在海洋中生活的种类作出百分率,然后定出更新世、上新世、中新世、始新世的名称,并于1830~1833年出版了三卷《地质学原理》。
这些地质学中的名称沿用至今,可是他使用的类似于现在数理统计的方法,却没有引起人们的重视。
生物学家达尔文关于进化论的工作主要是生物统计,他在乘坐“贝格尔”号军舰到美洲的旅途上带着莱尔的上述著作,二者看来不无关系。
从数学上对生物统计进行研究的第一人是英国统计学家皮尔逊。
他曾在伦敦大学学院学习,然后去德国学物理,1881年在剑桥大学获得学士学位,1882年任伦敦大学应用数学力学教授。
1891年,他和剑桥大学的动物学家讨论达尔文自然选择理论,发现他们在区分物种时用的数据有“好”和“比较好”的说法。
于是皮尔逊便开始潜心研究数据的分布理论,他借鉴前人的做法,并大胆创新,其研究成果见诸著作《机遇的法则》,其中提出了“概率”和“相关”的概念。
接着又提出“标准差”、“正态曲线”、“平均变差”、“均方根误差”等一系列数理统计的基本术语。
这些文章都发表在进化论的杂志上。
直至1901年,他创办了杂志《生物统计学》,使得数理统计有了自己的阵地。
这可以说是数学在进入20世纪时最初的重大收获之一。
学科奠基者——费歇尔数理统计作为一个进一步完善的数学学科的奠基者是英国人费歇尔。
数理统计学的发展历程
数理统计学的发展历程数理统计学是伴随着概率论的发展而发展起来的。
19世纪中叶以前已出现了若干重要的工作,如C.F.高斯和A.M.勒让德关于观测数据误差分析和最小二乘法的研究。
到19世纪末期,经过包括K.皮尔森在内的一些学者的努力,这门学科已开始形成。
但数理统计学发展成一门成熟的学科,则是20世纪上半叶的事,它在很大程度上要归功于K.皮尔森、R.A.费希尔等学者的工作。
特别是费希尔的贡献,对这门学科的建立起了决定性的作用。
1946年H.克拉默发表的《统计学数学方法》是第一部严谨且比较系统的数理统计著作,可以把它作为数理统计学进入成熟阶段的标志。
数理统计学的发展大致可分3个时期。
第一时期20 世纪以前。
这个时期又可分成两段,大致上可以把高斯和勒让德关于最小二乘法用于观测数据的误差分析的工作作为分界线,前段属萌芽时期,基本上没有超出描述性统计量的范围。
后一阶段可算作是数理统计学的幼年阶段。
首先,强调了推断的地位,而摆脱了单纯描述的性质。
由于高斯等的工作揭示了正态分布的重要性,学者们普遍认为,在实际问题中遇见的几乎所有的连续变量,都可以满意地用正态分布来刻画。
这种观点使关于正态分布的统计得到了深入的发展,但延缓了非参数统计的发展。
19世纪末,K.皮尔森给出了以他的名字命名的分布,并给出了估计参数的一种方法——矩法估计。
德国的F.赫尔梅特发现了统计上十分重要的x2 分布。
第二时期20世纪初到第二次世界大战结束。
这是数理统计学蓬勃发展达到成熟的时期。
许多重要的基本观点和方法,以及数理统计学的主要分支学科,都是在这个时期建立和发展起来的。
这个时期的成就,包含了至今仍在广泛使用的大多数统计方法。
在其发展中,以英国统计学家、生物学家费希尔为代表的英国学派起了主导作用。
第三时期战后时期。
这一时期中,数理统计学在应用和理论两方面继续获得很大的进展。
概率论与数理统计的起源与发展
概率论与数理统计的起源与发展概率论产生于十七世纪,本来是有保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
早在1654年,意大利医生兼数学家卡当,据说曾大量地进行过赌博。
他在赌博时研究不输的方法,实际是概率论的萌芽。
在那个时代,虽然概率论的萌芽有些进展,但还没有出现真正的概率论。
十七世纪中叶,法国贵族德·美黑在骰子赌博中,由于有要急近处理的事情必须中途停止赌博,要靠对胜负的预测把赌资进行合理的分配,但不知用什么样的比例分配才算合理,于是就写信向当时法国的最高数学家帕斯卡请教。
正是这封信使概率论向前迈出了第一步。
帕斯卡和当时第一流的数学家费尔玛一起,研究了德·美黑提出的关于骰子赌博的问题。
于是,一个新的数学分支--概率论登上了历史舞台。
三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。
在概率问题早期的研究中,逐步建立了事件、概率和随机变量等重要概念以及它们的基本性质。
后来由于许多社会问题和工程技术问题,如:人口统计、保险理论、天文观测、误差理论、产品检验和质量控制等。
这些问题的提法,均促进了概率论的发展,从17世纪到19世纪,贝努利、隶莫弗、拉普拉斯、高斯、普阿松、切贝谢夫、马尔可夫等著名数学家都对概率论的发展做出了杰出的贡献。
在这段时间里,概率论的发展简直到了使人着迷的程度。
但是,随着概率论中各个领域获得大量成果,以及概率论在其他基础学科和工程技术上的应用,由拉普拉斯给出的概率定义的局限性很快便暴露了出来,甚至无法适用于一般的随机现象。
因此可以说,到20世纪初,概率论的一些基本概念,诸如概率等尚没有确切的定义,概率论作为一个数学分支,缺乏严格的理论基础。
概率论的第一本专著是1713年问世的雅各·贝努利的《推测术》。
经过二十多年的艰难研究,贝努利在该树种,表述并证明了著名的"大数定律"。
数理统计
数理统计数理统计(Mathematics Statistics)什么是数理统计数理统计是以概率论为基础,研究社会和自然界中大量随机现象数量变化基本规律的一种方法。
其主要内容有参数估计、假设检验、相关分析、试验设计、非参数统计、过程统计等。
数理统计的特点它以随机现象的观察试验取得资料作为出发点,以概率论为理论基础来研究随机现象.根据资料为随机现象选择数学模型,且利用数学资料来验证数学模型是否合适,在合适的基础上再研究它的特点,性质和规律性.例如灯泡厂生产灯泡,将某天的产品中抽出几个进行试验.试验前不知道该天灯泡的寿命有多长,概率和其分布情况.试验后得到这几个灯泡的寿命作为资料,从中推测整批生产灯泡的使用寿命.合格率等.为了研究它的分布,利用概率论提供的数学模型进行指数分布,求出值,再利用几天的抽样试验来确定指数分布的合适性.数理统计的起源与发展数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的由集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议.数理统计起源于人口统计、社会调查等各种描述性统计活动.公元前2250年,大禹治水,根据山川土质,人力和物力的多寡,分全国为九州;殷周时代实行井田制,按人口分地,进行了土地与户口的统计;春秋时代常以兵车多寡论诸侯实力,可见已进行了军事调查和比较;汉代全国户口与年龄的统计数字有据可查;明初编制了黄册与鱼鳞册,黄册乃全国户口名册,鱼鳞册系全国土地图籍,绘有地形,完全具有现代统计图表的性质.可见,我国历代对统计工作非常重视,只是缺少系统研究,未形成专门的著作.在西方各国,统计工作开始于公元前3050年,埃及建造金字塔,为征收建筑费用,对全国人口进行普查和统计.到了亚里土多德时代,统计工作开始往理性演变.这时,统计在卫生、保险、国内外贸易、军事和行政管理方面的应用,都有详细的记载.统计一词,就是从意大利一词逐步演变而成的.数理统计的发展大致可分为古典时期、近代时期和现代时期三个阶段.古典时期(19世纪以前).这是描述性的统计学形成和发展阶段,是数理统计的萌芽时期.在这一时期里,瑞土数学家贝努里(1654-1795年)较早地系统论证了大数定律.1763年,英国数学家贝叶斯提出了一种归纳推理的理论,后被发展为一种统计推断方法――贝叶斯方法,开创了数理统计的先河.法国数学家棣莫佛(1667-1754)于1733年首次发现了正态分布的密度函数.并计算出该曲线在各种不同区间内的概率,为整个大样本理论奠定了基础.1809年,德国数学家高斯(1777-1855)和法国数学家勒让德(1752-1833)各自独立地发现了最小二乘法,并应用于观测数据的误差分析.在数理统计的理论与应用方面都作出了重要贡献,他不仅将数理统计应用到生物学,而且还应用到教育学和心理学的研究.并且详细地论证了数理统计应用的广泛性,他曾预言:"统计方法,可应用于各种学科的各个部门."近代时期(19世纪末至1845年)数理统计的主要分支建立,是数理统计的形成时期.上一世纪初,由于概率论的发展从理论上接近完备,加之工农业生产迫切需要,推动着这门学科的蓬勃发展.1889年,英国数学家皮尔逊(1857-1936)提出了矩估计法,次年又提出了频率曲线的理论.并于1900年在德国数学家赫尔梅特在发现 c 2分布的基础上提出了c 2 检验,这是数理统计发展史上出现的第一个小样本分布.1908年,英国的统计学家戈塞特(1876-1937)创立了小样本检验代替了大样本检验的理论和方法(即t分布和t检验法),这为数理统计的另一分支――多元分析奠定理论基础.1912年,英国统计学家费歇(1890-1962)推广了t检验法,同时发展了显著性检验及估计和方差分析等数理统计新分支.这样,数理统计的一些重要分支如假设检验、回归分析、方差分析、正交设计等有了其决定其面貌的内容和理论.数理统计成为应用广泛、方法独特的一门数学学科.现代时期(1945年以后)美籍罗马尼亚数理统计学家瓦你德(1902-1950)致力于用数学方法使统计学精确化、严密化,取得了很多重要成果.他发展了决策理论,提出了一般的判别问题.创立了序贯分析理论,提出著名的序贯概率比检法.瓦尔德的两本著作《序贯分析》和《统计决策函数论》,被认为是数理发展史上的经典之作.由于计算机的应用,推动了数理统计在理论研究和应用方面不断地向纵深发展,并产生一些新的分支和边缘性的新学科,如最优设计和非参数统计推断等.当前,数理统计的应用范围愈来愈广泛,已渗透到许多科学领域,应用到国民经济各个部门,成为科学研究不可缺少的工具.。
概率论和数理统计起源
概率论和数理统计起源(1)从随机现象谈起在自然界和现实生活中,一切事物都是相互联系和不断发展的。
在它们彼此间的联系和发展中,根据它们是否有必然的因果关系,可以分成截然不同的两大类:一类是确定性的现象。
这类现象是在一定条件下,必定会导致某种确定的结果。
