氢氧同位素1共60页PPT资料共60页
氢氧同位素.ppt
热动力模式关键是要得到样品的 △(δDkaol),也就是知道在始新世海岸处 δDkaol值。但古河流海拔为零的沉积地 层没有暴露,无法得到始新世海岸参考 值δDkaol,因此只能根据已有样品所得 到的曲线截距,δDkaol =(-75±5)‰ (r2=0.76)。为使推测更为稳妥,取其 最小值,海岸δDkaol=-80‰,这样取值 会导致低估高程。
三、热动力学模式
通过对现代大气在冷凝过程中物 理学和热动力学的研究,得到气团 随海拔的升高过程中影响降水中氢 氧同位素分馏递变的相关参数,推 导出高程(h)与随地形而改变的氢、 氧同位素变化值(Δ(δ18Op))的 近似关系(图2)。
根据Rowley的高程(h)与Δ(δ18Op) 的关系图推导出以下关系式:
二、基本原理
当气团沿高地形抬升时水汽 冷凝,会导致氢氧同位素的动力 学分馏。高程越高,降水中越贫 18O和D。这种分馏符合瑞利分 馏规律,属于开放系统中动力系 统分馏(图1) 。
若地史时期山间的河湖主要靠当 地的降水补给,河湖水就能记录下 降水中氢氧同位素含量随高程而变 化这个规律。河湖中自生矿物沉淀 过程中往往能够与河湖水达到氢氧 同位素含量的平衡,这样就可以利 用岩石中自生矿物研究古高程变化。
六、优缺点
古高程计的热动力模式适用地域范 围广,应用便捷。热动力模式的计算中, 现代值只须有一个数值大概的趋势,起 到矫正古高程值作用就行,模式本身就 可以提供普适性(纬度低于35o的地区)的 古高程的计算公式(公式1)。
热动力模式这种方法的局限 性也很明显,即误差较大。由于 它是一个理想化的模型,无法针 对不同地方的气候、地形等影响 氢氧同位素的因素矫正误差。
研究中沿河流15个不同的地 点取了44个样品(图3),样品分 为2类:一类是取自花岗岩碎屑 的原地高岭石(图中用圆点和三 角表示);一类是取自河道砂岩 中的碎屑高岭石(用黑色方块表 示) 。
生态水文学中的氢氧同位素分析
生态水文学中的氢氧同位素分析一、生态水文学基础生态水文学是研究地表水和地下水在生态系统中的过程及其生态效应的一门交叉学科。
它紧密结合了生态学、土壤学、气候学、水文学等多学科知识,是理解和管理自然水系统和生态系统的关键。
生态水文学的主要任务是评估水资源开发和利用的生态风险,确定生态保护与水资源利用的平衡点。
氢氧同位素分析在生态水文学中起着至关重要的作用。
氢氧同位素分析可以用来研究水循环、水稳定同位素的来源、改变和在不同地理环境中的分布规律,从而推断出水文地质特征和生态水文环境的演变历程。
二、氢氧同位素分析的原理氢氧同位素分析利用水稳定同位素中的氢原子和氧原子的不同相对丰度,确定不同水样之间的关系。
水稳定同位素分别表现为δD和δ18O,并且比常规微生物探测技术更为敏感和精确。
水的氢氧同位素分布不仅受到各种自然因素的影响,例如降水、蒸发、渗漏等,也受到人为活动等人为因素的影响。
因此,在生态水文学中,氢氧同位素分析可以用来追踪衡量水体和生物之间的互动关系,并进行相关研究。
三、氢氧同位素分析的应用1. 研究地面水循环地球的气候和水文循环以及全球变化要素之间的相互作用是复杂且错综复杂的,而氢氧同位素分析可以用来研究这些过程。
氢氧同位素分析可以直接检测地表水蒸发及水循环的过程。
通过分析δD和δ18O,可以推断蒸发水的重要性,了解水稳定同位素在雨水中的分布规律和地下水水文地质形态的特点,以及水循环的速率和过程。
2. 研究水的来源和变化氢氧同位素分析可以揭示水的来源和变化过程。
例如,在山区、平原、河流、湖泊和草地等不同地理环境中分别采集水样并进行分析,可以了解不同水体的来源及其变化过程。
氢氧同位素分析还可用于分析水与土壤、地下水及大气的相互作用,并推断水的运动方向和热力学变化。
3. 研究河流水生态环境河流是生态系统和水资源系统紧密联系的环节,而氢氧同位素分析则可以用来研究河流水生态环境。
