细胞的跨膜信号转导功能

合集下载

第二节 细胞的跨膜

第二节        细胞的跨膜

动作电位
2)复极化:细胞去极化至一定程度 Na+通道 关闭,K+通道开放,在细胞内外△【K+】 的 作用下K+外流,形成复极化。 3)后电位:钠泵 排钠摄钾 形成微小的电
位波动 。
NF受刺激→膜去极化→部分电压门控Na+通 道开放(激活)→Na+顺电-化学梯度入C→ 膜进一步去极化(阈电位)→大量Na+通道开 放→形成AP上升支(去极相)→达到Na+平 衡电位,膜电位内正外负(动力:浓度差; 阻力:电位差)→Na+通道失活→膜对K+通 道开放→膜内K+顺电-化学梯度向外扩散→ 膜内电位变负→AP下降支(复极期)→K+平 衡电位→Na+通道恢复(复活)。
根据细胞膜上受体的种类以及与受体发生 联系,参与跨膜信号转导的相关分子不同, 主要有以下几种跨膜信号转导的途径:

一、G蛋白偶联受体介导的跨膜信号转导 二、通道介导的跨膜信号转导 三、酶偶联受体介导的跨膜信号转导
一、G蛋白偶联受体介导的跨膜信号 转导 1、受体(receptor)
存在于细胞膜上或细胞内的能与特定的化学 物质如神经递质、激素、药物等进行特异 性结合并引起生物学效应的特殊蛋白质。 2、G蛋白 是一类位于受体和效应器分子之间的偶联 蛋白
受体介导式入胞:

是一种最重要的入胞形式,通过这种方 式入胞的物质有50多种,包括血浆低密 度脂蛋白颗粒、运铁蛋白、VitB12 运输 蛋白、多种生长调节因子、胰岛素、抗 体和某些细菌毒素、病毒等。
coated pit
endosome
Primary lysosome
入胞的基本过程: 转运物质被 细胞膜识别 与转运物质相接触的膜发 生内陷,并逐渐将其包绕 吞食泡与溶酶 体融合,其内 容被酶消化

细胞的信号转导

细胞的信号转导

• 由膜上的腺苷酸环化酶(AC)环化胞浆内 • ATP形成cAMP。 • cAMP是最早确定的第二信使。 正常情况下,cAMP的生成与分解保持平衡,使 胞浆内cAMP浓度保持在10-7M以下。当配体与受体 结合后,1个AC可生成许多cAMP,使cAMP的水平 在几秒钟内增高20倍以上。
• • • • • • •
3. PLA 2 –AA信号转导系统 花生四烯酸( AA)是通过磷脂酶水解膜磷脂释放的不饱
和脂肪酸。 1)PLA2的激活机制 :
许多细胞外信号(如肾上腺素能激动剂、缓激肽、凝血
酶等)都可激活PLA2,有些PLA2通过G蛋白激活;有些 PLA2被PLC激活,PLC通过增加胞内Ca2+、或激活PKC间 接激活PLA2。细胞外信号刺激PLA2途径直接在sn-2位置 脱酯释放AA,是生成AA的重要途径,也是细胞调控AA生
期使用激动剂和拮抗剂的药理或病理情况下,将之除去后受体 数量和反应性均可恢复。
(2)根据调节的种类,分为
1)受体的数目与结合容量:促使受体数目或结合
容量增加的调节称为上调。反之称为下调。
2)反应性:在内环境影响下,受体反应性会产生增
敏、失敏等现象。 增敏:细胞在某种因素的作用下,受体与配体结合的
敏感性增加。如甲状腺素可增加细胞对儿茶酚胺、TSH、
第二节 细胞的跨膜信号转导功能
• 跨膜信号转导 • (transmembrane signal transduction)
(一)细胞信号转导
1. 细胞信号转导的概念
不同形式的外界信号作用于细胞时,通常并不进入细胞或 直接影响细胞内过程,而是作用于细胞膜表面(少数类固 醇激素和甲状腺激素除外)通过引起膜结构中一种或数种 特殊蛋白质分子的变构作用,将外界环境变化的信息以新

3.3 细胞的跨膜信号转导

3.3 细胞的跨膜信号转导
第二节 细胞的跨膜信号传导
真核细胞内主要的跨膜信息传导途径: u G-蛋白耦联受体介导的跨膜信号传导 u 离子通道型受体介导 u 酶耦联受体介导
一、 Signal trnsduction mediated by G-ptotein-
linked receptor
(一) G蛋白耦联受体 receptor:一类Mw:290kD,α2βγδ 五聚体,形成中间一个 孔道样结构。有4个跨膜螺旋/亚单位,孔道的内 壁由5个亚单位的M2螺旋构成。 孔道:Na+, K+均可通过
u Ach 与2个α亚单位结合,通道开放, Na+内流, 少量K+外流,产生终板电位。
u 分布:肌细胞终板膜、神经细胞的突触后膜等, →终板电位、突触后电位及感受器电位。
2、分布:神经轴突和骨骼肌、心肌细胞的质膜中 →动作电位。
钠通道的α亚单位
S5,S6之间 的胞外环构 成孔道内壁
᭗ ‫ى‬᭲҅ᄶ‫ތ‬ၚྋғኪӨរSᔜ4࿕ํ ᯢ޾ᩢ࿕ᯢ
失活:与结 构域Ⅲ和Ⅳ 之间胞内环 有关
(三)机械门控通道
Mechanically-gated channel: 存在于对机械刺 激敏感的细胞如内耳毛细胞、下丘脑的渗透压 敏感神经元。
4-5ӻԵ‫֖ܔ‬ ҁᙞ᱾҂ᕟ ౮҅‫॔ݍ‬4ེ ᑯᬦᕡᙱᛂ
‫֛ݑ‬ၚ۸
ᐶৼ᭗᭲୏න
ᛂ݄ຄ۸
ᕣ຃ኪ֖
(二)电压门控通道
1、开放与关闭:由膜电位决定,即通道存在一些对 膜电位改变敏感的结构域或基团,后者诱发通道分 子功能状态改变,改变相应的离子跨膜扩散→细胞 生物电活动改变。 电压门控钠通道:α、β1、β2三个亚单位组成,α亚单 位是形成孔道的亚单位。
ᯈ֛Өᕡᙱक़ྦྷᕮ‫ݳ‬
຅ࣳද‫ݒ‬ ᯗ࿕ᯢᄶᯠၚ۸

