2014年高考文科数学试题及参考答案

合集下载

2014高考全国2卷数学文科试题及答案详解解析

2014高考全国2卷数学文科试题及答案详解解析

2014 年普通高等学校招生全国统一考试数学第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A { 2,0,2} ,2B {x| x x 2 0},则A B=2 0 2(A) (B)(C)(D)考点:交集及其运算.分析:先解出集合B,再求两集合的交集即可得出正确选项.解答:解:∵ A={﹣2,0,2},B={x|x2 ﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选: B点评:本题考查交的运算,理解好交的定义是解答的关键.1 3i(2)1 i()(A)1 2i (B) 1 2i (C)1-2i (D) 1-2i考点:复数代数形式的乘除运算.分析:分子分母同乘以分母的共轭复数1+i 化简即可.解答:解:化简可得====﹣1+2i故选: B点评:本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.f x在x x0 处导数存在,若(3)函数p: f (x ) 0;q : x x0 0是f x 的极值点,则()(A) p 是 q 的充分必要条件(B) p 是q 的充分条件,但不是q 的必要条件(C) p 是q 的必要条件,但不是q 的充分条件(D) p 既不是 q的充分条件,也不是q 的必要条件考点:必要条件、充分条件与充要条件的判断.菁优网版权所有分析:根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.解答:函数f(x)=x3 的导数为f'(x)=3x2,由 f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0 是 f(x)的极值点,则f′(x0)=0 成立,即必要性成立,故p 是 q 的必要条件,但不是q 的充分条件,故选: C点评:本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.1(4)设向量a,b 满足|a+b|= 10 ,|a-b|= 6,则a·b= ()(A)1 (B)2 (C)3 (D) 5考点:平面向量数量积的运算.分析:将等式进行平方,相加即可得到结论.解答:∵| + |= ,| ﹣|= ,∴分别平方得,+2 ? + =10,﹣2 ? + =6,两式相减得4? ? =10﹣6=4,即? =1,故选: A点评:本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.(5)等差数列a n 的公差为2,若a2 ,a4 ,a8成等比数列,则a n 的前n 项Sn =()n n 1 n n 1n n 1 n n 12 2 (A)(B)(C)(D)考点:等差数列的性质.分析:由题意可得a42=(a4﹣4)(a4+8),解得a4 可得 a1,代入求和公式可得.解答:由题意可得a42=a2?a8,即 a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴Sn=na1+d,=2n+× 2=n(n+1),故选: A点评:本题考查等差数列的性质和求和公式,属基础题.如图,网格纸上正方形小格的边长为1(表示 1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为 6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()17 5 10 1(A )27 (B)9 (C) 27 (D)3考点:由三视图求面积、体积.菁优网版权所有分析:由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.解答:几何体是由两个圆柱组成,一个是底面半径为 3 高为 2,一个是底面半径为2,高为 4,组合体体积是:32π?2+22π?4=34π.底面半径为3cm,高为6cm 的圆柱体毛坯的体积为:32π× 6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选: C.点评:本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.2正三棱柱ABC A1 B1C1 的底面边长为2,侧棱长为3 ,D为B C中点,则三棱锥 A B1DC 的体积为()13 3(A)3 (B)2 (C)1 (D)2考点:棱柱、棱锥、棱台的体积.菁优网版权所有分析:由题意求出底面B1DC1的面积,求出 A 到底面的距离,即可求解三棱锥的体积.解答:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为B C中点,∴底面B1DC1的面积:=,A 到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.点评:本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.(8)执行右面的程序框图,如果如果输入的x,t 均为2,则输出的S= ()(A)4 (B)5 (C)6 (D)7考点:程序框图.菁优网版权所有分析:根据条件,依次运行程序,即可得到结论.解答:若x=t=2,则第一次循环,1≤2 成立,则M=,S=2+3=5,k=2,第二次循环,2≤2 成立,则M=,S=2+5=7,k=3,此时3≤2 不成立,输出S=7,故选:D.点评:本题主要考查程序框图的识别和判断,比较基础.x y 1 0x y 1 0x 3y 3 0(9)设x,y 满足的约束条件,则z x 2y 的最大值为()( A)8 (B)7 ( C)2 (D)1考点:简单线性规划.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.解答:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点 A 时,直线y=﹣的截距最大,此时z 最大.由,得,即A(3,2),此时z 的最大值为z=3+2×2=7,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法3(10)设F为抛物线2C : y 3x的焦点,过 F 且倾斜角为30 的直线交于C于A,B 两点,则AB= ()°30(A)3 (B)6 (C)12 (D)73考点:抛物线的简单性质.分析:求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB| .解答:由y2=3x 得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x 的焦点F 且倾斜角为30°的直线方程为y=tan30°( x﹣)= (x﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2= ,所以 |AB|=x1+ +x2+ = + + =12故答案为:12.点评:本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.(11)若函数 f (x) kx ln x 在区间(1,+ )单调递增,则k 的取值范围是(), 2 , 1 2, 1,(A)(B)( C)(D)考点:函数单调性的性质.分析:由题意可得,当x>1 时, f′( x)=k﹣≥0,故k﹣1>0,由此求得k 的范围.解答:函数f(x)=kx﹣lnx 在区间(1, +∞)单调递增,∴当x>1 时, f′( x)=k﹣≥0,∴ k﹣1≥0,∴ k≥1,故选:D.点评:本题主要考查利用导数研究函数的单调性,函数的单调性的性质,属于基础题.4(12)设点M ( x0,1),若在圆2 2O : x y 1上存在点N,使得°OMN 45 ,则x0 的取值范围是()1,1(A)(B)1 1,2 2 (C)2, 2(D)2 2,2 2考点:直线和圆的方程的应用.菁优网版权所有分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:由题意画出图形如图:∵点 M(x0,1),∴若在圆O:x2+y2=1 上存在点N,使得∠ OMN=45°,∴圆上的点到MN 的距离的最大值为1,要使MN=1,才能使得∠OMN=45 °,图中 M′显然不满足题意,当MN 垂直 x 轴时,满足题意,∴x0 的取值范围是[﹣1,1].故选: A点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.第Ⅱ卷本卷包括必考题和选考题两部分。

2014年全国统一高考数学试卷(文科)(大纲版)(含答案及解析)

2014年全国统一高考数学试卷(文科)(大纲版)(含答案及解析)

2014年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.72.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.27.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.649.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=110.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.412.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5分)函数y=cos2x+2sinx的最大值是.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.2014年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.【专题】5J:集合.【分析】根据M与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【考点】G9:任意角的三角函数的定义.【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}【考点】7E:其他不等式的解法.【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE 与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.【解答】解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,故选:D.【点评】本题考查反函数解析式的求解,属基础题.6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.【解答】解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.64【考点】89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4成等比数列是解决问题的关键,属基础题.9.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.4【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是﹣160.(用数字作答)【考点】DA:二项式定理.【专题】11:计算题.【分析】根据题意,由二项式定理可得(x﹣2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=﹣160x3,即可得答案.【解答】解:根据题意,(x﹣2)6的展开式的通项为T r=C6r x6﹣r(﹣2)r=(﹣1)+1r•2r•C6r x6﹣r,令6﹣r=3可得r=3,此时T4=(﹣1)3•23•C63x3=﹣160x3,即x3的系数是﹣160;故答案为﹣160.【点评】本题考查二项式定理的应用,关键要得到(x﹣2)6的展开式的通项.14.(5分)函数y=cos2x+2sinx的最大值是.【考点】HW:三角函数的最值.【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=1﹣2sin2x+2sinx=,结合﹣1≤sinx≤1及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=1﹣2sin2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1的条件.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为5.【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)将a n=2a n+1﹣a n+2变形为:a n+2﹣a n+1=a n+1﹣a n+2,再由条件得+2b n+1=b n+2,根据条件求出b1,由等差数列的定义证明{b n}是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出b n,代入b n=a n+1﹣a n并令n从1开始取值,依次得(n﹣1)个式子,然后相加,利用等差数列的前n项和公式求出{a n}的通项公式a n.=2a n+1﹣a n+2得,【解答】解:(Ⅰ)由a n+2a n+2﹣a n+1=a n+1﹣a n+2,由b n=a n+1﹣a n得,b n+1=b n+2,即b n﹣b n=2,+1又b1=a2﹣a1=1,所以{b n}是首项为1,公差为2的等差数列.(Ⅱ)由(Ⅰ)得,b n=1+2(n﹣1)=2n﹣1,由b n=a n+1﹣a n得,a n+1﹣a n=2n﹣1,则a2﹣a1=1,a3﹣a2=3,a4﹣a3=5,…,a n﹣a n﹣1=2(n﹣1)﹣1,所以,a n﹣a1=1+3+5+…+2(n﹣1)﹣1==(n﹣1)2,又a1=1,所以{a n}的通项公式a n=(n﹣1)2+1=n2﹣2n+2.【点评】本题考查了等差数列的定义、通项公式、前n项和公式,及累加法求数列的通项公式和转化思想,属于中档题.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)由(Ⅰ)可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.06<0.1,满足条件,从而得出结论.【解答】解:(Ⅰ)由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为0.6×0.5×0.5×0.4=0.06<0.1,满足条件.故k的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】53:导数的综合应用.【分析】(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性;(Ⅱ)当a>0,x>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,推出f′(1)≥0且f′(2)≥0,即可求a的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1﹣a),①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数;②因为a≠0,∴a≤1且a≠0时,△>0,f′(x)=0方程有两个根,x1=,x2=,当0<a<1时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0且f′(2)≥0,解得﹣,a的取值范围[)∪(0,+∞).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。

2014年高考湖南文科数学试题及答案(word解析版)

