与角平分线有关的基本模型
与角平分线有关的基本模型
![与角平分线有关的基本模型](https://img.taocdn.com/s3/m/623168b9227916888586d78d.png)
模型 2 利用角平分线,作辅助线构造全等三角形 ①过角平分线上的点作角两边的垂线 如图 1,BO 是∠ABC 的平分线,过点 O 作 OE⊥AB 于点 E,OF⊥BC 于点 F,则 OE=OF,△BEO≌△BFO.
图1
②过角平分线上任意一点作角平分线的垂线 如图 2,BO 是∠ABC 的平分线,EF⊥BO,则△BEO≌△BFO. ③采用截长补短法构造全等三角形
12.感知:如图 1,AD 平分∠BAC.∠B+∠C=180°,∠B=90°,易 知:DB=DC.
探究:如图 2,AD 平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°, 求证:DB=DC.
1.(2019·大庆)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外
角∠ACM 的平分线,BE 与 CE 相交于点 E.若∠A=60°,则∠BEC=( B )
A.15°
B.30°
C.45°
D.60°
2.(2018·黄石)如图,在△ABC 中,AD 是 BC 边上的高,AE,BF 分
A.2+ 2 B. 2+ 3 C.2+ 3 D.3
9.(2019·永州)已知∠AOB=60°,OC 是∠AOB 的平分线,点 D 为 OC 上一点,过 D 作直线 DE⊥OA,垂足为 E,且直线 DE 交 OB 于点 F,如图 所示.若 DE=2,则 DF= 4 .
10.(2019·威海改编)如图,在四边形 ABCD 中,AB∥DC,过点 C 作 CE⊥BC,交 AD 于点 E,且 EC 平分∠BED.连接 BE.若 AB=6,则 CD= 3.
11.如图,在△ABC 中,∠ACB=2∠B,∠1=∠2,求证:AB=AC +CD.
证明:延长 AC 至点 E,使 AE=AB,连接 DE. ∵AB=AE,∠1=∠2,AD=AD, ∴△ABD≌△AED(SAS).∴∠B=∠E. ∵∠ACD=∠E+∠CDE,∠ACD=2∠B, ∴∠ACD=2∠E.∴∠E=∠CDE. ∴CD=CE.∴AB=AE=AC+CE=AC+CD.
初中数学常见模型之角平分线四大模型
![初中数学常见模型之角平分线四大模型](https://img.taocdn.com/s3/m/0eb96b9cf18583d04864591e.png)
角平分线四大模型模型1 角平分线上的点向两边作垂线如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。
结论:PB=PA 。
模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
模型实例(1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6,BD=4,那么点D到直线AB 的距离是 ; (2)如图②,∠1=∠2,+∠3=∠4。
求证:AP 平分∠BAC 。
热搜精练1.如图,在四边形ABCD 中,BC>AB ,AD=DC ,BD 平分∠ABC 。
求证:∠BAD+∠BCD=180°。
2.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点 P ,若∠BPC=40°,则∠CAP= 。
N M OAB P 2图4321A CP B D AB C图1A B DC模型2 截取构造对称全等如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。
结论:△OPB ≌△OPA 。
模型分析利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。
利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
模型实例(1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB+PC 与AB+AC 的大小,并说明理由;(2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较 PC-PB 与AC-AB 的大小,并说明理由。
热搜精练1.已知,在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,AC=16,AD=8。
求线段BC 的长。
A B DCPP O N M B A 图2DP AB C D C 1图P B A ABCD2.已知,在△ABC 中,AB=AC ,∠A=108°,BD 平分∠ABC 。
微专题(六) 与角平分线有关的四种基本模型 课件(共19张PPT) 2024年中考数学总复习专题突破
![微专题(六) 与角平分线有关的四种基本模型 课件(共19张PPT) 2024年中考数学总复习专题突破](https://img.taocdn.com/s3/m/c20964f10129bd64783e0912a216147916117e7f.png)
5
.所以
6
= 4 =
10
.
3
10
【答案】
3
图34
17
微专题(六) 与角平分线有关的四种基本模型
模型四 角平分线+轴对称
构造
复习讲义
全等三角形
6.如图6,在 △ 中, ∠ = 108∘ , = ,
图6
平分 ∠ ,交 于点 .求证: = + .
B. 2 + 3
C. 2 + 3
D.3
图2
12
微专题(六) 与角平分线有关的四种基本模型
模型二 角平分线+角平分线的垂线
复习讲义
构造
等腰三角形
3.如图3,在 △ 中, < , 平分
∠ , ⊥ 于点 ,连接 .若 △ 的
面积为4,求 △ 的面积.
复习讲义
学习至此,请完成微专题练习(六) (第267页)
10
微专题(六) 与角平分线有关的四种基本模型
复习讲义
微专题练习(六)
与角平分线有关的四种基本模型
模型一 角平分线+边的垂线
构造
双垂直
1.如图1, 平分 ∠ , ⊥ 于点 ,
△ = 8 , = 2 , = 4 ,则 的长是
= 8 ,所以 = 10 .所以 : : = : : = 3: 4: 5 .设
16
微专题(六) 与角平分线有关的四种基本模型
复习讲义
= = 3 ,则 = = 4 , = 5 .因为 = 10 ,所以
3 + 5 + 4 = 10 .所以 =
角平分线四大模型总结+习题+解析(最全版)
![角平分线四大模型总结+习题+解析(最全版)](https://img.taocdn.com/s3/m/8386570a974bcf84b9d528ea81c758f5f61f298f.png)
⾓平分线四⼤模型总结+习题+解析(最全版)⾓平分线四⼤辅助线模型⾓平分线的性质为证明线段或⾓相等开辟了新的途径,同时也是全等三⾓形知识的延续,⼜为后⾯⾓平分线的判定定理的学习奠定了基础.涉及到⾓平分线的考点主要是性质、判定以及四⼤辅助线模型,在初⼆上期中、期末考试中都是经常考察的⽅向。
⾓平分线性质:⾓平分线上的点到⾓两边的距离相等.⾓平分线判定:到⾓的两边距离相等的点在⾓的⾓平分线上.四⼤模型1、⾓平分线+平⾏线,等腰三⾓形必出现已知:OC平分∠AOB,CD∥OB交OA于D.则△ODC为等腰三⾓形,OD=CD.2、⾓平分线+两垂线,线等全等必出现已知:OC平分∠AOB.辅助线:过点C作CD⊥OA,CE⊥OB.则CD=CE,△ODC ≌△OEC.3、⾓平分线+⼀垂线,中点全等必出现已知:OC平分∠AOB,DC垂直OC于点C.辅助线:延长DC交OB于点E.则C是DE的中点,△ODC ≌△OEC.4、⾓平分线+截长补短线,对称全等必出现已知:OC平分∠AOB,截取OE=OD,连接CD、CE.则△ODC和△OCE关于OC对称,即△ODC ≌△OEC.【核⼼考点⼀】⾓平分线的性质与判定1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:163.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB ,另⼀把直尺压住射线OA 并且与第⼀把直尺交于点P ,⼩明说:“射线OP 就是BOA ∠的⾓平分线.”他这样做的依据是( )A .⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B .⾓平分线上的点到这个⾓两边的距离相等C .三⾓形三条⾓平分线的交点到三条边的距离相等D .以上均不正确6.(2019秋?梁平区期末)如图,若BD AE ⊥于B ,DC AF ⊥于C ,且DB DC =,40BAC ∠=?,130ADG ∠=?,则DGF ∠=.7.(2018春?开江县期末)如图,在Rt ABC ?中,90C ∠=?,以顶点A 为圆⼼,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆⼼,⼤于12MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( ) A .CAD BAD ∠=∠B .若2CD =,则点D 到AB 的距离为2C .若30B ∠=?,则CDA CAB ∠=∠D .2ABD ACD S S ??=8.(2014秋?西城区校级期中)如图,点E 是AOB ∠的平分线上⼀点,EC OA ⊥,ED OB ⊥,垂⾜分别是C ,D .下列结论中正确的有( )(1)ED EC =;(2)OD OC =;(3)ECD EDC ∠=∠;(4)EO 平分DEC ∠;(5)OE CD ⊥;(6)直线OE 是线段CD 的垂直平分线.A .3个B .4个C .5个D .6个9.(2019春?杜尔伯特县期末)如图:在ABC ?中,90C ∠=?,AD 是BAC ∠的平分线,DE AB ⊥于E ,F 在AC 上,BD DF =,证明:(1)CF EB =.(2)2AB AF EB =+.10.(2019秋?