生理学人卫版

生理学人卫版

(一)主要的信号蛋白
1、G蛋白耦联受体 2、G蛋白 3、G蛋白效应器 4、第二信使
(二)主要的G蛋白耦联受体信号转导途径
1.受体-G蛋白-AC途径:Gs和Gi家族
2.受体- G蛋白- PLC途径:磷脂酶将二磷酸磷脂酰肌醇水解成 三磷酸肌醇和二酰甘油
? 三、酶耦联受体介导的信号转导(如生长因 子-表皮生长因子、血小板源生长因子、成纤 维细胞生长因子、肝细胞生长因子、胰岛 素)。
膜电位几种状态
? 极 化:安静时存在于膜两 侧的稳定的内负外正的状态。 ? 超极化:膜内负电位增大。 ? 去极化:膜内负电位减小。 ? 复极化:细胞发生去极化后,膜电位恢复到极化状态。
三、动 作 电 位
? (一)酪氨酸激酶受体和酪氨酸激酶结合受 体
? (二)鸟甘酸环化酶受体
第三节 细胞的生物电现象
一、生物电(bioc-lectricity):是指一切活细胞
无论处于静息状态还是活动状态都存在的电 现象。
两种表现形式:安静时具有的静息电位和受
刺激时产生的动作电位。
二、静 息 电 位
静息电位(resting potential ,RP)是指细胞处于静息
章细胞的基本功能
细胞(cell)是构成人体最基本的功能单位。细 胞的基本功能包括细胞的物质跨膜转运功能、 信号转导功能、生物电现象和肌细胞的收缩 功能
本章要求
掌握
1. 单纯扩散、易化扩散的概念、形式和特点; 2. 原发性主动转运的概念和转运机制; 3. 静息电位、动作电位的概念及产生机制; 4. 动作电位、局部反应的特点; 5. 兴奋在同一细胞上传导的形式及特点; 6. 兴奋-收缩耦联的概念及其耦联物质。
简称钠泵,也称Na+-K+依赖式ATP 酶 作用:在消耗代谢能的情况下逆浓浓度差将细胞内的3个

生理学学习资料:第三课信号转导

生理学学习资料:第三课信号转导

黑色基本掌握划线重点蓝色不要求,选看细胞的跨膜信号转导第一节概念以及一般特性细胞信号转导(ce11u1arsigna1transduction):细胞感受外界环境的刺激并对刺激做出反应反攻卜界环境变化的信息跨越细胞膜进入细胞并引起内部代谢与功能变化的过程刺激来源:1、化学信号一一来自临近细胞(旁分泌、神经递质)或远隔部位(内分泌)穿过细胞膜或者为受体蛋白接收是主要的信号来源2、物理性刺激——温度、机械力、生物电(高等生物主要由膜感受细胞水平生物电,不感受外界电变化)、电磁波由高度特化的感受器接收种类数量不如化学刺激跨膜转导途径的三大特征:(经典放大通路)激活后续一系列信号分子(信号通路),以引起细胞功能变化转导途径具有很大同源性信息放大功能第二节主要途径化学门控离子通道(chemica11y-gatedionchanne1;1igand-gatedionchanne1;ionotropicreceptor)与配体结合开放离子通道,造成去极化或超极化,途径简单,传导速度快N2型ACh受体:位于骨骼肌细胞运动终板膜上与Aeh结合、通道放进Na、K离子,膜去极化产生终板电位,激活周围肌细胞A型Y-氨基丁酸受体:位于神经元细胞膜上与GABA结合,通道放进C1离子,产生抑制性突触后电位IPSP电压门控和机械门控离子通道1型Ca离子通道:心肌细胞T管膜上的电压门控通道动作电位传递,T管膜去极化,Ca内流并作为第二信使释放肌浆膜内的Ca离子此通道在心肌工作细胞中。

期激活,二期复极化提供主要内向电流非选择性阳离子通道以及K选择性通道:血管内皮细胞上血流切应力刺激,两通道开放有助于Ca进入细胞,激活NOS,使精氨酸产生NO,使血管舒张G蛋白耦联受体介导的跨膜传导发现:肾上腺素与肝细胞膜碎片反应,再用反应物(cAMP)与肝细胞质作用可产生效果,说明肾上腺素与膜上某结构反应再引起胞内反应原癌基因oncogen:碱基排列顺序与一些能在动物内引起肿瘤的病毒DNA相同的基因本身为正常基因,转录产物是正常代谢所必须的,但过度表达时成为癌基因G蛋白通路主要构成:G蛋白耦联受体GPCR、G蛋白、效应器、第二信使、蛋白激酶G蛋白耦联受体:最大的细胞膜受体家族,接受儿茶酚胺、Ach、5-HT等多种激动剂7次跨膜、N外C内、外3环内3环G蛋白:异源三聚体、目前分为6个亚族反应过程见图中文书3-3注意α亚基同时具有结合GTP和激活下游蛋白的功能,另两亚基抑制作用GTP 取代GDP与α亚基结合,结合后GTP被水解为GDP和PiG蛋白效应器:1、下游酶催化生成(或分解)第二信使AC、P1C、PDE等2、离子通道第二信使:细胞外信号分子作用于细胞膜后产生的细胞内信号分子CAMP、CGMP、IP3、DG、NO等蛋白激酶:按机制分类:丝氨酸/苏氨酸蛋白激酶(serine/threoninekinase)可将底物蛋白的丝氨酸或苏氨酸P化,占大多数酪氨酸蛋白激酶(tyrosinekinase)可将底物蛋白的酪氨酸P化,数量少,主要在酶耦联受体的信号转导按上游第二信使分类:PKC(Ca离子)、PKA(CAMP)、PKG(cGMP)经典通路:cAMP-PKAB型肾上腺素能受体、促肾上腺皮质激素、胰高血糖素等一一G蛋白激活一AC激活--- cAMP上升 --- PKA ------- 多种作用IP3-CaG蛋白——P1C分解PIP2为IP3和DGIP3——结合肌浆网上的受体,释放Ca离子入细胞质DG ------ 与phosphatidy1serine结合,激活PKC -------- 多种作用第二信使Ca的部分作用回顾:1、在骨骼肌细胞中与troponin结合,使tropomyosin移位,露出actin与myosin的结合位点,开始收缩2、在平滑肌中与一种受体钙调蛋白Camodu1in结合,激活肌球蛋白轻链激酶M1CK,开始收缩3、在血管内皮中与CamOdU1in结合,激活NoS,分解精氨酸生成NO,舒张血管(老师上课说的Viagra的作用机理)G蛋白(及下游第二信使)介导的离子通道举例KaCh通道一一迷走狸经兴奋时释放Ach,通过G蛋白激活此通道,K离子外流,使心肌静息电位增大(超级化),兴奋性降低Kca通道一一高钙(第二信使)时激活,酸思期使心肌超极峪2M⅛Jk≡鱼通道内向电流,使平台期延长酶耦联受体介导的跨膜信号转导包括酪氨酸激酶受体、酪氨酸磷酸酶受体、鸟甘环化酶受体、S/T蛋白激酶受体受体本身具有激酶、环化酶、磷酸酶的作用,不需要与膜耦联的G蛋白和第二信使酪氨酸激酶受体:1、同时具有受体和酪氨酸激酶的功能单肽链蛋白,膜外链与受体结合,膜内链发挥激酶作用与受体结合后P化鹿内链和靶蛋自的酪氨酸通路中RAS为单体G蛋白,不与膜耦联,所以不和定义违背2、受体与激酶分离S/T蛋白激酶受体(RSTK):接受TGF-B超家族(与细胞周期有调节相关)受体结合RSTKII,RSTKII结合并激活RSTKI鸟昔环化酶受体RGC受体结合后不需要G蛋白直接激活GC,合成CGMP,激活PKG,产生多种效应心房钠尿肽、NO(胞质内的可溶性GC)。