2014年高考湖南文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(湖南卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年湖南,文1,5分】设命题2:,10p x R x ∀∈+>,则p ⌝为( )(A )200,10x R x ∃∈+> (B )200,10x R x ∃∈+≤ (C )200,10x R x ∃∈+< (D )200,10x R x ∀∈+≤ 【答案】B【解析】全称命题的否定是特称命题,所以命题p 的否定为200,10x R x ∃∈+≤,故选B . (2)【2014年湖南,文2,5分】已知集合{|2},{|13}A x x B x x =>=<<,则A B =( )(A ){|2}x x > (B ){|1}x x > (C ){|23}x x << (D ){|13}x x << 【答案】C【解析】由题可得{|23}A B x x =<<,故选C .(3)【2014年湖南,文3,5分】对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )(A )123p p p =< (B)231p p p =< (C )132p p p =< (D )123p p p == 【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D . (4)【2014年湖南,文4,5分】下列函数中,既是偶函数又在区间(),0-∞上单调递增的是( )(A )21()f x x =(B )2()1f x x =+ (C )3()f x x = (D)()2xf x -=【答案】A【解析】根据函数奇偶性的判断可得选项A 、B 为偶函数,C 为奇函数,D 为非奇非偶函数,所以排除C 、D 选项.由二次函数的图像可得选项B 在(),0-∞是单调递减的,根据排除法选A .因为函数2y x =在(),0-∞是单调递减的且1y x=在()0,+∞是单调递增的,所以根据复合函数单调性的判断同增异减可得选项A 在(),0-∞是单调递减的,故选A .(5)【2014年湖南,文5,5分】在区间[]2,3-上随机选取一个数X ,则1X ≤的概率为( )(A )45 (B)35 (C )25 (D )15【答案】B【解析】在[]2,3-上符合1X ≤的区间为[]2,1-,因为[]2,3-的区间长度为5且区间[]2,1-的区间长度为3,所以根据几何概型的概率计算公式可得35p =,故选B . (6)【2014年湖南,文6,5分】若圆221:1C x y +=21x=与圆222:680C x y x y m +--+=外切,则m =( )(A )21 (B )19 (C )9 (D )11- 【答案】C【解析】因为()()22226803425x y x y m x y m +--+=⇒-+-=-,所以25025m m ->⇒<且圆2C的圆心为()3,4,半径为25m -,根据圆和圆外切的判定可得()()2230401259m m -+-=+-⇒=,故选C .(7)【2014年湖南,文7,5分】执行如图所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )(A )[]6,2-- (B)[]5,1-- (C )[]4,5- (D )[]3,6- 【答案】D【解析】当[]2,0t ∈-时,运行程序如下:(]2211,9t t =+∈,(]32,6S t =-∈-,当[]0,2t ∈时,(]33,1S t =-∈--,则(][][]2,63,13,6S ∈---=-,故选D .(8)【2014年湖南,文8,5分】一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于( )(A)1 (B )2 (C )3 (D )4 【答案】B 【解析】由图可得该几何体为三棱柱,因为正视图、侧视图和俯视图的内切圆半径最小的是正视图(直角三角形)所对应的2121ln ln x x e x x x -<- C.内切圆,所以最大球的半径为正视图直角形内切 圆的半径r ,则2286862r r r -+-=+⇒=,故选B .(9)【2014年湖南,文9,5分】若1201x x <<<,则( )(A )2121ln ln x x e e x x ->- (B )2121ln ln x x e e x x -<- (C )1221x x x e x e > (D )1221x x x e x e < 【答案】C【解析】设()ln x f x e x =-,则(]0,1x ∈时,()1xf x e x'=-的符号不确定,()f x ∴的单调性不确定.设()x e g x x =,则()0,1x ∈时,()()210xx eg x x -'=<,()g x ∴在()0,1上单调递减,()()1212122112x x x x e e g x g x x e x e x x ∴<⇒<⇒<,故选C .(10)【2014年湖南,文10,5分】在平面直角坐标系中,O 为原点,(1,0),(03),(30)A B C -,,,动点D 满足||1CD =,则||OA OB OD ++的取值范围是( )(A)[4,6] (B )[19119+1]-, (C )[2327],(D )[717+1]-, 【答案】D【解析】点D 的轨迹是以C 为圆心的单位圆,设()[)()3cos ,sin 0,2D θθθπ+∈,则OA OB OD ++()()()223cos 1sin 3822cos 3sin θθθθ=+-++=++.因为2cos 3sin θθ+的取值范围是()()222223,237,7⎡⎤⎡⎤-++=-⎢⎥⎣⎦⎣⎦,故827,82771,71OA OB OD ⎡⎤⎡⎤++∈-+=-+⎣⎦⎢⎥⎣⎦,故选D . 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2014年湖南,文11,5分】复数23i i +(i 为虚数单位)的实部等于 .【答案】3-【解析】由题可得所以23i 3i i +=--,3i --的实部为3-.(12)【2014年湖南,文12,5分】在平面直角坐标系中,曲线222:212x t C y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)的普通方程为 .【答案】10x y --= 【解析】联立222:212x t C y t ⎧=+⎪⎪⎨⎪=+⎪⎩,消t 可得110x y x y -=⇒--=.(13)【2014年湖南,文13,5分】若变量y x ,满足约束条件41y xx y y ≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为 .【答案】7【解析】作出不等式组41y xx y y ≤⎧⎪+≤⎨⎪≥⎩表示的区域如下,则根据线性规划的知识可得目标函数2z x y =+在点()3,1处取得最大值7.(14)【2014年湖南,文14,5分】平面上以机器人在行进中始终保持与点(1,0)F 的距离和到直 线1x =-的距离相等.若机器人接触不到过点()10P -,且斜率为k 的直线,则k 的取值范围是 . 【答案】()(),11,-∞-+∞【解析】由题设知机器人在以点(1,0)F 为焦点的抛物线24y x =上,且()1y k x =+与抛物线24y x =无交点,()22441y xy y k k y k x ⎧=⎪⇒=⋅+⇒⎨=+⎪⎩方程204y k y k ⋅-+=无实根,则0k ≠且2101k k ∆=-<⇒<-或1k >, 所以()(),11,k ∈-∞-+∞.(15)【2014年湖南,文15,5分】若()()3ln 1xf x e ax =++是偶函数,则a = .【答案】23-【解析】因为()f x 为偶函数,所以()()()()33ln 1ln 1x x f x f x e ax e ax --=⇒+-=++⇒()()333ln 13ln 1322x x e x ax e ax x ax a +--=++⇒-=⇒=-.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(16)【2014年湖南,文16,12分】已知数列{}n a 的前n 项和22n n nS n N *+=∈,.(1)求数列{}n a 的通项公式;(2)设2(1)n ann n b a =+-,求数列{}n b 的前2n 项和.解:(1)当1n =时,111a S ==,当2n ≥时,1n n n a S S n -=-=,∴*()n a n n N =∈. (2)由题意得:2(1)2(1)n a n n n n n b a n =+-=+-,∴数列{}n b 的前2n 项和2n T 为22212(222)(12342)22n n n T n n +=++++-+-+-+=-+. (17)【2014年湖南,文17,12分】某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下: (,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b其中a a ,分别表示甲组研发成功和失败;b b ,分别表示乙组研发成功和失败. (1)若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为102==153x 甲.方差为2221222=[(1)10(0)5]15339S -⨯+-⨯=甲;乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为93==155x 乙.方差为2221336=[(1)9(0)6]155525S -⨯+-⨯=乙 22><x x S S 甲乙甲乙,,∴甲组的研发水平优于乙组的研发水平.(2)记E ={恰有一组研发成功},在所抽得的15个结果中,恰有一组研发成功的结果是(,),(,),(,),(,),(,),(,),(,),a b a b a b a b a b a b a b 共有7个,根据古典概型的概率计算公式可得()715P E =. (18)【2014年湖南,文18,12分】如图,已知二面角MN αβ--的大小为60°,菱形ABCD在面β内,,A B 两点在棱MN 上,BAD ∠=60°,E 是AB 的中点,DO ⊥面α,垂足为 O .(1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值. 解:(1)∵DO α⊥,AB α⊂,∴DO AB ⊥.∵四边形ABCD 问菱形,60BAD ∠=︒,连结BD ,则ABD ∆为正三角形.又E 为AB 的中点,∴DE AB ⊥.而DO DE D =,∴AB ⊥平面ODE . (2)∵//BC AD ,∴ADO ∠是直线BC ,OD 所成的角. 由(1)知,AB ⊥平面ODE ,∴AB OE ⊥,AB DE ⊥,∴DEO ∠是二面角MN αβ--的平面角,∴60DEO ∠=︒.设2AB =,则2AD =,3DE =,3sin 602DO DE =︒=.连结AO ,则3cos 4DO ADO AD ∠==,∴异面直线BC ,OD 所成的角的余弦值为34.(19)【2014年湖南,文19,13分】如图,在平面四边形ABCD 中,DA AB ⊥,1DE =,7EC =,2EA =,23ADC π∠=,3BEC π∠=. (1)求sin CED ∠的值; (2)求BE 的长. 解:(1)在CDE ∆中,222+2cos EC CD DE CD DE EDC =-⋅⋅∠.即227+1+CD CD =,2+60CD CD -=,2CD ∴=(3CD =-舍去),设CED α∠=,sin sin EC CDD α=∠,即722sin sin 3πα=,21sin 7α∴=. (2)0<<3πα,21sin 7α=,27cos 7α∴=, 2227cos cos()cos cos +sin sin 33314AEB πππααα∴∠=-==, 在ABE ∆中,cos EAAEB BE ∠=,247cos 7/14EA BE AEB ∴===∠.(20)【2014年湖南,文20,13分】如图,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)y x C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.解:(1)设2C 的焦距为22c ,则12222a c ==,∴121a c ==.23(,1)3P 在1C 上,∴2212123:()13y C b -=,213b =. 由椭圆定义知,2222223232()(11)()(11)2333a =+-+++=,∴23a =,2222222b a c =-=, ∴12,C C 的方程分别为22221,1332y y x x -=+=.(2)不存在符合题设条件的直线.①若l x ⊥轴,∵l 与2C 只有一个公共点,∴l 的方程为2x =或2x =-.当2x =时,易得()2,3A ,()2,3B-, ||22,||23OA OB AB +==,此时||||OA OB AB +≠.②若l 不垂直x 轴,设:l y kx m =+,代入双曲线方程整理得222(3)230k x k m x m ----=.当l 与1C 有两个交点()11,A x y ,()22,B x y 时,12223k mx x k +=-,212233m x x k +=-,于是222212121212233()()()3k m y y kx b kx b k x x km x x m k -=++=+++=-,再将y kx b =+代入椭圆方程整理得222(23)4260k x k m x m +++-=,∵l 与2C 只有一个公共点,∴由0∆=,可得2223k m =-,于是有22222212122222333323303333m k m k m k OA OB x x y y k k k k +--+--⋅=+=+==≠----∴2222||||||||40OA OB AB OA OB OB OA OA OB +-=+--=⋅≠,即||||OA OB AB +≠. 综合①②可知,不存在符合题设条件的直线.(21)【2014年湖南,文21,13分】已知函数()cos sin 1(0)f x x x x x =-+>.(1)求()f x 的单调区间;(2)记i x 为()f x 的从小到大的第*()i i N ∈个零点,证明:对一切*n N ∈,有2221211123n x x x +++<.解:(1)()cos sin cos f x x x x x '=--,令()0f x '=,则*()x k k N π=∈. 当(2,2)()x k k k N πππ∈+∈时,()0f x '<,当(2,22)()x k k k N ππππ∈++∈时,()0f x '>,∴()f x 的单调减区间为(2,2)()k k k N πππ+∈, ()f x 的单调增区间为(2,22)()k k k N ππππ++∈. (2)由(1)知,()f x 在区间(0,)π上单调递减,∵()02f π=,∴12x π=.当*n N ∈时,∵1()()[(1)1][(1)(1)1]0n n f n f n n n πππππ+⋅+=-+⋅-++<, 且()f x 的图像是连续不断的,∴()f x 在区间(,)n n πππ+内至少有一个实根,又()f x 在区间(,)n n πππ+上是单调的,∴1n n x n πππ+<<+.由此可得 222222221211111111111[41][41]23(1)1223(2)(1)n x x x n n n ππ+++<+++++<+++++-⨯⨯--2222111111111162[41(1)()()](411)(6)22321113n n n n ππππ=++-+-++-=++-=-<<---- 综上可知,对一切*n N ∈,都有2221211123n x x x +++<.。

2014年高考湖南文科数学试题及答案(word解析版)