氢氧同位素分析可以揭示河流的水源、流量和水文水质特征,指示河流水的循环和运动趋势,构建河流生态系统的重要网络。
氢氧稳定同位素及其应用
氢氧稳定同位素及其应用想象一下,你和你的朋友小明一起去参观一个奇妙的科学博物馆。
馆内各种各样新奇的展品就像繁星一样闪耀着知识的光芒,让人目不暇接。
我和小明在一个看似普通却又神秘的展柜前停了下来。
里面摆放着一些透明的小瓶子,瓶子里装着无色的液体。
小明皱着眉头,好奇地问我:“这些看起来普普通通的东西有什么特别之处吗?”我神秘地一笑,告诉他:“可别小瞧了这些,这里面涉及到氢氧稳定同位素呢。
”那什么是氢氧稳定同位素呢?简单来说,氢有三种同位素,分别是氕、氘、氚,其中氕和氘是稳定同位素;氧也有多种同位素,而我们常说的氧 - 16、氧 - 18就是稳定同位素。
它们就像是氢和氧家族中的兄弟姐妹,有着相似之处,却又各自有着独特的“性格”。
我继续给小明解释道:“你看,这些同位素虽然很微小,但它们的作用可大了。
比如说在研究气候变化方面,它们就像是大自然的小侦探。
”小明眼睛睁得大大的,就像两个铜铃,显然被我的话吸引住了。
“科学家们通过研究降水中氢氧稳定同位素的比例变化,就像在解读大自然写下的日记。
因为不同的气候条件下,这个比例是不一样的。
如果把地球的气候系统比作一个超级复杂的机器,那么氢氧稳定同位素就是这个机器运转过程中留下的特殊标记。
这难道不神奇吗?”不仅如此,在水资源研究领域,氢氧稳定同位素也是大有用处。
“就好比我们现在喝的水,”我指了指旁边的饮水机,“它来自哪里,经历过什么样的旅程,都可以通过分析其中氢氧稳定同位素的特征来推断。
这就像是给每一滴水都装上了一个小小的追踪器。
”小明一边听一边不住地点头,嘴里还嘟囔着:“原来如此,真是不可思议。
”在考古学方面,氢氧稳定同位素也扮演着重要的角色。
我拉着小明的手,走到一个古代陶器的展品前,对他说:“你看这个陶器,它的原材料可能来自某个特定的地区。
就像我们能通过口音辨别一个人的家乡一样,科学家们可以通过分析陶器中黏土所含水分的氢氧稳定同位素来判断这个陶器的原料产地。
这是不是有点像穿越时空的侦探工作呢?”在医学上,氢氧稳定同位素也有它的用武之地。
不同水体氢氧同位素
不同水体氢氧同位素一、海洋水体氢氧同位素海洋是地球上最广阔的水体之一,其中的水分子也含有不同的氢氧同位素。
海洋水体中的氢氧同位素主要有氢-1(氚)、氢-2(重氢)、氢-3(超重氢)、氧-16、氧-17和氧-18。
其中,氢-1和氧-16是最常见的同位素。
海洋水体中的氢氧同位素含量受多种因素的影响,包括水温、盐度、深度等。
一般来说,海洋表层水体中的氢氧同位素含量较高,随着深度的增加,含量逐渐降低。
这是因为氢氧同位素的分馏效应导致的。
根据研究发现,海洋水体中氢氧同位素的组成对于研究古气候变化具有重要意义。
通过对海洋沉积物中氢氧同位素的分析,可以推测出过去的气候变化情况。
因此,海洋水体中的氢氧同位素研究对于了解地球气候演变以及预测未来气候变化具有重要意义。
二、湖泊水体氢氧同位素湖泊是地球上重要的淡水资源,湖泊水体中的氢氧同位素也具有一定的特征。
湖泊水体中的氢氧同位素主要受到降水的影响,其中降水中的氢氧同位素含量与地理位置、季节等因素密切相关。
湖泊水体中的氢氧同位素含量的变化可以反映降水的季节性变化。
例如,在干旱季节,湖泊水体中的氢氧同位素含量较高,而在雨季,含量则较低。
这是因为降水中的氢氧同位素含量随着降水量的变化而变化。
湖泊水体中的氢氧同位素也可以用于研究湖泊的水文循环过程。
通过对湖泊水体中的氢氧同位素的分析,可以了解湖泊的水源、水量变化以及水体的混合程度等信息。
这对于湖泊生态系统的研究和管理具有重要意义。
三、地下水体氢氧同位素地下水是地下岩石裂隙或含水层中的水分子,其中的氢氧同位素也具有一定的特征。