细胞的跨膜信号转导

细胞的跨膜信号转导
1. G蛋白偶联受体:与配体结合后,通过构象变化 结合并激活G蛋白。
通过G蛋白发挥作用→称为G蛋白偶联受体; 不具备通道结构,无酶活性; 种类繁多,每种受体都由一条包含7次跨膜α螺旋
的肽链构成→也称7次跨膜受体。
2021/3/27
“7次跨膜受体”:
膜外侧N-末端——识别、结合配体
膜内侧C-末端——激活膜内G蛋白
CHENLI
6
构成信号转导系统的要素
❖第二信使(second messenger):受体被激活后在细胞 内产生的、能介导信号转导通路的活性物质。
重要的有:
环核苷酸:环腺苷酸(cAMP)、环鸟苷酸(cGMP)
脂类衍生物:二酰甘油(DG)、1, 4, 5-三磷酸肌醇(IP3) 无机物:Ca2+等
作用:传导、放大胞外信号,激活蛋白激酶或离子通道
② 化学通讯:
内分泌(endocrine) 旁分泌(paracrine) 自分泌(autocrine) 化学突触(chemical synapse)
③ 间隙连接:如电突触、闰盘
④ 外泌体(exosomes ):
2021/3/27
CHENLI
3
跨膜信号转导的基本过程
三个阶段:
胞外信 号的识别
第二信使的效 应模式:
可逆磷酸化
2021/3/27
CHENLI
11
蛋白激酶A (PKA)
cAMP-Dependent Protein Kinase
2021/3/27
CHENLI
12
PKA的功能
❖快效应:底物磷酸化 糖原合酶 P 失活
糖原磷酸化酶 P 激活
❖ 慢效应:调控基因表达
转录因子磷酸化
2021/3/27

第五章物质的跨膜运输与细胞信号转导

第五章物质的跨膜运输与细胞信号转导

信号通路
㈢细胞信号分子与靶细胞效应
1、信号分子(signal molecule) 2、受体(receptor) 3、第二信使(second messenger) 4、信号分子与靶细胞效应
1、信号分子
⑴亲脂性信号分子 ⑵亲水性信号分子 ⑶气体性信号分子(NO、CO、植 物中的乙烯)
2、受体(receptor)
物质逆浓度梯度或电ຫໍສະໝຸດ 学梯度由低浓度向高 浓度一侧进行跨膜转运的方式,需要细胞提供能 量,需要载体蛋白的参与。对保持细胞内的离子 成分并对输入一些细胞外比细胞内浓度低的溶质 是必不可少的。
㈠特点:运输方向、能量消耗、膜转运蛋白 ㈡类型:三种基本类型 1、由ATP直接提供能量的主动运输 2、协同运输(cotransport) 、 ( ) 3、物质的跨膜转运与膜电位 、
㈠ATP直接提供能量的主动运输 (ATP驱动泵)
这类泵本身就是一种载体蛋白,也是一种酶— ATP酶,它能催化ATP,由ATP水解提供能量,主动 运输Na+、K+、Ca2+等。根据泵蛋白的结构和功能特 性,ATP驱动泵分为4类: 1、P-型离子泵: 型离子泵: 2+ (1)钠钾泵(2)钙泵(Ca -ATP酶) ( ( ) 2、V-型质子泵 3、F-型质子泵 4、ABC超家族
㈠细胞通讯(cell communication)
1、细胞通讯与信号转导 2、细胞通讯的方式 3、分泌信号传递信息的方式
1、细胞通讯与信号转导
细胞通讯:一个细胞发出的信息通过介质 (又称配体)传递到另一个细胞并与靶细胞相 应的受体相互作用,然后通过细胞信号转导产 生胞内一系列生理生化变化,最终表现为细胞 整体的生物学效应的过程。 信号转导:化学信号分子可与细胞内或细 胞表面的受体相结合形成复合物,并将受体激 活,激活的受体可将外界信号转换成细胞能感 知的信号,从而使细胞对外界信号作出相应的 反应,这种由细胞外信号转换为细胞内信使的 过程称为信号转导。