2014年高考湖南文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(湖南卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年湖南,文1,5分】设命题2:,10p x R x ∀∈+>,则p ⌝为( )(A )200,10x R x ∃∈+> (B )200,10x R x ∃∈+≤ (C )200,10x R x ∃∈+< (D )200,10x R x ∀∈+≤ 【答案】B【解析】全称命题的否定是特称命题,所以命题p 的否定为200,10x R x ∃∈+≤,故选B . (2)【2014年湖南,文2,5分】已知集合{|2},{|13}A x x B x x =>=<<,则A B =( )(A ){|2}x x > (B ){|1}x x > (C ){|23}x x << (D ){|13}x x << 【答案】C【解析】由题可得{|23}A B x x =<<,故选C .(3)【2014年湖南,文3,5分】对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )(A )123p p p =< (B)231p p p =< (C )132p p p =< (D )123p p p == 【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D . (4)【2014年湖南,文4,5分】下列函数中,既是偶函数又在区间(),0-∞上单调递增的是( )(A )21()f x x =(B )2()1f x x =+ (C )3()f x x = (D)()2xf x -=【答案】A【解析】根据函数奇偶性的判断可得选项A 、B 为偶函数,C 为奇函数,D 为非奇非偶函数,所以排除C 、D 选项.由二次函数的图像可得选项B 在(),0-∞是单调递减的,根据排除法选A .因为函数2y x =在(),0-∞是单调递减的且1y x=在()0,+∞是单调递增的,所以根据复合函数单调性的判断同增异减可得选项A 在(),0-∞是单调递减的,故选A .(5)【2014年湖南,文5,5分】在区间[]2,3-上随机选取一个数X ,则1X ≤的概率为( )(A )45 (B)35 (C )25 (D )15【答案】B【解析】在[]2,3-上符合1X ≤的区间为[]2,1-,因为[]2,3-的区间长度为5且区间[]2,1-的区间长度为3,所以根据几何概型的概率计算公式可得35p =,故选B . (6)【2014年湖南,文6,5分】若圆221:1C x y +=21x=与圆222:680C x y x y m +--+=外切,则m =( )(A )21 (B )19 (C )9 (D )11- 【答案】C【解析】因为()()22226803425x y x y m x y m +--+=⇒-+-=-,所以25025m m ->⇒<且圆2C的圆心为()3,4,半径为25m -,根据圆和圆外切的判定可得()()2230401259m m -+-=+-⇒=,故选C .(7)【2014年湖南,文7,5分】执行如图所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( )(A )[]6,2-- (B)[]5,1-- (C )[]4,5- (D )[]3,6- 【答案】D【解析】当[]2,0t ∈-时,运行程序如下:(]2211,9t t =+∈,(]32,6S t =-∈-,当[]0,2t ∈时,(]33,1S t =-∈--,则(][][]2,63,13,6S ∈---=-,故选D .(8)【2014年湖南,文8,5分】一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于( )(A)1 (B )2 (C )3 (D )4 【答案】B 【解析】由图可得该几何体为三棱柱,因为正视图、侧视图和俯视图的内切圆半径最小的是正视图(直角三角形)所对应的2121ln ln x x e x x x -<- C.内切圆,所以最大球的半径为正视图直角形内切 圆的半径r ,则2286862r r r -+-=+⇒=,故选B .(9)【2014年湖南,文9,5分】若1201x x <<<,则( )(A )2121ln ln x x e e x x ->- (B )2121ln ln x x e e x x -<- (C )1221x x x e x e > (D )1221x x x e x e < 【答案】C【解析】设()ln x f x e x =-,则(]0,1x ∈时,()1xf x e x'=-的符号不确定,()f x ∴的单调性不确定.设()x e g x x =,则()0,1x ∈时,()()210xx eg x x -'=<,()g x ∴在()0,1上单调递减,()()1212122112x x x x e e g x g x x e x e x x ∴<⇒<⇒<,故选C .(10)【2014年湖南,文10,5分】在平面直角坐标系中,O 为原点,(1,0),(03),(30)A B C -,,,动点D 满足||1CD =,则||OA OB OD ++的取值范围是( )(A)[4,6] (B )[19119+1]-, (C )[2327],(D )[717+1]-, 【答案】D【解析】点D 的轨迹是以C 为圆心的单位圆,设()[)()3cos ,sin 0,2D θθθπ+∈,则OA OB OD ++()()()223cos 1sin 3822cos 3sin θθθθ=+-++=++.因为2cos 3sin θθ+的取值范围是()()222223,237,7⎡⎤⎡⎤-++=-⎢⎥⎣⎦⎣⎦,故827,82771,71OA OB OD ⎡⎤⎡⎤++∈-+=-+⎣⎦⎢⎥⎣⎦,故选D . 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2014年湖南,文11,5分】复数23i i +(i 为虚数单位)的实部等于 .【答案】3-【解析】由题可得所以23i 3i i +=--,3i --的实部为3-.(12)【2014年湖南,文12,5分】在平面直角坐标系中,曲线222:212x t C y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)的普通方程为 .【答案】10x y --= 【解析】联立222:212x t C y t ⎧=+⎪⎪⎨⎪=+⎪⎩,消t 可得110x y x y -=⇒--=.(13)【2014年湖南,文13,5分】若变量y x ,满足约束条件41y xx y y ≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为 .【答案】7【解析】作出不等式组41y xx y y ≤⎧⎪+≤⎨⎪≥⎩表示的区域如下,则根据线性规划的知识可得目标函数2z x y =+在点()3,1处取得最大值7.(14)【2014年湖南,文14,5分】平面上以机器人在行进中始终保持与点(1,0)F 的距离和到直 线1x =-的距离相等.若机器人接触不到过点()10P -,且斜率为k 的直线,则k 的取值范围是 . 【答案】()(),11,-∞-+∞【解析】由题设知机器人在以点(1,0)F 为焦点的抛物线24y x =上,且()1y k x =+与抛物线24y x =无交点,()22441y xy y k k y k x ⎧=⎪⇒=⋅+⇒⎨=+⎪⎩方程204y k y k ⋅-+=无实根,则0k ≠且2101k k ∆=-<⇒<-或1k >, 所以()(),11,k ∈-∞-+∞.(15)【2014年湖南,文15,5分】若()()3ln 1xf x e ax =++是偶函数,则a = .【答案】23-【解析】因为()f x 为偶函数,所以()()()()33ln 1ln 1x x f x f x e ax e ax --=⇒+-=++⇒()()333ln 13ln 1322x x e x ax e ax x ax a +--=++⇒-=⇒=-.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(16)【2014年湖南,文16,12分】已知数列{}n a 的前n 项和22n n nS n N *+=∈,.(1)求数列{}n a 的通项公式;(2)设2(1)n ann n b a =+-,求数列{}n b 的前2n 项和.解:(1)当1n =时,111a S ==,当2n ≥时,1n n n a S S n -=-=,∴*()n a n n N =∈. (2)由题意得:2(1)2(1)n a n n n n n b a n =+-=+-,∴数列{}n b 的前2n 项和2n T 为22212(222)(12342)22n n n T n n +=++++-+-+-+=-+. (17)【2014年湖南,文17,12分】某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下: (,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b其中a a ,分别表示甲组研发成功和失败;b b ,分别表示乙组研发成功和失败. (1)若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为102==153x 甲.方差为2221222=[(1)10(0)5]15339S -⨯+-⨯=甲;乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为93==155x 乙.方差为2221336=[(1)9(0)6]155525S -⨯+-⨯=乙 22><x x S S 甲乙甲乙,,∴甲组的研发水平优于乙组的研发水平.(2)记E ={恰有一组研发成功},在所抽得的15个结果中,恰有一组研发成功的结果是(,),(,),(,),(,),(,),(,),(,),a b a b a b a b a b a b a b 共有7个,根据古典概型的概率计算公式可得()715P E =. (18)【2014年湖南,文18,12分】如图,已知二面角MN αβ--的大小为60°,菱形ABCD在面β内,,A B 两点在棱MN 上,BAD ∠=60°,E 是AB 的中点,DO ⊥面α,垂足为 O .(1)证明:AB ⊥平面ODE ;(2)求异面直线BC 与OD 所成角的余弦值. 解:(1)∵DO α⊥,AB α⊂,∴DO AB ⊥.∵四边形ABCD 问菱形,60BAD ∠=︒,连结BD ,则ABD ∆为正三角形.又E 为AB 的中点,∴DE AB ⊥.而DO DE D =,∴AB ⊥平面ODE . (2)∵//BC AD ,∴ADO ∠是直线BC ,OD 所成的角. 由(1)知,AB ⊥平面ODE ,∴AB OE ⊥,AB DE ⊥,∴DEO ∠是二面角MN αβ--的平面角,∴60DEO ∠=︒.设2AB =,则2AD =,3DE =,3sin 602DO DE =︒=.连结AO ,则3cos 4DO ADO AD ∠==,∴异面直线BC ,OD 所成的角的余弦值为34.(19)【2014年湖南,文19,13分】如图,在平面四边形ABCD 中,DA AB ⊥,1DE =,7EC =,2EA =,23ADC π∠=,3BEC π∠=. (1)求sin CED ∠的值; (2)求BE 的长. 解:(1)在CDE ∆中,222+2cos EC CD DE CD DE EDC =-⋅⋅∠.即227+1+CD CD =,2+60CD CD -=,2CD ∴=(3CD =-舍去),设CED α∠=,sin sin EC CDD α=∠,即722sin sin 3πα=,21sin 7α∴=. (2)0<<3πα,21sin 7α=,27cos 7α∴=, 2227cos cos()cos cos +sin sin 33314AEB πππααα∴∠=-==, 在ABE ∆中,cos EAAEB BE ∠=,247cos 7/14EA BE AEB ∴===∠.(20)【2014年湖南,文20,13分】如图,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)y x C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.解:(1)设2C 的焦距为22c ,则12222a c ==,∴121a c ==.23(,1)3P 在1C 上,∴2212123:()13y C b -=,213b =. 由椭圆定义知,2222223232()(11)()(11)2333a =+-+++=,∴23a =,2222222b a c =-=, ∴12,C C 的方程分别为22221,1332y y x x -=+=.(2)不存在符合题设条件的直线.①若l x ⊥轴,∵l 与2C 只有一个公共点,∴l 的方程为2x =或2x =-.当2x =时,易得()2,3A ,()2,3B-, ||22,||23OA OB AB +==,此时||||OA OB AB +≠.②若l 不垂直x 轴,设:l y kx m =+,代入双曲线方程整理得222(3)230k x k m x m ----=.当l 与1C 有两个交点()11,A x y ,()22,B x y 时,12223k mx x k +=-,212233m x x k +=-,于是222212121212233()()()3k m y y kx b kx b k x x km x x m k -=++=+++=-,再将y kx b =+代入椭圆方程整理得222(23)4260k x k m x m +++-=,∵l 与2C 只有一个公共点,∴由0∆=,可得2223k m =-,于是有22222212122222333323303333m k m k m k OA OB x x y y k k k k +--+--⋅=+=+==≠----∴2222||||||||40OA OB AB OA OB OB OA OA OB +-=+--=⋅≠,即||||OA OB AB +≠. 综合①②可知,不存在符合题设条件的直线.(21)【2014年湖南,文21,13分】已知函数()cos sin 1(0)f x x x x x =-+>.(1)求()f x 的单调区间;(2)记i x 为()f x 的从小到大的第*()i i N ∈个零点,证明:对一切*n N ∈,有2221211123n x x x +++<.解:(1)()cos sin cos f x x x x x '=--,令()0f x '=,则*()x k k N π=∈. 当(2,2)()x k k k N πππ∈+∈时,()0f x '<,当(2,22)()x k k k N ππππ∈++∈时,()0f x '>,∴()f x 的单调减区间为(2,2)()k k k N πππ+∈, ()f x 的单调增区间为(2,22)()k k k N ππππ++∈. (2)由(1)知,()f x 在区间(0,)π上单调递减,∵()02f π=,∴12x π=.当*n N ∈时,∵1()()[(1)1][(1)(1)1]0n n f n f n n n πππππ+⋅+=-+⋅-++<, 且()f x 的图像是连续不断的,∴()f x 在区间(,)n n πππ+内至少有一个实根,又()f x 在区间(,)n n πππ+上是单调的,∴1n n x n πππ+<<+.由此可得 222222221211111111111[41][41]23(1)1223(2)(1)n x x x n n n ππ+++<+++++<+++++-⨯⨯--2222111111111162[41(1)()()](411)(6)22321113n n n n ππππ=++-+-++-=++-=-<<---- 综上可知,对一切*n N ∈,都有2221211123n x x x +++<.。