地下水体中的氢氧同位素主要受到降水的影响,同时还受到地质构造、地下水流动速度等因素的影响。
地下水体中的氢氧同位素含量的变化可以反映地下水的来源和补给方式。
例如,降水中的氢氧同位素含量较高的地区,地下水体中的氢氧同位素含量也较高。
而在干旱地区,地下水体中的氢氧同位素含量则较低。
地下水体中的氢氧同位素研究对于水资源的管理和利用具有重要意义。
《氢氧同位素》课件
地球表面水体中的氢氧同位素分布
地球表面水体中的氢氧同位素分布受到 多种因素的影响,如气候、地形、地质
等。
在不同地区和不同水体类型中,氢氧同 位素的分布存在差异。例如,在冰川和 雪水中,氢氧同位素的含量较低;而在 湖泊和河流中,氢氧同位素的含量较高
。
地球表面水体中的氢氧同位素分布对于 研究地球气候变化和地表水循环等方面
02 氢氧同位素的形成与转化
太阳辐射压的影响
太阳辐射压对地球大气层中的气体分子产生作用,使得氢氧同位素在大气中的分布 发生变化。
太阳辐射压对大气中氢氧同位素的影响程度与太阳辐射的强度、波长以及大气层的 厚度等因素有关。
在地球大气层中,太阳辐射压对氢氧同位素的影响较小,但在某些特定条件下,如 极地的高空区域,其影响可能会更加显著。
具有重要意义。
氢氧同位素的转化机制
氢氧同位素在大气、地表水体和地下水体等不同环境中的转化机制存在差异。
在大气中,氢氧同位素的转化主要受到太阳辐射压、温度和湿度等因素的影响;而在地表水 体和地下水体中,氢氧同位素的转化还受到水流、地质构造和生物作用等因素的影响。
了解不同环境中氢氧同位素的转化机制对于研究地球化学循环和水文循环等方面具有重要意 义。
岩石年代测定
氢氧同位素可以用来确定岩石的形成年代。通过分析岩石中矿物和玻璃质中的氢 氧同位素比率,可以推算出岩石的冷却时间和地质年代。
火山岩年代测定
火山岩中的氢氧同位素比率也可以用来确定其形成年代。通过分析火山岩中的矿 物和玻璃质中的氢氧同位素比率,可以了解火山活动的历史和地质年代。
04 氢氧同位素在其他领域的 应用
气候变化研究
通过氢氧同位素技术,深入理解气 候变化的机制和过程,为应对气候 变化提供支持。
同位素地球化学和分馏效应(氢氧同位素)
2 稳定同位素的标准值、实测值和成矿过程的
同位素效应
(1)氢-氧同位素 1)标准值(SMOW) The the Hydrogen isotope on Natural abundance: 2D: 1H=0.0156:99.9844; δDi(Pre mil)=[( D/H)i- (D/H )Standard]/ (D/H)Standard]×1000 Standard: Standard Mean ocean Water(SMOW) (D/H)SMOW=1.050(D/H)NBS-1 NBS-1:National Bureau of Sandards(USA)
一、稳定同位素
1. 轻元素的稳定同位素表示方法和分馏
(1)表示方法 目前,以发现稳定同位素数目大约300多种,而
目前应用在 矿床研究领域的稳定同位素主要有S、 H-O、C-O、N、Si、Li、B等。通常用轻稳定同位素 的组成来表示(δ),这是因为: ①原子量小,同位素组成变化大; ②同一元素的轻同位素与重同位素的质量差大,如⊿21H/1H=100%、⊿13-12C/12C=8.3%、⊿18-16O/16O=12.5%、 ⊿34-32S/32S=6.3%; ③它们形成的化学键以强共价键为特征; ④碳、硫、氮具有可变的电价; ⑤同一元素的轻同位素比重同位素具有更高的丰度。
Gregory et al.(1986)和Criss et al.(1987)基于δ-δ图 解原理,给出了开放体系中同位素交换反映的表达式。它们的结 果可以直接转化为δ-△表达式。下面简要讨论的多相封闭体系中 的同位素交换特征,根据质量守衡定律,有:
δx=x1δ1+x2δ2+x3δ3+x4δ4+xiδi