举例来说,在标准大气压下,水加热到100度,就必然会沸腾。
又如,把铁加热到1530度的时候,必然会熔化成液态。
事物间这种联系是属于必然性的。
通常的自然科学各学科就是专门研究和认识这种必然性,寻求这类必然现象的因果关系,把握它们之间的数量规律,以达到认识世界和改造世界的目的。
另一类是不确定性的现象。
这类现象是在一定条件下,它的结果是不确定的。
举例来说,同一工人在同一车床上加工同一种零件若干个,它们的尺寸总会有些差异。
又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同,有强弱和早晚之别等等。
为什么在相同的一定条件下,会出现这种种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然性因素影响着结果。
而这些次要的、偶然起作用的因素又是人们无法事先一一能够掌握的。
正因为这样,我们在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先作出确定的答案。
事物间这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在着的。
比如:拿北京地区来说,测量每年七月份的天气平均气温,每年都各有差异,不完全相同,而且也不能准确地预测来年七月份的平均气温。
这样,“北京七月份平均气温”就是随机现象。
又如,同一名工人,用同一台车床在同一条件下(同材料、同一操作规程)加工一种标准长度150毫米的零件等现象,也是随机现象。
因此,我们说随机现象就是:在同样条件下,多次进行同一试验或调查同一现象,所得结果不完全一样,而且无法准确地预测下次所得结果的现象。
概率论与数理统计发展史简要、主要内容概要及其主要应用
概率论与数理统计是一门研究随机现象和数据分析的学科。
以下是关于概率论与数理统计发展史、主要内容概要以及其主要应用的简要介绍:发展史概率论与数理统计是数学的重要分支之一,其发展可以追溯到17世纪。
以下是一些重要的里程碑事件:- 1654年,法国贵族帕斯卡尔引入概率论的基本概念。
- 18世纪,瑞士数学家伯努利家族对概率论做出了系统的研究,并提出伯努利试验和大数定律。
- 19世纪,法国数学家拉普拉斯在概率论方面有很多重要贡献,提出了拉普拉斯公式和拉普拉斯逼近定理。
-20世纪,俄国数学家科尔莫哥洛夫发展了现代概率论的基本框架,建立起了测度论和概率测度的数学基础。
主要内容概要概率论研究随机现象的规律性和不确定性,主要包括以下几个方面的内容:1. 概率基本概念:包括样本空间、事件、随机变量等。
2. 概率分布:研究随机变量的取值及其对应的概率。
3. 大数定律:研究随机变量序列的稳定性,指出当样本容量足够大时,随机现象的长期平均值收敛于期望值的概率趋近于1。
4. 中心极限定理:研究多个相互独立的随机变量之和的分布趋近于正态分布的概率。
数理统计是利用样本数据对总体特征进行推断和决策的学科,主要内容如下:1. 抽样方法:研究如何从总体中获取代表性样本的方法。
2. 统计描述:通过统计量对总体特征进行度量和描述。
3. 参数估计:利用样本数据对总体参数进行估计。
4. 假设检验:根据样本数据对关于总体的假设进行推断和判断。
5. 方差分析和回归分析:研究多个变量之间的关系和影响。
主要应用概率论与数理统计具有广泛的应用领域,涉及自然科学、社会科学、工程技术等众多领域,包括但不限于以下方面:1. 金融和风险管理:用于分析投资组合的风险、金融市场波动性的预测和金融产品的定价。
2. 医学和生物统计学:应用于疾病概率分析、药物疗效评估和流行病学研究等。
3. 工程和质量控制:用于产品质量分析、过程改进和可靠性评估。
4. 社会科学和市场调查:用于样本调查、舆论调查和社会现象的分析。
数理统计学
[科目] 数学[关键词] 统计/相关系数[文件] sxbj90.doc[标题] 数理统计学[内容]数理统计学数理统计学﹝Mathematical Statistics﹞是研究大量随机现象的统计规律性的数学学科。
其核心问题是根据从总体中随机抽出的样本里所获得的信息来推断总体的性质。
数理统计学的发展可分为三个时期。
20世纪以前,是数理统计学的萌芽时期。
这个时期,总的说没有超出描述性统计的范围。
历史上最早出现的统计推断可以看作是英国统计学家J‧格兰特在1662年组织调查伦敦市死亡人数,从数量上去掌握集团的统计推断,并发表专着《从自然和政治方面观察死亡统计表》。
因此,数理统计学可认为是格兰特于17世纪60年代开创的。
格兰特对生命统计,保险统计及经济统计进行数学的研究。
这一学问曾被称为「政治算术」。
他由统计的结果发现人口出生率与死亡率相对稳定,于是提出「大数恒静定律」,成为统计学的基本原理。
这个时期,在概率论方面有较多的发展,必然影响到数理统计学的发展。
现在人们所理解的统计推断程序,最早的就是贝斯方法。
T‧贝斯在1763年发表的《论有关机遇问题的求解》对后世的统计思想影响很大。
19世纪初开始用概率模型进行数据分析。
高斯和勒让德首先把最小二乘法用于分析天文观测中的误差。
20世纪以来,最小二乘法经过俄国数学家马尔可夫和其它学者的工作,成为数理统计学中的一个重要方法。
19世纪中叶,许多数理统计学理论的新发展,几乎直接或间接地由两个人所推动。
一个是比利时统计学家A‧凯特勒,一个是英国生物学家S‧E‧高尔顿。
凯特勒的主要功绩在于使统计方法获得普遍应用。
他对天文学、数学、物理学、生物学、社会统计学及气象学等均有研究,将统计方法应用到上述研究范围上去,并强调了正态分布的用途,主张这一分布状态可以适用于许多学科范畴。
高尔顿最早把统计方法应用于生物学。
他曾到非洲考察和探险,搜集了大量资料,并投入很大精力钻研资料中所隐藏的模型与关系。
3.数理统计学发展简史
数理统计学发展简史数理统计学的发展大致可分三个时期来叙述。
20世纪以前,这是数理统计学的萌芽时期。
在这漫长的时期里,描述性统计占据主导地位。
描述性统计就是收集大量的数据,并进行一些简单的运算(如求和、求平均值、求百分比等)或用图表、表格把它们表示出来,中国古代就有钱粮户的统计,西方国家也多次进行人口统计,早期这些统计工作都与国家实施统治有关,统计学的英文statistics源出于位丁文,系由status(状态、国家)和statista(政治家)衍化而来。
这时期也出现了一些现在仍很常用的统计方法,如直方图法,但最重要的,超出描述性统计范围的成就是高斯或勒让德关于最小二乘法的工作,在统计思想上的重大进展有是高斯和勒让德关于最小二乘法的工作,在统计思想上的重大进展是:数据是来自服从一定概率分布的总体,而统计学就是用数据去推断这个分布的未知方面,这个观点强调了推断的地位,使统计学摆脱了单纯描述的性质。
由于高斯等人在误差方面的研究工作,正态分布(又叫高斯分布)的性质和重要性受到广泛重视。
19世纪末皮尔森(K.Pearson,1857-1936)引进了一个以他的名字命名的分布族,它包含了正态分布及现在书籍的一些重要的非正态分布,扩大了人们的眼界 ,皮尔森还提出了一个估计方法——矩估计法,用来估计他所引进的分布族中的参数。
另外,德国的 地测量学者赫尔梅特(F.Helmert)1876年在研究正态总体分布。
高尔顿(F.Galton)在生物学研究中的样本方差时,发现了十分重要的x2提出了回归分析方法,这些都是数理统计发展史中的重要事件。
20世纪初到第二次世界大战结束,这是数理统计学莛发展达到成熟的时期,许多重要的基本观点和方法,以及数理 统计学的主要分支学科,都是在这个时期建立和发展起来的。
在其发展中,以费希尔(R.A.Fisher,1890-1962)为代表的英国学派起了主导的作用。
K.皮乐森在1900年提出了检验拟合优度的x统计量,并证明其极限分布(在2布。
数理统计学
数理统计学数量统计学是根据从总体中随机抽出的样本里所获得的信息来推断关于总体性质的一门学科.或者说是为了得到科学的和实用的结论,而系统整理并利用统计数据的数学方法.它的任务就是研究怎样获得数据和如何分析带有随机性数据,在此基础上对各知识领域中的问题进行推断、预测、直至确定应采取的行动和决策方案.“统计学”(statistics)一词是德国学者阿享瓦尔针对17世纪在德国兴起的“政治学”(德文,staatenkunde)而使用的术语.这门学问最初是用统计方法描述一些先进国家的经济和税收状况.而作为以概率论为基础的数理统计学的产生却是相对比较晚近的事.几百年来,数理统计学已经发展成为一门既有坚实的理论基础,又有广泛实用价值的数学学科.数理统计学的发展史大致可以分为三个时期.数理统计学的萌芽时期历史上最早出现的统计推断可以看作是英国统计学家格兰特在1662年组织调查伦敦市死亡人数,从数量上去掌握集团的统计推断,并发表专著《从自然和政治方面观察死亡统计表》.因此,数理统计学可以认为是格兰特于17世纪60年代开创的.格兰特对生命统计、保险统计及经济统计,进行数学的研究.这一学问曾被称为“政治算术”.他由统计的结果发现人口出生率与死亡率相对稳定,于是提出“大数恒静定律”,成为统计学的基本原理.英国学者佩蒂沿袭了格兰特的方法,统计不同职业人口及伦敦等地的居民数目,著有《政治算术》一书.由于需要对各地人口、农业生产品及国际贸易数量的估计,亟待若干形式的测定数作为处理问题的根据,并需要科学的方法,对测定数进行分析,于是统计学的数学性质逐渐加深,奠定了现代数理统计学的基础.另一方面,概率论的发展不可避免地要影响到数理统计学的发展.现在人们所理解的统计推断程序,最早的就是贝叶斯方法.贝叶斯长期担任英国一个地方教堂的牧师.他自学数学成才,对概率论作出了重要贡献.在他的论文《机会学说问题试解》中建立了条件概率的贝叶斯定理或贝叶斯公式,以后成为统计推断的基础.用概率模型作为手段的数据分析始于19世纪初.被某些人称为近代统计分析中的“汽车”1的最小二乘法原理是由两位著名数学家高斯和勒让德发展起来的2,首先用于分析天文观测中的误差.高斯把钟形曲线作为观测误差的分布曲线.20世纪以来,最小乘二法原理经过俄国数学家马尔可夫和其他学者的工作发展成为数理统计学中的一个重要方法.