2014年全国高考文科数学试题及答案-江西卷

2014年全国高考文科数学试题及答案-江西卷

2014年普通高等学校招生全国统一考试(江西卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 若复数z 满足(1)2z i i +=(i 为虚数单位),则||z =( ).1A .2B C D 【答案】C【解析】:设Z=a+bi 则(a+bi)( 1+i)=2i ¦ (a-b)( a+b)i=2i a-b=0 a+b=2 解得 a=1 b=1Z=1+1i Z =i 11+=22.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R AC B =( ).(3,0)A - .(3,1)B -- .(3,1]C -- .(3,3)D -【答案】C【解析】 {|33},{|15}A x x B x x =-<<=-<≤,所以{}()31R A C B x x =-<<-3.掷两颗均匀的骰子,则点数之和为5的概率等于( )1.18A 1.9B 1.6C 1.12D 【答案】B【解析】点数之和为5的基本事件有:(1,4)(4,1)(2,3)(3,2),所以概率为364=914. 已知函数2,0()()2,0x x a x f x a R x -⎧⋅≥=∈⎨<⎩,若[(1)]1f f -=,则=a ( )1.4A 1.2B .1C .2D【答案】A【解析】(1)2f -=,(2)4f a =,所以[(1)]41f f a -==解得14a =5. 在ABC ∆中,内角A,B,C 所对应的边分别为,,,c b a ,若32a b =,则2222sin sin sin B AA-的值为( )1.9A -1.3B .1C 7.2D 【答案】D【解析】222222222sin sin 2372121sin 22B A b a b A a a --⎛⎫⎛⎫==-=-= ⎪ ⎪⎝⎭⎝⎭6.下列叙述中正确的是( ).A 若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤ .B 若,,a b c R ∈,则22""ab cb >的充要条件是""a c >.C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥” .D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ【答案】D【解析】当0a ≠时,A 是正确的;当0b =时,B 是错误的;命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x <”,所以C 是错误的。

2014年(全国卷II)(含答案)高考文科数学

2014年(全国卷II)(含答案)高考文科数学

2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A ∩B=( ) A. ∅ B. {}2 C. {0} D. {2}-2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,学科 网也不是q 的必要条件4.设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( ) A. 1 B. 2 C. 3 D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为2,,D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.28.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A.4 B.5 C.6 D.79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )A.8B.7C.2D.110.设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB =( )A.3B.6C.12D.11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )A.(],2-∞-B.(],1-∞-C.[)2,+∞D.[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A.[-1,1]B.11,22⎡⎤-⎢⎥⎣⎦C.⎡⎣D.22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ;(2)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两—部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BE EC =; (2)22AD DE PB ⋅=23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题参考答案:参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B . 考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算.3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】 试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =. 考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值. 10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C 【解析】试题分析:由题意,得3(,0)4F .又因为0k tan 30==故直线AB 的方程为3y )4=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++= 168312162+=,选C . 考点:1、抛物线的标准方程;2、抛物线的定义. 11.D 【解析】试题分析:'1()f x k x =-,由已知得'()0f x ≥在()1,x ∈+∞恒成立,故1k x≥,因为1x >,所以101x<<,故k 的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故0sin 45OA OM ==1≤,所以OM ≤≤011x -≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13 【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式.14.1【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15.3【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性.16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=.三、解答题(17)解:(I )由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ①2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD = (Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅ 011(1232)sin 6022=⨯⨯+⨯⨯ 23=(18)解:(I )设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以EO ∥PB.EO ⊂平面AEC ,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)V 166PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H 。

2014年山东省高考数学试卷(文科)(附参考答案+详细解析Word打印版)

2014年山东省高考数学试卷(文科)(附参考答案+详细解析Word打印版)

2014年山东省普通高等学校招生统一考试数学试卷(文科)一.选择题每小题5分,共50分1.(5分)已知a,b∈R,i是虚数单位,若a+i=2﹣bi,则(a+bi)2=()A.3﹣4i B.3+4i C.4﹣3i D.4+3i2.(5分)设集合A={x|x2﹣2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2) C.[1,2) D.(1,4)3.(5分)函数f(x)=的定义域为()A.(0,2) B.(0,2]C.(2,+∞)D.[2,+∞)4.(5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根5.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>6.(5分)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1 7.(5分)已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2 B.C.0 D.﹣8.(5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.189.(5分)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,下列函数中是准偶函数的是()A.f(x)=B.f(x)=x2C.f(x)=tanx D.f(x)=cos(x+1)10.(5分)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b >0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.2二.填空题每小题5分,共25分11.(5分)执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为.12.(5分)函数y=sin2x+cos2x的最小正周期为.13.(5分)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为.14.(5分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为.15.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为.三.解答题共6小题,共75分16.(12分)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.17.(12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.19.(12分)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a,记T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n,求T n.20.(13分)设函数f(x)=alnx+,其中a为常数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性.21.(14分)在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D 在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.2014年山东省高考数学试卷(文科)参考答案与试题解析一.选择题每小题5分,共50分1.(5分)已知a,b∈R,i是虚数单位,若a+i=2﹣bi,则(a+bi)2=()A.3﹣4i B.3+4i C.4﹣3i D.4+3i【分析】利用两个复数相等的充要条件求得a、b的值,再利用两个复数代数形式的乘法法则求得(a+bi)2的值.【解答】解:∵a+i=2﹣bi,∴a=2、b=﹣1,则(a+bi)2=(2﹣i)2=3﹣4i,故选:A.【点评】本题主要考查两个复数相等的充要条件,两个复数代数形式的乘法法则,属于基础题.2.(5分)设集合A={x|x2﹣2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2) C.[1,2) D.(1,4)【分析】分别解出集合A和B,再根据交集的定义计算即可.【解答】解:A={x|0<x<2},B={x|1≤x≤4},∴A∩B={x|1≤x<2}.故选:C.【点评】本题是简单的计算题,一般都是在高考的第一题出现,答题时要注意到端点是否取得到,计算也是高考中的考查点,学生在平时要加强这方面的练习,考试时做到细致悉心,一般可以顺利解决问题.3.(5分)函数f(x)=的定义域为()A.(0,2) B.(0,2]C.(2,+∞)D.[2,+∞)【分析】分析可知,,解出x即可.【解答】解:由题意可得,,解得,即x>2.∴所求定义域为(2,+∞).故选:C.【点评】本题是对基本计算的考查,注意到“真数大于0”和“开偶数次方根时,被开方数要大于等于0”,及“分母不为0”,即可确定所有条件.高考中对定义域的考查,大多属于容易题.4.(5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.故选:A.【点评】本题考查反证法证明问题的步骤,基本知识的考查.5.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>【分析】本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.【解答】解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.当x>y时,x3>y3,恒成立,B.当x=π,y=时,满足x>y,但sinx>siny不成立.C.若ln(x2+1)>ln(y2+1),则等价为x2>y2成立,当x=1,y=﹣1时,满足x >y,但x2>y2不成立.D.若>,则等价为x2+1<y2+1,即x2<y2,当x=1,y=﹣1时,满足x>y,但x2<y2不成立.故选:A.【点评】本题主要考查函数值的大小比较,利用不等式的性质以及函数的单调性是解决本题的关键.6.(5分)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1【分析】根据对数函数的图象和性质即可得到结论.【解答】解:∵函数单调递减,∴0<a<1,当x=1时log a(x+c)=log a(1+c)<0,即1+c>1,即c>0,当x=0时log a(x+c)=log a c>0,即c<1,即0<c<1,故选:D.【点评】本题主要考查对数函数的图象和性质,利用对数函数的单调性是解决本题的关键,比较基础.7.(5分)已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2 B.C.0 D.﹣【分析】由条件利用两个向量的夹角公式、两个向量的数量积公式,求得m的值.【解答】解:由题意可得cos===,解得m=,故选:B.【点评】本题主要考查两个向量的夹角公式、两个向量的数量积公式的应用,属于基础题.8.(5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.18【分析】由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案;【解答】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.【点评】本题考查古典概型的求解和频率分布的结合,列举对事件是解决问题的关键,属中档题.9.(5分)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,下列函数中是准偶函数的是()A.f(x)=B.f(x)=x2C.f(x)=tanx D.f(x)=cos(x+1)【分析】由题意判断f(x)为准偶函数的对称轴,然后判断选项即可.【解答】解:对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,∴函数的对称轴是x=a,a≠0,选项A函数没有对称轴;选项B、函数的对称轴是x=0,选项C,函数没有对称轴.函数f(x)=cos(x+1),有对称轴,且x=0不是对称轴,选项D正确.故选:D.【点评】本题考查函数的对称性的应用,新定义的理解,基本知识的考查.10.(5分)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b >0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.2【分析】由约束条件正常可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数得到2a+b﹣2=0.a2+b2的几何意义为坐标原点到直线2a+b﹣2=0的距离的平方,然后由点到直线的距离公式得答案.【解答】解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,考查了数学转化思想方法,训练了点到直线距离公式的应用,是中档题.二.填空题每小题5分,共25分11.(5分)执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为3.【分析】计算循环中不等式的值,当不等式的值大于0时,不满足判断框的条件,退出循环,输出结果即可.【解答】解:循环前输入的x的值为1,第1次循环,x2﹣4x+3=0≤0,满足判断框条件,x=2,n=1,x2﹣4x+3=﹣1≤0,满足判断框条件,x=3,n=2,x2﹣4x+3=0≤0满足判断框条件,x=4,n=3,x2﹣4x+3=3>0,不满足判断框条件,输出n:3.故答案为:3.【点评】本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.12.(5分)函数y=sin2x+cos2x的最小正周期为π.【分析】利用两角和的正弦公式、二倍角的余弦公式化简函数的解析式为f(x)=sin(2x+),从而求得函数的最小正周期【解答】解:∵函数y=sin2x+cos2x=sin2x+=sin(2x+)+,故函数的最小正周期的最小正周期为=π,故答案为:π.【点评】本题主要考查两角和的正弦公式、二倍角的余弦公式,正弦函数的周期性,属于基础题.13.(5分)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为12.【分析】判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积.【解答】解:∵一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则,∴h=1,棱锥的斜高为:==2,该六棱锥的侧面积为:=12.故答案为:12.【点评】本题考查了棱锥的体积,侧面积的求法,解答的关键是能够正确利用体积与表面积公式解题.14.(5分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为(x﹣2)2+(y﹣1)2=4.【分析】由圆心在直线x﹣2y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,由弦长的一半,圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【解答】解:设圆心为(2t,t),半径为r=|2t|,∵圆C截x轴所得弦的长为2,∴t2+3=4t2,∴t=±1,∵圆C与y轴的正半轴相切,∴t=﹣1不符合题意,舍去,故t=1,2t=2,∴(x﹣2)2+(y﹣1)2=4.故答案为:(x﹣2)2+(y﹣1)2=4.【点评】此题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.15.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为y=±x.【分析】求出双曲线的右顶点A(a,0),拋物线x2=2py(p>0)的焦点及准线方程,根据已知条件得出及,求出a=b,得双曲线的渐近线方程为:y=±x.【解答】解:∵右顶点为A,∴A(a,0),∵F为抛物线x2=2py(p>0)的焦点,F,∵|FA|=c,∴抛物线的准线方程为由得,,由①②,得=2c,即c2=2a2,∵c2=a2+b2,∴a=b ,∴双曲线的渐近线方程为:y=±x , 故答案为:y=±x .【点评】熟练掌握圆锥曲线的图象与性质是解题的关键.三.解答题共6小题,共75分16.(12分)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(Ⅰ)求这6件样品来自A ,B ,C 各地区商品的数量;(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.【分析】(Ⅰ)先计算出抽样比,进而可求出这6件样品来自A ,B ,C 各地区商品的数量;(Ⅱ)先计算在这6件样品中随机抽取2件的基本事件总数,及这2件商品来自相同地区的事件个数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)A ,B ,C 三个地区商品的总数量为50+150+100=300, 故抽样比k==,故A 地区抽取的商品的数量为:×50=1; B 地区抽取的商品的数量为:×150=3; C 地区抽取的商品的数量为:×100=2;(Ⅱ)在这6件样品中随机抽取2件共有:=15个不同的基本事件;且这些事件是等可能发生的,记“这2件商品来自相同地区”为事件A ,则这2件商品可能都来自B 地区或C 地区,则A中包含=4种不同的基本事件,故P(A)=,即这2件商品来自相同地区的概率为.【点评】本题考查的知识点是分层抽样,古典概型概率计算公式,难度不大,属于基础题.17.(12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【分析】(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.【点评】本题主要考查了正弦定理的应用.解题过程中结合了同角三角函数关系,三角函数恒等变换的应用,注重了基础知识的综合运用.18.(12分)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.【分析】(Ⅰ)证明四边形ABCE是平行四边形,可得O是AC的中点,利用F为线段PC的中点,可得PA∥OF,从而可证AP∥平面BEF;(Ⅱ)证明BE⊥AP、BE⊥AC,即可证明BE⊥平面PAC.【解答】证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.【点评】本题考查直线与平面平行、垂直的判定,考查学生分析解决问题的能力,正确运用直线与平面平行、垂直的判定是关键19.(12分)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=a,记T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n,求T n.【分析】(Ⅰ)由于a2是a1与a4的等比中项,可得,再利用等差数列的通项公式即可得出.(Ⅱ)利用(Ⅰ)可得b n=a=n(n+1),因此T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n=﹣1×(1+1)+2×(2+1)﹣…+(﹣1)n n•(n+1).对n分奇偶讨论即可得出.【解答】解:(Ⅰ)∵a2是a1与a4的等比中项,∴,∵在等差数列{a n}中,公差d=2,∴,即,化为,解得a1=2.∴a n=a1+(n﹣1)d=2+(n﹣1)×2=2n.(Ⅱ)∵b n=a=n(n+1),∴T n=﹣b1+b2﹣b3+b4﹣…+(﹣1)n b n=﹣1×(1+1)+2×(2+1)﹣…+(﹣1)n n•(n+1).=2k(2k+1)﹣(2k﹣1)(2k﹣1+1)=4k当n=2k(k∈N*)时,b2k﹣b2k﹣1T n=(b2﹣b1)+(b4﹣b3)+…+(b2k﹣b2k﹣1)=4(1+2+…+k)=4×=2k(k+1)=.当n=2k﹣1(k∈N*)时,T n=(b2﹣b1)+(b4﹣b3)+…+(b2k﹣2﹣b2k﹣3)﹣b2k﹣1=n(n+1)=﹣.故T n=.(也可以利用“错位相减法”)【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、分类讨论思想方法,属于中档题.20.(13分)设函数f(x)=alnx+,其中a为常数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性.【分析】(Ⅰ)根据导数的几何意义,曲线y=f(x)在x=1处的切线方程为y﹣f (1)=f′(1)(x﹣1),代入计算即可.(Ⅱ)先对其进行求导,即,考虑函数g(x)=ax2+(2a+2)x+a,分成a≥0,﹣<a<0,a≤﹣三种情况分别讨论即可.【解答】解:,(Ⅰ)当a=0时,,f′(1)=,f(1)=0∴曲线y=f(x)在点(1,f(1))处的切线方程为y=(x﹣1).(Ⅱ)(1)当a≥0时,由x>0知f′(x)>0,即f(x)在(0,+∞)上单调递增;(2)当a<0时,令f′(x)>0,则>0,整理得,ax2+(2a+2)x+a >0,令f′(x)<0,则<0,整理得,ax2+(2a+2)x+a<0.以下考虑函数g(x)=ax2+(2a+2)x+a,g(0)=a<0.,对称轴方程.①当a≤﹣时,△≤0,∴g(x)<0恒成立.(x>0)②当﹣<a<0时,此时,对称轴方程>0,∴g(x)=0的两根一正一负,计算得当0<x<时,g(x)>0;当x>时,g(x)<0.综合(1)(2)可知,当a≤﹣时,f(x)在(0,+∞)上单调递减;当﹣<a<0时,f(x)在(0,)上单调递增,在(,+∞)上单调递减;当a>0时,f(x)在(0,+∞)上单调递增.【点评】导数是高考中极易考察到的知识模块,导数的几何意义和导数的单调性是本题检查的知识点,特别是单调性的处理中,分类讨论是非常关键和必要的,分类讨论也是高考中经常考查的思想方法.21.(14分)在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D 在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.【分析】(Ⅰ)由椭圆离心率得到a,b的关系,化简椭圆方程,和直线方程联立后求出交点的横坐标,把弦长用交点横坐标表示,则a的值可求,进一步得到b 的值,则椭圆方程可求;(Ⅱ)(i)设出A,D的坐标分别为(x1,y1)(x1y1≠0),(x2,y2),用A的坐标表示B的坐标,把AB和AD的斜率都用A的坐标表示,写出直线AD的方程,和椭圆方程联立后利用根与系数关系得到AD横纵坐标的和,求出AD中点坐标,则BD斜率可求,再写出BD所在直线方程,取y=0得到M点坐标,由两点求斜率得到AM的斜率,由两直线斜率的关系得到λ的值;(ii)由BD方程求出N点坐标,结合(i)中求得的M的坐标得到△OMN的面积,然后结合椭圆方程利用基本不等式求最值.【解答】解:(Ⅰ)由题意知,,则a2=4b2.∴椭圆C的方程可化为x2+4y2=a2.将y=x代入可得,因此,解得a=2.则b=1.∴椭圆C的方程为;(Ⅱ)(i)设A(x1,y1)(x1y1≠0),D(x2,y2),则B(﹣x1,﹣y1).∵直线AB的斜率,又AB⊥AD,∴直线AD的斜率.设AD方程为y=kx+m,由题意知k≠0,m≠0.联立,得(1+4k2)x2+8kmx+4m2﹣4=0.∴.因此.由题意可得.∴直线BD的方程为.令y=0,得x=3x1,即M(3x1,0).可得.∴,即.因此存在常数使得结论成立.(ii)直线BD方程为,令x=0,得,即N().由(i)知M(3x1,0),可得△OMN的面积为S==.当且仅当时等号成立.∴△OMN面积的最大值为.【点评】本题考查椭圆方程的求法,主要考查了直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,但圆锥曲线的特点是计算量比较大,要求考试具备较强的运算推理的能力,是压轴题.。