细胞的跨膜信号转导功能

细胞的跨膜信号转导功能
1.静息电位的概念
静息电位(resting potential,RP)是指细胞在静 息状态下(未受刺激)存在于细胞膜两侧的电位差。
生 理 学
谢谢观看!
生 理 学
细胞的跨膜信号转 导功能
细胞的跨膜信号转导功能
机体各种器官、组织和细胞的活动是相互联系的, 通过神经和体液调节成为一个有机整体,并与环境相适 应。因此,细胞之间必须存在传递信息的信号交流机 制,保证机体功能活动的完整性和统一性。能在细胞间 传递信息,并能与受体发生特异性结合的信号物质称为 配体(ligand),如神经递质、激素、细胞因子等。
细胞的跨膜信号转导功能
三、 酶耦联型受体介导的信号转导
酶耦联型受体(enzyme-linked receptor)是 存在于细胞膜上的一些蛋白质,它们既有受体的作 用,又有酶的活性,或能激活与之相连的酶,从而 能够完成信号的转导。其中,较重要的有酪氨酸激 酶受体、鸟苷酸环化酶受体和酪氨酸激酶结合型受 体三种类型。
细胞的跨膜信号转导功能
1.酪氨酸激酶受体
酪氨酸激酶受体的配 体结合位点位于细胞 外侧,而伸入细胞质 的一侧具有酪氨酸激 酶活性。
鸟苷酸环化酶受体 的配体结合位点位 于细胞外侧,而胞 质的一侧则具有鸟 苷酸环化酶活性。
酪氨酸激酶结合型受 体本身没有蛋白激酶 活性,但其与细胞外 配体结合后,引起细 胞内效应。
细胞的跨膜信号转导功能
一、 G蛋白耦联受体介导的信号转导
图 1-8 G 蛋白耦联受体介导的信号转导示意图
细胞的跨膜信号转导功能
二、 离子通道型受体介导的信号转导
离子通道型受体是一种同时具有受体和离子通道 两种功能的蛋白质,通常是指化学门控通道。通道 的开放(或关闭)不仅涉及离子的跨膜转运,还可 以实现化学信号的跨膜转导,因而这一信号转导途 径称为离子通道型受体介导的信号转导。

细胞的基本功能—细胞的跨膜信号转导功能(正常人体机能课件)

细胞的基本功能—细胞的跨膜信号转导功能(正常人体机能课件)

2.酪氨酸激酶受体
• 酪氨酸激酶受体(tyrosine kinase receptor,TKP)也称受体酪氨 酸激酶(receptor tyrosine kinase),是指受体分子的膜内侧部 分本身具有酪氨酸激酶活动的受体。
• 酪氨酸激酶受体的膜外侧部分可与胰岛素、各类生长因子等 信号分子结合,进而激活膜内侧部分的酪氨酸激酶,酪氨酸 激酶使细胞产生一系列生物化学反应,从而使细胞产生生理 效应,实现细胞信号转导。此过程不需要G 蛋白参加,没有 第二信使产生及细胞内蛋白激酶的激活。
GTP GDP
GTP
ATP cAMP
GDP GTP
5`AMP PDE
细胞内
生理效应
PKA ATP ADP
蛋白质 P
离子通道介导的跨膜信号转导
01
02
跨膜信号转导 离子通道介导的跨 膜信号转导
03
化学门控通道
1.跨膜信号转导
各种形式的信号物质作用于细胞时,大多数信号物质如神经递质、含氮激素、细胞因 子等本身并不能进入细胞内,而是与细胞膜上相应的受体结合后,通过膜的信号转导 系统,将细胞外物质所携带的信息传递到细胞内,从而引起细胞的相应功能活动的改 变,这一过程称为跨膜信号转导。
G蛋白介导的跨膜信号转导
01
G蛋白耦联受体
02
受体-G蛋白-AC途径
1.G蛋白耦联受体
• G蛋白耦联受体:G 蛋白耦联受 体也称为促代谢型受体,这类受 体与信号分子结合后通过G 蛋白 即激活GTP结合蛋白,发挥生物 学效应。
2.受体-G蛋白-AC途径
• G 蛋白耦联受体与信号分子结合后,通过激活细胞膜上的G蛋白进而激活G 蛋白效应器酶 (如腺苷酸环化酶),G蛋白效应器酶再进一步催化某些物质(如ATP、PIP2)生成具有生 物活性的小分子信号物质即第二信使(如cAMP、IP3、DG等),第二信使再通过结合蛋白 激酶或离子通道而发挥生物学效应,最终完成细胞跨膜信号转导过程。