高斯的工作揭示了正态分布的重要性,因此,人们通常称正态分布为高斯分布.曾经有一段时间,学者们普遍认为在实际问题中遇到的几乎所有连续随机变量,都可以用正态分布来刻划.到19世纪后期,一些学者(特别是皮尔逊)开始认识到这种看法的局限性.19世纪中叶,许多数理统计学理论的新发展,几乎直接或间接地由两个人1指最小二乘法在近代统计中的作用,有如汽车在现代社会中的作用.2高斯和勒让德到底是谁先发明最小二乘法,是统计学史上最著名的有关优先权的争论.勒让德一直声称他是最早的发明者,他在1805年发表了有关结果.所推动.一个是比利时统计学家凯特勒,一个是英国生物学家高尔顿凯特勒的主要功绩在于使统计方法获得普遍应用.凯特勒对各种学科均有研究,如天文学、数学、物理学、生物学、社会统计学及气象学等.他将统计方法应用到上述研究范围上去,并强调了正态分布的用途,主张这一分布状态可以适用于许多学科范畴.凯特勒曾致力于比利时国势调查以及组织国际统计活动.他引进所谓“平均人”(averageman)的概念,起了总体概念的先驱作用.高尔顿是生物学家达尔文的表弟,他对遗传定律颇感兴趣,并最早把统计方法用于生物学.高尔顿曾到非洲考察和探险,搜集了大量资料,并投入很大精力钻研资料中所隐藏的模型与关系.在1889年出版了《自然的遗传》一书,引进了回归直线、相关系数的概念,创立了回归分析.这在遗传的研究中,是以弄清儿辈特征值与父辈特征值的相关关系为目的的.但在那个时代,样本特征值与总体特征值的区别还是很不清楚的.此外,高尔顿还提出了中位数、四分位数、百分位数及四分位偏差等概念.爱尔兰经济学家兼统计学家埃奇沃思关于方差和或然误差的一系列文章也是这一时期的工作.日渐成熟的数理统计学从19世纪末到第二次世界大战结束,可认为是数理统计学发展的第二个时期.这个时期,数理统计学蓬勃发展,名家辈出,提出了一些带根本性的重要概念和方法,完成了许多重要的工作,形成了一系列的基本分支,为数理统计成为一门数学学科打下了坚实的基础.这一时期开始于英国数学家皮尔逊的工作.皮尔逊1884年任伦敦大学学院应用数学和力学教授,担任过格雷沙姆几何学教授、应用数学系主任和高尔顿优生学教授.1899年,他和剑桥大学的动物学家讨论达尔文的自然选择理论.他将数理统计应用于生物遗传和进化诸问题,得到生物统计学和社会统计学的一些基本法则.进一步发展了回归和相关的理论.术语“总体”、“众数”、“标准差”,“变差系数”都是他引进的.皮尔逊认为,统计的基本问题在于“由过去的数据来推断未来会发生什么事”.做到这一点的途径是“把观测数据转化为一个可供预测用的模型”.他对统计的理解已经接近现代的理解.他为此发展了一系列方法──皮尔逊分布族、矩法、拟合优度2 检验等.为了描述自然现象的非对称分布特性,皮尔逊研究出所谓反频率曲线.他和高尔顿等人主持创办了著名的《生物计量》杂志,皮尔逊于1901—1936年担任主编.这一杂志,至今在国际上仍享有盛名;他还担任过《优生学纪事》的编辑.他的著作有:《对进化论的数学贡献》、《统计学家和生物统计学家用表》、《死的可能性和进行论的其它研究》等.19世纪末年,由于概率论的发展,使数理统计学进一步与应用相结合.于是,统计理论与方法开始演进到现代的形态.1908年对现代数理统计学来说,是极重要的一年.英国学者戈塞特以“学生”,为笔名在《生物计量》上发表一篇划时代的文章,得到了t-统计量的精确分布的形式.它不仅成为数理统计学常用的工具,而且也是统计量精确分布理论中一系列重要结果的开端;特别在多元正态总体抽样分布方面有重要意义.因此,可以说戈塞特的工作为样本资料的统计分析与解释开辟了一个新纪元.戈塞特自1899年到他逝世的1937年,都在世界上最大酿酒商之一吉尼斯的啤酒厂担任统计工作.他常与农业实验接触.为了使实验尽可能少消耗原料,他注意到应用小样本及从小样本得到可靠知识的重要性,从而创立了t-分布方法.但当时,他所推导的t-分布方法是不完整的.对现代数理统计学的发展作出决定性贡献的:是英国学者费希尔.他早年在剑桥大学攻读数学和理论物理,后来致力于生物统计学的研究.费希尔利用n维几何方法(多重积分法)给出了t-分布方法的完整证明.他引进了解消假设和显著性检验的概念,成为假设检验理论的先驱,并列举了一致性、有效性和充分性,作为参数的估计量应具备的性质.他还对估计的精度与样本所具有的信息之间的关系进行了考虑,得到了信息量的概念.极大似然法是由费希尔提出的.试验设计法也是由费希尔开创和发展的统计方法之一.他凭借随机化的手段,成功地把概率模型带进了实验领域,并作为分析这种模型的一个方法,建立了方差分析法,他强调了统计方法在试验设计中的重要性.1925年他发表《研究人员用统计方法》一书,50余年内已再版多次.1956年总结其数理统计学研究,著《统计方法及科学推理》一书.除了费希尔以外,这一时期数理统计学发展的重大事件要推内曼和皮乐逊之子皮尔逊在1928—1938年期间建立了假设检验理论和内曼在1934年建立了置信区间理论.内曼生于俄国,后移居美国,在伯克利的加里福尼亚大学任教.他在该校建立了一个研究机构,后来发展成为世界著名的数理统计中心.内曼在假设检验理论中,引进检验功效函数概念,以此作为判断检验方面,取得了许多成果.中国著名数理统计学家许宝騄,在20世纪数理统计史上享有盛名.早年留学英国,就读于费希尔门下,当时英国统计学派的研究在数学论证方面有不少欠缺,许宝騄以其扎实的数学基本功夫,给出许多统计规律的极其漂亮和严密的证明.他在多元分析、统计推断和线性模型方面做出国际水平的工作,尤其在多元分析方面的贡献,起了奠基性的作用.1979年,美国《数理统计年鉴》曾邀请一些著名学者撰文介绍他的生平和工作,高度评价他的贡献.二次大战前数理统计学的另一项重要进展是时间序列分析.1925—1930年间,英国数学家尤尔研究了振荡的时间序列,引进了自回归过程和序列相关等重要概念,奠定了这个统计分支现代发展的基础.1946年,瑞典统计学家克拉默尔发表了《统计学的数学方法》一书,总结了二次大战前数理统计学发展的大部分工作.某些专家认为,这部著作标志着现代数理统计作为一门数学分支的确立.数理统计学的深入发展二次大战以后是数理统计学发展的第三个时期.其特点一方面是使用的数学工具愈广愈深,除了数学分析、测度论、矩阵代数以外,往往还需要泛函分析、拓扑学、近世代数等现代数学工具;另一方面是数理统计学的应用愈加广泛.战后,由于工业和军事技术的飞速发展,使数理统计方法的应用达到前所未有的规模.如在工业上广泛应用统计质量管理,并由此产生了抽样检验、管理图等方法.其它如试验设计、多元分析、时间序列分析等也找到了不少新的应用领域.由于电子计算机的发展,使得在战前发展起来的一些统计方法发挥了更大作用.这一时期数理统计学的发展,主要有以下几个方面.1 统计判决函数理论犹太血统的美国学者瓦尔德创立了统计判决函数理论,它是统计学的统一数学理论.一般把瓦尔德的专著《统计决策函数》的发表作为这一理论诞生的年代.在这个理论中,把推断程序的全体命名为判决函数空间,第一次明确地定义它为一个集合.这样一来,检验和估计等数理统计问题可用统一方法处理.瓦尔德理论的出现,开拓了统计学一些新的研究领域,特别是参数估计这个分支在这个理论的影响下,面貌有了很大变化.瓦尔德定义了统计推断程序的风险函数,用来作为推断程序好坏的准则.他还使统计理论与对策论结合起来,并在统计学中引进了极小极大原理.2 发展大样本理论大样本理论的深入发展,遍及数理统计学各主要分支.例如,非参数统计,在战前还谈不上系统化,在战后发展很快.由于这个分支的特点决定,只有发展大样本理论,它才得以发展.目前构成这个分支主要内容的U-统计量理论、线性置换统计量理论及秩统计量的大样本理论都是战后发展起来的.再如,在参数估计中,象极大似然估计、稳健估计、自适应估计的大样本理论在战后也得到很大发展.3 贝叶斯统计学派的影响增长贝叶斯统计学派影响的增长是战后数理统计学发展的另一特征.因为贝叶斯方法是在作统计推断前考虑和运用了事前经验(先验知识),并提供了一种易于实用者掌握的解决问题的方法,在应用上取得相当的地位.在一些数理统计学的专著中,贝叶斯方法仍占很大篇幅.并且以贝叶斯方法为工具研究的统计问题也日渐增多.然而贝叶斯方法的缺点在于未能提供直接由样本观察值来确定参数分布的方法.因此,贝叶斯统计始终是统计界争论的问题.除了以上几个方面以外,还有序贯分析、多元分析、试验设计、过程统计等方面都有不少进展,出现了一些新的工作,但有些理论尚待建立.至此,数理统计学的理论与应用,获得辉煌进展,而概率论的作用也更加重要,它不但成为数理统计学的理论基础,而且作为统计归纳与统计推理的依据.这些研究成果,导致今日更进步更复杂的数理统计学的产生,并使之迅速地应用于极广泛的领域.然而,科学的进展是无止境的,现代数理统计学,仍有许多问题,尚须有更佳的处理,有待学者们不断地探求.统计量样本的已知函数,其作用是把样本中有关总体的信息汇集起来,是数理统计学中一个重要的基本概念.常用统计量有样本矩、次序统计量、U-统计量和秩统计量等.其中U-统计量是霍夫丁于1948年引进的.统计量的充分性和完全性是两个重要概念.充分性是费希尔在1925年引进的,内曼和哈尔莫斯在1949年严格证明了一个判定统计量充分性的方法,叫做因子分解定理.统计量的分布叫做抽样分布,它的研究是数理统计中的重要课题.对一维正态总体,有三个重要的抽样分布,即2χ分布、t-分布和F-分布.其中2χ分布是赫尔梅特于1875年在研究正态总体的样本方差时得到的;t-分布是英国统计学家戈塞特(笔名“学生”)于1908年提出的;F-分布是费希尔在20世纪20年代提出的.实验设计法又称之为试验设计法.数理统计学的一个分支,研究如何制定实验方案,以提高实验效率,缩小随机误差的影响,并使实验结果能有效地进行统计分析的理论与方法.英国统计学家费希尔于1923年与梅克齐合作发表了第一个实验设计的实例,1926年提出了实验设计的基本思想.1935年费希尔出版了他的名著《实验设计法》,其中提出了实验设计应遵循的三个原则:随机化、局部控制和重复.费希尔最早提出的设计是随机区组和拉丁方方法,两者都体现了上述原则.1946年,英国统计学家芬尼在保证能估计全部主效应和少数一部分低阶交互作用的前提下,提出了部分实验法.