2014年2014年普通高等学校招生全国统一考试(新课标II卷)文科数学试题与答案解析完整版

2014年2014年普通高等学校招生全国统一考试(新课标II卷)文科数学试题与答案解析完整版
21 3 21 3 ,所以 AB x1 x2 12 ,故选 C. 2 2 2 2
x1 x2
7
关注我们:新浪微博@兰州新拓
qq 群号:99839070
11. 解析 依题意得 f x k
1 1 0 在 1, 上恒成立,即 k 在 1, 上恒成立,因为 x x
2
ห้องสมุดไป่ตู้
代入上式,解得 a1 2 ,所以 S n 2n
n n 1 2 n n 1 .故选 A. 2
2 2 3
6.解析该零件是两个圆柱体构成的组合体,其体积为 π 2 4 π 3 2 34π cm ,圆柱体毛 坯的体积为 π 3 6 54π cm ,所以切削掉部分的体积为
1 1 1 1
6
关注我们:新浪微博@兰州新拓
qq 群号:99839070
8.解析 k 1 时, 1 2 成立,此时 M 2 , S 2 3 5 ; k 2 时, 2 2 成立,此时 M 2 ,
S 2 5 7 ; k 3 时, 3 2 ,终止循环,输出 S 7 .故选 D.
(6)如图,网格纸上正方形小格的边长为 1(表示 1cm) , 图中粗线画出的是某零件的三视图, 该零件由一个底面半径为 3cm,高为 6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原 来毛坯体积的比值为
(A)
17 27
( B)
5 9
(C)
10 27
(D)
1 3
(7)正三棱柱 ABC A1 B1C1 的底面边长为 2,侧棱长为 3 ,D 为 BC 中点,则 三棱锥 A B1 DC1 的体积为
x 1 ,所以 0