医学生理学期末重点笔记---第二章----细胞的基本功能

医学生理学期末重点笔记---第二章----细胞的基本功能

第二章细胞的基本功能第一节细胞膜的跨膜物质转运功能一、膜的化学组成和分子结构<一>磷脂的分子组成以液态的脂质双分子层为基架,具有流动性<二>细胞膜蛋白质镶嵌或贯穿于脂质双分子层分类:表面蛋白、整合蛋白<三>细胞膜糖类多为短糖链,以共价键的形式与膜脂质或蛋白质结合,形成糖脂或糖蛋白.二、细胞膜的跨膜物质转运功能被动转运〔passive transport〕:指物质顺浓度或电位梯度的转运过程.不消耗细胞提供的能量.主动转运〔active transport〕:指物质逆浓度或电位梯度的转运过程.需消耗细胞提供的能量.1.单纯扩散simple diffusion脂溶性物质由膜的高浓度一侧向低浓度一侧移动的过程.影响因素:浓度差通透性特点:①不依靠特殊膜蛋白质的"帮助"②不需另外消耗能量、顺浓度差转运物质:O2、CO2、N2、<NH3>2CO、乙醇、类固醇类激素等少数几种.2.易化扩散facilitated diffusion〔1〕概念:一些非脂溶性或脂溶性非常小的物质,在膜蛋白质的"帮助"下,顺电化学梯度进行跨膜转运的过程分类:原发性主动转运〔简称:泵转运〕、继发性主动转运〔简称:联合转运〕〔1〕原发性主动转运primary active transport概念:指物质在细胞膜"生物泵"的帮助下逆浓度梯度或电位梯度的转运过程.Na+-K+泵又称Na+-K+-ATP酶,简称钠泵.机制:当膜内[Na+]↑/胞外[K+]↑,钠泵激活↓ATP酶〔钠泵〕ATP------------------→ADP + 能量↓2K+泵至细胞内;3Na+泵至细胞外↓维持[Na+]膜外高、[K+]膜内高的不均匀分布状态生理意义•胞内低Na,维持细胞体积•胞内高K,酶活性----新陈代谢正常进行•势能储备钠、钾的易化扩散继发性主动转运,联合转运•生电效能〔2〕继发性主动转运secondary active transport概念:间接利用ATP能量的主动转运过程.分类:①同向转运:Na+-葡萄糖同向转运体,Na+-氨基酸同向转运体〔小肠粘膜上皮细胞,肾小管上皮细胞〕②逆向转运:钠钙交换体〔心肌细胞〕4. 入胞和胞吐①离子通道耦联受体介导的跨膜信号转导②G-蛋白耦联受体介导的跨膜信号转导③酶耦联受体介导的跨膜信号转导第三节细胞的生物电现象细胞的生物电现象〔跨膜电位〕:静息电位、动作电位一、静息电位resting potential、RP1.概念:静息时,细胞膜两侧存在的稳定的、外正内负的电位差.2.与RP相关的概念:••➢极化:RP存在时,细胞膜内负外正的状态称为极化.➢去极化:膜内外电位差向小于RP值的方向变化的过程.➢超极化:膜内外电位差向大于RP值的方向变化的过程.➢复极化:去极化后再向极化状态恢复的过程.➢反极化:细胞膜由内负外正的极化状态变为内正外负的极性反转过程.3.机制原理:带电离子跨膜转运条件:①静息状态下细胞膜内、外离子分布不均匀②静息状态下细胞膜对离子的通透性具有选择性,安静时,细胞膜主要对K+通透机制:K+顺浓度差向膜外扩散;A-不能向膜外扩散↓[K+]内↓、[A-]内↑→膜内电位↓<负电场>• [K+]外↑→膜外电位↑<正电场>↓膜外为正、膜内为负的极化状态↓当扩散动力与阻力达到动态平衡时=RP结论: RP是K+的平衡电位影响因素:•细胞膜两侧离子的浓度差•细胞膜对离子的通透性•钠泵的活动二、动作电位action potential、AP1.概念:细胞膜受到有效刺激时,在RP的基础上发生的一个快速的、可逆的、可远距离传播的电位变化.2.动作电位变化过程3.特征:①具有"全或无"的现象:即同一细胞上的AP大小不随刺激强度和传导距离而改变的现象.②是非衰减式传导的电位.③动作电位之间不融和4.动作电位的意义:AP的产生是细胞兴奋的标志,即AP=兴奋5.与AP有关的概念➢兴奋性:活组织或细胞对刺激发生反应的能力.➢刺激:能引起细胞或组织发生反应的所有内、外环境的变化.➢反应:细胞或组织对刺激产生的应答表现.有两种形式:兴奋:组织受刺激后由静息→活动或由活动弱→强的过程.抑制:组织受刺激后由活动→静息或由活动强→弱的过程.●可兴奋组织:神经、肌肉和腺体●兴奋性的指标————阈值〔threshold>阈强度〔阈值〕:刚能引起细胞或组织产生反应的最小刺激强度.阈值与兴奋性的高低呈反变关系.●刺激强度的表示方法1、阈刺激:刚好引起组织产生反应的最小刺激.〔此刺激的强度即称为阈强度〕2、阈上刺激:3、阈下刺激:6.形成机制原理:带电离子跨膜转运条件:⑴. 细胞膜两侧离子的浓度差——电化学驱动力•等于膜电位和该离子平衡电位之差•对Na+的驱动力:E m -E Na =-70-60 = -130mv•对K+的驱动力:E m -E k = -70+90 = 20mv⑵.细胞膜通透性的变化——膜在受到阈刺激而兴奋时,对Na+的通透性增加,继而对K+通透性增加.结论:①AP的上升支由Na+内流形成,下降支是K+外流形成的,后电位是Na+-K+泵活动引起的.②AP去极相末=Na+的平衡电位.7.相关实验和实验结论实验1:细胞膜通透性的变化——电压钳〔voltage clamp〕技术实验结论1•内向电流,形成AP上升支〔去极化〕;外向电流,形成AP下降支〔复极化〕.内向电流是Na+电流;外向电流是K+电流•时间依赖性——先产生内向电流〔Na+通透性↑〕,继而产生外向电流〔Na+通透性↓,K+通透性↑〕.实验结论2⑴细胞膜离子通透性的电压依赖性:如果刺激强度达到阈值,可使细胞膜去极化达到阈电位,则会产生膜去极化和钠电导之间存在正反馈〔图1〕,即再生性循环<regenerative cycle>,进一步去极化产生AP〔图2绿线示〕;〔如果刺激强度小于阈值,细胞膜去极化幅度低,没有达到阈电位,则不会产生这种再生性循环,无法产生AP〔图2黑和红线示〕图1 图2阈电位<threshold potential>:能触发动作电位的膜电位临界值因此动作电位的引起过程:阈刺激↓Na+内流,细胞膜去极化↓达阈电位↓Na+通道大量开放,Na+大量内流↓AP⑵.细胞膜离子通透性的时间依赖性:先Na+通透性↑,继而Na+通透性↓,K+通透性↑实验2:细胞膜通透性〔膜电导〕变化的实质——膜片钳技术<patch clamp technique>概念:指已兴奋与邻近未兴奋的心肌细胞之间形成电位差,出现电荷移动,称为局部电流电流方向:作用:使未兴奋部细胞膜去极化达到阈电位,产生AP.这样的过程在膜表面连续进行下去,就表现为兴奋在整个细胞的传导.有髓鞘N纤维AP的传导——跳跃式三、局部电位:local potential概念:阈下刺激引起的低于阈电位的去极化称局部电位.特点:①不具有"全或无"现象.其幅值可随刺激强度的增加而增大;②衰减式传导;③具有总和效应:时间性和空间性总和第四节肌细胞的收缩功能<一>收缩形式1.单收缩和强直收缩<1>.单收缩:肌肉受到一次刺激,引起一次收缩和舒张的过程称为单收缩.<2>.复合收缩①不完全强直收缩:新刺激落在前一次收缩的舒张期内②完全强直收缩:新刺激落在前一次收缩的缩短期内2.等长收缩与等张收缩• 等长收缩:肌肉收缩时,只有张力增加而长度不变的收缩,称为等长收缩.当负荷等于或大于肌张力时,出现等长收缩等张收缩:肌肉收缩时,只有长度缩短而张力不变的收缩,称为等张收缩.当负荷小于肌张力时,出现等张收缩<二>影响收缩因素外在因素:前负荷和后负荷内在因素:肌肉的收缩能力1.前负荷或肌肉初长度:前负荷<preload>:肌肉在收缩之前所承载的负荷肌肉初长度<initial length>:前负荷使肌肉被拉长到某一长度可以用肌肉初长度表示前负荷的大小在一定范围内,随着前负荷↑,粗细肌丝重叠↑,肌缩速度、幅度和张力↑.反之亦然2.后负荷<after load>:肌肉收缩时遇到的负荷和阻力后负荷过大,虽肌缩张力↑,但肌缩速度、幅度↓,不利作功;后负荷过小,虽肌缩速度、幅度↑,但肌缩张力↓,也不利作功.3.肌肉收缩能力:指与负荷无关、决定肌肉收缩效应的内在特性.肌缩能力↑→肌缩速度、幅度和张力↑肌缩能力↓→肌缩速度、幅度和张力↓第二章小结练习• 1. Na+-K+-ATP酶每分解1分子A TP可将__个Na+移出胞外,同时将__个K+移入胞内.• 2. 在肌肉兴奋-收缩偶联过程中,起关键作用的物质是____.• 3. 细胞内外正常Na+、K+浓度的形成和维持是由于_______的作用• 4. 有机磷农药中毒时,可使〔〕A、乙酰胆碱释放增加B、乙酰胆碱释放减少C、胆碱酯酶活性增加D、胆碱酯酶活性降低E、骨骼肌终板处的乙酰胆碱受体功能障碍案例Case 1.A 43-year-old man presents to the physician’s clinic with plaints of epigastric pai n. After a thorough workup, the patient is diagnosed with peptic ulcer disease. He is started on a medication that inhibits the "proton pump" of the stomach.QUESTIONS:•What is the "proton pump" that is referred to above?•What type of cell membrane transport would this medication be blocking?•What are four other types of transport across a cell membrane?ANSWERS TO CASE 1: MEMBRANE PHYSIOLOGY•◆Proton pump: H+-K+-ATPase <adenosine triphosphatase> pump.•◆Type of cell membrane transport: Primary active transport.•◆Other types of transport: Simple diffusion, facilitated diffusion, secondary active transport <cotransport and countertransport [exchange]>, endocytosis and exocytosis.Case 2.某男性患者,16岁,近来运动后感到极度无力,尤其是在进食大量淀粉类食物后加重.门诊检查血清钾正常〔4.5 mmol/L〕,但运动后血清钾明显降低〔2.2 mmol/L〕,经补钾治疗后症状缓解.1.为什么低血钾会引起极度肌肉无力?2.为什么在进食大量淀粉后症状加重?3.血钾增高时对肌肉收缩有何影响?为什么?。

