500KV变电站电气接线

合集下载

500KV变电站电气接线讲解

500KV变电站电气接线讲解

500KV 变电站电气主接线及倒闸操作管理1、概念1.1变电站电气主接线,是指由变压器、开关(一般指断路器QF )、刀闸(一般指隔离开关QS )、互感器(CT 、CT )、母线、避雷器(F 、老的用B )等电气设备按一定的顺序连接,用来汇集和分配电能的电路,也称为一次设备主接线图。

1.2把这种全部由一次设备组成的电路绘制在图纸上,就是我们的电气主接线图。

在电气主接线图中,所有的电气设备均用国家和电力行业规定的文字和符号表示,并且按它们的“正常状态”画出。

所谓“正常状态”,就是电气设备处在所有电路无电压及无任何外力作用下的状态,开关和刀闸均在断开位置。

1.3需要注意的是,电气设备的和是两个不同的概念,正常状态有两层含义:一是作为电气主接线图来讲所包含的上面讲到的一层含义,也就是电气设备处在所有电路无电压及无任何外力作用下的状态,开关和刀闸均在断开位置。

另外一层含义,是指设备的各项功能正常,在额定的电压、电流作用下能长期运行的一种状态。

而正常运行方式是指在本站设备或系统正常运行情况下,管辖调度所规定的经常采用的一种运行方式。

只要本站设备正常,就必须按照有关调度规定的方式运行,除有管辖权的调度以外的其他人员是无权改变设备的运行方式的。

与正常运行方式相对应的是非正常运行方式,这是指因设备故障、停电检修、本站或系统事故处理而暂时改变设备的正常运行方式。

2、对电气主接线的要求500KV 变电站在电网中的地位非常重要,尤其是随着三峡工程的建设,全国“西电东送,南北互供”大电网的逐步建成,它的安全可靠运行直接影响到大电网的安全稳定运行。

因此对500KV 变电站一次设备主接线的要求较高。

变电站电气主接线,采用较多的是双母线单分段带旁路加3/2接线、双母线双分段带旁路加3/2接线,也有个别500KV 变电站采用的是双母线单分段带旁路加菱形接线(华东地区)。

随着我国电气设备制造水平的逐年提高,加上节约用地和工程经济性等方面的考虑,目前500KV 变电站的电气主接线基本采用双母线单分段加上3/2接线方式。

南方电网500kV变电站二次接线标准

南方电网500kV变电站二次接线标准

南方电网500kV变电站二次接线标准Technical specification for 500kV substation'ssecondary connection of CSG中国南方电网有限责任公司发布目次前言 (II)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 总体原则及要求 (1)5 二次回路设计原则 (2)5.1 电流二次回路 (2)5.2 电压二次回路 (3)5.3 断路器控制回路 (3)5.4 失灵回路 (4)5.5 远跳回路 (4)5.6 保护复接接口装置 (4)5.7 信号回路 (4)5.8 直流电源 (4)6 二次回路标号原则 (5)6.1 总体原则 (5)6.2 直流回路 (5)6.3 信号及其它回路 (6)6.4 交流电流回路 (6)6.5 交流电压回路 (7)7 保护厂家图纸设计原则 (7)7.1 厂家图纸制图要求 (7)7.2 厂家图纸目录要求 (7)附录A(资料性附录)二次原理接线图集 (8)A.1 500kV线路及断路器二次回路原理图集; (8)A.2 500kV主变压器二次回路原理图集; (8)A.3 500kV母线保护二次回路原理图集; (8)A.4 500kV并联电抗器二次回路原理图集; (8)A.5 220kV线路二次回路原理图集; (8)A.6 220kV母线保护二次回路图集; (8)A.7 220kV母联及分段二次回路原理图集; (8)A.8 公用设备二次回路原理图集。

(8)前言为了降低继电保护现场作业风险,提高现场作业标准化水平,减少继电保护“三误”事故,统一各设计单位的二次回路设计原则等,中国南方电网有限责任公司系统运行部组织编制了本标准。

本标准的内容包含500kV线路、断路器、母线保护、主变压器、并联电抗器,220kV线路、母线保护、母联和分段等的二次回路设计原则和原理图集等。

凡南方电网内新建500kV变电站的相关二次回路设计均应执行本标准。

500kV降压变电所电气一次部分设计 完整版

500kV降压变电所电气一次部分设计 完整版

CHANGSHA UNIVERSITY OF SCIENCE & TECHNOLOGY发电厂课程设计题目:500kV降压变电所电气一次部分设计学生姓名:周明学号:200924050226班级:电气0902班专业:电气工程及其自动化指导教师:粟时平蒋陆萍2012年5月28日—6月8日目录一、课程设计任务书1.1 课题内容(原始资料) (2)1.2 课题任务要求 (4)二、电气主接线设计2.1 主接线设计基本要求与设计原则 (5)2.2 主接线方案的选取取 (6)三、负荷计算及变压器选择择3.1 主变台数、容量和型式的确定 (10)3.2 所用变压器的选择 (14)四、短路计算 (15)五、主要电气设备选择5.1 断路器及隔离开关的选择 (16)5.2 母线的选择 (17)5.3 各主要电气设备选择结果一览表 (18)六、计算书七、心得八、附录1:500KV变电所电气主接线原理图附录2:500KV变电所电气配置图一、课程设计任务书1.1课题内容(原始资料)1、建所目的:由于地区负荷中心,电力系统的发展和负荷增长很快,故在该地区拟建一个500kv降压变电所,向该负荷中心用220kv和35kv电压供电。

2、拟建变电所联网情况如下图1所示:3、地区环境条件:年最高气温:42℃;年最低气温:-4℃;海拔600米;污秽程度轻级;年雷暴日小于30天4、负荷资料:(1) 220kv线路6回,最大负荷利用时间为4200h,具体情况如下表1所示:表1-1 220kv线路负荷情况(2)所用电负荷统计如下表2所示表1-2 所用电负荷统计(3)保护:各电器主要保护动作时间为0,后备保护动作时间为3.5秒。