2014年全国统一高考数学试卷(文科)(新课标Ⅱ)解析版

2014年全国统一高考数学试卷(文科)(新课标Ⅱ)解析版

2014年全国统一高考数学试卷(文科)(新课标Ⅱ)解析版参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合{2A =-,0,2},2{|20}B x x x =--=,则(A B = )A .∅B .{2}C .{0}D .{2}-【考点】1E :交集及其运算 【专题】5J :集合【分析】先解出集合B ,再求两集合的交集即可得出正确选项. 【解答】解:{2A =-,0,2},2{|20}{1B x x x =--==-,2},{2}AB ∴=.故选:B .【点评】本题考查交的运算,理解好交的定义是解答的关键. 2.(5分)13(1ii+=- ) A .12i + B .12i -+ C .12i - D .12i --【考点】5A :复数的运算 【专题】5N :数系的扩充和复数【分析】分子分母同乘以分母的共轭复数1i +化简即可. 【解答】解:化简可得213(13)(1)13424121(1)(1)12i i i i ii i i i i +++-+-+====-+--+- 故选:B .【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)函数()f x 在0x x =处导数存在,若00:()0::p f x q x x '==是()f x 的极值点,则()A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 【考点】29:充分条件、必要条件、充要条件 【专题】5L :简易逻辑【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数3()f x x =的导数为2()3f x x '=,由0()0f x '=,得00x =,但此时函数()f x 单调递增,无极值,充分性不成立.根据极值的定义和性质,若0x x =是()f x 的极值点,则0()0f x '=成立,即必要性成立, 故p 是q 的必要条件,但不是q 的充分条件, 故选:C .【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)设向量a ,b 满足||10a b +=,||6a b -=,则(a b = ) A .1B .2C .3D .5【考点】9O :平面向量数量积的性质及其运算 【专题】5A :平面向量及应用【分析】将等式进行平方,相加即可得到结论. 【解答】解:||10a b +=,||6a b -=,∴分别平方得22210a a b b ++=,2226a a b b -+=,两式相减得41064a b =-=, 即1a b =, 故选:A .【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础. 5.(5分)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和(n S =)A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 【考点】83:等差数列的性质【专题】54:等差数列与等比数列【分析】由题意可得2444(4)(8)a a a =-+,解得4a 可得1a ,代入求和公式可得. 【解答】解:由题意可得2428a a a =, 即2444(4)(8)a a a =-+, 解得48a =, 14322a a ∴=-⨯=,1(1)2n n n S na d -∴=+, (1)22(1)2n n n n n -=+⨯=+, 故选:A .【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1)cm ,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027 D .13【考点】!L :由三视图求面积、体积 【专题】5F :空间位置关系与距离【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可. 【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:22322434πππ+=.底面半径为3cm ,高为6cm 的圆柱体毛坯的体积为:23654ππ⨯= 切削掉部分的体积与原来毛坯体积的比值为:5434105427πππ-=. 故选:C .【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D 【考点】LF :棱柱、棱锥、棱台的体积 【专题】5F :空间位置关系与距离【分析】由题意求出底面11B DC 的面积,求出A 到底面的距离,即可求解三棱锥的体积.【解答】解:正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,∴底面11B DC 的面积:122⨯A三棱锥11A B DC -的体积为:113.故选:C .【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键. 8.(5分)执行如图所示的程序框图,若输入的x ,t 均为2,则输出的(S = )A .4B .5C .6D .7【考点】EF :程序框图 【专题】5K :算法和程序框图【分析】根据条件,依次运行程序,即可得到结论. 【解答】解:若2x t ==,则第一次循环,12…成立,则1221M =⨯=,235S =+=,2k =,第二次循环,22…成立,则2222M =⨯=,257S =+=,3k =,此时32…不成立,输出7S =, 故选:D .【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)设x ,y 满足约束条件1010330x y x y x y +-⎧⎪--⎨⎪-+⎩………,则2z x y =+的最大值为( )A .8B .7C .2D .1【考点】7C :简单线性规划 【专题】59:不等式的解法及应用【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域, 由2z x y =+,得122zy x =-+,平移直线122z y x =-+,由图象可知当直线122z y x =-+经过点A 时,直线122zy x =-+的截距最大,此时z 最大. 由10330x y x y --=⎧⎨-+=⎩,得32x y =⎧⎨=⎩,即(3,2)A ,此时z 的最大值为3227z =+⨯=, 故选:B .【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 10.(5分)设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30︒的直线交于C 于A ,B 两点,则||(AB = )A B .6 C .12 D .【考点】8K :抛物线的性质【专题】5D :圆锥曲线的定义、性质与方程【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得||AB .【解答】解:由23y x =得其焦点3(4F ,0),准线方程为34x =-.则过抛物线23y x =的焦点F 且倾斜角为30︒的直线方程为33tan30())44y x x =︒--.代入抛物线方程,消去y ,得21616890x x -+=. 设1(A x ,1)y ,2(B x ,2)y 则1216821162x x +==, 所以12333321||1244442AB x x =+++=++= 故选:C .【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)若函数()f x kx ln =- x 在区间(1,)+∞单调递增,则k 的取值范围是( ) A .(-∞,2]-B .(-∞,1]-C .[2,)+∞D .[1,)+∞【考点】6B :利用导数研究函数的单调性【专题】38:对应思想;4R :转化法;51:函数的性质及应用【分析】求出导函数()f x ',由于函数()f x kx lnx =-在区间(1,)+∞单调递增,可得()0f x '…在区间(1,)+∞上恒成立.解出即可. 【解答】解:1()f x k x'=-, 函数()f x kx lnx =-在区间(1,)+∞单调递增, ()0f x ∴'…在区间(1,)+∞上恒成立. 1k x∴…,而1y x=在区间(1,)+∞上单调递减, 1k ∴….k ∴的取值范围是:[1,)+∞.故选:D .【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题. 12.(5分)设点0(M x ,1),若在圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A .[1-,1]B .1[2-,1]2C .[D .[ 【考点】JE :直线和圆的方程的应用 【专题】5B :直线与圆【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点0(M x ,1),要使圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则OMN ∠的最大值大于或等于45︒时一定存在点N ,使得45OMN ∠=︒, 而当MN 与圆相切时OMN ∠取得最大值, 此时1MN =,图中只有M '到M ''之间的区域满足1MN =, 0x ∴的取值范围是[1-,1].故选:A .【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为13. 【考点】8C :相互独立事件和相互独立事件的概率乘法公式 【专题】5I :概率与统计【分析】所有的选法共有339⨯=种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有339⨯=种,而他们选择相同颜色运动服的选法共有3种, 故他们选择相同颜色运动服的概率为3193=,故答案为:13.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题. 14.(5分)函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 1 . 【考点】GP :两角和与差的三角函数;HW :三角函数的最值 【专题】56:三角函数的求值;57:三角函数的图象与性质【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值. 【解答】解:函数()sin()2sin cos f x x x ϕϕ=+- sin cos sin cos 2sin cos x x x ϕϕϕ=+- sin cos sin cos x x ϕϕ=- sin()1x ϕ=-….所以函数的最大值为1. 故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力. 15.(5分)偶函数()y f x =的图象关于直线2x =对称,f (3)3=,则(1)f -= 3 . 【考点】3K :函数奇偶性的性质与判断 【专题】51:函数的性质及应用【分析】根据函数奇偶性和对称性的性质,得到(4)()f x f x +=,即可得到结论. 【解答】解:法1:因为偶函数()y f x =的图象关于直线2x =对称, 所以(2)(2)(2)f x f x f x +=-=-, 即(4)()f x f x +=,则(1)(14)f f f -=-+=(3)3=,法2:因为函数()y f x =的图象关于直线2x =对称, 所以f (1)f =(3)3=, 因为()f x 是偶函数, 所以(1)f f -=(1)3=, 故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性(4)()f x f x +=是解决本题的关键,比较基础.16.(5分)数列{}n a 满足111n n a a +=-,82a =,则1a = 12.【考点】8H :数列递推式 【专题】11:计算题【分析】根据82a =,令7n =代入递推公式111n na a +=-,求得7a ,再依次求出6a ,5a 的结果,发现规律,求出1a 的值. 【解答】解:由题意得,111n na a +=-,82a =, 令7n =代入上式得,8711a a =-,解得712a =; 令6n =代入得,7611a a =-,解得61a =-; 令5n =代入得,6511a a =-,解得52a =; ⋯根据以上结果发现,求得结果按2,12,1-循环, 8322÷=⋯,故112a =故答案为:12. 【点评】本题考查了数列递推公式的简单应用,即给n 具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (1)求C 和BD ;(2)求四边形ABCD 的面积.【考点】HP :正弦定理;HR :余弦定理 【专题】56:三角函数的求值【分析】(1)在三角形BCD 中,利用余弦定理列出关系式,将BC ,CD ,以及cos C 的值代入表示出2BD ,在三角形ABD 中,利用余弦定理列出关系式,将AB ,DA 以及cos A 的值代入表示出2BD ,两者相等求出cos C 的值,确定出C 的度数,进而求出BD 的长; (2)由C 的度数求出A 的度数,利用三角形面积公式求出三角形ABD 与三角形BCD 面积,之和即为四边形ABCD 面积.【解答】解:(1)在BCD ∆中,3BC =,2CD =,由余弦定理得:2222cos 1312cos BD BC CD BC CD C C =+-=-①,在ABD ∆中,1AB =,2DA =,A C π+=,由余弦定理得:2222cos 54cos 54cos BD AB AD AB AD A A C =+-=-=+②, 由①②得:1cos 2C =,则60C =︒,BD (2)1cos 2C =,1cos 2A =-,sin sin C A ∴==则1111sin sin 12322222S AB DA A BC CD C =+=⨯⨯+⨯⨯=【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明://PB 平面AEC ;(Ⅱ)设1AP =,AD =,三棱锥P ABD -的体积V =,求A 到平面PBC 的距离.【考点】LF :棱柱、棱锥、棱台的体积;LS :直线与平面平行;MK :点、线、面间的距离计算【专题】5F :空间位置关系与距离【分析】(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;(Ⅱ)通过1AP =,AD =三棱锥P ABD -的体积V =,求出AB ,作A H P B ⊥角PB于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可. 【解答】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO , ABCD 是矩形, O ∴为BD 的中点E 为PD 的中点,//EO PB ∴.EO ⊂平面AEC ,PB ⊂/平面AEC//PB ∴平面AEC ;(Ⅱ)1AP =,AD ,三棱锥P ABD -的体积V =,136V PA AB AD AB ∴===,32AB ∴=,PB =. 作AH PB ⊥交PB 于H , 由题意可知BC ⊥平面PAB , BC AH ∴⊥,故AH ⊥平面PBC .又在三角形PAB 中,由射影定理可得:313PA AB AH PB ==A 到平面PBC .【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【考点】BA :茎叶图;BB :众数、中位数、平均数;CB :古典概型及其概率计算公式 【专题】5I :概率与统计【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是6668672+=,所以该市的市民对乙部门的评分的中位数的估计值是67. (Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为580.1,0.165050==,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)设1F ,2F 分别是2222:1(0)x y C a b a b+=>>的左,右焦点,M 是C 上一点且2MF与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b . 【考点】4K :椭圆的性质【专题】5E :圆锥曲线中的最值与范围问题【分析】(1)根据条件求出M 的坐标,利用直线MN 的斜率为34,建立关于a ,c 的方程即可求C 的离心率;(2)根据直线MN 在y 轴上的截距为2,以及1||5||MN F N =,建立方程组关系,求出N 的坐标,代入椭圆方程即可得到结论.【解答】解:(1)M 是C 上一点且2MF 与x 轴垂直,M ∴的横坐标为c ,当x c =时,2b y a=,即2(,)b M c a ,若直线MN 的斜率为34,即22123tan 224b b a MF Fc ac ∠===, 即22232b ac a c ==-,即22302c ac a +-=,则23102e e +-=,即22320e e +-= 解得12e =或2e =-(舍去), 即12e =. (Ⅱ)由题意,原点O 是12F F 的中点,则直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点, 设(,)M c y ,(0)y >,则22221c y a b +=,即422b y a =,解得2b y a=, OD 是△12MF F 的中位线,∴24b a=,即24b a =, 由1||5||MN F N =, 则11||4||MF F N =, 解得11||2||DF F N =, 即112DF F N =设1(N x ,1)y ,由题意知10y <, 则(c -,12)2(x c -=+,1)y . 即112()22x c c y +=-⎧⎨=-⎩,即11321x c y ⎧=-⎪⎨⎪=-⎩代入椭圆方程得2229114c a b+=,将24b a =代入得229(4)1144a a a a-+=,解得7a =,b =【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.【考点】6B :利用导数研究函数的单调性;6H :利用导数研究曲线上某点切线方程 【专题】53:导数的综合应用【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a ;(Ⅱ)构造函数()()2g x f x kx =-+,利用函数导数和极值之间的关系即可得到结论. 【解答】解:(Ⅰ)函数的导数2()36f x x x a '=-+;(0)f a '=; 则()y f x =在点(0,2)处的切线方程为2y ax =+, 切线与x 轴交点的横坐标为2-, (2)220f a ∴-=-+=,解得1a =.(Ⅱ)当1a =时,32()32f x x x x =-++, 设32()()23(1)4g x f x kx x x k x =-+=-+-+, 由题设知10k ->,当0x …时,2()3610g x x x k '=-+->,()g x 单调递增,(1)1g k -=-,(0)4g =, 当0x >时,令32()34h x x x =-+,则()()(1)()g x h x k x h x =+->. 则2()363(2)h x x x x x '=-=-在(0,2)上单调递减,在(2,)+∞单调递增,∴在2x =时,()h x 取得极小值h (2)0=,(1)1g k -=-,(0)4g =,则()0g x =在(-∞,0]有唯一实根. ()()g x h x h >…(2)0=, ()0g x ∴=在(0,)+∞上没有实根.综上当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力. 三、选修4-1:几何证明选讲22.(10分)如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.【考点】4N :相似三角形的判定;NC :与圆有关的比例线段 【专题】17:选作题;5Q :立体几何【分析】(Ⅰ)连接OE ,OA ,证明OE BC ⊥,可得E 是BC 的中点,从而BE EC =; (Ⅱ)利用切割线定理证明2PD PB =,PB BD =,结合相交弦定理可得22AD DE PB =. 【解答】证明:(Ⅰ)连接OE ,OA ,则OAE OEA ∠=∠,90OAP ∠=︒, 2PC PA =,D 为PC 的中点,PA PD ∴=, PAD PDA ∴∠=∠,PDA CDE ∠=∠,90OEA CDE OAE PAD ∴∠+∠=∠+∠=︒, OE BC ∴⊥,E ∴是BC 的中点,BE EC ∴=;(Ⅱ)PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C , 2PA PB PC ∴=, 2PC PA =,2PA PB ∴=, 2PD PB ∴=, PB BD ∴=,2BD DC PB PB ∴=, AD DE BD DC =,22AD DE PB ∴=.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题. 四、选修4-4,坐标系与参数方程23.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,[0θ∈,]2π(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在半圆C 上,半圆C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,求直线CD 的倾斜角及D 的坐标. 【考点】QH :参数方程化成普通方程 【专题】5S :坐标系和参数方程【分析】(1)利用222cos x y x ρρθ⎧=+⎨=⎩即可得出直角坐标方程,利用22cos sin 1t t +=进而得出参数方程.(2)利用半圆C 在D 处的切线与直线:2l y =+垂直,则直线CD 的斜率与直线l 的斜率相等,即可得出直线CD 的倾斜角及D 的坐标.【解答】解:(1)由半圆C 的极坐标方程为2cos ρθ=,[0θ∈,]2π,即22cos ρρθ=,可得C 的普通方程为22(1)1(01)x y y -+=剟. 可得C 的参数方程为1cos (sin x tt y t =+⎧⎨=⎩为参数,0)t π剟.(2)设(1cos D + t ,sin )t ,由(1)知C 是以(1,0)C 为圆心,1为半径的上半圆,直线CD 的斜率与直线l 的斜率相等,tan t ∴=3t π=.故D 的直角坐标为(1cos ,sin )33ππ+,即3(2.【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题. 五、选修4-5:不等式选讲 24.设函数1()||||(0)f x x x a a a=++->. (Ⅰ)证明:()2f x …;(Ⅱ)若f (3)5<,求a 的取值范围. 【考点】5R :绝对值不等式的解法 【专题】59:不等式的解法及应用 【分析】(Ⅰ)由0a >,1()||||f x x x a a=++-,利用绝对值三角不等式、基本不等式证得()2f x …成立.(Ⅱ)由f (3)1|3||3|5a a=++-<,分当3a >时和当03a <…时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求. 【解答】解:(Ⅰ)证明:a >,1111()|||||()()|||2f x x x a x x a a a a a a a a a=++-+--=+=+=厖, 故不等式()2f x …成立. (Ⅱ)f (3)1|3||3|5a a=++-<,∴当3a >时,不等式即15a a+<,即2510a a -+<,解得3a <<当03a <…时,不等式即165a a-+<,即210a a -->3a <….综上可得,a 的取值范围.【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