垦利区期中)如图,ABC⊥⊥且平分BC,DE AB中,AD平分BAC∠,DG BC于E,DF AC⊥于F.(1)判断BE与CF的数量关系,并说明理由;(2)如果8AB=,6AC=,求AE、BE的长.11.(2017秋?遂宁期末)某地区要在区域S内(即COD∠内部)建⼀个超市M,如图所⽰,按照要求,超市M到两个新建的居民⼩区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)【核⼼考点⼆】⾓平分线+⾓两边垂线12.(2019秋?肥城市期末)如图,//AB CD ,BP 和CP 分别平分ABC ∠和DCB ∠,AD 过点P ,且与AB 垂直,垂⾜为A ,交CD 于D ,若8AD =,则点P 到BC 的距离是.13.(2015?湖州)如图,已知在ABC ?中,CD 是AB 边上的⾼线,BE 平分ABC ∠,交CD 于点E ,5BC =,2DE =,则BCE ?的⾯积等于( )A .10B .7C .5D .414.(2010秋?涵江区期末)如图所⽰,在Rt ABC ?中,90C ∠=?,BC AC =,AD 平分BAC ∠交BC 于D ,求证:AB AC CD =+.15.(2012秋?蓬江区校级期末)如图,已知90∠=∠=?,M是BC的中点,DM平分B C∠.求证:ADC(1)AM平分DAB∠;(2)DM AM⊥.16.(2016秋?西城区校级期中)已知:如图,12∠=∠,P为BN上的⼀点,PF BC⊥于F,=,PA PC(1)求证:180∠+∠=?;PCB BAP(2)线段BF、线段BC、线段AB之间有何数量关系?写出你的猜想及证明思路.【核⼼考点三】⾓平分线+垂线17.(2017秋?和平区校级⽉考)如图.在ABC ?中,BE 是⾓平分线,AD BE ⊥,垂⾜为D ,求证:21C ∠=∠+∠.18.(2013秋?昌平区期末)已知:如图,在ABC ?中,AD 平分BAC ∠,CD AD ⊥于点D ,DCB B ∠=∠,若10AC =,6AD=,求AB 的长.19.如图所⽰,ABC ?中,ACB ABC ∠>∠,AE 平分BAC ∠,CD AE ⊥于D ,求证:ACD B ∠>∠.20.已知:如图,在ABC ?中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21.(2019秋?下陆区期中)如图,BD 是ABC ∠的⾓平分线,AD BD ⊥,垂⾜为D ,20DAC ∠=?,38C ∠=?,则BAD ∠=.22.(2019秋?曲⾩市校级⽉考)如图,在ABC ?中,AB AC =,90BAC ∠=?,BD 平分ABC ∠交AC 于D ,过C 作CE BD ⊥交BD 延长线于E .求证:12CE BD =.23.(2019?沂源县⼀模)(1)如图(a)所⽰,BD、CE分别是ABC的外⾓平分线,过点A作AD BD⊥,AE CE⊥,垂⾜分别为D、E,连接DE,求证:1() 2DE AB BC AC=++;(2)如图(b)所⽰,BD、CE分别是ABC的内⾓平分线,其他条件不变,DE与ABC三边有怎样的数量关系?并证明这个数量关系;(3)如图(c)所⽰,BD为ABC的内⾓平分线,CE为ABC的外⾓平分线,其他条件不变,DE与ABC三边⼜有怎样的数量关系?并证明这个数量关系.24.(2017秋?夏⾢县期中)如图,在ABC ?中,ABC ∠、ACB ∠的平分线相交于F ,过F 作//DE BC ,交AB 于D ,交AC 于E ,那么下列结论:①BDF ?、CEF ?都是等腰三⾓形;②DE DB CE =+;③AD DE AE AB AC ++=+;④BF CF =.正确的有.25.(2019秋?垦利区期末)如图,平⾏四边形ABCD 中,3AB cm =,5BC cm =;,BE 平分ABC ∠,交AD 于点E ,交CD 延长线于点F ,则DE DF +的长度为.26.(2010秋?海淀区期末)如图,BD 是ABC ?的⾓平分线,//DE BC ,DE 交AB 于E ,若AB BC =,则下列结论中错误的是( )A .BD AC ⊥B .A EDA ∠=∠C .2AD BC =D .BE ED =27.如图,若BD 、CD 分别平分ABC ∠和ACB ∠,过D 作//DE AB 交BC 于E ,作//DF AC 交BC 于F ,求证:BC 的长等于DEF ?的周长.28.(2018秋?邳州市期中)如图,在四边形ABCD中,对⾓线AC平分BAD >,∠,AB AD 下列结论正确的是()A.AB AD CB CD->-B.AB AD CB CD-=-C.AB AD CB CD-<-D.AB AD-与CB CD-的⼤⼩关系不确定29.(2012?⿇城市校级模拟)在ABC∠的外⾓平分线,P是AD上的任意中,AD是BAC⼀点,试⽐较PB PC+与AB AC+的⼤⼩,并说明理由.30.(2018秋?万州区期中)已知:如图,在四边形ABCD中,AC平分BAD ∠,CE AB⊥于=+.E,且180B D∠+∠=?,求证:AE AD BE31.(2017秋?海淀区期中)如图,已知AD是BAC∠=?,C=+,31的⾓平分线,AC AB BD 求B∠的度数.32.(2019秋?平⼭县期中)如图,90∠=?,OM平分AOB∠,将直⾓三⾓板的顶点PAOB在射线OM上移动,两直⾓边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.33.(2016秋?丰宁县期中)如图,在ABC ?中,100A ∠=?,40ABC ∠=?,BD 是ABC ∠的平分线,延长BD ⾄E ,使DE AD =.求证:BC AB CE =+.34.(2018秋?丰城市期中)在ABC ?中,2ACB B ∠=∠,(1)如图1,当90C ∠=?,AD 为BAC ∠的⾓平分线时,在AB 上截取AE AC =,连接DE ,求证:AB AC CD =+;(2)如图2,当90C ∠≠?,AD 为BAC ∠的⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请直接写出你的结论,不需要证明;(3)如图3,当AD 为ABC ?的外⾓平分线时,线段AB 、AC 、CD ⼜有怎样的数量关系?请写出你的猜想,并说明理由.35.(2019春?利津县期末)如图,在ABC∠平分线,AD的垂直平分线分中,AD是BAC别交AB、BC延长线于F、E.求证:(1)EAD EDA∠=∠;(2)//DF AC;(3)EAC B∠=∠.36.(2014?西城区⼆模)在ABC>,AD平分BAC∠交BC于点∠为锐⾓,AB AC,BACD.(1)如图1,若ABC是等腰直⾓三⾓形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若60∠=?,判断AC,CE,AB之间有怎样的数量关系并加以证明;ABE②如图3,若AC AB+,求BAC∠的度数.⾓平分线四⼤辅助线模型--解析⼀.⾓平分线的性质与判定(共11⼩题)1.(2016?张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上⼀个动点,若3PA =,则PQ 的最⼩值为( )A B .2C .3D .【分析】⾸先过点P 作PB OM ⊥于B ,由OP 平分MON ∠,PA ON ⊥,3PA =,根据⾓平分线的性质,即可求得PB 的值,⼜由垂线段最短,可求得PQ 的最⼩值.【解答】解:过点P 作PB OM ⊥于B , OP 平分MON ∠,PA ON ⊥,3PA =,3PB PA ∴==,PQ ∴的最⼩值为3.故选:C .2.(2016秋?抚宁县期末)如图,在ABC ?中,AD 是它的⾓平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ??= )A .3:4B .4:3C .16:9D .9:16【分析】利⽤⾓平分线的性质,可得出ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼相等,估计三⾓形的⾯积公式,即可得出ABD ?与ACD ?的⾯积之⽐等于对应边之⽐.【解答】解:AD 是ABC ?的⾓平分线,∴设ABD ?的边AB 上的⾼与ACD ?的AC 上的⾼分别为1h ,2h ,12h h ∴=,ABD ∴?与ACD ?的⾯积之⽐:8:64:3AB AC ===,故选:B .3.(2017春?崇仁县校级⽉考)如图,在ABC ?中,90ACB ∠=?,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )A .2cmB .3cmC .4cmD .5cm【分析】根据⾓平分线的性质得到ED EC =,计算即可.【解答】解:BE 平分ABC ∠,DE AB ⊥,90ACB ∠=?, ED EC ∴=,3AE DE AE EC AC cm ∴+=+==,故选:B .4.(2018春?⼤东区期中)如图,在Rt ABC ?中,90C ∠=?,BD 是⾓平分线,若CD m =,2AB n =,则ABD ?的⾯积是( )A .mnB .5mnC .7mnD .6mn【分析】过点D 作DE AB ⊥于E ,根据⾓平分线上的点到⾓的两边距离相等可得DE CD =,然后根据三⾓形的⾯积公式即可得到结论.【解答】解:如图,过点D 作DE AB ⊥于E ,BD 是ABC ∠的平分线,90C ∠=?,DE CD m ∴==,ABD ∴?的⾯积122n m mn =??=,故选:A.5.(2019秋?樊城区期末)⼩明同学在学习了全等三⾓形的相关知识后发现,只⽤两把完全相同的长⽅形直尺就可以作出⼀个⾓的平分线.如图:⼀把直尺压住射线OB,另⼀把直尺压住射线OA并且与第⼀把直尺交于点P,⼩明说:“射线OP就是BOA∠的⾓平分线.”他这样做的依据是()A.⾓的内部到⾓的两边的距离相等的点在⾓的平分线上B.⾓平分线上的点到这个⾓两边的距离相等C.三⾓形三条⾓平分线的交点到三条边的距离相等D.以上均不正确【分析】过两把直尺的交点C作CE AO=,再根据⾓⊥,CF BO⊥,根据题意可得CE CF的内部到⾓的两边的距离相等的点在这个⾓的平分线上可得OP平分AOB∠;【解答】解:(1)如图所⽰:过两把直尺的交点P作PE AO⊥,⊥,PF BO两把完全相同的长⽅形直尺,PE PF∴=,∠(⾓的内部到⾓的两边的距离相等的点在这个⾓的平分线上),OP∴平分AOB故选:A.。