正交表是进行部分实验法最方便的一种工具,日本统计学家田口玄一为正交表的形式和广泛应用做出了在国际上很有影响的工作.点估计总体未知参数估计的一种形式.目的是依据样本估计总体分布所含未知参数或未知参数的函数.构造点估计的方法常用的有矩估计法、最大似然估计法、最小二乘法和贝叶斯估计法.1894年英国统计学家皮尔逊提出的矩估计法,要旨是用样本矩的函数估计总体矩的同一函数.最大似然估计法是一种重要而普遍的点估计法,由英国统计学家费希尔在1912年提出,后来在他的1921年和1925年的工作中又加以发展.最小二乘估计法是由德国数学家高斯在1799—1809年和法国数学家勒让德在1806年提出的,并由俄国数学家马尔可夫在1900年加以发展.它主要用于线性统计模型中的参数估计问题.贝叶斯估计法是基于“贝叶斯学派”的观点而提出的估计法.英国学者贝叶斯1763年在《机会学说问题试解》中,提出了一种归纳推理的理论,以后被一些统计学者发展成为一种系统的统计推断方法,被称为贝叶斯方法.认为贝叶斯方法是唯一合理的统计推断方法的统计学者组成“贝叶斯学派”,它形成于20世纪30年代,到50—60年代已发展成为一个很有影响的学派.区间估计总体参数估计的一种形式.通过从总体中抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,以作为总体的分布参数(或参数的函数)的真值所在范围的估计.1934年,由美国统计学家内曼创立了一种严格的区间估计理论,给出了置信系数和置信区间的概念.20世纪30年代初期英国统计学家费希尔提出了一种构造区间估计的方法,称之为信任推断法.另外,贝叶斯方法也是一种构造区间估计的方法.假设检验又被称为统计假设检验,是一种基本的统计推断形式,也是数理统计学的一个重要分支.在假设检验中,有一种检验方法被称为显著性检验.它是依据实际数据与理论假设H0之间的偏离程度来推断是否拒绝H0的检验方法.拟合优度检验是一类重要的显著性检验.英国统计学家皮尔逊在1900年提出的2 检验是一个拟合优度检验.原苏联数学家柯尔莫哥洛夫和斯米尔诺夫在20世纪30年代的工作开辟了非参数假设检验的方向,分别得到柯尔莫哥洛夫检验和斯米尔诺夫检验,它们都是重要的拟合优度检验方法.美国学者内曼和皮尔逊之子皮尔逊在前人工作的基础上,于1928—1938年间对假设检验进行了系统而深入的研究,发表了一系列文章,建立了假设检验的严格数学理论.内曼引进了检验功效函数的概念,以此作为判断检验程序好坏的标准.内曼与皮尔逊在1933年提出了著名的内曼─皮尔逊引理,是对简单假设寻求最大功效检验的一个构造性的结果.运用与最大似然估计类似的原理,可得到似然比检验法.在一般情况下,寻求似然比的精确分布并不容易.1938年,美国统计学家威尔克斯建立了有关似然比的一个统计量,并证明了它渐近2χ分布,这就为大样本的似然比检验提供了实行的可能.用似然比法导出的U-检验、t-检验和F-检验,都是假设检验中的重要检验法.统计决策理论一种数理统计学的理论.这种理论把数理统计问题看成是统计学家与大自然之间的博弈,用这种观点把各种各样的统计问题统一起来,以对策论的观点来研究.这一理论的创立是数理统计学上的一次革新,拓广了统计学的内容范围,有较大的实际意义.美国统计学家瓦尔德1939年开始探讨这一理论,提出一般的判决问题,引进了损失函数、风险函数、极小极大原则和最不利先验分布等重要概念.他于1950年出版了专著《统计决策函数》(中译本,上海科技出版社,1960),系统地总结了他在这一理论研究中的成果,同时也宣布了统计决策理论的正式创立.瓦尔德的理论受到统计学界的重视,成为第二次世界大战后统计学史上一个重大事件.1950年以后的几十年在这方面出现了不少工作,同时,这种理论对数理统计各分支的发展产生了程度不同的影响,特别是参数估计这个分支在其影响下,面貌有了很大变化.序贯分析数理统计学的一个分支.其名称源出于美国统计学家瓦尔德在1947年发表的—本同名著作.它研究的对象是所谓“序贯抽样方案”,及如何用这种抽样方案得到的样本去作统计推断.美国统计学家道奇和罗米格的二次抽样方案是较早的一个序贯抽样方案.1945年,施坦针对方差未知时估计和检验正态分布的均值的问题,也提出了一个二次抽样方案,据此序贯抽样方案既可节省抽样量,又可达到预定的推断可靠程度及精确程度.第二次世界大战时,为军需验收工作的需要,瓦尔德发展了一种一般性的序贯检验方法,叫做序贯概率比检验,此法在他的1947年的著作中有系统的介绍.瓦尔德的这种方法提供了根据各次观测得到的样本值接受原假设H0或接受备择假设H1的临界值的近似公式,也给出了这种检验法的平均抽样次数和功效函数,并在1948年与美国统计学家沃尔福威兹一起,证明了在一切两种错误概率分别不超过α和β的检验类中,上述序贯概率比检验所需平均抽样次数最少.瓦尔德在其著作中也考虑了复合检验的问题,有许多统计学者研究了这种检验,瓦尔德的上述开创性工作引起了许多统计学者对序贯方法的注意,并继续进行工作,从而使序贯分析形成为数理统计学的一个分支.除了检验问题以外,序贯方法在其他方面也有不少应用,如在一般的统计决策、点估计、区间估计等方面都有不少工作.。
数理统计的起源和发展
数理统计的起源和发展李永利黑龙江八一农垦大学信息技术学院农业电气化任何一门学科的产生和发展,都离不开实践的需要,离不开已建立的其他邻近学科.对数理统计这门学科来说,尤其是这样。
因而在谈到数理统计的起源和发展时,必须介绍概率论的产生和形成,田为概率论是数理统计的理论基础。
Ⅰ.起源起源与理统计与概率论的关系,可以用测地学与几何学的关系来比拟。
几何学产生于土地的测量,这是众所周知的。
概率论,也是述主人们观亲大量约髓机现象,搜集大量的数据,进行归纳分析,而逐步产生出来的。
所以,从某种意义上说,概率论的创立,与初等统计是有密切关系的。
在西方各国,统计工作开始于公元前3050年,埃及建造金字塔,为征收建筑费用,对全国人口进行普查和统计。
到了亚里斯多德(Aristotle)时代,统计工作开始往理性演变。
这时,统计在卫生、保险、国内外贸易、军事和行政管理等方面的应用,都有详细的汜载。
统计(Statistics)一词,就是从意大利文Statisti(意指国家、政治)逐步演变而成。
到了15世纪,意大利进入了文艺复兴时期。
一些随机博奕盛行,有的赌徒为了获胜,终日冥思苦想,作了大量的试验和统计工作,从中发现一些解释不了的现象,便去请教当时著名的数学家、天文学家吉里埃(Galilco1564—1642)。
吉里埃研究了赌徒们提出的问题后,损凡了关于概率论的一些简要而有价值的定理。
这些定理,为妆坦统计的皮展奠定了根基。
到了16、l7世纪,各种娱乐和赌钱的方法越来越复杂,这样,有些人又提出了一些新的问题,需要专家们来解释。
如当时法国的一位叫梅耳(Me’re’)的著名赌徒,他曾向当时的哲学家和数学家巴士加(B.Fascal1623一1662)提出如下问题:掷一粒骼子,4次中至少出现一个6的机会,要比掷两粒骼子4次中至少出现一对6的机会更多丝,这是否成立?这一问题,引起了巴士加和他的朋友——另一位数学家费尔马(Fermat1601—1665)的兴趣。
演变过程从概率论到数理统计的发展
演变过程从概率论到数理统计的发展概率论和数理统计是数学中两个重要的分支,它们在现代科学和实践中起着至关重要的作用。
从概率论到数理统计的发展经历了漫长的历史过程,本文将追溯这一演变的发展过程。
一、概率论的起源概率论的概念最早可追溯到古希腊时期的赌博问题,人们开始思考赌博事件发生的可能性。
然而,概率论的正式建立始于17世纪,由法国数学家布莱兹·帕斯卡尔和皮埃尔·德费尔马特推动。
帕斯卡尔对赌博问题的研究促使他提出了概率的概念,并建立了概率的数学理论。
德费尔马特进一步完善了概率的数学模型,提出了概率论的公理系统,奠定了概率论的基础。
二、概率论的发展18世纪,瑞士数学家洛朗斯·伯努利在概率论领域做出了重要贡献。
他研究了伯努利实验,并提出了大数定律,说明概率在重复试验中的稳定性。
这为概率论的应用奠定了基础,促使人们开始将概率应用于风险管理、保险等领域。
19世纪末期,概率论得到了进一步的发展。
俄国数学家安德烈·马尔可夫提出了马尔可夫链的概念,为随机过程的研究奠定了基础。
法国数学家勒贝格则提出了测度论的理论框架,为概率论的严格化提供了数学基础。
三、数理统计的兴起概率论的建立为数理统计的发展提供了基础。
数理统计是通过收集和分析数据来推断总体特征和进行决策的一门学科。
它开始于19世纪末20世纪初的统计学家们对数据的研究。
最著名的统计学家之一是英国统计学家卡尔·皮尔逊。
他提出了相关系数和卡方检验等统计方法,为数理统计的理论与方法的发展做出了贡献。
同时,他也是现代数理统计学派中“贝叶斯学派”的代表人物之一。
20世纪初,数理统计学得到了广泛的应用。
在工业、医学、生物学等领域,统计学的方法被用于数据分析和决策。
此外,两次世界大战期间,统计学的应用也在军事领域发挥了重要作用,例如用于战略决策和情报分析。
四、概率论与数理统计的融合概率论和数理统计逐渐融合成为现代统计学的核心内容。
3.数理统计学发展简史
数理统计学发展简史数理统计学的发展大致可分三个时期来叙述。
20世纪以前,这是数理统计学的萌芽时期。
在这漫长的时期里,描述性统计占据主导地位。
描述性统计就是收集大量的数据,并进行一些简单的运算(如求和、求平均值、求百分比等)或用图表、表格把它们表示出来,中国古代就有钱粮户的统计,西方国家也多次进行人口统计,早期这些统计工作都与国家实施统治有关,统计学的英文statistics源出于位丁文,系由status(状态、国家)和statista(政治家)衍化而来。
这时期也出现了一些现在仍很常用的统计方法,如直方图法,但最重要的,超出描述性统计范围的成就是高斯或勒让德关于最小二乘法的工作,在统计思想上的重大进展有是高斯和勒让德关于最小二乘法的工作,在统计思想上的重大进展是:数据是来自服从一定概率分布的总体,而统计学就是用数据去推断这个分布的未知方面,这个观点强调了推断的地位,使统计学摆脱了单纯描述的性质。