1.2课题任务要求:根据所学的知识,参考文献和给定的课题内容(原始资料)对500kv降压变电所的电气一次部分进行设计。

具体为:1. 确定变电所电气主接线(进行3~4种方案比较论证)2. 确定变电所主变压器的台数和容量3. 确定所用的点接线(进行2~3种方案比较论证)4. 确定所用变压器的台数和容量5. 确定各电压级配电装置6. 确定各电压级各主要的电气设备7. 确定电压互感器和电流互感器的配置8. 按时独立完成设计任务书规定的内容,对设计中所出现的问题进行综合分析并加以解决;9. 按设计要求撰写课程设计论文报告书,文字通顺,排版合理,图纸符合国家规范。

500KV变电站设备、接线特点及保护配置原则

500KV变电站设备、接线特点及保护配置原则

500KV变电站仿真培训总结9月1日至9月14日,在华东电力培训中心进行了500KV变电站仿真培训取证,期间主要对500KV变电站设备的接线特点及保护配置原则;线路、开关保护;远动自动化;秦山500KV开关站典型操作及保护运行方式;500KV系统避雷器及运行操作过电压;母线保护;发变组保护;电网安全分析等进行了学习,现将学习情况总结如下:一、500KV变电站设备、接线特点及保护配置原则1、500KV 1个半断路器接线的主要特点:目前华东电网的主网架由电厂500KV升压站、独立500KV变电站通过架空输电线组成。

这些500KV升压站、变电站的开关主要采用1个半断路器的接线方式,但主要还是通过传统的敞开式接线方式,这种方式占地面积较大。

采用GIS的接线方式可以大幅度减少占地面积,减少维护量。

一个半断路器的接线方式优点:*供电稳定可靠。

每一串由三台断路器加二条公用母线及一条进线和一条出线组成一个完整串,正常合环运行,当发生一条母线甚至二条母线故障或开关故障都不会导致线路停电,这种接线方式体现出线路比母线更重要。

特别是加装线路、变压器闸刀使线路和变压器检修时断路器继续合环运行,提高了供电可靠性。

*运行调度灵活:正常运行时两组母线和所有开关都投入运行,从而形成多环路的供电方式。

一个半断路器接线方式的主要缺点:*二次线复杂。

在继电保护中需要采用CT“和电流”的接线方式,线路保护采用线路的CVT,不采用母线的PT。

*投资较大。

500KV断路器是昂贵的设备。

2、500KV联合开关站主接线特点:*通过充油电缆直接与主变高压侧相连*三、四串采用交叉布置*预留两串*二期是线变串、三期线线串*采用一个半断路器接线方式(线路、主变闸刀断开后,短线保护自投)*线路或主变保护用的是CT “和电流”*线路保护用电容式(三相)电压互感器(CVT),母线采用(单相)电压互感器(CVT),这种接线方式突出了线路比母线更重要。

3、开关在检修状态下特别注意退CT流变端子的操作顺序若需要将500KV改到检修状态并对相应CT进行检修,则为了防止保护误动,在进行流变端子退出操作时一定要按先退流变端子后短接操作顺序进行操作,因为一个半接线方式引入继电保护的是采用“和电流”方式,若先短接后退流变端子会导致保护误动作,这一操作原则同样适用于发变组保护中。

关于华东电网500kV变电站3/2接线及倒闸操作顺序的分析

关于华东电网500kV变电站3/2接线及倒闸操作顺序的分析
要 性 。 证 变 电所运 行 质 量 。 保
关键词 : /2 线特 点 误操作事故危害 倒 闸操作腰序 意见及建议 3 接 中图分类号 : P T2 文献标识码 : A 文章编号 : 7 一o 8 2 o ) 5 b一0 2 0 I 4 9 x( o 8o ( ) I - 2 6 9 日前 , 随着我 国经济 的高速发展和接受外 来 电源 的需要 , 0 kV电网有 了很快的发展 , 50 电力工业 正前瞻性 的朝着 大电 网、大 容量和 高 电压的 方向发展 。全 国联 网工程不 断健康 向前推进 , 已形成华 东、华北 、 现 东北 、 中、 华 南方互联 电力系统等跨省市区的大 电力系统。 各大 电力系统 之间互有联系 , 输送的功率越 来 越大 。从 以往的运行经验看 , 在电力系统倒 闸 操作 中, 带负荷拉合 闸事故是 危及电网安全运 行的恶性误操 作事故之一 , 如何避免倒闸的误 操作事故对 电网运行质量的影响 , 现对 5 0 V 0k 变 电所 3/2断路 器接线的特点及其操作顺序 探讨如下 。 切换 ; 于完 整串 , 对 任一开 关或母 线检修或 故 障 均 不影 响运 行 , 即使双 母都故障 , 也可 保证 与 系统 最低 限 度 连接 。 缺点 : 二次接线 复杂 。特 别是 C 配置比 T 较 多 。在 重叠 区故 障 , 护 动作 繁 杂 。再 保 者 , 资增 加 , 投 运行 经验还 不够 丰富 。 3 /2断路 器接线 方式的特 点是线 路 比母 线 更 重 要 , 般 采 用 线 路 CVT , 不 是 母 线 一 而 PT。综 上所述 , /2断路 器接线方式 利大 于 3 弊 。针对 这种 接线 方式 的弊 端 , 我们 可以 在 继 电保护 选用 上下 功 夫 , 满足 选择性 、快 在 速 性 、灵 敏性 、可 靠性 的 基础上 , 高继 电 提 保 护动作 的精度 , 简化范 围配置 , 实现单一保 护 , 免 重 复性 。 避 很容 易理 解到线路或变压 器比母 线更为重要 , 所以 , 我们有必要深入 探讨如果断路器两侧隔 离开 关发 生带负荷 拉闸 事故对 系统影 响程度 的 不同 , 确定 拉 闸顺序 。 来 2. . 母线 侧断路器( 5 l 断路器或 21 如 01 5 0l 3断路器) 倒闸操作顺序 ( ) 路或主变停 电过程 的操 作。如带负 1线 荷拉闸事故 发生 在线路或主变侧 , 两侧断路器 跳闸 , 除故障 点 , 切 保证其他 线路 、主变及母 线正常运行 ; 如发生带 负荷拉 闸事故发生在母 线侧 , 线 L 母 所有 断路器跳 闸 , 造成 母线无电 压, 威胁 系统安全运行 。 所以应按 照断路 器( 开 关) … 线路 或主变侧 隔离开关 ( 闸) 一母 刀 线侧隔离开关( 刀闸) 的顺序依次操作。送电操 作 应 与 上述 相 反 的 顺 序 进 行 。 () 2线路 或主变运行 , 母线停 电的操作 。如 带负荷拉闸事故发 生在母 线侧 , 线上所有断 母 路器跳闸 , 切除故障 点 , 保证 线路及主变 正常 运行 ; 如带 负荷拉 闸事 故 发生 在线路 或 主变 侧, 两侧断路 器跳 闸 , 造成线路 或主变停 电事 故, 危及电网安全运行 。所以应按照断路器( 开 关) 一 母线 侧隔离开关 ( 刀闸 ) … 线路或主 变侧隔离开关( 刀闸) 的顺序依次操作。送电操 作应 与上 述相 反 的顺 序进 行 。 () 3线路或主 变运行 , 线侧断路器转入检 母 修 的操作 。如带 负荷拉 闸事 故发生 在线路 或 主 变侧 , 两侧 断路器跳 闸 , 造成线 路或主变 停 电, 影响 系统安全运 行。如带负荷拉 闸事故 发 生在 母线侧 , 母线上 所有断路 器跳闸 , 除故 切