离图中的直线,说明体系为非平衡分馏(图1-1)。
3-同位素地球化学和分馏效应(氢氧同位素)
T=300-600º C T>700º C
阿尔伯达
b)平衡条件下定量水/岩比值
W/Rclosed= (δ18Orockfinal - δ18Orockinitial )/ (δ18Ofluidinitial- δ18Ofluidfinal )
Gregory et al. (1986 )和 Criss et al. ( 1987 )基于 δ -δ 图 解原理,给出了开放体系中同位素交换反映的表达式。它们的结 果可以直接转化为δ -△表达式。下面简要讨论的多相封闭体系中 的同位素交换特征,根据质量守衡定律,有: δ x=x1δ 1+x2δ 2+x3δ 3+x4δ 4+xiδ i 式中的x1+x2+x3+x4+xi+=1,若x1 和x3相与x2 和 x4、xi更富重同 位素,且δ 1>x2≥δ 3>δ 4>xiδ i, 则条斜率符号相反的相关直线 仍可以表达为: δ 1=α 2•△12+b δ 2= -α •△12+b 在平衡条件下,△ij只是温度的函数。在封闭体系下,两组共 生矿物的彝族同位素数据在δ -△图解上呈两个斜率相反的线性展 布。对应的同位素分馏即为平衡条件下的分馏值。因此得到有用 的同位素温度,斜率的大小指示了体系中两种矿物的相对比值, 高温端的最大最小δ 指指示两种流体的同位素组成,因此可以用 来推断热液的源区。一般是从高到低温的演化过程。不遵从同位 素平衡和质量守恒的岩石、矿床形成体系肯定是同位素非平衡或 开放体系(混合体系),在非平衡条件下,△ij受动力学同位素效 应的制约,在δ -△图解上直线的截距和斜率之取决于质量守恒。
2)δ -△图解 在δ -△图解中,以每种矿物的δ 值为y轴,以矿物对的△值为x 轴,两条直线斜率的夹角为ɑ(图1-1);一般地对于两项(1相、 2相)封闭体系而言,其总的同位素组成为: δ s=x1•δ 1+ x2•δ 2(s代表体系;xi 代表摩尔数,且x1+x2=1) 在δ -△空间中,根据质量守恒定律,上是可以变成: δ 1= x2•△12+δ s δ 2= -x2•△12+δ s(△12=δ 1+δ 2) 上式满足条件是:①体系中相1与相2之比保持平衡;②δs保持常 数;③相1 与相 2 之间的同位素交换是引起体系内各相 δi 变化的唯 一原因。当体系中只有两种物质时,即x1+x2=1,则以上条件均能 满足。然而,在自然界的大多数体系中,一般至少两相以上的物 相;显然,上述给出的两相的封闭体系或开放体系都不适合。
氢氧同位素.ppt
热动力模式关键是要得到样品的 △(δDkaol),也就是知道在始新世海岸处 δDkaol值。但古河流海拔为零的沉积地 层没有暴露,无法得到始新世海岸参考 值δDkaol,因此只能根据已有样品所得 到的曲线截距,δDkaol =(-75±5)‰ (r2=0.76)。为使推测更为稳妥,取其 最小值,海岸δDkaol=-80‰,这样取值 会导致低估高程。
一、简介
地史时期上,地表起伏的状态能为地壳、岩石 圈和上地馒动力学的研究提供第一手资料,用定量 的方法精确刻画高大地形的古海拔演变,研究方法 主要有3种: (1)古植物化石中叶片的形状特征与古气候多指标 过程。 (2)利用熔岩流气孔推测。 (3)山间盆地沉积的自生矿物氢氧同位素含量。
二、基本原理
当气团沿高地形抬升时水汽 冷凝,会导致氢氧同位素的动力 学分馏。高程越高,降水中越贫 18O和D。这种分馏符合瑞利分 馏规律,属于开放系统中动力系 统分馏(图1) 。
若地史时期山间的河湖主要靠当 地的降水补给,河湖水就能记录下 降水中氢氧同位素含量随高程而变 化这个规律。河湖中自生矿物沉淀 过程中往往能够与河湖水达到氢氧 同位素含量的平衡,这样就可以利 用岩石中自生矿物研究古高程变化。
古高程计:氢氧同位素的应用