2020年中考数学专题训练(三)与角平分线有关的全等证明的三种模型
![2020年中考数学专题训练(三)与角平分线有关的全等证明的三种模型](https://img.taocdn.com/s3/m/03252965195f312b3169a5e8.png)
专题训练(三)与角平分线有关的全等证明的三种模型模型一过角平分线上的点向角的两边作垂线如图3-ZT-1,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B.图3-ZT-1结论:PB=PA.1.如图3-ZT-2,∠1=∠2,∠3=∠4.求证:AP平分∠BAC.图3-ZT-22.感知:如图3-ZT-3①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.易知:DB=DC.探究:如图3-ZT-3②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°.求证:DB=DC.图3-ZT-33.如图3-ZT-4,P为∠ABC的平分线上的一点,点D和点E分别在AB和BC上,且BD<BE,PD=PE,试探究∠BDP与∠BEP的数量关系,并给予证明.图3-ZT-44.如图3-ZT-5,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,求∠PAC 的度数.图3-ZT-5模型二截取构造对称全等(截长补短)如图3-ZT-6,P是∠MON的平分线上一点,A是射线OM上任意一点,在ON上截取OB=OA,连接PB.图3-ZT-6结论:△OPB≌△OPA.5.如图3-ZT-7所示,在△ABC中,AD是△ABC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC 与AB+AC的大小,并说明理由.图3-ZT-76.如图3-ZT-8所示,AD是△ABC的内角平分线,P是AD上异于点A的任意一点,试比较PC-PB与AC-AB 的大小,并说明理由.图3-ZT-87.如图3-ZT-9所示,在△ABC中,∠A=100°,∠ABC=40°,AB=AC,BD是∠ABC的平分线,延长BD至点E,使ED=AD.求证:BC=AB+CE.图3-ZT-9模型三角平分线+垂线(延长法)如图3-ZT-10,P是∠MON的平分线上的一点,AP⊥OP于点P,延长AP交ON于点B.图3-ZT-10结论:OA=OB.8.如图3-ZT-11,在△ABC中,AD是∠BAC的平分线,BE⊥AD于点E.探究∠ABE,∠DBE,∠C之间的数量关系.图3-ZT-119.如图3-ZT-12,已知等腰直角三角形ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于点E.求证:BD=2CE.图3-ZT-12教师详解详析1.证明:如图,过点P作PQ⊥AB于点Q,PN⊥BC于点N,PM⊥AC于点M.∵∠1=∠2,∠3=∠4,∴PQ=PN,PN=PM.∴PQ=PM.又∵PQ⊥AB,PM⊥AC,∴AP平分∠BAC.2.证明:如图,过点D分别作DE⊥AB于点E,DF⊥AC于点F.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠F=∠DEB=90°,DE=DF.∵∠ABD+∠ACD=180°,∠ACD+∠FCD=180°,∴∠ABD=∠FCD.在△DFC和△DEB中,{∠F=∠DEB,∠FCD=∠EBD, DF=DE,∴△DFC≌△DEB.∴DC=DB.3.解:∠BDP+∠BEP=180°.证明:过点P作PM⊥AB于点M,PN⊥BC于点N,则∠PMD=∠PNE=90°.∵BP平分∠ABC,∴PM=PN.在Rt△DPM和Rt△EPN中,{PD=PE,PM=PN,∴Rt△DPM≌Rt△EPN(HL).∴∠ADP=∠BEP.∵∠BDP+∠ADP=180°,∴∠BDP+∠BEP=180°.4.解:如图,过点P作PN⊥BD,PF⊥BA,PM⊥AC,垂足分别为N,F,M.设∠PCD=x °.∵CP 平分∠ACD ,∴∠ACP=∠PCD=x °,PM=PN. ∵BP 平分∠ABC , ∴∠ABP=∠PBC ,PF=PN. ∴PF=PM. ∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD-∠BPC=(x-40)°.∴∠BAC=∠ACD-∠ABC=2x °-(x °-40°)-(x °-40°)=80°. ∴∠CAF=100°.在Rt △PFA 和Rt △PMA 中,{PA =PA,PF =PM,∴Rt △PFA ≌Rt △PMA (HL). ∴∠FAP=∠PAC=50°.5.解:PB+PC>AB+AC.理由如下:如图,在BA 的延长线上截取一点F ,使AF=AC ,连接PF.在△ACP 和△AFP 中,{AC =AF,∠CAP =∠FAP,AP =AP,∴△ACP ≌△AFP (SAS). ∴AC=AF ,PC=PF. ∵PB+PF>BF , ∴PB+PC>AB+AC.6.解:PC-PB<AC-AB.理由如下:如图,在AC上截取一点F,使AF=AB,连接PF.在△ABP和△AFP中,{AB=AF,∠BAP=∠FAP, AP=AP,∴△ABP≌△AFP(SAS).∴PB=PF.∵AF=AB=AC-CF,∴CF=AC-AB.∵PC-PF<CF,∴PC-PB<AC-AB.7.证明:如图,在BC上截取一点F,使得FB=AB,连接DF.∵BD是∠ABC的平分线,∠ABC=40°,∴∠ABD=∠FBD=20°.在△ABD和△FBD中,{AB=FB,∠ABD=∠FBD, BD=BD,∴△ABD≌△FBD(SAS).∴AD=FD,∠BDF=∠BDA=180°-∠A-∠ABD=60°.∴∠FDC=∠BDA=∠EDC=60°.又∵ED=AD,∴ED=FD.在△EDC和△FDC中,{ED =FD,∠EDC =∠FDC,DC =DC,∴△EDC ≌△FDC (SAS). ∴CE=CF.∴BC=FB+CF=AB+CE.8.解:如图,延长BE 交AC 于点F.在△ABE 和△AFE 中,{∠BAE =∠FAE,AE =AE,∠AEB =∠AEF =90°,∴△ABE ≌△AFE (ASA). ∴∠ABE=∠AFE. ∵∠AFB=∠DBE+∠C , ∴∠ABE=∠DBE+∠C.9.证明:如图,延长CE ,BA 交于点F.在△BEF 和△BEC 中,{∠FBE =∠CBE,BE =BE,∠BEF =∠BEC,∴△BEF ≌△BEC (ASA). ∴FE=CE=12CF ,即CF=2CE.∵∠ABD+∠ADB=90°,∠EDC+∠DCE=90°,∠ADB=∠EDC , ∴∠ABD=∠DCE.在△ABD 和△ACF 中,{∠ABD =∠DCE,AB =AC,∠BAD =∠CAF =90°,∴△ABD≌△ACF(ASA).∴BD=CF.∴BD=2CE.。
角平分线的四大模型(Word版)
![角平分线的四大模型(Word版)](https://img.taocdn.com/s3/m/d9b49009dd36a32d73758136.png)
角平分线四大模型模型一:角平分线上的点向两边作垂线如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA.模型分析:利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
例1:(1)如图①,在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是___cm(2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC.练习1 如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC.求证:∠BAD+∠C=180°练习2 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()模型二:截取构造对称全等如图,P是∠MON的平分线上一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB≅△OPA.模型分析:利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等、利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
例2:(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.(2)如图②所示.AD是△ABC的内角平分线,其他条件不变,试比较PC -PB与AC-AB的大小,并说明理由.练习 3 已知:△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长。
练习4 已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD.练习5 如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.模型三:角平分线+垂线构造等腰三角形如图,P是∠MON的平分线上一点,AP⊥OP于P点,延长AP交ON于点B,则△AOB是等腰三角形。
河北省中考数学系统复习 第四单元 图形的初步认识与三角形 方法技巧训练(一)与角平分线有关的基本模型
![河北省中考数学系统复习 第四单元 图形的初步认识与三角形 方法技巧训练(一)与角平分线有关的基本模型](https://img.taocdn.com/s3/m/760e2dfdbed5b9f3f80f1c14.png)
②角平分线的两端过角的顶点取相等的两条线段构造全等三角形
如图6,BO是∠ABC的平分线,在BA,BC上取线段BE=BF,则△BEO≌△BFO.