500kV变电站3_2接线T区短引线保护方案探讨_李旭

500kV变电站3_2接线T区短引线保护方案探讨_李旭

第37卷第18期电力系统保护与控制Vol.37 No.18 2009年9月16日 Power System Protection and Control Sep. 16, 2009 500 kV变电站3/2接线T区短引线保护方案探讨李 旭,雷振锋,樊占峰,李宝伟(许继电气公司技术中心,河南 许昌 461000)摘要:针对500 kV变电站3/2接线方式下采用GIS组合电器时,为了防止GIS T区母管发生永久故障时线路保护重合于故障引起GIS母管的再次受损,通常采用出线配置CT线路保护动作范围不包含GIS串内CT与出线CT之间故障的方式来实现,因而针对GIS串内CT与出线CT之间T区故障需考虑配置完备的保护方案;本方案采用三端差动保护方案完成线路投入运行方式下T区故障的保护,采用两端差动保护方案完成对线路退出运行方式下线路隔刀及3/2串内CT之间故障的保护,采用配置过电流原理的线末保护完成对线路退出运行方式下线路隔刀及出线CT之间故障的保护;本方案已在500 kV变电站成熟应用,具有广泛推广的现实意义。

关键词: 3/2接线;短引线保护;T区差动保护Discussion on 3/2 connection T wiring short-lead zone protection scheme in 500 kV substationLI Xu, LEI Zhen-feng, FAN Zhan-feng, LI Bao-wei(Technology Center, XJ Electric Company, Xuchang 461000,China)Abstract: When GIS switchgear used in 500kV substation with the configuration of the 3/2 CT connection mode, for preventing from GIS main pipe derided once again by line relay reclosing on permanent fault on GIS T zone main pipe,the scheme that line relay acting range of line configure CT does not contain GIS string inside CT and CT lines between the T zone,then according to T zone fault in GIS string inside CT and CT lines between the T zone,the complete protection scheme needs to be configured. The paper puts forward a scheme for using three-terminal differential relay to protect the T zone fault with line put into running, and using two-terminal differential relay to protect the fault between line isolator and 3/2 string inside CT with line quit running, and using terminal line protection with over-current relay to protect the fault between line isolator and CT lines between the T zone with line quit running. The scheme has been maturity applied in 500kV substation, so it can be extended widely.Key words: 3/2 connection; protection of short-lead; T differential protection zone中图分类号: TM77 文献标识码:B 文章编号: 1674-3415(2009)18-0102-030 引言500 kV变电站广泛采用3/2接线方式,在出线配置隔离刀闸的方式下通常配置短引线保护。

500K变电站220KV侧主接线运行分析

500K变电站220KV侧主接线运行分析

500K变电站220KV侧主接线运行分析摘要:地区枢纽变电站的主接线形式对电网的经济性和供电可靠性有着至关重要的影响。

500kV变电站的500kV侧主接线通常采用3/2断路器主接线,220kV 侧主接线设计仍然存在一定的争论,对比了多个已经运行多年的500kV变电站,结合理论分析了各种主接线的优劣,并结合多年运行经验为今后的500kV变电站220kV侧的设计提出一些有用建议。

关键词:500K变电站;220KV;主接线;运行分析500kV超高压变电站在电力系统作为枢纽变电站,处于重要的地位,对主接线的可靠性和灵活性有很高的要求。

可靠性是500kV变电站主接线选择的首要因素。

但由于超高压电气设备价格昂贵,过分强调可靠性,势必采用较多的电气设备,增加设备的冗余度,使投资增大。

现在我国超高压电网220kV部分常用的主接线中,应用最为广泛的是双母线(分段)带旁路或3/2断路器主接线。

3/2主接线比双母线(分段)带旁路接线可靠性要高,投资较大,必须综合考虑可靠性和经济性的有机统一。

目前,我国500kV侧广泛应用3/2接线。

对于500kV变电站220kV侧主接线,运行实践的检验尤为重要。

1 500kV变电站220kV侧主接线比较500kV变电站220kV侧主接线,主要是接受区域电网的下网电量,为地区的220kV变电站提供电源,是地区电网的主要电源点,对主接线的可靠性和灵活性有较高要求。