细胞生理--细胞的基本功能

细胞生理--细胞的基本功能

第三节
细胞的生物电现象


恩格斯在 100• 多年前就指出:“地球上 几乎没有一种变化发生而不同时显示出电的 “ 变化”。人体及生物体活细胞在安静和活动 时都存在电活动,这种电活动称为生物电现 象(bioelectricity)。
一、细胞膜的被动电学特性 (一)膜电容和膜电阻 欧姆定律:I(电流)= V(电压)G(电导) 膜电位(电压)= 离子电流 / 电导(V = I / G) (二)电紧张电位(P 23)
一、静息电位及其产生机制 (一)细胞的静息电位(resting potential
RP)
:细胞处于相对安静状态时,细胞膜内 外存在的电位差。 •
1. 概 念
2.RP实验现象:
3.证明RP的实验:
(甲)当A、B电极都位于 细胞膜外,无电位改变, 证明膜外无电位差。 (乙)当 A 电极位于细胞 膜外, B电极插入膜内时, 有电位改变,证明膜内、 外间有电位差。 (丙)当A、B电极都位于 细胞膜内,无电位改变, 证明膜内无电位差。
入胞:指细胞外的大分子物质或团块进 入细胞的过程,包括吞噬和吞饮。
出胞:
入胞:
第二节
细胞的跨膜信号转导功能
跨膜信号转导主要涉及到:胞外信号的识 别与结合、信号转导、胞内效应等三个环节。
跨膜信号转导方式大体有以下三类: ① 离子通道介导的信号转导 ② G蛋白偶联受体介导的信号转导 ③ 酶偶联受体介导的信号转导
二、物质的跨膜转运
(一)单纯扩散 (二)膜蛋白介导的跨膜转运
1、经载体的易化扩散
2、经通道的易化扩散
3、原发性主动转运
4、继发性e diffusion) (1)概念:一些脂溶性物质由膜的高浓度一侧向低浓
度一侧移动的过程。