解题通法:遇到角平分线时,我们通常过角平分线上的一点向两边作垂线或在角平分线的两端取相等的线段构造全等三角形.
与角平分线有关的图形与辅助线
1.角平分线+平行线→等腰三角形
如图4,BD是∠ABC的平分线,点O是BD上一点,OE∥BC交AB于点E,则△BOE是等腰三角形.
解题通法:遇到角平分线及平行线,除了可以得到角度的关系,还可以得到一个等腰三角形.
图4 图5 图6 图7
2.与角平分线有关的辅助线
①过角平分线上的点作角两边的垂线
方法技巧训练(一) 与角平分线有关的基本模型
三角形中角平分线的夹角的计算
类型1 两个内角平分线的夹角
如图1,在△ABC中,∠ABC,∠ACB的平分线BE,CF相交于点G,则∠BGC=90°+ ∠A.
图1 图2 图3
解题通法:三角形两内角的平分线的夹角等于90°与第三个内角的一半的和.
类型2 一个内角平分线和一个外角平分线的夹角
A.10 cmB.28 cmC.20 cmD.18 cm
3.如图,矩形ABCD中,AB=4 cm,BC=8 cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积(B)
A.8 cm2B.10 cm2C.15 cm2D.20 cm2
4.(2018·某某)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=(B)
A.30° B.35° C.45° D.60°
中考数学常见几何模型角平分线的基本模型(二)非全等类
![中考数学常见几何模型角平分线的基本模型(二)非全等类](https://img.taocdn.com/s3/m/74845337cd1755270722192e453610661ed95afc.png)
专题08 角平分线的重要模型(二)非全等类角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,,本专题就角平分线的非全等类模型作相应的总结,需学生反复掌握。
模型1.双角平分线模型(导角模型) 【模型解读】双角平分线模型(导角模型)指的是当三角形的内角(外角)的平分线相交时,可以导出平分线的夹角的度数。
【模型图示】条件:BD ,CD 是角平分线.结论:1902BDC A∠=︒+∠1902BDC A ∠=︒-∠12BDC A ∠=∠1.(2022·广东·九年级专题练习)BP 是∠ABC 的平分线,CP 是∠ACB 的邻补角的平分线,∠ABP =20°,∠ACP =50°,则∠P =( )4231DAEFCB4321DACBMA.30° B.40° C.50° D.60°【答案】A【分析】据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P 的度数.【详解】∠BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∠∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∠∠PCM是△BCP的外角,∠∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.2.(2022·山东·济南中考模拟)如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.(1)求证:∠AOC=90°+12∠ABC;(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.【答案】(1)见解析(2)43AE+CD=AC,证明见解析【分析】(1)求出∠BAC+∠BCA=180°-∠ABC,根据角平分线定义求出∠OAC=12∠BAC,∠OCA=12∠BCA,即可求出∠OAC+∠OCA的度数,根据三角形内角和定理求出即可;(3)在AC上分别截取AM、CN,使AM=AE,CN=CD,连接OM,ON,证△AEO∠∠AMO,△DCO∠∠NCO,推出∠EOA=∠MOA,∠CON=∠COD,OD=ON,求出∠MON=∠MOA=45°,根据角平分线性质求出MK=ML,据此计算即可求解.(1)证明:∠∠ABC+∠ACB+∠BAC=180°,∠∠BAC+∠BCA=180°-∠ABC,∠∠BAC的平分线AD与∠BCA的平分线CE交于点O.∠∠OAC=1 2∠BAC,∠OCA=12∠BCA,∠∠OAC+∠OCA=12(∠BAC+∠BCA)=12(180°-∠ABC)=90°-12∠ABC,∠∠AOC=180°-(∠OAC+∠OCA)=180°-(90°-12∠ABC),即∠AOC=90°+12∠ABC;(2)解:43AE+CD=AC,证明:如图2,∠∠AOC=90°+12∠ABC=135°,∠∠EOA=45°,在AC上分别截取AM、CN,使AM=AE,CN=CD,连接OM,ON,则在∠AEO和∠AMO中,AE AMEAO MAOAO AO=⎧⎪∠=∠⎨⎪=⎩,∠∠AEO∠∠AMO,同理∠DCO∠∠NCO,∠∠EOA=∠MOA,∠CON=∠COD,OD=ON,∠∠EOA=∠MOA=∠CON=∠COD=45°,∠∠MON=∠MOA=45°,过M作MK∠AD于K,ML∠ON于L,∠MK=ML,S△AOM=12AO×MK,S△MON=12ON×ML,∠AOMMONSAOON S∆∆=,∠AOMMONS AMS MN∆∆=,∠AO AMON MN=,∠AO=3OD,∠31 AOOD=,∠31 AO AMON MN==,∠AN=43AM=43AE,∠AN+NC=AC,∠43AE+CD=AC.【点睛】本题考查了全等三角形的性质和判定,角平分线定义和性质,三角形的面积,三角形内角和定理的应用,熟练掌握各性质定理是解答此题的关键.3.(2022•蓬溪县九年级月考)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC= ;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC 与∠A的数量关系,并说明理由.(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC= °,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R= °.【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠E与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解;(4)结合(1)(2)(3)的解析即可求得.【解答】解:(1)∵PB、PC分别平分∠ABC和∠ACB,∴∠PBC=1 2∠ABC,∠PCB=12∠ACB(角平分线的性质),∴∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=180°﹣90°+12∠A=90°+12∠A=90°+12×64°=122°.故答案为:122°;(2)∵BE是∠ABD的平分线,CE是∠ACB的平分线,∴∠ECB=12∠ACB,∠ECD=12∠ABD.∵∠ABD是△ABC的外角,∠EBD是△BCE的外角,∴∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,∴∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB,即12∠A+∠ECB=∠ECB+∠BEC,∴∠BEC=12∠A=12ᵯ;(3)结论∠BQC=90°−12∠A.∵∠CBM与∠BCN是△ABC的外角,∴∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC,∵BQ,CQ分别是∠ABC与∠ACB外角的平分线,∴∠QBC=12(∠A+∠ACB),∠QCB=12(∠A+∠ABC).∵∠QBC+∠QCB+∠BQC=180°,∴∠BQC=180°﹣∠QBC﹣∠EQB=180°−12(∠A+∠ACB)−12(∠A+∠ABC),=180°−12∠A−12(∠A+∠ABC+∠ACB)=180°−12∠A﹣90°=90°−12∠A;(4)由(3)可知,∠BQC=90°−12∠A=90°−12×64°=58°,由(1)可知∠BPC=90°+12∠BQC=90°+12×58°=119°;由(2)可知,∠R=12∠BQC=29°故答案为119,29.【点评】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4.(2022·辽宁沈阳·九年级期中)阅读下面的材料,并解决问题(1)已知在∠ABC中,∠A=60°,图1-3的∠ABC的内角平分线或外角平分线交于点O,请直接写出下列角度的度数,如图1,∠O= ;如图2,∠O= ;如图3,∠O= ;(2)如图4,点O是∠ABC的两条内角平分线的交点,求证:∠O=90°+12∠A(3)如图5,在∠ABC中,∠ABC的三等分线分别与∠ACB的平分线交于点O1O2,若∠1=115°,∠2=135°,求∠A的度数.【答案】(1)120°,30°,60°(2)见解析(3)70°【分析】(1)由∠A的度数,在∠ABC中,可得∠ABC与∠ACB的和,又BO、CO是内角平分线或外角平分线,利用角平分线的定义及三角形内角和定理、三角形的外角性质进而可求得答案;(2)由∠A的度数,在∠ABC中,可得∠ABC与∠ACB的和,又BO、CO是角平分线,利用角平分线的定义及三角形内角和定理可证得结论;(3)先分别求出∠ABC与∠ACB的度数,即可求得∠A的度数.(1)①在图1中:∠BO平分∠ABC,CO平分∠ACB∠∠OBC=12∠ABC,∠OCB=12∠ACB∠∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠BAC)=12(180°-60°)=60°∠∠O=180°-(∠OBC+∠OCB)=120°;②在图2中:∠BO平分∠ABC,CO平分∠ACD∠∠OBC=12∠ABC,∠OCD=12∠ACD∠∠ACD=∠ABC+∠A∠∠OCD=12(∠ABC+∠A)∠∠OCD=∠OBC+∠O∠∠O=∠OCD-∠OBC=12∠ABC+12∠A-12∠ABC=12∠A=30°.③在图3中:∠BO平分∠EBC,CO平分∠BCD∠∠OBC=12∠EBC,∠OCB=12∠BCD∠∠OBC+∠OCB=12(∠EBC+∠BCD)=12(∠A+∠ACB+∠BCD)=12(∠A+180°)=12(60°+180°)=120°∠∠O=180°-(∠OBC+∠OCB)=60°.故答案为:120°,30°,60°.(2)证明:∠OB 平分∠ABC ,OC 平分∠ACB , ∠∠OBC =12∠ABC ,∠OCB =12∠ACB ,∠O =180°-(∠OBC +∠OCB )=180°-12(∠ABC +∠ACB )=180°-12(180°-∠A )=90°+12∠A .(3)设∠ABO 2=∠O 2BO 1=∠O 1BC =α,∠ACO 2=∠BCO 2=β, ∠2α+β=180°-115°=65°,α+β=180°-135°=45°解得:α=20°,β=25° ∠∠ABC +∠ACB =3α+2β=60°+50°=110°,∠∠A =70°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,三角形外角的性质等知识,熟练掌握三角形内角和定理,以及基本图形是解题的关键.模型2.角平分线加平行线等腰现(角平分线+平行线) 【模型解读】1)过角平分线上一点作角的一边的平行线,构造等腰三角形;2)有角平分线时,过角一边上的点作角平分线的平行线,交角的另一边的直线于一点,也可构造等腰三角形。