Paleohypsom etry:Application of Hydrogen Isotope and Oxygen Isotope
学生:任来君 葛贤发 程鹏 彭三曦 张群利 苏玲燕 刘伟 王在敏
指导老师:谢先军 2009年3月19日
主要内容
一、简介 二、基本原理 三、热动力学模式 四、应用实例 五、误差分析 六、优缺点
另外,造成计算误差的还有两类因素:
高一化学同位素课件
《氢氧同位素》PPT课件
1
思考题
1、同位素的分馏有哪些形式? 2、各种同位素平衡条件下,相对重同位素递
减序列。 3、主要的同位素分析标准有哪些? 4、什么是氧同位素的内部温度计和外部温度
计?应用时应该注意哪些问题? 5、各种成因水的同位素组成的范围 6、说出集中氧同位素在矿床研究中的应用。
精选PPT
2
第一节 概述
δD=[(D/H)样品-(D/H)smow]/ (D/H)smow ×1000 ‰
δ13C=[( 13C/ 13C)样品-( 13C/ 13C)标准]/ ( 13C/ 13C)标准×1000‰
δ34S = [ ( 34S / 32S ) 样 品 - ( 34S / 32S ) 标 准 ] / ( ( 34S/32S)标准×1000‰
δ18Owater=-44—+10 ‰ δDwater=-340—+15 ‰ 雨水(包括地下水)有以下关系:
δD=8δ18O+10 ‰
精选PPT
21
3、同生水 4、岩浆水
岩浆水可以用矿物-水得分馏系数计算得到。 大多数新鲜的火山岩合深成岩 δD=-50—-90 ‰ δ18O=+5.5—+10 ‰
氧稳定同位素在硅质研究中的应用,主要有以 下两个方面。 (1)判别硅质岩的形成环境 在一定温度下,硅质岩的氧同位素组成是水 介 在质 一氧 定同 温度位下素A组为成常的数函),数(δ18Osio2=δ18OH2O+A,
而水介质的氧同位素组成又是盐度的函数(δ18O 水=BS+C,S代表盐度,B、C是常数)。
与正常的岩浆岩平衡的水
δD=-40—-80 ‰ δ18O=+5.5—+9.5 ‰
5、变质水
氢氧同位素
六、优缺点
古高程计的热动力模式适用地域范 围广,应用便捷。热动力模式的计算中, 现代值只须有一个数值大概的趋势,起 到矫正古高程值作用就行,模式本身就 可以提供普适性(纬度低于35o的地区)的 古高程的计算公式(公式1)。
热动力模式这种方法的局限 性也很明显,即误差较大。由于 它是一个理想化的模型,无法针 对不同地方的气候、地形等影响 氢氧同位素的因素矫正误差。
另外,造成计算误差的还有两类因素: (1)方解石形成时由于气候干旱,水体大 量蒸发,会导致方解石中δ18O值升高, 低估古海拔值。 (2)方解石在成岩过程中,由于温度、压 力和生物的作用改变方解石的δ18O值。 为避免这种误差,须对样品进行地 球化学和矿物学的分析,判断样品是否 受到蒸发作用和成岩作用的影响。
三、热动力学模式
通过对现代大气在冷凝过程中物 理学和热动力学的研究,得到气团 随海拔的升高过程中影响降水中氢 氧同位素分馏递变的相关参数,推 导出高程(h)与随地形而改变的氢、 氧同位素变化值(Δ(δ18Op))的 近似关系(图2)。
根据Rowley的高程(h)与Δ(δ18Op) 的关系图推导出以下关系式:
热动力模式关键是要得到样品的 △(δDkaol),也就是知道在始新世海岸处 δDkaol值。但古河流海拔为零的沉积地 层没有暴露,无法得到始新世海岸参考 值δDkaol,因此只能根据已有样品所得 到的曲线截距,δDkaol =(-75±5)‰ (r2=0.76)。为使推测更为稳妥,取其 最小值,海岸δDkaol=-80‰,这样取值 会导致低估高程。
当气团沿高地形抬升时水汽 冷凝,会导致氢氧同位素的动力 学分馏。高程越高,降水中越贫 18O和D。这种分馏符合瑞利分 馏规律,属于开放系统中动力系 统分馏(图1) 。
3-同位素地球化学和分馏效应(氢氧同位素)解析