我国的500kV变电站220kV侧主接线主要有双母线(分段)带旁路接线或3/2接线,为更好地总结经验,分别从运行、保护、方式对两种主接线进行比较。

1.1运行方面如表1所示。

1.2保护方面作为地区的枢纽变电站,对保护的要求较高。

但主接线对保护的影响容易被忽视。

经过多年实践比较,不同主接线下对保护功能、配置的影响也是非常重要的。

保护在220kV电压等级保护方面主要包括母差、失灵和线路保护。

1.2.1母差保护在3/2断路器主接线下,保护使用线路的三相电压互感器,母线的电压供同期回路使用,母线仅有一相电压互感器供同期合闸使用,3/2断路器主接线母差没有复合电压闭锁功能,母差保护可靠性降低。

发电厂电气知识点

发电厂电气知识点

发电厂电气总结本文纯手打,不具备任何权威性,请参考者留意!如有错误,请见谅1.电能与其他形式能相比的特点:(1)用于生产电能的一次能源广泛,所以电能可以大规模生产;电能运送简单,便于远距离传输和分配。

(2)电能方便转换,可以方便地转化成其他形式的能;同时使用方便,易于实现有效而精确的控制。

(1)碰撞游离:阴极表面发射出的电子和弧隙中原有的少数电子在强电场的作用下,向阳极方向运动,不断地与其他粒子发生碰撞,将中性粒子中的电子击出,游离成正离子和新的自由电子,新产生的电子也向阳极加速运动,同样也会使它所碰撞的中性点游离,这种游离过程就是碰撞游离。

(2)热游离:电弧形成之后,维持电弧燃烧所需的游离过程。

电弧产生后弧隙的温度很高,具有足够动能的中性质点不规则热运动速度增加,互相碰撞游离出电子和正离子的现象。

(3)复合:是指正离子和负离子互相吸引,结合在一起,电荷互相中和的过程。

两异号电荷要在一定时间内,处在很近的范围内才能完成复合过程,两者相对速度越大,复合可能性就越小。

(4)扩散:是指带电质点从电弧内部逸出而进入周围介质中的现象。

扩散去游离主要有①浓度扩散,指带电质点将会由浓度高的弧道向浓度低的弧道周围扩散,使弧道中的带电质点减少。

②温度扩散,指弧道中的高温带电质点将向温度低的周围介质中扩散5.为什么SF6断路器能在高压、特高压领域独占市场?因为SF6断路器采用的灭弧介质SF6气体具有无毒、不可燃、绝缘性能高和灭弧能力远超过一般介质的特点,且SF6断路器具有优良的开断性能,运行可靠性高,维护工作量少,所以在高压特高压领域独占市场。

6.隔离开关与断路器的主要区别何在?运行中对它们的操作程序应遵循那些重要则?答:主要区别:断路器可有载操作,具有开合电路的专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,用作为接通或切断电路的控制电器。

隔离开关一般是无载操作,没有灭弧装置,其开合电流能力极低,只能用作设备停运后退出工作是断开电路,保证与带电部分隔离,起隔离电压的作用。

变电站的电气主接线

变电站的电气主接线

电流互感器配置原则
凡装有断路器的地方均装 设电流互感器,其二次绕 组的个数按满足测量、计 量和保护要求进线配置,
变压器出口处装设三相 电流互感器,
避雷器的配置原则
当雷暴日超过90天、T 接线路或经常热备用线路, 在线路出口处需装设避雷 器,
采用GIS设备的架空线路 侧必须装设避雷器,
主变压器中性点需装设避 雷器, 每 雷组 器,主但母进线出均线应都装装主设设设变避避避压雷器器三,侧出口处需装 雷器时除外,
保证母接线地及刀电闸器,的检线修线侧母侧为联为单间单接隔接地断地刀路刀闸器闸,两变,线侧压路隔器侧离侧为为
安全,
双双接开接地关地刀配刀闸置闸,单,接地刀闸,
电压互感器配置原则
出线的A相装设单相电压 互感器,以监视和检测线路 侧有无电压,
每组主母线装设三相电 压互感器,以满足测量、 保护装置的要求,
根据《南方电网变电站标准设计》的规定:
220kV采用双母线接线,装设专用母联断路 器,母线是否分段,视出线回路数和短路电流计算 结果确定;
110 kV采用双母线接线,装设专用母联断路 器;
35kV 10kV 宜采用单母线分段接线,无出 线时则宜采用单母线单元接线,
220kV变电站电气主接线图
10kV
隔离开关配置原则1
接 电 隔在 压 离母 互 开线 感 关上器,的可避合断离时雷用路开隔器一器关离和组两,电以侧源便均,断应路配器置检隔修
隔离开关配置原则2
主变压器中性点应通过 隔离开关接地,
接地刀闸配置原则
每段母线根据长度配主置出变线进间线隔间断隔路断器路两器侧两隔侧离隔开离
1~2独母立线的设接备地隔刀离闸开,以关关均均配配配单置置接接地地刀刀闸闸,其,其中中::母母

500kV变电站电气部分设计

500kV变电站电气部分设计

500kV变电站电气部分设计毕业设计说明书题目:500kV变电站电气部分设计院系名称:___学生姓名:指导教师:目录1.绪论1.1 课题研究意义本文的研究意义在于对500kV变电站电气部分的设计进行详细的探讨,为电力行业的发展提供技术支持。