角平分线四大基本模型
![角平分线四大基本模型](https://img.taocdn.com/s3/m/0a2b245ca5e9856a5612608a.png)
12
例题4 (1)在三角形ABC中,∠ABC与∠ACB的角平分线相交 于点F,过点F作DE//BC,交AB于点D,交AC于点E,若 BD+CE=9,则线段DE之长为________
13
(2)在△ABC中,BD、CD分别平分∠ABC和∠ACB, DE//AB,FD//AC,如果BC=6,求△DEF的周长
【提示】“图中有角平分线,可将图形对折看,对称以后关系现”
10
例题3 (1)已知等腰直角三角形ABC中,∠A=90°,AB=AC, BD平分∠ABC,CE⊥BD,垂足为点E,求证: BD=2CE
11
(2)在△ABC中,AB=3AC,∠BAC的平分线交BC于 点D,过点B作BE⊥AD,垂足为E,求证:AD=DE
角平分线四大基本模型 角平分线在初中几何中常见, 现总结以下四种基本类型 已知P是∠MON平分线上一点
2
【模型1】 若PA⊥OM于点A,可过P作PB⊥ON于点B,则 PB=PA 口诀:“图中有角平分线,可向两边作垂线”
3
【模型2】 若点A是射线OM上任意一点,可在ON上截取OB=OA,连接PB, 构造△OPB≌△OPA 口诀:“图中有角平分线,可将图形对折看,对称以后关系现”
“角平分线+平行线,等腰三角形必呈现”
14
ห้องสมุดไป่ตู้
4
【模型3】 若AP⊥OP于点P,可延长AP交ON于点B,构造等腰 △AOB,OP是底边AB垂线,进而利用三线合一 口诀:“角平分线加垂线,三线合一试试看”
5
【模型4】 若过点P作PQ//ON交OM于点Q,从而构造等腰△POQ 口诀:“角平分线+平行线,等腰三角形必呈现”
数学复习:全等三角形相关模型
![数学复习:全等三角形相关模型](https://img.taocdn.com/s3/m/6545255d0a1c59eef8c75fbfc77da26925c596f6.png)
数学复习:全等三角形相关模型一、角平分线模型(1)角平分线+两边垂线→全等三角形:角平分线的性质定理:角平分线上的点到角的两边距离相等;已知:AD平分∠BAC,CD⊥AC,垂足为C,过点D作DB⊥AB,垂足为B;辅助线:过点D作DB⊥AB,垂足为B;结论:①△ACD≌△ABD;②CD=DB(角分线垂两边,对称全等必呈现)(2)角平分线+垂线模型等腰三角形必呈现:遇到垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形;已知:OP平分∠AOB,MP⊥OP,垂足为P,延长MP交OB于点N;结论:①△OPM≌△OPN;②△OMN为等腰三角形;③P是MN的中点(三线合一);(3)在角的两边上截取相等的线段,构造全等三角形:已知:OC是∠AOB的角平分线,D为OC上一点;辅助线:在OA上取一点E,在OB取一点F,使得OE=OF,并连接DE,结论:△OED≌△OFD;(4)作平行线①以角分线上一点作角的另一边的平行线,则△OAB 等腰三角形;②过一边上的点作角平分线的平行线与另一边的反向延长线相交,则△ODH 等腰三角形;已知:OP 平分∠MON ,AB ∥ON ,已知:OC 平分∠AOD ,DH ∥OC ,结论:△OAB 等腰三角形结论:△ODH 等腰三角形角平分线+两边垂线→全等三角形辅助线:过点G 作GE ⊥射线AC已知:AD 是∠BAC 的角平分线,CD ⊥AC ,DB ⊥AB ,求证:CD=DB证明:∵AD 是∠BAC 的角平分线,∴∠1=∠2,∵CD ⊥AC ,DB ⊥AB ,∴∠ACD=∠ABD=90°,在△ACD 和△ABD 中,∴△ACD ≌△ABD (AAS )∴CD=BD⎪⎩⎪⎨⎧AD =AD 90=ABD ∠=ACD ∠2∠=1∠例1:已知:∠1=∠2,∠3=∠4,求证:AP平分∠BAC.例2:如图,AB>AC,∠A的平分线与BC的垂直平分线相交于D,过D作DE⊥AB、DF⊥AC,垂足分别为E、F.求证:BE=CF.例4:如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.角平分线+垂线模型等腰三角形必呈现例1:如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BE交BA的延长于F.求证:BD=2CE例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD 交AD的延长线于M.求证:2AM=(AB+AC)例3:如图,已知△ABC中,CF平分∠ACB,且AF⊥CF,∠AFE+∠CAF=180°,求证:EF∥BC.截取构造全等:例1:如图,AB>AC ,∠1=∠2,求证:AB -AC>BD -CD 。
专题16 角平分线四大模型(解析版)
![专题16 角平分线四大模型(解析版)](https://img.taocdn.com/s3/m/52f8e9ff4128915f804d2b160b4e767f5bcf8051.png)
专题16 角平分线四大模型(解析版)角平分线是指从一个角的顶点出发,将该角分成两个相等的角的线段。
在几何学中,角平分线是一种重要且常见的构造,它具有许多有用的性质和应用。
本专题将介绍角平分线的四大模型,并对其进行解析。
1. 模型一:角内角平分线模型角内角平分线是指从一个角的内部点出发,将该角分成两个相等的内角的线段。
这种模型在解决一些与角相关的问题时非常有用。
例如,考虑一个三角形ABC,D点在角BAC的内部,且BD与CD分别是角BAC的内角平分线,我们可以推导出:∠BDC = 1/2 * ∠BAC。
这个模型在证明角内角平分线性质时发挥了关键作用。
2. 模型二:角外角平分线模型角外角平分线是指从一个角的外部点出发,将该角的外角分成两个相等的外角的线段。
这种模型在解决一些与外角相关的问题时也非常有用。
以正五边形ABCDE为例,点F在边AB延长线上,且∠BCD为角ACD的外角,则可以得出:∠BCD = 1/2 * ∠ACD。
这个模型在讨论外接角平分线性质时起到了重要作用。
3. 模型三:角平分线的垂直性模型角平分线的垂直性模型是指在一个三角形中,三条角平分线相交于一个点,且该点与三个三角形的顶点连线垂直。
以三角形ABC为例,如果AD、BE、CF为三个角平分线,且它们交于点O,则有AO ⊥BC,BO ⊥ AC,CO ⊥ AB。
这个模型在解决垂直关系问题时具有重要的应用价值。
4. 模型四:角平分线的外角关系模型角平分线的外角关系模型是指一个三角形的三个外角等于一个直角的两倍。
以三角形ABC为例,∠BAC的外角是∠ACD,∠ABC的外角是∠BCE,∠BCA的外角是∠CAD,则∠ACD + ∠BCE + ∠CAD = 2 * 90°。
这个模型在研究外角关系时起到重要的辅助作用。
综上所述,角平分线四大模型提供了解决各种与角有关问题的有力工具。
这些模型不仅在几何学中具有广泛的应用,而且在其他科学领域中也有其独特的价值。
初中数学,“角平分线”的四大模型
![初中数学,“角平分线”的四大模型](https://img.taocdn.com/s3/m/3066f5ee55270722182ef758.png)
模型1:角平分线上的点向两边作垂线这个模型的基本思想是过角平分线上一点 P 作角两边的垂线。
如图中 PA⊥OA,PB⊥OB。
容易通过全等得到 PA=PB(角平分线性质)。
注意:题目一般只有一条垂线,需要自行补出另一条垂线。
甚至只给你一条角平分线,自行添加两条垂线。
模型1:角平分线上的点向两边作垂线模型分析利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
模型2:截取构造对称全等这个模型的基础是在角的两边分别截取 OA=OB,然后在对角线上取任意一点 P,连接 AP,BP。
容易证得△APO≌△BPO。
注意:一般这样的模型最容易被孩子忽略,因为这个模型里没有的角度,因而对于孩子而言添出 PB 这条辅助线是有难度的。
添加这条辅助线的基本思想是在 ON 上截取 OB,使得 AP=BP。
从而构造出一个轴对称。
这样的模型一般会出现在截长补短里。
模型2:截取构造对称全等模型分析利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。
利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
模型3:角平分线+垂线构造等腰三角形这个模型的基础是,在角平分线上任意找一点 P,过点 P 作角平分线的垂线交角的两条边与A、B。
这样就构造出了一个等腰三角形AOB,即 OA=OB。
这个模型还可以得到P是AB 中点。
注意:这个模型与一之间的区别在于垂直的位置。
并且辅助线的添加方法一般是延长一段与角平分线垂直的线段。
如图中的 PB。
模型3:角平分线+垂线构造等腰三角形模型分析构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等的直角三角形,进而得到对应边、对应角相等。
这个模型巧妙地把角平分线和三线合一联系了起来。
模型4:角平分线+平行线这个模型是在角平分线上任意找一个点 P。
分别过点 P 作 ON,OM 的平行线 PA, PB。
角平分线的模型
![角平分线的模型](https://img.taocdn.com/s3/m/3c8d8de3f61fb7360b4c6564.png)
(二)、异向截线
如果:OP平分∠AOB,PM=PN,可以过P点向OA、OB作垂线分别交于点C、点D。
那么:△PCN≌△PDM,∠ONP+∠OMPபைடு நூலகம்180º。
例题:
1、已知:如图,AB=2AC,∠1=∠2,DA=DB,求证:DC⊥AC
2、如图,BD是四边形ABCD中∠ABC的平分线,∠A+∠C=180°,求证:DA=CD
那么:△PCN≌△PDM,OM=ON
例题:
1、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC
2、如图,在△ABC中,∠B=60°,∠A、∠C的角平分线AE、CF相交于O.