由于高斯等人在误差方面的研究工作,正态分布(又叫高斯分布)的性质和重要性受到广泛重视。
19世纪末皮尔森(K.Pearson,1857-1936)引进了一个以他的名字命名的分布族,它包含了正态分布及现在书籍的一些重要的非正态分布,扩大了人们的眼界 ,皮尔森还提出了一个估计方法——矩估计法,用来估计他所引进的分布族中的参数。
另外,德国的 地测量学者赫尔梅特(F.Helmert)1876年在研究正态总体分布。
高尔顿(F.Galton)在生物学研究中的样本方差时,发现了十分重要的x2提出了回归分析方法,这些都是数理统计发展史中的重要事件。
20世纪初到第二次世界大战结束,这是数理统计学莛发展达到成熟的时期,许多重要的基本观点和方法,以及数理 统计学的主要分支学科,都是在这个时期建立和发展起来的。
在其发展中,以费希尔(R.A.Fisher,1890-1962)为代表的英国学派起了主导的作用。
K.皮乐森在1900年提出了检验拟合优度的x统计量,并证明其极限分布(在2布。
概率论与数理统计发展简史
概率论与数理统计发展简史在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献.17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论.早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验.促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了.不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论.荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验+++-之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括.继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础.1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.通过贝努利和棣谟佛的努力,使数学方法有效地应用于概率研究之中,这就把概率论的特殊发展同数学的一般发展联系起来,使概率论一开始就成为数学的一个分支.概率论问世不久,就在应用方面发挥了重要的作用.牛痘在欧洲大规模接种之后,曾因副作用引起争议.这时贝努利的侄子丹尼尔•贝努利(Daniel Bernoulli)根据大量的统计资料,作出了种牛痘能延长人类平均寿命三年的结论,消除了一些人的恐惧和怀疑;欧拉(Euler)将概率论应用于人口统计和保险,写出了《关于死亡率和人口增长率问题的研究》,《关于孤儿保险》等文章;泊松(Poisson)又将概率应用于射击的各种问题的研究,提出了《打靶概率研究报告》.总之,概率论在18世纪确立后,就充分地反映了其广泛的实践意义.19世纪概率论朝着建立完整的理论体系和更广泛的应用方向发展.其中为之作出较大贡献的有:法国数学家拉普拉斯(Laplace),德国数学家高斯(Gauss),英国物理学家、数学家麦克斯韦(Maxwell),美国数学家、物理学家吉布斯(Gibbs)等.概率论的广泛应用,使它于18和19两个世纪成为热门学科,几乎所有的科学领域,包括神学等社会科学都企图借助于概率论去解决问题,这在一定程度上造成了“滥用”的情况,因此到19世纪后半期时,人们不得不重新对概率进行检查,为它奠定牢固的逻辑基础,使它成为一门强有力的学科.1917年苏联科学家伯恩斯坦首先给出了概率论的公理体系.1933年柯尔莫哥洛夫又以更完整的形式提出了概率论的公理结构,从此,更现代意义上的完整的概率论臻于完成.相对于其它许多数学分支而言,数理统计是一个比较年轻的数学分支.多数人认为它的形成是在20世纪40年代克拉美(H.Carmer)的著作《统计学的数学方法》问世之时,它使得1945年以前的25年间英、美统计学家在统计学方面的工作与法、俄数学家在概率论方面的工作结合起来,从而形成数理统计这门学科.它是以对随机现象观测所取得的资料为出发点,以概率论为基础来研究随机现象的一门学科,它有很多分支,但其基本内容为采集样本和统计推断两大部分.发展到今天的现代数理统计学,又经历了各种历史变迁.统计的早期开端大约是在公元前1世纪初的人口普查计算中,这是统计性质的工作,但还不能算作是现代意义下的统计学.到了18世纪,统计才开始向一门独立的学科发展,用于描述表征一个状态的条件的一些特征,这是由于受到概率论的影响.高斯从描述天文观测的误差而引进正态分布,并使用最小二乘法作为估计方法,是近代数理统计学发展初期的重大事件,18世纪到19世纪初期的这些贡献,对社会发展有很大的影响.例如,用正态分布描述观测数据后来被广泛地用到生物学中,其应用是如此普遍,以至在19世纪相当长的时期内,包括高尔顿(Galton)在内的一些学者,认为这个分布可用于描述几乎是一切常见的数据.直到现在,有关正态分布的统计方法,仍占据着常用统计方法中很重要的一部分.最小二乘法方面的工作,在20世纪初以来,又经过了一些学者的发展,如今成了数理统计学中的主要方法.从高斯到20世纪初这一段时间,统计学理论发展不快,但仍有若干工作对后世产生了很大的影响.其中,如贝叶斯(Bayes)在1763年发表的《论有关机遇问题的求解》,提出了进行统计推断的方法论方面的一种见解,在这个时期中逐步发展成统计学中的贝叶斯学派(如今,这个学派的影响愈来愈大).现在我们所理解的统计推断程序,最早的是贝叶斯方法,高斯和拉普拉斯应用贝叶斯定理讨论了参数的估计法,那时使用的符号和术语,至今仍然沿用.再如前面提到的高尔顿在回归方面的先驱性工作,也是这个时期中的主要发展,他在遗传研究中为了弄清父子两辈特征的相关关系,揭示了统计方法在生物学研究中的应用,他引进回归直线、相关系数的概念,创始了回归分析.数理统计学发展史上极重要的一个时期是从19世纪到二次大战结束.现在,多数人倾向于把现代数理统计学的起点和达到成熟定为这个时期的始末.这确是数理统计学蓬勃发展的一个时期,许多重要的基本观点、方法,统计学中主要的分支学科,都是在这个时期建立和发展起来的.以费歇尔(R.A.Fisher)和皮尔逊(K.Pearson)为首的英国统计学派,在这个时期起了主导作用,特别是费歇尔.继高尔顿之后,皮尔逊进一步发展了回归与相关的理论,成功地创建了生物统计学,并得到了“总体”的概念,1891年之后,皮尔逊潜心研究区分物种时用的数据的分布理论,提出了“概率”和“相关”的概念.接着,又提出标准差、正态曲线、平均变差、均方根误差等一系列数理统计基本术语.皮尔逊致力于大样本理论的研究,他发现不少生物方面的数据有显著的偏态,不适合用正态分布去刻画,为此他提出了后来以他的名字命名的分布族,为估计这个分布族中的参数,他提出了“矩法”.为考察实际数据与这族分布的拟合分布优劣问题,他引进了著名“χ2检验法”,并在理论上研究了其性质.这个检验法是假设检验最早、最典型的方法,他在理论分布完全给定的情况下求出了检验统计量的极限分布.19 01年,他创办了《生物统计学》,使数理统计有了自己的阵地,这是20世纪初叶数学的重大收获之一.1908年皮尔逊的学生戈赛特(Gosset)发现了Z的精确分布,创始了“精确样本理论”.他署名“Student”在《生物统计学》上发表文章,改进了皮尔逊的方法.他的发现不仅不再依靠近似计算,而且能用所谓小样本进行统计推断,并使统计学的对象由集团现象转变为随机现象.现“Student分布”已成为数理统计学中的常用工具,“Student氏”也是一个常见的术语.英国实验遗传学家兼统计学家费歇尔,是将数理统计作为一门数学学科的奠基者,他开创的试验设计法,凭借随机化的手段成功地把概率模型带进了实验领域,并建立了方差分析法来分析这种模型.费歇尔的试验设计,既把实践带入理论的视野内,又促进了实践的进展,从而大量地节省了人力、物力,试验设计这个主题,后来为众多数学家所发展.费歇尔还引进了显著性检验的概念,成为假设检验理论的先驱.他考察了估计的精度与样本所具有的信息之间的关系而得到信息量概念,他对测量数据中的信息,压缩数据而不损失信息,以及对一个模型的参数估计等贡献了完善的理论概念,他把一致性、有效性和充分性作为参数估计量应具备的基本性质.同时还在1912年提出了极大似然法,这是应用上最广的一种估计法.他在20年代的工作,奠定了参数估计的理论基础.关于χ2检验,费歇尔1924年解决了理论分布包含有限个参数情况,基于此方法的列表检验,在应用上有重要意义.费歇尔在一般的统计思想方面也作出过重要的贡献,他提出的“信任推断法”,在统计学界引起了相当大的兴趣和争论,费歇尔给出了许多现代统计学的基础概念,思考方法十分直观,他造就了一个学派,在纯粹数学和应用数学方面都建树卓越.这个时期作出重要贡献的统计学家中,还应提到奈曼(J.Neyman)和皮尔逊(E.Pearson).他们在从1928年开始的一系列重要工作中,发展了假设检验的系列理论.奈曼-皮尔逊假设检验理论提出和精确化了一些重要概念.该理论对后世也产生了巨大影响,它是现今统计教科书中不可缺少的一个组成部分,奈曼还创立了系统的置信区间估计理论,早在奈曼工作之前,区间估计就已是一种常用形式,奈曼从1934年开始的一系列工作,把区间估计理论置于柯尔莫哥洛夫概率论公理体系的基础之上,因而奠定了严格的理论基础,而且他还把求区间估计的问题表达为一种数学上的最优解问题,这个理论与奈曼-皮尔逊假设检验理论,对于数理统计形成为一门严格的数学分支起了重大作用.以费歇尔为代表人物的英国成为数理统计研究的中心时,美国在二战中发展亦快,有三个统计研究组在投弹问题上进行了9项研究,其中最有成效的哥伦比亚大学研究小组在理论和实践上都有重大建树,而最为著名的是首先系统地研究了“序贯分析”,它被称为“30年代最有威力”的统计思想.“序贯分析”系统理论的创始人是著名统计学家沃德(Wald).他是原籍罗马尼亚的英国统计学家,他于1934年系统发展了早在20年代就受到注意的序贯分析法.