细胞的跨膜信号转导

细胞的跨膜信号转导

细胞的跨膜信号转导1、跨膜信号转导或跨膜信号传递的共性各种外界信号(物理、生物、化学等信号)J膜蛋白构型变化J信号传递到膜内J靶细胞功能变化(如电变化)2、跨膜信号转导的方式有3种:①离子通道介导②G蛋白耦联介导③酶耦联受体介导3、受体定义:能与激素、神经递质、药物或细胞内的信号分子结合并引起其功能的改变的生物大分子分类:部位——胞膜、胞浆、胞核受体配基——胆碱能、肾上腺素能、多巴胺能受体结构——离子通道、G蛋白、酶、转录调控受体特征: ①高度特异性②饱和性③竞争抑制④亲和力⑤可逆性⑥高效性功能:①识别与结合②传递信息一、由离子通道介导的跨膜信号传导(一)、化学门控通道——配体门控通道定义:当膜外特定的化学信号(配体)与膜上的受体结合后通道就开放,因而称为化学门控通道或配体门控通道,也称为通道型受体分布:神经元突触后膜,肌细胞终板膜受体—化学信号结合位点- 促离子型受体转到途径:化学信号膜通道蛋白\ / 通道蛋白变构J 通道开放J离子异化扩散J完成跨膜信号传导J产生效应二)、电压门控通道 分布在除突触后膜和终板膜以外的细胞膜 三)、机械门控通道 定义:感受机械刺激引发细胞功能改变的通道结构 、由G 蛋白耦联受体介导的跨膜信号转导1、 G 蛋白耦联受体是一种与细胞内侧 G 蛋白的激活有关的独立受体蛋白质分子2、 G 蛋白是鸟苷酸结合蛋白: G 蛋白未被激活时,他与一个分子的GDP 吉合,G 蛋白的激活很短暂3、 G 蛋白效应器,:催化生成第二信使的酶和离子通道4、 蛋白激酶:丝氨酸/苏氨酸激酶可是底物蛋白的丝氨酸或苏氨酸残基磷酸化,包括:蛋白激酶 A 、蛋白激酶 G 蛋白激酶C 5、 几条主要跨膜信号转导途径①受体 -G 蛋白 -AC 信号转导途径Gs ATP TcAMPf+ /\ + + /\配体+受体ACPKA+ \/--\/GiATPt cAMP f②受体 -G 蛋白 - PLC 信 号转导途径PIL2 rn Gi \ Gp \DG受体IP3+IP3PLC /受体T 内质网或肌浆网释放Ga+。

细胞膜传递机制与信号传导

细胞膜传递机制与信号传导
简单扩散:物质通过细胞膜 的脂质双层结构直接扩散
主动运输:物质在膜蛋白的 驱动下逆浓度梯度通过细胞

胞吞作用和胞吐作用:大分 子物质通过膜泡的包裹和释
放进行跨膜运输
膜受体:细胞 膜上的蛋白质, 负责识别和结
合信号分子
信号转导:膜 受体激活后, 通过一系列反 应将信号传递
给细胞内部
信号转导途径: 包括G蛋白偶联 受体、离子通 道受体、酶偶
信号传导异常 可能导致细胞
癌变
信号传导异常 可能导致免疫 系统功能异常
信号传导异常 可能导致肿瘤
生长和扩散
信号传导异常 可能导致药物
耐药性
信号传导异常:信号传导过程中出现异常,可能导致神经系统疾病 神经系统疾病:包括阿尔茨海默病、帕金森病、癫痫等 信号传导异常与阿尔茨海默病:阿尔茨海默病患者中,信号传导异常可能导致记忆丧失和认知功能下降 信号传导异常与帕金森病:帕金森病患者中,信号传导异常可能导致运动功能障碍和震颤 信号传导异常与癫痫:癫痫患者中,信号传导异常可能导致癫痫发作和意识丧失
主动运输:物 质通过细胞膜 上的载体蛋白 进行运输,需 要消耗能量。
胞吞作用和胞 吐作用:细胞 通过吞噬作用 摄入大分子物 质,通过胞吐 作用排出大分 子物质,这两 种方式都需要 消耗能量。
信号分子:细胞内或细胞外的化学物质,能够传递信息 受体:细胞膜上的蛋白质,能够识别并结合信号分子 结合过程:信号分子与受体结合,引发受体构象变化 信号传递:受体构象变化激活下游信号通路,传递信息至细胞内
蛋白质组学技术的挑战:蛋白质组学技术需要处理大量数据,对数据分析和生物信息学技术有 较高要求。
序列比对:通过比较不同 物种的基因序列,了解信
号传导通路的进化关系

第三章 细胞的跨膜信号转导

第三章  细胞的跨膜信号转导
➢ Activation: 非活化的G蛋白在膜内是与受体分离的,其a亚单位与
GDP相结合。当配体与受体结合后,受体和G蛋白结合,并使之激活; 激活的G蛋白a亚单位对GTP具有高度亲和力,与GTP结合后,解离出 GDP。a亚单位与GTP的结合使三聚体G蛋白分成两部分,即a-GTP复 合物和b-g二聚体,两部分均可进一步激活它们的靶蛋白。
2012-2
Second messengers
cAMP NO
cGMP Ca2+
IP3
DG
Others
第二信使是细胞外信号分子作用于细胞膜后产生
的细胞内信号分子,它们的作用是将细胞外信号分子 作用于细胞膜的信息“传达”给胞内的靶蛋白,包括 各种蛋白激酶和离子通道。
2012-2
Protein kinases
2012-2
一、细胞可感受什么样的细胞外信号?
➢ 化学信号:是细胞最常感受到的刺激信号 ➢ 物理信号:温度、机械力、生物电等
在动物进化的过程中,这些物理性刺激信号大都由一 些在结构上和功能上高度分化了的特殊的感受器(如视网 膜、耳蜗、前庭器官、肌梭、环层小体等)来感受。
可兴奋细胞具有接受邻近发生的电变化而引发自身新的电 反应的能力。
蛋白激酶(protein kinase)可分为两大类: ➢ 丝氨酸/苏氨酸蛋白激酶(serine/threonine kinase):
可使底物蛋白中的丝氨酸或苏氨酸残基磷酸化,占蛋白激酶中的大多数。
➢ 酪氨酸蛋白激酶(tyrosine kinase):
数量较少,主要在酶 耦联受体的信号转导路径中发挥作用。
电压门控通道(voltage-gated ion channel)和 机械门控通道(mechanically gated ion channel) 尽管在事实上是接受电信号和机械信号的受体, 但通常不称作受体。