求证:OE=OF.
3、已知:如图1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求证DC⊥AC
模型三:角平分线+平行
(一)、在角内与一边平行
如果:OP平分∠AOB,PM∥OB
那么:△OMP为等腰三角形
例题:
1、已知:如图7-9,在ΔABC中,CE是角平分线,EG∥BC,交AC边于F,交∠ACB的外角 (∠ACD)的平分线于G,探究线段EF与FG的数量关系并证明你的结论.
2、如图,若AD平分∠BAC平分线,过CE∥AB交AD延长线于点E。
例题:
1、如图,△ABC中AB=AC,∠EAC是△ABC的外角,AD平分∠EAC。
求证:AD∥BC
2、如图,△ABC中,AD平分∠BAC,E为BC中点,过点E作EF∥DA交AB于点M,交CA延长线于点F,CN∥AB交EF延长线于点N。
求证:BM=CF
3、如图,△ABC中,M为BC边上中点,AD平分∠A,ME∥DA交BA延长线于点F。
中考数学常见几何模型专题07 角平分线的基本模型(一)全等类(解析版)
![中考数学常见几何模型专题07 角平分线的基本模型(一)全等类(解析版)](https://img.taocdn.com/s3/m/db0ee9110a4c2e3f5727a5e9856a561252d32169.png)
专题07 角平分线的重要模型(一)全等类角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的全等类模型作相应的总结,需学生反复掌握。
模型1.角平分线构造轴对称模型(角平分线+截线段等)【模型解读与图示】已知如图1,OP为AOB∠的角平分线、PM不具备特殊位置时,辅助线的作法大都为在OB上截取ON OM=,连结PN即可.即有OMP∆≌ONP∆,利用相关结论解决问题.图1 图21.(2022·湖北十堰·九年级期末)在△ABC中,△ACB=2△B,如图①,当△C=90°,AD为△BAC的角平分线时,在AB上截取AE=AC,连结DE,易证AB=AC+CD.(1)如图②,当△C≠90°,AD为△BAC的角平分线时,线段AB,AC,CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2)如图③,当AD为△ABC的外角平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【答案】(1)AB AC CD=+;证明见解析;(2)AB AC CD+=;证明见解析.【分析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE△△ADC(SAS),则可得△AED=△C,ED=CD,又由△AED=△ACB,△ACB=2△B,所以△AED=2△B,即△B=△BDE,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD△△CAD,可得ED=CD,△AED=△ACD,又由△ACBAB∥CD⇒AB+CD=BCFDEBAC=2△B ,易证DE =EB ,则可求得AC +AB =CD .【详解】(1)猜想:AB AC CD =+. 证明:如图②,在AB 上截取AE AC =,连结DE ,△AD 为ABC 的角平分线时,△BAD CAD ∠=∠,△AD AD =,△()SAS ADE ADC ≌△△, △AED C ∠=∠,ED CD =,△2ACB B ∠=∠,△2AED B ∠=∠.△B EDB ∠=∠,△EB ED =,△EB CD =,△AB AE DE AC CD =+=+.(2)猜想:AB AC CD +=.证明:在BA 的延长线上截取AE AC =,连结ED .△AD 平分FAC ∠,△EAD CAD ∠=∠.在EAD 与CAD 中,AE AC =,EAD CAD ∠=∠,AD AD =,△EAD CAD ≌△△. △ED CD =,AED ACD ∠=∠.△FED ACB ∠=∠.又2ACB B ∠=∠,FED B EDB ∠=∠+∠,EDB B ∠=∠.△EB ED =.△EA AB EB ED CD +===.△AC AB CD +=.【点睛】此题考查三角形综合题、全等三角形的判定与性质、等腰三角形的判定、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.2.(2022·山东烟台·九年级期末)已知在ABC 中,满足2ACB B ∠=∠,(1)【问题解决】如图1,当90C ∠=︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,求证:AB AC CD =+.(2)【问题拓展】如图2,当90C ∠≠︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,(1)中的结论还成立吗?若成立,请你证明:若不成立,请说明理由.(3)【猜想证明】如图3,当AD 为ABC 的外角平分线时,在BA 的延长线上取一点E 使得AE AC =,连接DE ,线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明. 【答案】(1)证明见解析(2)成立,证明见解析(3)猜想AB AC CD +=,证明见解析【分析】(1)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,再根据三角形的外角性质可得45B BDE ∠=∠=︒,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证;(2)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED C ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证;(3)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,从而可得FED ACB ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证.证明:△AD 为BAC ∠的角平分线,△EAD CAD ∠=∠,在AED 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS ≅,△ED CD =,AED ACD ∠=∠,又△90ACB ∠=︒,2ACB B ∠=∠,△45B ∠=︒,90AED ∠=︒,△45AED BDE B ∠=∠=∠-︒,△B BDE ∠=∠,△EB ED =,△EB CD =,△AB AE EB AC CD =+=+.(2)解:(1)中的结论还成立,证明如下:△AD 为BAC ∠的角平分线时,△EAD CAD ∠=∠,在AED 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS ≅,△AED C ∠=∠,ED CD =,△2ACB B ∠=∠,△2AED B ∠=∠,又△AED B EDB ∠=∠+∠,△B EDB ∠=∠,△EB ED =,△EB CD =,△AB AE EB AC CD =+=+.解:猜想AB AC CD+=,证明如下:△AD平分EAC∠,△EAD CAD∠=∠,在AED与ACD△中,AE ACEAD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS≅,△ED CD=,AED ACD∠=∠,如图,△180180AED ACD︒-∠=︒-∠,即FED ACB∠=∠,△2ACB B∠=∠,△2FED B∠=∠,又△FED B EDB∠=∠+∠,△EDB B∠=∠,△EB ED=,△AB AE EB ED CD+===,△AB AC CD+=.【点睛】本题主要考查了三角形全等的判定与性质、等腰三角形的判定,熟练掌握三角形全等的判定方法是解题关键.3.(2022·浙江·九年级期中)(1)如图1,在△ABC中,△ACB=2△B,△C=90°,AD为△BAC的平分线交BC 于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)(2)如图2,当△C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.(3)如图3,当△ACB≠90°,△ACB=2△B ,AD为△ABC的外角△CAF的平分线,交BC的延长线于点D,则线段AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.【答案】(1)见解析;(2)AB=AC+CD;(3)AB=CD﹣AC【分析】(1)在AB上截取AE=AC,连接DE,根据角平分线的定义得到△1=△2.推出△ACD△△AED(SAS).根据全等三角形的性质得到△AED=△C=90,CD=ED,根据已知条件得到△B=45°.求得△EDB=△B=45°.得到DE=BE,等量代换得到CD=BE.即可得到结论;(2)在AC取一点E使AB=AE,连接DE,易证△ABD△△AED,所以△B=△AED,BD=DE,又因为△B=2△C,所以△AED=2△C,因为△AED是△EDC的外角,所以△EDC=△C,所以ED=EC,BD=EC,进而可证明AB+BD=AE+EC=AC;(3)在AB的延长线AF上取一点E,使得AE=AC,连接DE.证明△ACD△△AED,根据全等三角形的性质得到DE=BE,BE=CD,即可得出结论.【详解】(1)证明:在AB上取一点E,使AE=AC△AD为△BAC的平分线△△BAD=△CAD.在△ACD和△AED中,AE AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩△△ACD △△AED (SAS ).△△AED =△C =90°,CD =ED ,又△△ACB =2△B ,△C =90°,△△B =45°. △△EDB =△B =45°.△DE =BE , △CD =BE .△AB =AE +BE , △AB =AC +CD .(2)证明:在AB 取一点E 使AC=AE ,在△ACD 和△AED 中,AC AE BAD EAD AD AD ===⎧⎪∠∠⎨⎪⎩, △△ACD△△AED ,△△C=△AED ,CD=DE ,又△△C=2△B ,△△AED=2△B ,△△AED 是△EDC 的外角,△△EDB=△B ,△ED=EB ,△CD=EB ,△AB=AC+CD ;(3)猜想:AB =CD ﹣AC证明:在BA 的延长线上取一点E ,使得AE =AC ,连接DE ,在△ACD和△AED中,AC AECAD EADAD AD=⎧⎪∠=∠⎨⎪=⎩,△△ACD△△AED(SAS),△△ACD=△AED,CD=DE,△△ACB=△FED,又△△ACB=2△B△△FED=2△B,又△△FED=△B+△EDB,△△EDB=△B,△DE=BE,△BE=CD,△AB=BE-AE△AB=CD﹣AC.