沃德在统计方法中引进的“停止规则”的数学描述,是序贯分析的概念基础,并已证明是现代概率论与数理统计学中最富于成果的概念之一.从二战后到现在,是统计学发展的第三个时期,这是一个在前一段发展的基础上,随着生产和科技的普遍进步,而使这个学科得到飞速发展的一个时期,同时,也出现了不少有待解决的大问题.这一时期的发展可总结如下:一是在应用上愈来愈广泛,统计学的发展一开始就是应实际的要求,并与实际密切结合的.在二战前,已在生物、农业、医学、社会、经济等方面有不少应用,在工业和科技方面也有一些应用,而后一方面在战后得到了特别引人注目的进展.例如,归纳“统计质量管理”名目下的众多的统计方法,在大规模工业生产中的应用得到了很大的成功,目前已被认为是不可缺少的.统计学应用的广泛性,也可以从下述情况得到印证:统计学已成为高等学校中许多专业必修的内容;统计学专业的毕业生的人数,以及从事统计学的应用、教学和研究工作的人数的大幅度的增长;有关统计学的著作和期刊杂志的数量的显著增长.二是统计学理论也取得重大进展.理论上的成就,综合起来大致有两个主要方面:一个方面与沃德提出的“统计决策理论”,另一方面就是大样本理论.沃德是20世纪对统计学面貌的改观有重大影响的少数几个统计学家之一.1950年,他发表了题为《统计决策函数》的著作,正式提出了“统计决策理论”.沃德本来的想法,是要把统计学的各分支都统一在“人与大自然的博奕”这个模式下,以便作出统一处理.不过,往后的发展表明,他最初的设想并未取得很大的成功,但却有着两方面的重要影响:一是沃德把统计推断的后果与经济上的得失联系起来,这使统计方法更直接用到经济性决策的领域;二是沃德理论中所引进的许多概念和问题的新提法,丰富了以往的统计理论.贝叶斯统计学派的基本思想,源出于英国学者贝叶斯的一项工作,发表于他去世后的1763年后世的学者把它发展为一整套关于统计推断的系统理论.信奉这种理论的统计学者,就组成了贝叶斯学派.这个理论在两个方面与传统理论(即基于概率的频率解释的那个理论)有根本的区别:一是否定概率的频率的解释,这涉及到与此有关的大量统计概念,而提倡给概率以“主观上的相信程度”这样的解释;二是“先验分布”的使用,先验分布被理解为在抽样前对推断对象的知识的概括.按照贝叶斯学派的观点,样本的作用在于且仅在于对先验分布作修改,而过渡到“后验分布”――其中综合了先验分布中的信息与样本中包含的信息.近几十年来其信奉者愈来愈多,二者之间的争论,是战后时期统计学的一个重要特点.在这种争论中,提出了不少问题促使人们进行研究,其中有的是很根本性的.贝叶斯学派与沃德统计决策理论的联系在于:这二者的结合,产生“贝叶斯决策理论”,它构成了统计决策理论在实际应用上的主要内容.三是电子计算机的应用对统计学的影响.这主要在以下几个方面.首先,一些需要大量计算的统计方法,过去因计算工具不行而无法使用,有了计算机,这一切都不成问题.在战后,统计学应用愈来愈广泛,这在相当程度上要归公功于计算机,特别是对高维数据的情况.计算机的使用对统计学另一方面的影响是:按传统数理统计学理论,一个统计方法效果如何,甚至一个统计方法如何付诸实施,都有赖于决定某些统计量的分布,而这常常是极困难的.有了计算机,就提供了一个新的途径:模拟.为了把一个统计方法与其它方法比较,可以选择若干组在应用上有代表性的条件,在这些条件下,通过模拟去比较两个方法的性能如何,然后作出综合分析,这避开了理论上难以解决的难题,有极大的实用意义.。
概率论与数理统计发展及应用1
概率论与数理统计发展及应用摘要:通过上半学期概率论与数理统计这门课的学习,我大概了解了基本的概率知识,意识到这门课对于自己以后的发展和创新有着很大的帮助。
本文将根据自己的学习心得以及在网上,图书中查找的资料,从概率论的发展历程,以及其在各重要领域中的应用两个方面来阐述我对本门课的理解。
关键词:概率论,数理统计,发展,主要应用正文一、概率论及数理统计的发展1、历史背景17、18世纪,数学获得了巨大的进步。
数学家们冲破了古希腊的演绎框架,向自然界和社会生活的多方面汲取灵感,数学领域出现了众多崭新的生长点,而后都发展成完整的数学分支。
除了分析学这一大系统之外,概率论就是这一时期"使欧几里得几何相形见绌"的若干重大成就之一。
2、概率论的起源与发展概率论是一门研究随机现象规律的数学分支。
概率论的研究始于意大利文艺复兴时期当时在误差、人口统计、人寿保险等范畴中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。
当时赌博盛行,而且赌法复杂,赌注量大,一些职业赌徒,为求增加获胜机会,迫切需要计算取胜的思路,研究不输的方法。
十七世纪中叶,帕斯卡和当时一流的数学家费尔马一起,研究了德·美黑提出的关于骰子赌博的问题,这就是概率论的萌芽。
1657年荷兰物理学家惠更斯发表了“论赌博中的计算”的重要论文,提出了数学期望的概念,伯努利把概率论的发展向前推进了一步,于1713年出版了《猜测的艺术》,指出概率是频率的稳定值,他第一次阐明了大数定律的意义。
1718年法国数学家棣莫弗发表了重要著作《机遇原理》,书中叙述了概率乘法公式和复合事件概率的计算方法,并在1733年发现了正态分布密度函数,但他没有把这一结果应用到实际数据上,直到1924年菜被英国统计学家K·皮尔森在一家图书馆中发现。
德国数学家高斯从测量同一物体所引起的误差这一随机现象独立的发现正态分布密度函数方程,并发展了误差理论,提出了最小二乘法。
01 第一节 数理统计的基本概念
第五章 数理统计的基础知识从本章开始, 我们将讲述数理统计的基本内容. 数理统计作为一门学科诞生于19世纪末20世纪初, 是具有广泛应用的一个数学分支, 它以概率论为基础, 根据试验或观察得到的数据, 来研究随机现象, 以便对研究对象的客观规律性作出合理的估计和判断.由于大量随机现象必然呈现出它的规律性, 故理论上只要对随机现象进行足够多次观察, 则研究对象的规律性就一定能清楚地呈现出来, 但实际上人们常常无法对所研究的对象的全体(或总体) 进行观察, 而只能抽取其中的部分(或样本) 进行观察或试验以获得有限的数据.数理统计的任务包括: 怎样有效地收集、整理有限的数据资料; 怎样对所得的数据资料进行分析、研究, 从而对研究对象的性质、特点, 作出合理的推断, 此即所谓的统计推断问题, 本课程主要讲述统计推断的基本内容.第一节 数理统计的基本概念内容分布图示★ 引言 ★ 总体与总体分布 ★ 样本 ★ 例1 ★样本分布★ 例2 ★ 例3 ★ 例4★ 统计推断问题简述★ *分组数据统计表和频率直方图 ★ 例5 ★ *经验分布函数 ★ 例6★ 统计量 ★ 常用统计量★ 例7 ★ 例8 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题5-1内容要点:一、总体与总体分布总体是具有一定共性的研究对象的全体, 其大小与范围随具体研究与考察的目的而确定. 例如, 考察某大学一年级新生的体重情况, 则该校一年级全体新生就构成了待研究的总体. 总体确定后, 我们称总体的每一个可观察值为个体. 如前述总体(一年级新生) 中的每一个个体即为每个新生的体重. 总体中所包含的个体的个数称为总体的容量. 容量为有限的称为有限总体, 容量为无限的称为无限总体.数理统计中所关心的并非每个个体的所有性质, 而仅仅是它的某一项或某几项数量指标. 如前述总体(一年级新生)中, 我们关心的是个体的体重, 进而也可考察该总体中每个个体的身高和数学高考成绩等数量指标.总体中的每一个个体是随机试验的一个观察值, 故它是某一随机变量X 的值,于是, 一个总体对应于一个随机变量X , 对总体的研究就相当于对一个随机变量X 的研究, X 的分布就称为总体的分布函数, 今后将不区分总体与相应的随机变量, 并引入如下定义:定义 统计学中称随机变量(或向量)X 为总体, 并把随机变量(或向量)的分布称为总体分布.注(i) 有时个体的特性很难用数量指标直接描述, 但总可以将其数量化,如检验某学校全体学生的血型, 试验的结果有O 型、A 型、B 型、AB 型4种, 若分别以1,2,3,4依次记这4种血型,则试验的结果就可以用数量来表示了;(ii) 总体的分布一般来说是未知的, 有时即使知道其分布的类型(如正态分布、二项分布等),但不知这些分布中所含的参数等(如p ,,2σμ等).数理统计的任务就是根据总体中部分个体的数据资料对总体的未知分布进行统计推断.二、样本与样本分布由于作为统计研究对象的总体分布一般来说是未知的,为推断总体分布及其各种特征,一般方法是按一定规则从总体中抽取若干个体进行观察,通过观察可得到关于总体X 的一组数值),,,(21n x x x ,其中每一i x 是从总体中抽取的某一个体的数量指标i X 的观察值.上述抽取过程为抽样,所抽取的部分个体称为样本.样本中所含个体数目称为样本的容量.为对总体进行合理的统计推断,我们还需在相同的条件下进行多次重复的、独立的抽样观察,故样本是一个随机变量(或向量).容量为n 的样本可视为n 维随机向量),,,(21n X X X ,一旦具体取定一组样本,便得到样本的一次具体的观察值),,,(21n x x x ,称其为样本值.全体样本值组成的集合称为样本空间.为了使抽取的样本能很好地反映总体的信息, 必须考虑抽样方法,最常用的一种抽样方法称为简单随机抽样, 它要求抽取的样本满足下面两个条件:1. 代表性: n X X X ,,,21 与所考察的总体具有相同的分布;2. 独立性: n X X X ,,,21 是相互独立的随机变量.由简单随机抽样得到的样本称为简单随机样本, 它可用与总体独立同分布的n 个相互独立的随机变量n X X X ,,,21 表示. 显然, 简单随机样本是一种非常理想化的样本, 在实际应用中要获得严格意义下的简单随机样本并不容易.对有限总体, 若采用有放回抽样就能得到简单随机样本,但有放回抽样使用起来不方便, 故实际操作中通常采用的是无放回抽样, 当所考察的总体很大时, 无放回抽样与有放回抽样的区别很小, 此时可近似把无放回抽所得到的样本看成是一个简单随机样本. 对无限总体, 因抽取一个个体不影响它的分布, 故采用无放回抽样即可得到的一个简单随机样本.