1.2 国内外发展现状目前,我国电力行业正处于快速发展的阶段,对于500kV 变电站电气部分的设计要求日益提高。

同时,国外也在不断推进电力技术的发展,为我国电力行业的发展提供了借鉴和启示。

2.电气主接线的确定2.1 主接线的选取原则与设计依据在确定主接线时,需要考虑电流负荷和安全等因素,同时也要遵循相关的设计规范和标准。

2.2 各电压等级侧接线选择在选择各电压等级侧接线时,需要考虑电压等级和电流负荷等因素,同时也要遵循相关的设计规范和标准。

3.负荷计算与变压器选择3.1 主变压器选择在选择主变压器时,需要考虑负荷情况和电压等级等因素,同时也要遵循相关的设计规范和标准。

3.2 站用变压器的选择在选择站用变压器时,需要考虑负荷情况和电压等级等因素,同时也要遵循相关的设计规范和标准。

4.最大持续工作电流以及相关短路电流计算4.1 最大持续电流计算在计算最大持续电流时,需要考虑负荷情况和电气设备的额定电流等因素。

4.2 确定短路电流点以及短路电流的计算在确定短路电流点和计算短路电流时,需要考虑电气设备的额定电流和短路电流等因素。

5.主要电气设备的选择与校验5.1 方案设计设备的选取依据在选择方案设计设备时,需要考虑设备的技术指标和性能等因素,同时也要遵循相关的设计规范和标准。

5.2 断路器选择在选择断路器时,需要考虑额定电流和短路电流等因素,同时也要遵循相关的设计规范和标准。

本文主要研究的是变电站的设计和建设,这是电力行业中非常重要的一环。

随着电力需求的不断增长,变电站的建设变得越来越紧迫。

因此,对于变电站的设计和建设进行深入研究,可以提高电力行业的效率和可靠性。

2.变电站的设计原理2.1变电站的基本原理变电站是电力系统中的重要组成部分,主要用于将高压电能转换成低压电能,以满足用户的需求。

500KV变电站设备、接线特点及保护配置原则

500KV变电站设备、接线特点及保护配置原则

500KV变电站仿真培训总结9月1日至9月14日,在华东电力培训中心进行了500KV变电站仿真培训取证,期间主要对500KV变电站设备的接线特点及保护配置原则;线路、开关保护;远动自动化;秦山500KV开关站典型操作及保护运行方式;500KV系统避雷器及运行操作过电压;母线保护;发变组保护;电网安全分析等进行了学习,现将学习情况总结如下:一、500KV变电站设备、接线特点及保护配置原则1、500KV 1个半断路器接线的主要特点:目前华东电网的主网架由电厂500KV升压站、独立500KV变电站通过架空输电线组成。

这些500KV升压站、变电站的开关主要采用1个半断路器的接线方式,但主要还是通过传统的敞开式接线方式,这种方式占地面积较大。

采用GIS的接线方式可以大幅度减少占地面积,减少维护量。

一个半断路器的接线方式优点:*供电稳定可靠。

每一串由三台断路器加二条公用母线及一条进线和一条出线组成一个完整串,正常合环运行,当发生一条母线甚至二条母线故障或开关故障都不会导致线路停电,这种接线方式体现出线路比母线更重要。

特别是加装线路、变压器闸刀使线路和变压器检修时断路器继续合环运行,提高了供电可靠性。

*运行调度灵活:正常运行时两组母线和所有开关都投入运行,从而形成多环路的供电方式。

一个半断路器接线方式的主要缺点:*二次线复杂。

在继电保护中需要采用CT“和电流”的接线方式,线路保护采用线路的CVT,不采用母线的PT。

*投资较大。

500KV断路器是昂贵的设备。

2、500KV联合开关站主接线特点:*通过充油电缆直接与主变高压侧相连*三、四串采用交叉布置*预留两串*二期是线变串、三期线线串*采用一个半断路器接线方式(线路、主变闸刀断开后,短线保护自投)*线路或主变保护用的是CT “和电流”*线路保护用电容式(三相)电压互感器(CVT),母线采用(单相)电压互感器(CVT),这种接线方式突出了线路比母线更重要。

3、开关在检修状态下特别注意退CT流变端子的操作顺序若需要将500KV改到检修状态并对相应CT进行检修,则为了防止保护误动,在进行流变端子退出操作时一定要按先退流变端子后短接操作顺序进行操作,因为一个半接线方式引入继电保护的是采用“和电流”方式,若先短接后退流变端子会导致保护误动作,这一操作原则同样适用于发变组保护中。

500KV变电站电气接线讲解

500KV变电站电气接线讲解

500KV 变电站电气主接线及倒闸操作治理1、概念1.1变电站电气主接线,是指由变压器、开关〔一般指断路器QF 〕、刀闸〔一般指隔离开关QS 〕、互感器〔CT 、CT 〕、母线、避雷器〔F 、老的用B 〕等电气设备按确定的挨次连接,用来集合和安排电能的电路,也称为一次设备主接线图。

1.2把这种全部由一次设备组成的电路绘制在图纸上,就是我们的电气主接线图。

在电气主接线图中,全部的电气设备均用国家和电力行业规定的文字和符号表示,并且按它们的“正常状态”画出。

所谓“正常状态”,就是电气设备处在全部电路无电压及无任何外力作用下的状态,开关和刀闸均在断开位置。

1.3需要留意的是,电气设备的和是两个不同的概念,正常状态有两层含义:一是作为电气主接线图来讲所包含的上面讲到的一层含义,也就是电气设备处在全部电路无电压及无任何外力作用下的状态,开关和刀闸均在断开位置。

另外一层含义,是指设备的各项功能正常,在额定的电压、电流作用下能长期运行的一种状态。

而正常运行方式是指在本站设备或系统正常运行状况下,管辖调度所规定的常常承受的一种运行方式。

只要本站设备正常,就必需依据有关调度规定的方式运行,除有管辖权的调度以外的其他人员是无权转变设备的运行方式的。

与正常运行方式相对应的是非正常运行方式,这是指因设备故障、停电检修、本站或系统事故处理而临时转变设备的正常运行方式。

2、对电气主接线的要求500KV 变电站在电网中的地位格外重要,尤其是随着三峡工程的建设,全国“西电东送,南北互供”大电网的逐步建成,它的安全牢靠运行直接影响到大电网的安全稳定运行。