【点睛】本题考查全等三角形的判定和性质,关于线段和差关系的证明,通常采用截长补短法. 4.(2022·北京九年级专题练习)在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分BAE∠,90ACE∠=︒,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案)(2)如图(2),AC平分BAE∠,EC平分AED∠,若120ACE∠=︒,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明.【答案】(1)AE=AB+DE;(2)AE=AB+DE+12BD,证明见解析.【分析】(1)在AE上取一点F,使AF=AB,由三角形全等的判定可证得△ACB≌△ACF,根据全等三角形的性质可得BC=FC,∠ACB=∠ACF,根据三角形全等的判定证得△CEF≌△CED,得到EF=ED,再由线段的和差可以得出结论;(2)在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG,根据全等三角形的判定证得△ACB≌△ACF和△ECD≌△ECG,由全等三角形的性质证得CF=CG,进而证得△CFG是等边三角形,就有FG=CG=12BD,从而可证得结论.【详解】解:(1)如图(1),在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,AB AFBAC FACAC AC⎧⎪∠∠⎨⎪⎩===∴△ACB≌△ACF(SAS).∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点,∴BC=CD.∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°.∴∠ECF=∠ECD.在△CEF和△CED中,CF CDECF ECDCE CE⎧⎪∠∠⎨⎪⎩===∴△CEF≌△CED(SAS).∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.故答案为:AE=AB+DE;(2)AE=AB+DE+12BD.证明:如图(2),在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.∵C 是BD 边的中点,∴CB =CD =12BD .∵AC 平分∠BAE ,∴∠BAC =∠FAC . 在△ACB 和△ACF 中,AB AF BAC FAC AC AC ⎧⎪∠∠⎨⎪⎩===∴△ACB ≌△ACF (SAS ).∴CF =CB ,∠BCA =∠FCA .同理可证:△ECD ≌△ECG ∴CD =CG ,∠DCE =∠GCE .∵CB =CD ,∴CG =CF .∵∠ACE =120°,∴∠BCA +∠DCE =180°−120°=60°.∴∠FCA +∠GCE =60°.∴∠FCG =60°.∴△FGC 是等边三角形.∴FG =FC =12BD .∵AE =AF +EG +FG ,∴AE =AB +DE +12BD .【点睛】本题主要考查了全等三角形的判定与性质的运用,能熟练应用三角形全等的判定和性质是解决问题的关键.模型2.角平分线垂两边(角平分线+外垂直)【模型解读与图示】已知如图1,OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题.图1 图2 图3邻等对补模型:已知如图2,AP 是∠CAB 的角平分线,EP =DP辅助线:过点P 作PG ⊥AC 、PF ⊥AB结论:①︒=∠+∠180EPD BAC (D P E A 、、、四点共圆);②EG DF =;③DF AE AD 2+= 1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____. D B【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,△AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,△1DF DE ==, △1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1. 【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键. 2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =( )A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC =∠ACD ﹣∠ABC =2x °﹣(x °﹣40°)﹣(x °﹣40°)=80°,∴∠CAF =100°,在Rt △PFA 和Rt △PMA 中,{PA PAPM PF ==,∴Rt △PFA ≌Rt △PMA (HL ),∴∠FAP =∠PAC =50°.故选C .【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM =PN =PF 是解题的关键.3.(2022·江苏扬州·中考真题)如图,在ABCD 中,BE 、DG 分别平分ABC ADC ∠∠、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ⊥,垂足为F .若ABCD 的周长为56,6EF =,求ABC ∆的面积. 【答案】(1)见详解(2)84【分析】(1)由平行四边形的性质证()ABE CDG ASA ∆≅∆即可求证;(2)作EQ BC ⊥,由ΔΔΔABC ABE EBC S S S =+即可求解;(1)证明:在ABCD 中,△//AB CD ,△BAE DCG ∠=∠,△BE 、DG 分别平分ABC ADC ∠∠、,ABC ADC ∠=∠,△ABE CDG ∠=∠,在ABE ∆和CDG ∆中,△ABCD的周长为AB BC+=BE平分∠EQ EF=ABCS S∆∆=4.(2022·河北·九年级专题练习)已知OP平分△AOB,△DCE的顶点C在射线OP上,射线CD交射线OA 于点F,射线CE交射线OB于点G.(1)如图1,若CD△OA,CE△OB,请直接写出线段CF与CG的数量关系;(2)如图2,若△AOB=120°,△DCE=△AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF =CG ;(2)CF =CG ,见解析【分析】(1)结论CF =CG ,由角平分线性质定理即可判断.(2)结论:CF =CG ,作CM △OA 于M ,CN △OB 于N ,证明△CMF △△CNG ,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF =CG ;证明:△OP 平分△AOB ,CF △OA ,CG △OB ,△CF =CG (角平分线上的点到角两边的距离相等);(2)CF =CG .理由如下:如图,过点C 作CM △OA ,CN △OB ,△OP 平分△AOB ,CM △OA ,CN △OB ,△AOB =120°,△CM =CN (角平分线上的点到角两边的距离相等),△△AOC =△BOC =60°(角平分线的性质),△△DCE =△AOC ,△△AOC =△BOC =△DCE =60°,△△MCO =90°-60° =30°,△NCO =90°-60° =30°,△△MCN =30°+30°=60°,△△MCN =△DCE ,△△MCF =△MCN -△DCN ,△NCG =△DCE -△DCN ,△△MCF =△NCG ,在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩△△MCF △△NCG (ASA ),△CF =CG (全等三角形对应边相等).【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.模型3.角平分线垂中间(角平分线+内垂直)【模型解读与图示】已知如图1,OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可。
(完整版)角平分线的四大模型(Word版)
![(完整版)角平分线的四大模型(Word版)](https://img.taocdn.com/s3/m/fa0af3bee2bd960591c6777f.png)
角平分线四大模型模型一:角平分线上的点向两边作垂线如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点A,PB⊥ON于点B,则PB=PA.模型分析:利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。
例1:(1)如图①,在△ABC,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到AB的距离是___cm(2)如图②,已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC.练习1 如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC.求证:∠BAD+∠C=180°练习2 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()模型二:截取构造对称全等如图,P是∠MON的平分线上一点,点A是射线OM上任意一点,在ON上截取OB=OA,连接PB,则△OPB≅△OPA.模型分析:利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等、利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。
例2:(1)如图①所示,在△ABC中,AD是△BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.(2)如图②所示.AD是△ABC的内角平分线,其他条件不变,试比较PC -PB与AC-AB的大小,并说明理由.练习 3 已知:△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8,求线段BC的长。