①
一种元素的重同位素总是优先富集在化学键追强的 分子中。因此。两种物质之间的化学键强度相差愈大, 它们之间的分馏系数ɑ也愈大。 ② 分馏系数与元素的原子量数成反比,即同位素的分 馏程度与随元素原子数的增大而减小。 ③ 分馏系数与分子能量有关,而分子的振动能量又与 温度有关。温度愈高,因交化反映引起的同位素分馏 与不明显,分馏系数与温度成反比。 物理和化学过程中,同位素的分馏过程的热力学效应表 现含轻同位素的分子比含重同位素的分子更活跃,更 易参与作用。 各实验是采用的标样不同,统一换算标准公式为: δ样-标=δ样-工 +δ工-标+δ样-工×δ工-标×10-3 δ样-标:以国际标准表示的样品的δ值;δ样-工:是以 工作标准表示的样品的δ值;δ工-标:以国际标准表示 的工作标准的δ值
一、稳定同位素
1. 轻元素的稳定同位素表示方法和分馏 (1)表示方法 目前,以发现稳定同位素数目大约 300 多种,而 目前应用在 矿床研究领域的稳定同位素主要有 S 、 H-O 、 C-O 、 N 、 Si 、 Li 、 B 等。通常用轻稳定同位素 的组成来表示(δ),这是因为: ①原子量小,同位素组成变化大; ②同一元素的轻同位素与重同位素的质量差大,如⊿21H/1H=100%、⊿13-12C/12C=8.3%、⊿18-16O/16O=12.5%、 ⊿34-32S/32S=6.3%; ③它们形成的化学键以强共价键为特征; ④碳、硫、氮具有可变的电价; ⑤同一元素的轻同位素比重同位素具有更高的丰度。
轻稳定同位素的比值( R )可定义为样品 中某种元素的两种稳定同位素比值(R样)相对 标准样品中相应比值(R标)的千分差:
δ=[(R样- R标)]/ R标×1000
(2) 轻同位素分馏
同位素分馏是指在一系统中,某元素的同位素 以不同的比值分配到两种物质或物相中的现象;同 位素分馏系数ɑ值,表达形式为: ɑA,B=RA/RB, R表示两种物质的同位素比值,当ɑA, B>1表示物质A 比物质 B 富集重同位素,相反表示物质 A 比物质 B 富 集氢同位素。 ɑA-B=(1+δA/1000)/(1+δB/1000)= (1000+δA) /(1000+δB) 由此可见,只要测定一个体系内两种物质的 δ 值,便可以根据上是求得两种物质间的同位素分馏 系 数 ɑ 。 ɑA , B≥1 时 , δA≥δB ; 当 ɑA , B≤1 , δA≤δB。根据热力学量子理论,同位素分馏系数ɑ 值的同下列因素有关:
氢氧同位素1
13
C:CO22- →CO2 →C →CH4 →CO
34
S: 辉钼矿→黄铁矿→闪锌矿→磁黄铁 矿→黄铜矿→斑铜矿→硫镉矿→铜蓝→方 铅矿→辰砂→辉铜矿→辉锑矿→辉铋矿→ 辉银矿 在一个矿床中不同的矿物的同位素交换是 否达到平衡,上述分配序列是一个判别标 准。使用同位素温度计时,共存的矿物的 同位素组成必须符合上述序列。
第三讲
稳定同位素在矿床学中的 应用
思考题
1、同位素的分馏有哪些形式? 2、各种同位素平衡条件下,相对重同位素递 减序列。 3、主要的同位素分析标准有哪些? 4、什么是氧同位素的内部温度计和外部温度 计?应用时应该注意哪些问题? 5、各种成因水的同位素组成的范围 6、说出集中氧同位素在矿床研究中的应用。
Pb:
CIT标准:18.625,15.475,36.300 GS4标准:16.158,15.406,35.841 NBS: 16.937,15.491,36.721
三、样品的表示方法:
δ18O=[(18O/16O)样品-(18O/16O)smow]/ (18O/16O) smow ×1000 ‰
第一节 概述
一、同位素分馏
不同的同位素组成的分子之间的相对质量差, 会对分子中原子的振荡、化合物的一系列的 物理常数和热力学函数产生一定成的影响, 因此在物质运动过程中会表现出同位素的分 馏现象。 同位素分馏是指在一个系统中,某元素的同 位素以不同的比值分配到两种物质货物相中 的现象。