因此对500KV 变电站一次设备主接线的要求较高。

变电站电气主接线,承受较多的是双母线单分段带旁路加3/2接线、双母线双分段带旁路加3/2 接线,也有个别500KV 变电站承受的是双母线单分段带旁路加菱形接线〔华东地区〕。

随着我国电气设备制造水平的逐年提高,加上节约用地和工程经济性等方面的考虑,目前500KV 变电站的电气主接线根本承受双母线单分段加上3/2 接线方式。

500kv变电站主变保护继电保护配置及二次回路接线

500kv变电站主变保护继电保护配置及二次回路接线

500kv变电站主变保护继电保护配置及二次回路接线摘要500 kV超高压大型变电站中的主变压器是变电站的核心元件,主变压器的形式和参数,保护配置及检验,对电网的安全可靠运行也有着重要影响。

文章讨论了500 kV变电站主变压器选型及一次接线的选择、主变保护的配置、主变二次回路CT、PT的接线原则、主变保护的检验方法及运行过程中的注意事项。

关键词:主变压器;变压器保护;一次接线;检验AbstractMain transformer is a core component of the 500 kv EHV substation,The form and parameters of main transformer,Protection configuration and testing,have a significant impact to the safe and reliable operation of the grid.This article discuss the choice of mainly transformer in 500kv transformer substation and primary connection、configuration of mainly transformer protect、CT and PT connection principle in secondary thermal system、examine method of main transformer protection and some notes in running process.Keywords: Mainly Transformer;Transformer Protection;Primary Connection; Examine.目录1 引言 (1)2 500kv变电站主变选型 (1)2.1 容量的选择 (1)2.2 三相共体变压器与单相变压器组 (1)2.3 普通变压器与自耦变压器 (2)2.4 调压方式 (3)2.5 冷却方式的选择 (4)2.6 三次侧容量及电压的选择 (5)2.6.1 容量的选择 (5)电压的选取 (5)2.7 对损耗值的要求 (6)2.8 尺寸与质量 (7)抗短路能力 (7)阻抗参数 (7)2.11 扩建第二组变压器需考虑的问题 (8)变压器油 (9)变压器附件 (10)3 500kv变电站常用典型一次接线 (10)4 主变保护配置 (12)4.1 差动保护 (14)4.1.1 纵联差动保护 (14)4.1.2 分侧差动保护 (16)4.3 后备保护 (18)4.2.1 高压侧及中压侧相间阻抗保护分析 (18)4.2.2 低压侧过流保护 (18)4.3 过励磁保护 (19)4.3.1 原理概述 (19)4.4 变压器瓦斯保护 (22)5 主变保护二次回路CT、PT接线原则 (22)5.1 电流互感器 (22)5.2 电压互感器 (23)6 主变保护的检验方法 (24)6.1 主变压器差动保护的检验 (24)6.2 变压器瓦斯保护的检验 (25)6.2.1 瓦斯继电器的检验 (25)6.2.2 瓦斯保护的安装检验 (26)瓦斯保护的检验周期 (27)6.3 过激磁保护检验 (27)6.4 功率方向保护的检验 (27)7 运行中的注意事项 (28)8 结束语 (29)参考文献: (29)引言变压器是变电站最重要的电气设备之一,它的安全可靠运行关系到变电站乃至电网的安全稳定。

500KV变电站接线方式及其倒闸顺序分析

500KV变电站接线方式及其倒闸顺序分析

摘要:文章介绍了500KV 高压输变电系统中变电站3/2接线的特点,并对常见的带负荷误操作事故的危害性作出分析,同时就3/2接线的几种运行方式中的倒闸操作顺序进行了讨论。

其目的:透明接线方式的优缺点,有理由彻底重视倒闸操作的重要性,提高变电所运行质量。

关键词: 3/2接线特点误操作事故危害倒闸操作顺序建设性意见日前,随着我国经济的高速发展,电力工业正前瞻性的朝着大电网、大容量和高电压的方向发展。

全国联网工程不断健康向前推进,现已形成华东、华北、东北、华中、南方互联电力系统等跨省市区的大电力系统。

各大电力系统之间互有联系,输送的功率越来越大。

据有关资料统计,现全国联网装机容量超过1.4亿千瓦,如此大的装机容量,在客观上要求它需要一个稳定的运行环境。

若电网瓦解和大面积停电事故,不仅会造成重大经济损失,影响人民生活和社会稳定。

同时,我们更要上升到政治角度来考虑因电网瓦解或大面积停电停电从而可能会影响到国家的安全问题。

美、加大停电就很好的给我们敲响了警钟,是活教材。

从以往的运行经验看,在电力系统倒闸操作中,带负荷拉合闸事故是危及电网安全运行的恶性误操作事故之一,如何避免倒闸的误操作事故对电网运行质量的影响,现对500KV变电所3/2断路器接线的特点及其操作顺序探讨如下:一、3/2接线特点500KV变电所在高压系统中一般担负汇集电能、重新分配负荷、输送功率等多重任务。

因此它是高压输电系统中的重要地位非常关键。

目前我国500KV变电所电气主接线一般采用双母线四分段带旁路和3/2断路器的接线方式。

3/2断路器接线方式的运行优点日渐凸现,所以,现在用3/2接线方式的居多。

3/2断路器接线如图1、主要运行方式:1)、正常运行方式。

两组母线同时运行,所有断路器和隔离开关均合上;2)、线路停电、断路器合环的运行方式。

线路停电时,考虑到供电的可靠性,常常将检修线路的断路器合上,检修线路的隔离开关拉开;3)、断路器检修时运行方式。

500KV变电所电气一次设计(详细,规范模板)

500KV变电所电气一次设计(详细,规范模板)