植物细胞受体与跨膜信号转换

植物细胞受体与跨膜信号转换
作用机制
G蛋白信号耦联功能是靠与GTP的结合或水解所产生的变 构作用来完成的。
当G蛋白与受体结合而被激活时,同时结合上GTP,继而 触发效应器,把胞间信号转换为胞内信号;而当GTP水解为 GDP后。G蛋白回到原初构象,失去信号转换功能。
三聚体G蛋白的信号转换方式
三 聚 体 G 蛋 白 的 活 性 循 环
二是G蛋白耦联受体,通过G蛋白的下游效应酶产生第二信使。
2.酶促信号直接跨膜转换 酶联受体本身的胞内域具有酶的催化活性,接受信号后激活
了胞内具有蛋白激酶活性的结构,在细胞内形成信号转导途
径,调节某种生理反应。 通过一种蛋白完成了胞外到胞内的 信号转换。
三、 G蛋白与跨膜信号转换
G蛋白(G protein)全称为GTP结合调节蛋白(GTP binding regulatory protein),此类蛋白由于其生理活 性有赖于同三磷酸鸟苷(GTP)的结合以及具有GTP水解酶 的活性而得名。
受体的作用机理如图6-6。
细胞内受体一般有两个结构域,一个是
与DNA结合的结构域;另一个是激活 基因转录的结构域。 还有两个结合位 点:一个是配体(激素)结合位点, 另一个是与抑制蛋白结合的位点。
在激素没有与受体结合时,抑制蛋白与 受体结合,阻止受体与DNA结合。
当激素进入细胞并与受体结合后,形成 激素-受体复合体,并使抑制蛋白从受体上 解离下来,受体被活化。
G蛋白在膜上受体(细胞表面受体)接受胞外信号与膜内 侧效应酶(如腺苷酸环化酶;磷脂酶C 即PLC)产生胞内信 号之间,起着信号转换作用.
所以又称为耦联蛋白或信号转换蛋白。
种类
细胞内的G蛋白分为两大类:一类是由三种亚基(α、β、 γ)构成的异源三聚体G蛋白;另一类是只含有一个亚基的 单体小G蛋白。小G蛋白与三聚体G蛋白的α亚基有许多相似 之处。它们都能结合GTP或GDP,结合了GTP后呈活化状 态,可以启动不同的信号转导过程。

第 二 章 细胞的基本功能1-3

第 二 章 细胞的基本功能1-3

细 胞 的 生 物 电 现 象
一、细胞膜的被动电学特性
膜的被动电学特性:细胞膜作为一个静态 的电学元件时所表现的电学特性; 包括静息状态下膜的电容、电阻以及它们 所决定的膜电流、膜电位的变化特征。
细 胞 的 生 物 电 现 象
(一)膜电容:
细胞膜具有显著的电容特性,且膜电
容较大;当膜上的离子通道开放而引起带
细 胞 的 跨 膜 信 号 转 导 功 能
配体:能与受体发生特异性结合的活性 物质(ligand)
分类
生物胺类激素:肾上腺素、去甲肾上腺 素、组胺、5-羟色胺 肽类激素:缓激肽、黄体生成素、甲状 腺激素 气味分子、光量子
细 胞 的 跨 膜 信 号 转 导 功 能
1.受体-G蛋白-AC(腺苷酸环化酶)途径 Gs家族G蛋白→激活腺苷酸环化酶(AC) →催化ATP→cAMP Gi家族G蛋白→抑制AC→降低cAMP
效 应
(只能引起局部反应)
终板电位 突触后电位
某些嗅、味觉感受细胞的膜中
感受器电位
细 胞 的 跨 膜 信 号 转 导 功 能
研 究
始于: 运动神经
(神经冲动)
乙酰胆碱
(ACh)
骨骼肌兴奋
(终板膜) N-受体
终板电位
通道蛋白质
化学本质 分子结构
N-型乙酰胆碱门控通道蛋白质 (化学门控通道) 烟碱
分子量为290KD的五聚体蛋白质(2)
细 胞 的 跨 膜 电 变 化
作 用 通过生成或分解第二信使,实现细 胞外信号向细胞内转导;
细 胞 的 跨 膜 信 号 转 导 功 能
4. 第二信使: 是指激素、递质、细胞
因子等信号分子(第一信使)作用于细胞 膜后产生的细胞内信号分子,能把细胞外 信号分子携带的信息转入胞内。 如:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 在此过程中,首先是细胞外的化学物质(如激素)与靶细 胞受体结合,接着激活G蛋白,激活的G蛋白进而激活G蛋 白效应器酶(如腺苷酸环化酶),G蛋白效应器酶再催化 某些物质(如ATP)产生第二信使(如cAMP),第二信使再 通过蛋白激酶或离子通道完成信号转导。
(三)酶耦联受体介导的跨膜信号转导 • 此类受体分子既有受体的作用又有酶的特性,即它们既存
在与信号分子结合的位点,又具有酶的催化性,通过它们 的这些双重作用来完成信号的转导称之为酶耦联受体介导 的跨膜信号转导。体内大部分生长因子和一部分激素(如 胰岛素)就是通过这种方式进行信号转导的。
• 受体的特征:
– 特异性 – 饱和性 – 可逆性
二、跨膜信号转导的方式
(一)离子通道耦联受体介导的跨膜信号转导
1.化学门控性通道 • 这类通道蛋白质本身就是受体,所以又称为通道型受体。 2.电压门控性通道 • 这类通道广泛存在于神经细胞膜、心肌细胞膜和骨骼肌细
胞膜上。
3.机械门控性通道 • 机械性刺激信号能影响此类通道蛋白质功能状态的改变,
第二节 细胞的跨膜信号转导功能
一、受体的概念和特征
• 凡是能与信号分子特异性结合,并引发细胞发生特定生理 效应的特殊蛋白质称为受体(receptor)。受体可以存在于 细胞膜、细胞质和细胞核内,但是通常提到的受体指的是 膜受体。
– 受体可以对某些特定的化学物质进行识别并与之结合,结合后能激 活细胞内的多种酶系,从而引起特定的生理效应。在此过程中,作 为信号分子的化学物质并未进入到细胞膜内,它所携带的信息通过 受体中介转导到细胞内。
从而完成细胞跨膜信号的转导。如内耳毛细胞受刺激后出 现的感受器电位就是此类信号确,速度快。
(二)G蛋白耦联受体介导的跨膜信号转导
• G蛋白耦联受体介导的跨膜信号转导是通过膜受体、G蛋白、 G蛋白效应器和第二信使等一系列存在于细胞膜和细胞质 中的信号分子的共同活动而实现的。
相关文档
最新文档