3、 还原作用
海水硫酸盐与岩石中 Fe3+ 反应(无机作 用): SO42- + 8Fe2+ + 10H+==H2S + 8Fe3+ + 4H2O
氢氧稳定同位素
氢氧稳定同位素稳定同位素的分子,最重要的特点是有着相同的核电荷数。
由于核电荷数总是与质子数相等,所以在化学反应中不可能再进行“核”裂变了,因此它们只能按原来的核电荷数,在化学反应中作为中间产物出现,也就是说,我们看到的氢氧稳定同位素都具有相同的元素符号,即只要稳定同位素是一种,就不需要区别其同位素的种类,而是看稳定同位素的原子数。
例如: 5个氢分子构成的同位素是氢元素的6个原子,又如3个氧分子构成的同位素是氧元素的3个原子, 2个氮分子构成的同位素是氮元素的2个原子。
它们都是单质,不存在两个或两个以上的氢原子结合生成的盐,但它们都能跟酸反应,只是反应速度不同。
在高温下的水蒸气中,还能形成大量的氢氧化物(如nah),所以氢氧化物的分子构成中也要有氢原子,才能叫氢氧化物,否则就不叫氢氧化物了。
1、相同元素不同原子数的氢氧化物比较各个类型的氢氧化物的相对原子质量不同。
如4个碳分子构成的氢氧化物,其相对原子质量为14, 4个氧分子构成的氢氧化物,其相对原子质量为18, 3个氮分子构成的氢氧化物,其相对原子质量为16,而2个氢分子构成的氢氧化物,其相对原子质量为12,则氧化铝是氢氧化物。
各个类型氢氧化物的相对分子质量随着碳分子数的增加而逐渐降低。
如:碳原子数为8,它的氢氧化物相对分子质量是16;碳原子数为9,它的氢氧化物相对分子质量是18。
2、相同元素不同质子数的氢氧化物比较3、相同元素不同中子数的氢氧化物比较对于氢氧化铝来说,氢氧化铝中最多有4个质子( 4个质子的氢氧化铝是混合物,既有4个质子也有2个质子),也可以理解为氢氧化铝中最少有4个质子。
而对于氧化铝来说,氧化铝中最多有4个中子( 4个中子的氧化铝是混合物,既有4个中子也有2个中子),也可以理解为氧化铝中最少有4个中子。
而对于二氧化碳来说,它的最多的就是4个质子了。
因为它没有4个中子,也没有4个质子。
但是对于一些稳定同位素来说,不能用碳元素来判断稳定同位素的类型。
第三讲 H-O同位素
3.6 同位素随气候的变化 Co-variation with Climate
3.6 同位素随气候的变化 Co-variation with Climate
3.6 同位素随气候的变化 Co-variation with Climate
黑河流域地下水同位素研究
主要问题
1、地表水和地下水的相互作用关系 2、地下水系统的补给和流动
1000
当水从海洋蒸发,然后又从云中凝结时造成了同位素分馏。结果降水普 遍比海水减少δD和δ18O。
凝结雨滴δD和δ18O值成比例减少是瑞利条件下凝结分馏的特点。
3.2 O、H同位素分馏 The fractionation of O and H isotope
(3)瑞利条件下的凝结过程
3.2 O、H同位素分馏 The fractionation of O and H isotope
I
祁 2400 连 山
2000 36
I'
龙 首 山
•
南部盆地以粗颗粒为主,含
高 程 1600 (m)
1200
59 O 260
Q3
张 掖 市
C25 145 民 参 1 2 185
山 丹 河
Q4 N16 16
Q3 C 136 184150
水层单层变为多层型,其中前一
Q2
种类型占绝对优势
北部盆地以细粒物质为主,含 水层结构单层变为多层型,后者 分布最广。
3.4 D-18O同位素系统
D-18O system: The Meteoric Water Line
• 大气降水中D-18O同位素组成取决于大气温度
3.2 O、H同位素分馏 The fractionation of O and H isotope