Key words: 500kV substation; main connection;sformer
500kv 变电站电气一次部分初步设计


1 变电站原始资料......................................................................................................... 1 2 设计说明书............................................................................................................... 2 2.1 电气主接线选择 .......................................................................................................... 2 2.1.1 主接线基本要求 ................................................................................................ 2 2.1.2 主接线设计原则及步骤 .................................................................................... 2 2.1.3 主接线基本接线形式及特点 ............................................................................ 4 2.1.4 主接线方案确定 ................................................................................................ 7 2.2 站用电选择 ................................................................................................................ 10 2.2.1 站用变压器选择 .............................................................................................. 10 2.2.2 站用电接线 ...................................................................................................... 10 2.3 无功补偿装置选择 .................................................................................................... 11 2.3.1 无功补偿装置选择要求 .................................................................................. 11 2.3.2 无功补偿装置选择结果 .................................................................................. 12 2.4 主变压器选择 ............................................................................................................ 12 2.4.1 主变压器台数和容量确定 .............................................................................. 12 2.4.2 主变压器形式和结构选择原则 ...................................................................... 12 2.4.3 主变压器选择结果 .......................................................................................... 13 2.5 短路电流计算 .......................................................................................................... 13 2.5.1 短路电流计算原则 .......................................................................................... 13 2.5.2 短路电流计算结果 .......................................................................................... 14 2.6 主要电气设备选择 .................................................................................................... 14 2.6.1 断路器选择 ...................................................................................................... 15 2.6.2 隔离开关选择 .................................................................................................. 16 2.6.3 电流互感器选择 .............................................................................................. 17 2.6.4 电压互感器选择 .............................................................................................. 19 2.6.5 导体选择 .......................................................................................................... 21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

500KV变电站电气主接线及倒闸操作管理1、概念1.1变电站电气主接线,是指由变压器、开关(一般指断路器QF)、刀闸(一般指隔离开关QS)、互感器(CT、CT)、母线、避雷器(F、老的用B)等电气设备按一定的顺序连接,用来汇集和分配电能的电路,也称为一次设备主接线图。

1.2把这种全部由一次设备组成的电路绘制在图纸上,就是我们的电气主接线图。

在电气主接线图中,所有的电气设备均用国家和电力行业规定的文字和符号表示,并且按它们的“正常状态”画出。

所谓“正常状态”,就是电气设备处在所有电路无电压及无任何外力作用下的状态,开关和刀闸均在断开位置。

1.3需要注意的是,电气设备的正常状态和正常运行方式是两个不同的概念,正常状态有两层含义:一是作为电气主接线图来讲所包含的上面讲到的一层含义,也就是电气设备处在所有电路无电压及无任何外力作用下的状态,开关和刀闸均在断开位置。

另外一层含义,是指设备的各项功能正常,在额定的电压、电流作用下能长期运行的一种状态。

而正常运行方式是指在本站设备或系统正常运行情况下,管辖调度所规定的经常采用的一种运行方式。

只要本站设备正常,就必须按照有关调度规定的方式运行,除有管辖权的调度以外的其他人员是无权改变设备的运行方式的。

与正常运行方式相对应的是非正常运行方式,这是指因设备故障、停电检修、本站或系统事故处理而暂时改变设备的正常运行方式。

2、对电气主接线的要求2.1保证供电的可靠性和电能质量。

2.2具有运行方式上的灵活性和倒闸操作上方便性。

2.3具有经济性。

2.4具有发展和扩建的可能性。

500KV变电站在电网中的地位非常重要,尤其是随着三峡工程的建设,全国“西电东送,南北互供”大电网的逐步建成,它的安全可靠运行直接影响到大电网的安全稳定运行。

因此对500KV变电站一次设备主接线的要求较高。

目前,我国500KV 变电站电气主接线,采用较多的是双母线单分段带旁路加3/2接线、双母线双分段带旁路加3/2接线,也有个别500KV变电站采用的是双母线单分段带旁路加菱形接线(华东地区)。

随着我国电气设备制造水平的逐年提高,加上节约用地和工程经济性等方面的考虑,目前500KV变电站的电气主接线基本采用双母线单分段加上3/2接线方式。

3、常用的几种电气主接线3.220KV部分3.1双母线单分段:3.2正常运行方式:母联开关和分段开关全部合上,即三条母线并联运行,线路开关通过两组母线侧刀闸中的一组分别接在三条母线上运行。

一个变电站一次设备的运行方式,都是以调度规定的方式运行,原则是,属于电源元件的设备必须分别接在不同编号的母线上,平行线路应分别接在不同编号的母线上。

3.3非正常运行方式:3.3.1任意一条或两条母线停电检修,则该母线上所连接的电气设备均需要倒至另外的母线上运行,以保证供电的连续性。

如母联开关、分段开关检修,母联刀闸、分段开关的刀闸或母线PT刀闸检修,母线设备更换改造等。

3.3.2任意元件由运行转为热备用、冷备用或检修状态,则该单元包括开关、刀闸、PT、CT、阻波器、结合滤波器等都必须从系统中退出运行。

3.3.3任意元件由运行转为热备用、冷备用或检修状态,有可能使母线负荷不平衡,而必须暂时调整母线上所接元件的运行方式,那么这种方式也是一种非正常运行方式。

3.3.4由于扩建、改造而增加了元件,在送电调试过程中,必须由母联开关或分段开关串带新建元件的开关送电,暂时使得母线改变运行方式,这种方式也是一种非正常运行方式。

如新建线路投产、设备换型改造等。

3.3.5母联开关串带故障的线路开关或主变中压侧开关运行3.4双母线单分段接线方式的评价优点:1、运行方式灵活,母线轮流停电检修,或者线路单元母线侧的刀闸检修,都不会中断对用户的供电;2、相对于母线不分段而言,当其中一条母线故障,仅仅跳开该母线上的开关,可以将停电范围压缩在最小范围内;3、相对于双母线单分段带旁路的接线方式而言,其二次回路接线简单,倒闸操作较简单,并且占地面积减少,节约了工程投资。

缺点:线路单元的开关、出线刀闸、CT、阻波器、结合滤波器等发生故障时,必须中断对外供电,4.500KV部分4.1一个半开关接线(或3/2接线)的正常运行方式4.1.1500KV仅有一个完整串。