注: 今后假定所考虑的样本均为简单随机样本, 简称为样本.设总体X 的分布函数为)(x F ,则简单随机样本),,,(21n X X X 的联合分布函数为∏==ni i n x F x x x F 121)(),,,(并称其为样本分布.特别地, 若总体X 为连续型随机变量,其概率密度为)(x f ,则样本的概率密度为∏==ni i n x f x x x f 121)(),,,(分别称)(x f 与),,,(21n x x x f 为总体密度与样本密度.若总体X 为离散型随机变量,其概率分布为}{)(i i x X P x p ==, x 取遍X 所有可能取值, 则样本的概率分布为,)(},,,{),,,(12121∏======ni i n n x p x X x X x X p x x x p分别称)(i x p 与),,,(21n x x x p 为离散总体密度与离散样本密度.三、统计推断问题简述总体和样本是数理统计中的两个基本概念. 样本来自总体,自然带有总体的信息,从而可以从这些信息出发去研究总体的某些特征(分布或分布中的参数). 另一方面,由样本研究总体可以省时省力(特别是针对破坏性的抽样试验而言). 我们称通过总体X 的一个样本n X X X ,,,21 对总体X 的分布进行推断的问题为统计推断问题.总体、样本、样本值的关系:总体↙ ↖推断(个体)样本 → 样本值抽样在实际应用中, 总体的分布一般是未知的, 或虽然知道总体分布所属的类型, 但其中包含着未知参数. 统计推断就是利用样本值对总体的分布类型、未知参数进行估计和推断.为对总体进行统计推断, 还需借助样本构造一些合适的统计量, 即样本的函数, 下面将对相关统计量进行深入的讨论.四、分组数据统计表和频数直方图 通过观察或试验得到的样本值,一般是杂乱无章的,需要进行整理才能从总体上呈现其统计规律性. 分组数据统计表或频率直方图是两种常用整理方法. 1. 分组数据表:若样本值较多时,可将其分成若干组,分组的区间长度一般取成相等, 称区间的长度为组距. 分组的组数应与样本容量相适应. 分组太少,则难以反映出分布的特征,若分组太多,则由于样本取值的随机性而使分布显得杂乱. 因此,分组时,确定分组数(或组距)应以突出分布的特征并冲淡样本的随机波动性为原则. 区间所含的样本值个数陈为该区间的组频数. 组频数与总的样本容量之比称为组频率.2. 频数直方图:频率直方图能直观地表示出频数的分布,其步骤如下: 设n x x x ,,,21 是样本的n 个观察值.(i) 求出n x x x ,,,21 中的最小者)1(x 和最大者)(n x ;(ii) 选取常数a (略小于)1(x )和b (略大于)(n x ),并将区间],[b a 等分成m 个小区间(一般取m 使nm 在101左右): mab t m i t t t i i -=∆=∆+,,,2,1),,[ , 一般情况下,小区间不包括右端点.(iii) 求出组频数i n ,组频率i i f nn ∆=,以及),,2,1(,n i tfh i i =∆=(iv) 在),[t t t i i ∆+上以i h 为高,t ∆为宽作小矩形,其面积恰为i f ,所有小矩形合在一起就构成了频率直方图五、经验分布函数样本的直方图可以形象地描述总体的概率分布的大致形态,而经验分布函数则可以用来描述总体分布函数的大致形状。
数理统计学的起源和发展
统计学起源于收集数据的活动,小至个人的事情,大至治理一个国家,都有必要收集种种有关的数据,如在我国古代典籍中,就有不少关于户口、钱粮、兵役、地震、水灾和旱灾等等的记载;现今各国都设有统计局或相当的机构;当然,单是收集、记录数据这种活动本身并不能等同于统计学这门科学的建立,需要对收集来的数据进行排比、整理,用精炼和醒目的形式表达,在这个基础上对所研究的事物进行定量或定性估计、描述和解释,并预测其在未来可能的发展状况;例如根据人口普查或抽样调查的资料对我国人口状况进行描述,根据适当的抽样调查结果,对受教育年限与收入的关系,对某种生活习惯与嗜好如吸烟与健康的关系作定量的评估;根据以往一般时间某项或某些经济指标的变化情况,预测其在未来一般时间的走向等,做这些事情的理论与方法,才能构成一门学问——数理统计学的内容;这样的统计学始于何时恐怕难于找到一个明显的、大家公认的起点;一种受到某些著名学者支持的观点认为,学者葛朗特在1662年发表的著作关于死亡公报的自然和政治观察,标志着这门学科的诞生;流行黑死病,死亡的人不少;自1604年起,教会每周发表一次“死亡公报”,记录该周内死亡的人的姓名、年龄、性别、死因;以后还包括该周的出生情况——依据受洗的人的名单,这基本上可以反映出生的情况;几十年来,积累了很多资料,葛朗特是第一个对这一庞大的资料加以整理和利用的人,他原是一个小店主的儿子,后来子承父业,靠自学成才;他因这一部著作被选入当年成立的,反映学术界对他这一著作的承认和重视;这是一本篇幅很小的著作,主要内容为8个表,从今天的观点看,这只是一种例行的数据整理工作,但在当时则是有原创性的科研成果,其中所提出的一些概念,在某种程度上可以说沿用至今,如数据简约大量的、杂乱无章的数据,须注过整理、约化,才能突出其中所包含的信息、频率稳定性一定的事件,如“生男”、“生女”,在较长时期中有一个基本稳定的比率,这是进行统计性推断的基础、数据纠错、生命表反映人群中寿命分布的情况,至今仍是保险与精算的基础概念等;葛朗特的方法被他同时代的政治经济学家引进到社会经济问题的研究中,他提倡在这类问题的研究中不能尚空谈,要让实际数据说话,他的工作总结在他去世后于1690年出版的政治算术一书中;当然,也应当指出,他们的工作还停留在描述性的阶段,不是现代意义下的数理统计学,那时,概率论尚处在萌芽的阶段,不足以给数理统计学的发展提供充分的理论支持,但不能由此否定他们工作的重大意义,作为现代数理统计学发展的几个源头之一,他们以及后续学者在人口、社会、经济等领域的工作,特别是天文学家兼统计学家凯特勒19世纪的工作,对促成现代数理统计学的诞生起了很大的作用;数理统计学的另一个重要源头来自天文和测地学中的误差分析问题;早期,测量工具的精度不高,人们希望通过多次量测获取更多的数据,以便得到对量测对象的精度更高的估计值;量测误差有随机性,适合于用概率论即统计的方法处理,远至就做过这方面的工作,他对测量误差的性态作了一般性的描述,曾对这个问题进行了长时间的研究,现今概率论中著名的“”,即是他在这研究中的一个产物,这方面最著名且影响深远的研究成果有二:一是法国数学家兼天文家19世纪初1805在研究慧星轨道计算时发明的“最小二乘法”,他在估计过的子午线长这一工作中,曾使用这个方法;现今著作中把这一方法的发明归功于,但高斯使用这一方法最早见诸文字是1809年,比勒让德晚;一种现在逐步取得公认——这项发明系由二人独立做出,看来使比较妥当的;另外一个重要成果是大学者高斯1809年在研究行星绕日运动时提出用正态分布刻画测量误差的分布;正态分布也常称为,其是钟形,极象中那样的形状,故有时又称为“钟形曲线”,它反映了这样一种极普通的情况:天下形形色色的事物中,“两头小,中间大”的居多,如人的身高,太高太矮的都不多,而居于中间者占多数——当然,这只是一个极粗略的描述,要作出准确的描述,须动用高等数学的知识;正是其数学上的特性成为其广泛应用的根据;正态分布在数理统计学中占有极重要的地位,现今仍在常用的许多统计方法,就是建立在“所研究的量具有或近似地具有正态分布”这个假定的基础上,而经验和理论概率论中所谓“中心极限定理”都表明这个假定的现实性,现实世界许多现象看来是杂乱无章的,如不同的人有不同的身高、体重;大批生产的产品,其质量指标各有差异;看来毫无规则,但它们在总体上服从正态分布;这一点,显示在纷乱中有一种秩序存在,提出正态分布的高斯,一生在多个领域里面有不少重大的贡献,但在德国10的有高斯图像的钞票上,单只画出了正态曲线,以此可以看出人们对他这一贡献评价之高;20世纪以前数理统计学发展的一个重要成果,是19世纪后期由英国遗传学家兼统计学家发起,并经现代统计学的奠基人之一K·皮尔逊和其他一些英国学者所发展的统计相关与回归理论;所谓统计相关,是指一种非决定性的关系如人的身高X与体重Y,存在一种大致的关系,表现在X大小时,Y也倾向于大小,但非决定性的:由X并不能决定Y;现实生活中和各种科技领域中,这种例子很多,如受教育年限与收入的关系,经济发展水平与人口增长速度的关系等,都是属于这种性质,统计相关的理论把这种关系的程度加以量化,而统计回归则是把有统计相关的变量,如上文的身高X和体重Y的关系的形式作近似的估计,称为回归方程,现实世界中的现象往往涉及众多变量,它们之间有错综复杂的关系,且许多属于非决定性质,相关回归理论的发明,提供了一种通过实际观察去对这种关系进行定量研究的工具,有着重大的认识和实用意义;到20世纪初年,由于上述几个方面的发展,数理统计学已积累了很丰富的成果——在此因篇幅关系,我们不能详尽无遗地一一列举有关的重要成果,如抽样调查的理论和方法方面的进展,但是直到这时为止,我们还不能说现代意义下的数理统计学已经建立起来,其主要标志之一就是这门学问还缺乏一个统一的理论框架,这个任务在20世纪上半叶得以完成,狭义一点说可界定在1921——1938年,起主要作用的是几位大师级的人物,特别是英国的费歇尔·K·皮尔逊,发展统计假设检验理论的奈曼与E·皮尔逊和提出统计决策函数理论的等;我国已故著名统计学家许宝1910——1970在这项工作中也卓有建树;自二战结束迄今,数理统计学有了迅猛的发展,主要有以下三方面的原因:一是数理统计学理论框架的建立以及概率论和的进展,为统计理论在面上和向纵深的发展打开了门径和提供了手段,许多在早期比较粗略的理论和方法,在理论上得到了完善与深入,并不断提出新的研究课题;二是实用上的需要,不断提出了复杂的问题与模型,吸引了学者们的研究兴趣;三是电子计算机的发明与普及应用,一方面提供了必要的计算工具——统计方法的实施往往涉及大量数据的处理与运算,用人力无法在合理的时间内完成,所以在早年,一些统计方法人们虽然知道,但很少付诸实用,就因为是人力所难及;计算机的出现解决了这个问题;而赋予统计方法以现实的生命力;同时,计算机对促进统计理论研究也有助益,统计模拟是其表现之一,在承认上述成就的同时,不少统计学家也指出这一时期发展中出现的一些问题或偏向,其中主要的一点是,数理统计学理论研究中的“数学化”气味愈来愈重,相当一部分研究工作停留在数学的层面,早期那种理论研究与现实问题密切结合的优良传统有所淡化,一些学者还提出了补救的建议,对未来统计学发展的方向进行探讨;同时,现实问题愈来愈涉及到大量的,结构复杂的数据,按现行的数理统计学规范去处理,显得力所不及,需要一些带有根本性创新的思路,使统计学的发展登上一个新的台阶,以适应应用上的需要,考虑这一背景,有的统计学家乐观地认为数理统计学正面临一个新的突破;在上面讲述数理统计学的发展状况时,我们着重在实际需要所起的促进作用方面,由于概率论的概念和方法是数理统计学的理论基础,概率论的进展也必然对数理统计学的发展起促进作用;。