2014年全国高考文科数学试题及答案(山西、河南、河北、陕西)

2014年全国高考文科数学试题及答案(山西、河南、河北、陕西)

2014年全国高考文科数学试题及答案(山西、河南、河北、陕西)2014年普通高等学校招生全国统一考试数学(文科)(课标I)一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1)已知集合$M=\{x|-1\leq x\leq 3\}$,$B=\{x|-2\leq x\leq 1\}$,则$MB=$()A。

$(-2,1)$。

B。

$(-1,1)$。

C。

$(1,3)$。

D。

$(-2,3)$2)若$\tan\alpha>0$,则()A。

$\sin\alpha>0$。

B。

$\cos\alpha>0$。

C。

$\sin2\alpha>0$。

D。

$\cos2\alpha>0$3)设$z=\frac{1}{1+i}$,则$|z|=$()A。

$\frac{1}{\sqrt{2}}$。

B。

$\sqrt{2}$。

C。

$1$。

D。

$2\sqrt{2}$4)已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0)$的离心率为$2$,则$a=$()A。

$2$。

B。

$\frac{\sqrt{65}}{2}$。

C。

$1$。

D。

$\sqrt{22}$5)设函数$f(x)$,$g(x)$的定义域为$\mathbb{R}$,且$f(x)$是奇函数,$g(x)$是偶函数,则下列结论中正确的是()A。

$f(x)g(x)$是偶函数。

B。

$|f(x)|g(x)$是奇函数C。

$f(x)|g(x)|$是奇函数。

D。

$|f(x)g(x)|$是奇函数6)设$D$,$E$,$F$分别为$\triangle ABC$的三边$BC$,$CA$,$AB$的中点,则$EB+FC=$()A。

$AD$。

B。

$\frac{1}{2}AD$。

C。

$\frac{1}{2}BC$。

D。

$BC$7)在函数①$y=\cos|2x|$,②$y=|cosx|$,③$y=\cos(2x+\frac{\pi}{3})$,④$y=\tan(2x-\frac{\pi}{64})$中,最小正周期为$\pi$的所有函数为()A。

2014高考全国2卷文科数学试题(含解析)

2014高考全国2卷文科数学试题(含解析)

1 / 14绝密★启用前2014年高考全国2卷文科数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题(题型注释)1.设集合2{2,0,2},{|20}A B x x x =-=--=,则AB =( )A .∅B .{}2C .{0}D .{2}- 2.131ii+=-( ) A .12i + B .12i -+ C .12i - D .12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件4.设向量b a ,满足10||=+b a ,6||=-b a,则=⋅b a ( )A .1B .2C .3D .55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .(1)n n + B .(1)n n - C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A .2717 B .95 C .2710 D .317.正三棱柱111ABC A B C -的底面边长为23D 为BC 中点,则三棱锥11A B DC -的体积为(A )3 (B )32(C )1 (D 3D 11AB 18.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( )(A )4 (B )5 (C )6 (D )79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )(A )8 (B )7 (C )2 (D )110.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A(B )6 (C )12 (D)11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( ) (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C)⎡⎣ (D)22⎡-⎢⎣⎦3 / 14第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14.函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15.偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________.三、解答题(题型注释)17.四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB .(1)求C 和BD ;(2)求四边形ABCD 的面积.18.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ; (2)设1,AP AD ==P ABD -的体积4V =,求A到平面PBC 的距离.19.某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评优.20.设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MNF N =,求,a b .21.已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ; (2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BEEC =;(2)22AD DE PB ⋅=P23.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标. 24.设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.1 / 14参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B .考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算. 3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C . 考点:1、函数的极值点;2、充分必要条件.4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d=+-2n =,故1()(n 1)2n n n a a S n +==+. 【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==. 考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =.考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值.10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C【解析】试题分析:由题意,得3(,0)4F.又因为0k tan303==,故直线AB的方程为3y)4=-,与抛物线2=3y x联立,得21616890x x-+=,设1122(x,y),(x,y)A B,由抛物线定义得,12x xAB p=++=168312162+=,选C.考点:1、抛物线的标准方程;2、抛物线的定义.11.D【解析】试题分析:'1()f x kx=-,由已知得'()0f x≥在()1,x∈+∞恒成立,故1kx≥,因为1x>,所以101x<<,故k的取值范围是[)1,+∞.【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN与圆O有公共点即可,即圆心O到直线MN的距离小于等于1即可,过O作OA⊥MN,垂足为A,在Rt OMA∆中,因为OMA∠045=,故0sin45OA OM==1≤,所以OM≤,解得11x-≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),3/ 14(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式. 14.1 【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质. 15.3 【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性. 16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=. 考点:数列的递推公式. 17.(1)0C 60=,BD =(2)【解析】试题分析:(1)连接BD .在ABD ∆和CBD ∆中,利用余弦定理列等式2222BD BC CD BC =+-cos CD C ⋅和2222cos BD AB DA AB DA A =+-⋅,且cos cos C A =-,代入数据得1312cos C -=54cosC +,求cos C 的值,进而求C 和BD 的值;(2)由(1)知ABD ∆和CBD ∆的面积可求,故四边形ABCD 等于ABD ∆和CBD ∆的面积.5 / 14(1)由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅1312cos C =-.①2222cos BD AB DA AB DA A =+-⋅54cosC =+.②由①②得1cosC 2=,故0C 60=,BD = (2)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅011(1232)sin 6022S =⨯⨯+⨯⨯=.考点:1、余弦定理;2、诱导公式;3、三角形的面积公式. 18.(1)详见解析;(2)13【解析】 试题分析:(1)证明直线和平面平行往往可以采取两种方法:①利用直线和平面平行的判定定理,即证明直线和平面内的一条直线平行;②利用面面平行的性质定理,即若两个平面平行,则一个平面内的任意一条直线和另外一个平面平行.本题设BD 和AC 交于点O ,连接EO .则//EO PB ,进而证明PB //平面AEC .(2)由三棱锥P ABD -的体积4V =,可求得3=2AB ,易证明面PBC ⊥面PAB ,则在面PAB 内作AH PB ⊥交PB 于H ,由面面垂直的性质定理得AH ⊥平面PBC .在PAB ∆中求AH .(1)设BD 和AC 交于点O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以//EO PB .且EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB //平面AEC .(2)1=6V PA AB AD AB ⋅⋅=.由4V =可得3=2AB .作AH PB ⊥交PB 于H .由题设知BC ⊥平面PAB .所以BC AH ⊥,故AH ⊥平面PBC .又=PA ABAH PB⋅.所以A 到平面PBC考点:1、直线和平面平行的判定;2、点到平面的距离.19.(1)该市的市民对甲、乙两部门评分的中位数的估计值分别为75,67;(2)0.1,0.16;(3)详见解析. 【解析】试题分析:(1)把数从小到大排成一列,正中间如果是一个数,这个数就是中位数 ;正中间如果是两个数,那中位数是这两个数的平均数.本题有50位市民,故市民对甲、乙两部门评分正中间有两个数,求平均数即得中位数的估计值;(2)50位市民对甲、乙两部门的评分高于90的比率分别为58=0.1,=0.165050,以样本的频率值估计总体的概率;(3)样本平均数、众数、中位数、方差都是样本的数字特征,通过对这些样本数字特征的分析可以从各个方面对总体作出评价.(1)由所给茎叶图知,50位市民对这甲部门的评分由小到大排序,排在第25,26位的是75,,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对这乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+68=672,所以该市的市民对乙部门评分的中位数的估计值是67. (2)由所给茎叶图知,50位市民对甲、乙两部门的评分高于90的比率分别为58=0.1,=0.165050,故该市的市民对甲、乙两部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,该市的市民对甲部门评分的中位数高于对乙部门评分的中位数,而且由所给茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市的市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(考生利用其它统计量进行分析,结论合理的同样给分) 考点:1、样本的数字特征;2、频率和概率的关系. 20.(1)12;(2)7,a b ==【解析】7 / 14试题分析:(1)由已知得2(c,)b M a ,故直线MN 的斜率为23(c)4b a kc ==--,结合222b a c =-得关于,a c 的方程,解方程得离心率的值;(2)依题意,直线MN 和y 轴的交点是线段1MF 的中点.故24b a=,① 又因为1||5||MN F N =,得112F D F N =,从而得三个点1,,D F N 坐标的关系,将点N 的坐标表示出来代入椭圆方程的,得另一个关于,a b 的方程并联立方程①求,a b 即可.(1)根据c 2(c,)b M a ,22b 3ac =.将222b a c =-代入22b 3ac =,解得12c a =, 2c a =-(舍去).故C 的离心率为12. (2)由题意,原点O 为12F F 的中点,2//MF y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点.故24b a=,即2b 4a =.①由1||5||MN F N =得112F D F N =.设11(x ,y )N ,由题意得,1y 0<,则112(c )c,2y 2,x --=⎧⎨-=⎩即113,21,x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程,得2229114c a b+=,②将①及c = 229(a 4a)1144a a-+=.解得7a =,2428b a ==,故7,a b == 考点:椭圆的标准方程和简单几何性质;2、中点坐标公式.21.(1)1a =;(2)详见解析.【解析】试题分析:(1)2'(x)3x 6x a f =-+,由导数的几何意义得'(0)k f a ==,故切线方程为y 2ax =+,将点-2,0()代入求a ;(2)曲线()y f x =与直线2y kx =-只有一个交点转化为函数32()()kx 23(1k)4g x f x x x x =-+=-+-+有且只有零点.一般思路往往利用导数求函数的单调区间和极值点,从而判断函数大致图象,再说明与x 轴只有一个交点.本题首先入手点为1k <,当0x ≤时,'()0g x >,且g(1)k 10-=-<,g(0)4=,所以g()0x =在(,0)-∞有唯一实根.只需说明当0x >时无根即可,因为(1k)x 0->,故只需说明32()340h x x x =-+>,进而转化为求函数()h x 的最小值问题处理.(1)2'(x)3x 6x a f =-+,'(0)f a =.曲线()y f x =在点(0,2)处的切线方程为y 2ax =+.由题设得,22a -=-,所以1a =. (2)由(1)得,32()32f x x x x =-++.设32()()kx 23(1k)4g x f x x x x =-+=-+-+.由题设得1k 0->.当0x ≤时,2'()3610g x x x k =-+->,g()x 单调递增,g(1)k 10-=-<,g(0)4=,所以g()0x =在(,0)-∞有唯一实根.当0x >时,令32()34h x x x =-+,则()()(1k)x ()g x h x h x =+->.2'()3x h x =-63(x 2)x x =-,()h x 在(0,2)单调递减;在(2,)+∞单调递增.所以()()(2)0g x h x h >≥=.所以()=0g x 在(0,)+∞没有实根,综上,()=0g x 在R 上有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点.考点:1、导数的几何意义;2、利用导数判断函数单调性;3、利用导数求函数的最值.22.(1)详见解析;(2)详见解析【解析】试题分析:(1)要证明BE EC =,只需证明弦BE EC ,所对的圆周角相等,连接,AB AC ,故只需证明=DAC BAD ∠∠.由PA PD =得PAD PDA ∠=∠,为了和所求证的角建立联系=PDA DAC DCA ∠∠+∠,=PAD ∠BAD PAD ∠+∠,从而可证明=DAC BAD ∠∠,进而证明BE EC =;(2)由结论很容易想到相交弦定理AD DE BD DC ⋅=⋅,故只需证明22PB BD DC =⋅,由切割线定理得2PA PB PC =⋅,且PA PD DC ==易证.(1)连接,AB AC .由题设知,PA PD =,故PAD PDA ∠=∠.因为=PDA DAC DCA ∠∠+∠,=PAD ∠BAD PAD ∠+∠,=DCA PAB ∠∠,所以=DAC BAD ∠∠,从而BE =EC .因此BE EC =.(2)由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2,DC PB BD PB ==,由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.9 / 14P考点:1、圆的切割线定理;2、相交弦定理.23.(1)1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t π≤≤);(2)3(2. 【解析】试题分析:(1)由2cos ,[0,]2πρθθ=∈两边平方,且结合222x y ρ+=和cos x ρθ=得半圆C 的直角坐标方程为22(1)1(01)x y y -+=≤≤,进而写出C 的参数方程;(2)利用C的参数方程设(1cost,sint)D +,由圆的切线的性质得//GD l ,故直线GD 与l 的斜率相同,根据斜率列方程得tan 3t t π==,从而点D 的直角坐标可求. (1)C 的普通方程为22(1)1(01)x y y -+=≤≤.可得C 的参数方程为1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t π≤≤).(2)设(1cost,sint)D +.由(1)知,C 是以(1,0)G 为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同.tan 3t t π==.故D 的直角坐标为(1cos ,sin )33ππ+,即3(,22. 考点:1、圆的极坐标方程和参数方程;2、两条直线的位置关系.24.(1)详见解析;(2). 【解析】试题分析:(1)由绝对值三角不等式得11()()f x x x a x x a a a =++-≥+--1a a=+,由0a >结合基本不等式得12a a+≥,故()2f x ≥;(2)由(3)5f <,得关于a 的不等式1335a a++-<(0)a >,去绝对号解不等式即可. (1)由0a >,有11()()f x x x a x x a a a =++-≥+--12a a =+≥,所以()2f x ≥.(2)1(3)33f a a =++-.当a 3>时,1(3)f a a=+,由(3)5f <得532a +<<.当03a <≤时,1(3)6f a a =-+,由(3)5f <得132a +<≤.综上,a 的取值范围是52+. 考点:1、绝对值三角不等式;2、基本不等式;3、绝对值不等式解法.。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=( )A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=( )A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=( )A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=( )A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=( )A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2) 二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是 .16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.55.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.79.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.110.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.711.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】分子分母同乘以分母的共轭复数1+i化简即可.【解答】解:化简可得====﹣1+2i故选:B.【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.5.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.【考点】83:等差数列的性质.【专题】54:等差数列与等比数列.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC 中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.1【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.7【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x ﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C.【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【考点】JE:直线和圆的方程的应用.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为=,故答案为:.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值.【解答】解:函数f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+sinφcosx﹣2sinφcosx=sinxc osφ﹣sinφcosx=sin(x﹣φ)≤1.所以函数的最大值为1.故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)= 3.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性f(x+4)=f(x)是解决本题的关键,比较基础.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.【考点】8H:数列递推式.【专题】11:计算题.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.=,a8=2,【解答】解:由题意得,a n+1令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.【点评】本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【考点】HP:正弦定理;HR:余弦定理.【专题】56:三角函数的求值.【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cosC 的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA以及cosA的值代入表示出BD2,两者相等求出cosC的值,确定出C的度数,进而求出BD的长;(2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB 角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点∵E为PD的中点,∴EO∥PB.EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;(Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=,∴V==,∴AB=,PB==.作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又在三角形PAB中,由射影定理可得:A到平面PBC的距离.【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【考点】BA:茎叶图;BB:众数、中位数、平均数;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67.(Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∵g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2014年高考文科数学试题(四川卷)及参考答案