如斗笠变即如此。

4.1.2500KV有两串,其中一串为不完整串。

如孝感变一期。

4.1.3500KV有两个完整串,如凤变。

以上运行方式,都是由相关调度在设备投运时加以规定,称为正常运行方式。

相反,与此不相符的运行方式都称为非正常运行方式。

4.2典型的非正常运行方式举例4.2.1500KV单母线运行方式4.2.2500KV开环运行4.2.3 连接在500两台开关中间的元件停电。

4.3一个半开关接线(或3/2接线)运行方式的评价优点:1、有高度的供电可靠性,任意元件均由两台开关供电,其中任意一台开关故障或停电检修,均不会影响接在这两台开关之间的元件正常运行。

2、母线故障或停电检修,也不会导致出线停电。

运行调度灵活,由于有多环路供电,大大减少对外停电的几率。

缺点:二次接线复杂,如过电压、电抗器保护动作或开关失灵时,收信直跳(加就地判据)、远跳以及失灵保护等,对保护的“四性”要求很高(可靠性、速动性、选择性、灵敏性),因而投资大,如果采用组合电器(如GIS),虽然减少了占地面积,但设备投资较分散式而言还要大。

5. 主变低压侧部分主变低压侧电压有20KV、35KV两种,低压侧接线方式较多,但都带有所用变压器,无功设备有电抗器、电容器,低压侧接线方式主要有两种:5.1可控硅控制投切的电容器、电抗器组与所用变并联接入主变低压侧。

5.1.1 评价:无功设备运行方式较灵活,安装在负荷中心的降压主变,其低压侧并联由可控硅控制投切的电容器、电抗器组,能满足无功就地平衡的原则,对于改善电压质量是不言而喻的。

但是,该接线方式较固定投切电容器、电抗器组而言,一次、二次设备投资大,运行维护成本高,检修时间长,并且电容器组的容量不能做的过大(一般最大为120Mvar),否则,当主变故障时,将提供2次和5次谐波,影响主变保护动作的正确性。

5.2所用变与固定电容器组、电抗器组并联接入主变低压侧。

5.2.1 评价:较之上述接线方式而言,设备投资小,维护成本低,检修时间缩短,主要应用于离负荷中心较远的枢纽变电站,用来吸收系统剩余无功,不需要频繁调节无功。

6、倒闸操作的管理6.1 倒闸操作我们知道,变电站电气设备分为四种状态,即运行状态、热备用状态、冷备用状态、检修状态。

这四种状态是可以相互倒换的,这种使电气设备从一种状态转换到另外一种状态的过程,就叫做倒闸操作,其目的是改变系统运行方式或设备使用状态。

倒闸操作必须根据调度管辖范围,实行分级管理。

6.2 解、合环操作将环状运行的电网解开,变为非环状的电网就是解环操作。

解环操作应先检查解环点的有功、无功潮流,确保解环后系统各部分电压在规定的范围内,不超过系统稳定和设备容量的限额。

合环操作就是合上网络内某台开关,将网络改为环路运行,因此,合环操作必须相位相同,操作前应考虑合环点两侧的相角差和电压差,确保合环后系统稳定和设备不超名牌运行。

6.3变压器操作变压器投运时,一般先从电源侧对其充电,后和上负荷侧开关,也就是在高压侧停(送)电,中压侧解(合)环,在此之前应将低压侧的负荷停电或转移,变压器停电操作顺序与此相反。

向空载变压器充电时,充电开关必须有完备的保护,并且有足够的灵敏度,同时还要考虑励磁涌流对保护的影响,非电量保护在变压器送电后应将其出口跳闸压板退出,只投信号。

500KV主变的中性点在送点前必须牢固接地,冷却器应在充电前半小时启动运行。

6.4 开关的操作开关合闸前,应检查有关保护已按规定加用,合闸后应检查开关三相均已合上,三相电流基本平衡。

用旁路开关代其他开关运行前,应先将旁路开关保护按所代开关的保护定值整定并加用,确认旁路开关三相均已合上后,才能断开被代路开关。

如果开关的遮断容量不能满足安装点短路容量,该开关的单相重合闸必须停用。

6.5 刀闸的操作刀闸的操作必须在开关三相断开后进行,允许用刀闸进行以下操作:6.5.1 推、拉无故障的PT(电压互感器)和避雷器(F、或老版本B)(无缺陷和无雷雨时)。

6.5.2 用刀闸断、合变压器中性点(只对小电流接地系统而言,并且在该系统无接地故障发生时才能如此操作)。

6.5.3 推、拉经开关或刀闸闭合的旁路电流(在推、拉经开关闭合的旁路电流时,先将开关的操作电源退出)。

6.5.4 推、拉一个半开关接线方式的母线环流(同样,开关跳闸电源要退出)。

一般情况下,不进行500KV刀闸推、拉短线和母线的操作,如需进行此类操作,必须经过本单位总工同意。

6.6线路操作6.6.1 220KV及以上线路停、送电操作时,都应考虑电压和潮流的变化,特别注意使非停电线路不过负荷运行,使线路输送的功率不超过稳定极限,停送电线路的末端电压不超过允许值。

对长线充电时,应防止发电机自励及线路末端电压的上升,使非停电线路的保护不误动。

6.6.2 对线路充电时,充电线路的开关必须至少有一套完备的继电保护,充电端必须有变压器中性点接地,以提高保护灵敏度。

6.6.3 检修后相位可能发生变化的线路必须校对相位,防止短路故障的发生。

6.7 500KV并联电抗器操作6.7.1并联电抗器送电前,其保护(含非电量出口跳闸保护)、远方跳闸装置必须正常加用。

6.7.2 必须先投电抗器,再送500KV线路,也就是线路不能脱离电抗器单独运行。

6.7.3 电抗器停电时,必须先将其所在的500KV线路停电后才能退出电抗器。

相关文档
最新文档