概率论与数理统计的发展及在生活中的应用
概率论与数理统计的发展及在生活中的应用一.概率论与数理统计的起源与发展概率论的研究始于意大利文艺复兴时期,当时赌博盛行,而且赌法复杂,赌注量大,一些职业赌徒,为求增加获胜机会,迫切需要计算取胜的思路,研究不输的方法,十七世纪中叶,帕斯卡和当时一流的数学家费尔马一起,研究了德·美黑提出的关于骰子赌博的问题,这就是概率论的萌芽。
1657年荷兰物理学家惠更斯发表了“论赌博中的计算”的重要论文,提出了数学期望的概念,伯努利把概率论的发展向前推进了一步,于1713年出版了《猜测的艺术》,指出概率是频率的稳定值,他第一次阐明了大数定律的意义。
1718年法国数学家棣莫弗发表了重要著作《机遇原理》,书中叙述了概率乘法公式和复合事件概率的计算方法,并在1733年发现了正态分布密度函数,但他没有把这一结果应用到实际数据上,直到1924年菜被英国统计学家K·皮尔森在一家图书馆中发现。
德国数学家高斯从测量同一物体所引起的误差这一随机现象独立的发现正态分布密度函数方程,并发展了误差理论,提出了最小二乘法。
法国数学家拉普拉斯也独立的导出了该方程,对概率的意义如何抽象化做出了杰出的贡献,提出了概率的古典定义。
到19世纪末,概率论的主要研究内容已基本形成。
1933年苏联数学家柯尔莫科洛夫总结前人之大成,提出了概率论公理体系,即概率的公理化定义。
概率论里所说的极限定理,主要研究独立随机变量序列的各种收敛性问题,其中包括两种类型定理:一类是大数定律,一类是中心极限定理。
当代概率论的研究方向大致可分为极限理论,马尔可夫过程,平稳过程,随机微分方程等。
数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效的收集、整理和分析受随机因素影响的数据,并对所考虑的问题做出推断或预测,为采取某种决策和行动提供依据或建议。
数理统计起源于人口统计、社会调查等各种描述性统计活动,其发展大致课分为古典时期、近代时期和现代时期三个阶段。
gailuqiyuan
概率论与数理统计的起源与发展一、概率论的起源概率论是一门研究客观世界随机现象数量规律的数学分支学科,它起源于赌博。
三四百年前在欧洲许多国家,贵族之间盛行赌博之风。
掷骰子是他们常用的一种赌博方式。
因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。
有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大(两者的概率均为2/21)?17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多(概率为0.5177),而同时将两枚骰子掷24次,至少出现一次双六的机会却很少(概率为0.04672)。
这是什么原因呢?后人称此为德·梅耳问题。
与概率论的起源联系最为密切的一个问题是意大利数学家帕巧利(Luca Pacioli,1445—1509)在1494年出版的《算术书》(Summa de Arithmetica)一书中提出的赌博中常常遇到的“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得6局便算赢家。
如果在一个人赢4局,另一人赢3局时因故终止赌博,应如何分赌本才合理?帕巧利给出的答案是按4:3分。
后来人们一直对这种分配原则表示怀疑,但没有一个人提出更合适的办法来。
时间过去了半个世纪,另一位意大利数学家卡尔达诺(1501-1576)潜心研究赌博不输的方法,出版了一本《赌博之书》。
他在书里提出了这样一个问题:掷两颗骰子,以赌两颗骰子的点数和作输赢,那么押几点羸得可能性最大?卡尔达诺认为为7点最好(其实押6、7、8点羸得可能性都最大,均为1/7)。
卡尔达诺还在书中对帕巧利提出的问题进行了研究,认为需要分析的不是赌过的次数,而是剩下的次数。
卡尔达诺对“分赌注问题”给出了正确的思路,但仍然没有给出正确的答案。
时间又过去了一个世纪,在1651年,法国大贵族德.梅勒(de Mere,1607——1684)把这个问题寄给了当时的数学著名数学家帕斯卡,从此概率论历史上一个决定性的阶段才开始了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程文化2-数理统计的起源
数理统计是伴随着概率论的发展而发展起来的一个数学分支,研究如何有效
的收集、整理和分析受随机因素影响的数据,并对所考虑的问题作出推断或预测,为采取某种决策和行动提供依据或建议.
数理统计的发展大致可分为古典时期、近代时期和现代时期三个阶段.
古典时期(19世纪以前).这是描述性的统计学形成和发展阶段,是数理统计的萌芽时期.在这一时期里,瑞土数学家雅各布·伯努利(Jakob Bernoulli,1654-1705)较早地系统论证了大数定律.1763年,英国数学家贝叶斯(Thomas Bayes,1701-1761)提出了一种归纳推理的理论,后被发展为一种统计推断方法―
贝叶斯方法,开创了数理统计的先河.法国数学家棣莫佛(de Moivre,1667-1754)于1733年首次发现了正态分布的密度函数并计算出该曲线在各种不同区间内的概率,为整个大样本理论奠定了基础.1809年,德国数学家高斯(Gauss.Garl Friedrich,1777-1855,德国)和法国数学家勒让德(Adrien Marie Legendre1752-1833)各自独立地发现了最小二乘法,并应用于观测数据的误差分析.在数理统计的理
论与应用方面都作出了重要贡献,他不仅将数理统计应用到生物学,而且还应用到教育学和心理学的研究.并且详细地论证了数理统计应用的广泛性,高斯曾预言:"统计方法,可应用于各种学科的各个部门."
近代时期(19世纪末至1845年).数理统计的主要分支建立,是数理统计的形成时期.上一世纪初,由于概率论的发展从理论上接近完备,加之工农业生产迫切需要,推动着这门学科的蓬勃发展.
1889年,英国数学家皮尔逊(Karl Pearson,1857-1936)提出了矩阵估计法,次年
又提出了频率曲线的理论,并于1900年在德国大地测量学者赫尔梅特(F.Helmert)1876年研究正态总体的样本方差时发现的一个十分重要的分布的基础上提出了
检验,这是数理统计发展史上出现的第一个小样本分布.
1908年,英国的统计学家戈塞特(W.S.Gosset,1876-1937)创立了小样本检验代替了大样本检验的理论和方法(即t分布和t检验法),这为数理统计的另一分支---多元分析奠定了理论基础.
1912年,英国统计学家费歇(R.A.Fisher,1890-1962)推广了t检验法,同时发展了显著性检验及估计、方差分析等数理统计新分支.
这样,数理统计的一些重要分支如假设检验、回归分析、方差分析、正交设
计等都有了决定其基本面貌的内容和理论框架.数理统计成为应用广泛、方法独特的一门数学学科.
现代时期(1945年以后).美籍数理统计学家瓦尔德(A.Wald,1902-1950)致力于用数学方法使统计学精确化、严密化,取得了很多重要成果.他发展了决策理论,提出了一般的判别问题,创立了序贯分析理论,提出了著名的序贯概率比检验
法(比如,用于贵重产品的抽样检查与验收).瓦尔德的两本著作《序贯分析》和《统计决策函数论》,被认为是数理发展史上的经典之作.统计决策理论从人与大自
然进行博弈的观点出发,把形形色色的统计问题纳入一个统一的模式之下,对战后数理统计许多分支的发展产生了很大的影响,特别是参数估计这个分支.
随着概率论的高速发展,随机过程的统计逐步形成了内容丰富的重要分支.其中,线性滤波理论占据了显著地位,它是40年代维纳-柯尔莫哥洛夫滤波理论(N.Wiener,A.H.Kolmogorov)和60年代卡尔曼滤波理论(Rudolf E.Kalman)向非线性领域的扩展.苏联学者李普泽尔(R.S.Liptser)和希拉也夫(A.N.Shiryaev)在1974年写的专著《随机过程的统计》系统论述了这方面的理论.
统计学发展在趋于成熟并得到大量应用后,一些回避不了的弱点开始显露并逐渐为人们所重视.传统的统计方法不能充分利用过去经验积累起来的知识,小样本问题里表现出来难以克服的局限性,这一点在可靠性统计问题中特别突出.二战后数理统计的发展中,一个引人注目的现象是贝叶斯学派的崛起.他们用独到的方法,加入了过去积累的经验因素,在应用中常能得到意想不到的效果.虽然如此,贝叶斯方法仍存在很多困难,先验分布的客观性常引起非议.贝叶斯学派的观点还难以被广大统计工作者普遍接受,因此和传统学派的争论仍将长期存在.目前情况,后者大体上仍处于支配地位.
随着计算机技术的进步和广泛使用,统计学又产生了一些新的分支和边缘性的新学科,如最优设计和非参数统计推断等,不仅使得过去难于计算的问题能够解决,而且有利地促使了那些能有效利用现代计算机强大计算能力的统计学新理论、新方法的纷纷问世,例如自助法(bootstarp)、投影寻踪法(projection pursuit)、蒙特卡罗法(Monte Carlo Method)等.统计的应用范围愈来愈广泛,已渗透到许多科学领域,应用到国民经济各个部门,成为科学研究不可缺少的工具.。