2014年高考文科数学试题(四川卷)及参考答案

2014年四川高考文科数学试题及参考答案满分150分。

考试时间120分钟。

第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则AB =A 、{1,0}-B 、{0,1}C 、{2,1,0,1}--D 、{1,0,1,2}-2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。

在这个问题中,5000名居民的阅读时间的全体是 A 、总体 B 、个体C 、样本的容量D 、从总体中抽取的一个样本3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点 A 、向左平行移动1个单位长度 B 、向右平行移动1个单位长度 C 、向左平行移动π个单位长度 D 、向右平行移动π个单位长度4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是 (锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)A 、3B 、2CD 、1 5、若0a b >>,0c d <<,则一定有A 、a b d c > B 、a b d c < C 、a b c d > D 、a b c d<6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为A 、0B 、1C 、2D 、3 7、已知0b >,5log b a =,lg b c =,510d =,则下列等式一定成立的是A 、d ac =B 、a cd =C 、c ad =D 、d a c =+8、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60cm ,则河流的宽度BC 等于A 、1)m -B 、1)mC 、1)mD 、1)m + 9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是A 、B 、C 、D 、10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是A 、2B 、3CD 第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2014年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)

2014年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)

2014年全国高考新课标1卷文科数学试题一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |—1<x <3},N ={x |—2<x <1},则M ∩N =( )A .(-2,1)B .(-1,1)C .(1,3)D .(—2,3) 2.若tan α>0,则( )A .sin α〉0B .cos α>0C .sin2α〉0D .cos2α〉03.设i iz ++=11,则|z |=( )A .21B .22C .23D .24.已知双曲线)0(13222>=-a y a x 的离心率为2,则a=( ) A .2 B .26 C .25D .15.设函数f (x ),g (x )的定义域为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数6. 设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+FC EB ( )A .ADB .AD 21C .BC 21D .BC7.在函数① y=cos |2x|,②y=|cos x |,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 8.如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱9.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .811.设x,y满足约束条件,1,x y ax y+≥⎧⎨-≤-⎩且z=x+ay的最小值为7,则a=()A.—5 B.3 C.-5或3 D.5或—312.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞, —1)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.14.甲、乙、丙三位同学被问到是否去过A、B、C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校统一考试(大纲卷)
文科数学
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N I 中元素的个数为
A .2
B .3
C .5
D .7
2.已知角α的终边经过点(4,3)-,则cos α=
A .45
B .35
C .35-
D .45
- 3.不等式组(2)0||1
x x x +>⎧⎨<⎩的解集为
A .{|21}x x -<<-
B .{|10}x x -<<
C .{|01}x x <<
D .{|1}x x >
4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为
A .16
B .13
D
5.函数1)(1)y x =+>-的反函数是
A .3(1)(1)x y e x =->-
B .3
(1)(1)x y e x =->-
C .3(1)()x y e x R =-∈
D .3(1)()x y e x R =-∈ 6.已知a b r r 、
为单位向量,其夹角为060,则(2)a b b -•=r r r A .-1 B .0 C .1 D .2
7. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有
A .60种
B .70种
C .75种
D .150种
8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =
A .31
B .32
C .63
D .64
9. 已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F
2F 的直线交C 于A 、B 两点,若1AF B ∆
的周长为,则C 的方程为
A .22132x y +=
B .2213x y +=
C .221128x y +=
D .22
1124
x y += 10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为
A .814π
B .16π
C .9π
D .274
π 11.双曲线C :22
221(0,0)x y a b a b
-=>>的离心率为2
,则C 的焦距等于
A .2 B
. C .4 D

12.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=
A .-2
B .-1
C .0
D .1
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13. 6
(2)x -的展开式中3x 的系数为 .(用数字作答)
14.函数cos 22sin y x x =+的最大值为 . 15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩
,则4z x y =+的最大值为 .
16. 直线1l 和2l 是圆22
2x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 . 三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)
17. (本小题满分10分)
数列{}n a 满足12212,2,22n n n a a a a a ++===-+.
(1)设1n n n b a a +=-,证明{}n b 是等差数列;
(2)求{}n a 的通项公式.
18. (本小题满分12分)
ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知13cos 2cos ,tan 3
a C c A A ==,求B.
19. (本小题满分12分)
如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.
(1)证明:11AC A B ⊥;
(2)设直线1AA 与平面11BCC B ,求二面角1A AB C --的大小.
20.(本小题满分12分)
设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为、、、。

各人是否需使用设备相互独立。

(I )求同一工作日至少3人需使用设备的概率;
(II)实验室计划购买k 台设备供甲、乙、丙、丁使用。

若要求“同一工作日需使用设备的人数大于k ”的概率小于.求k 得最小值。

21.(本小题满分12分)
函数f(x)= ax 3+3x 2+3x (a ≠0)
(I) 讨论f(x)的单调性;
(II) 若f(x)在区间(1,2)是增函数,求a 得取值范围。

22.(本小题满分12分)
已知抛物线C :?y2=2px(p>0)的交点为F ,直线y=4与y 轴的交点为P 。

与C 的
交点为Q ,且|QF|=4
5|PQ|。

(I )求C 的方程;
(II )过F 的直线l 与C 相较于A 、B 两点。

若AB 的垂直平分线l 1与C 相交于M 、N 两点,
且A 、M 、B 、N 四点在同一个圆上,求l 的方程。

参考答案
一、选择题:本大题共12个小题,每小题5分,共60分.
二、填空题(每小题5分,满分20分) 14.23 16. 3
4 三、解答题 (本大题共6小题,共70分.)
17.(本小题满分10分)
18. (本小题满分12分)
21. (本小题满分12分)
22. (本小题满分12分)。

相关文档
最新文档