练习4 已知,如图AB=AC,∠A=108°,BD平分∠ABC交AC于D,求证:BC=AB+CD.练习5 如图,在△ABC中,∠A=100°,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD.求证:BC=AB+CE.模型三:角平分线+垂线构造等腰三角形如图,P是∠MON的平分线上一点,AP⊥OP于P点,延长AP交ON于点B,则△AOB是等腰三角形。
07角平分线及其模型
![07角平分线及其模型](https://img.taocdn.com/s3/m/6e9a43b4482fb4daa48d4b5d.png)
一、常见模型 1. 角度计算:(1)角平分线+高线:如图,AD 平分∠BAC ,AE ⊥BC , 则∠DAE =12B C ∠-∠ (2)角平分线的夹角模型(内心和旁心): 如图①,点I 是△ABC 的内心,则∠I =90°+12A ∠;如图②,点P 是△ABC 的一个旁心,则∠P =12A ∠;如图③,点Q 是△ABC 的一个旁心,则∠Q =90°-12A ∠.2. 角平分线+平行线→等腰三角形3.角平分线+高线(中线):构造等腰三角形4.角平分线+对角互补四边形: 如图,∠A +∠C =180°,BD 是∠ABC 的平分线,则AD =C D .5.双角平分线+梯形:如图,AD ∥BC ,AE 平分∠BAD ,BE 平分∠ABC ,则 ①DE =CE ;②AB =AD +BC ;③AE ⊥BE .构造轴对称图形.......截长补短 补形法(构造法) :作另一边垂线ABC 中AD 平分∠BAC ,AE ⊥BC 于E ,若 B =40°,∠C =70°,求∠DAE.3.如图,△ABC的外角平分线AP,CP交于点P.(1)求证:BP平分∠ABC;(2)若∠B=50°,求∠APC;(3)若∠ACE=110°,求∠AP B.6. 条件同上题,猜测∠A,∠C,∠P的关系,并证明.2. 【面积问题】1.如图,AD是△ABC的角平分线,DE⊥AB,若AB=14cm,AC=10cm,DE=3cm,求△ABC的面积.2.如图,点I是△ABC的内心,ID⊥BC于点D,△ABC 周长为18cm,ID=3cm,求△ABC的面积.3.【角平分线+平行线→等腰三角形】1. 如图,在△ABC中,∠B、∠C的平分线交于点O,过点O作EF∥BC分别交AB、AC于点E、F.若EF=6,BE=4,则CF=.4. 5.2.如图,在△ABC中,∠B、∠C的平分线交于点I,过点I作MN∥BC分别交AB、AC于点M、N.若AB=14cm,AC=10cm,求△AMN的周长.3. 已知:如图所示△ABC,∠ACB=90°,D为BC延长线上一点,E是AB上一点,EM垂直平分BD,M为垂足,DE交AC于F,求证:E在AF的垂直平分线上.4.【角平分线+角平分线的垂线】补形法2. 如图,△ABC中,∠A=90°,AB=AC,CE平分∠ACB交AB于点D,BE垂直CE于E.求证:CD=2BE.5.【角平分线+一边的垂线】1. 如图,AD∥BC,AE平分∠BAD,BE平分∠AB C.求证:①DE=CE;②AB=AD+BC;③AE⊥BE.B 1.2.如图,BD是∠ABC的平分线,BC>AB,AD=C D.若DE⊥BC于点E,求证:2BE=BA+B C.6.【截长补短】1.如图,BD是∠ABC的平分线,BC>A B.(1)若∠A+∠C=180°,求证:AD=CD;(2)若AD=CD,求证:∠A+∠C=180°.2. 如图,AD∥BC,AE平分∠BAD,BE平分∠AB C.求证:①DE=CE;②AB=AD+BC;③AE⊥BE.3. 已知:如图,在△ABC中,∠ABC=60°,△ABC的角平分线AD,CE交于点O.(1)求∠AOC;(2)求证:OD=OE;(3)求证:AC=AE+C D.。
专题06 全等模型-角平分线模型(解析版)
![专题06 全等模型-角平分线模型(解析版)](https://img.taocdn.com/s3/m/a2fadd02814d2b160b4e767f5acfa1c7ab008261.png)
专题06全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。
模型1.角平分线垂两边(角平分线+外垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线、CA OA ⊥于点A 时,过点C 作CA OB ⊥.结论:CA CB =、OAC ∆≌OBC ∆.图1图2常见模型1(直角三角形型)条件:如图2,在ABC ∆中,90C ∠=︒,AD 为CAB ∠的角平分线,过点D 作DE AB ⊥.结论:DC DE =、DAC ∆≌DAE ∆.(当ABC ∆是等腰直角三角形时,还有AB AC CD =+.)图3常见模型2(邻等对补型)条件:如图3,OC 是∠COB 的角平分线,AC =BC ,过点C 作CD ⊥O A 、CE ⊥OB 。
结论:①180BOA ACB ∠+∠=︒;②AD BE =;③2OA OB AD =+.例1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==,∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1.【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键.例2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =()A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,{PA PA PM PF==,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选C.【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解题的关键.例3.(2023·山东·七年级专题练习)如图,∠D=∠C=90°,点E是DC的中点,AE平分∠DAB,∠DEA =28°,求∠ABE的大小.【答案】28°【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,即可求得∠ABE的度数.【详解】如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,(1)填空:角平分线的性质定理:角平分线上的点到.符号语言:∵如图1,OP 为COD ∠上的平分线,且,∴.(2)解答:已知:如图2,60AOB ∠=︒,OP 为AOB ∠的平分线,以点P 为顶点的CPD ∠与角的两边相交于点C 、D ,且120CPD ∠=︒.求证:PC PD =.(3)作图:根据以上种情况,再次寻找其它情况,点P P 为AOB ∠的平分线上的点,请你用尺规作图作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,60AOB ∠=︒,90PEO PFO ∠=∠=︒,36060290120EPF ∴∠=︒-︒-⨯︒=︒,120CPD ∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA )PC PD ∴=;(3)证明:如图2,作射线PC ,交OA 于C ,作PCN AOB ∠=∠,反向延长NP ,交OB 于D ,则PC PD =;,(4)解:如图3,当ODP ∠和OCP ∠互补时,PC PD =,理由如下:作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,90PEO PFO ∠=∠=︒,360290180EPF AOB ∴∠+∠=︒-⨯︒=︒,180CPD AOB ∠+∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA)PC PD ∴=.【点睛】本题考查全等三角形的判定,角平分线的性质等知识,解决问题的关键是熟练掌握有关基础知识.模型2.角平分线垂中间(角平分线+内垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线,AB OC ⊥,结论:△AOC ≌△BOC ,OAB ∆是等腰三角形、OC 是三线合一等。
初中数学常见模型之角平分线四大模型
![初中数学常见模型之角平分线四大模型](https://img.taocdn.com/s3/m/ed0efba65ef7ba0d4a733be3.png)
模型实例
1.如图①,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,那么点D到直 线AB的距离是 .
2.如图②,∠1=∠2,+∠3=∠4。求证:AP平分∠BAC。
A
C
D
B
图1
A
B
2 1
C
34
P图 2
典例精选
1.如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC。
A DE
B
C
典例精选
1.如图,在△ABC中,BE是角平分线,AD⊥BE,垂足为D。求证:∠2=∠1+∠C
A
E 12 D
C
B
2.如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于点E
求证:BE= (AC-AB)
A
E
B
D
C
模型4:角平分线+平行线
如图,P是∠MO的平分线上一点,过点P作PQ∥ON,交OM于点Q。 结论:△POQ是等腰三角形
2.如图②所示,AD是△ABC的内角平分线,其他条件不变,试比较PC-PB与ACAB的大小,并说明理由。
A A
P
P
B
C图 1
D
B
D
C
图2
典例精选
1.已知,在△ABC中,∠A=2∠B,CD是∠ACB的平分线,AC=16,AD=8。求线 段BC的长
A
B
D
C
2.已知,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC。求证:BC=AB+CD
M A
P
O
BN
模型分析:利用角平分线图形的对称性,在角的两边构造对称全等
中考数学常见几何模型角平分线的基本模型(一)全等类
![中考数学常见几何模型角平分线的基本模型(一)全等类](https://img.taocdn.com/s3/m/0e6243e8d4bbfd0a79563c1ec5da50e2524dd181.png)
专题07 角平分线的重要模型(一)全等类角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的全等类模型作相应的总结,需学生反复掌握。
模型1.角平分线构造轴对称模型(角平分线+截线段等)【模型解读与图示】已知如图1,OP为AOB∠的角平分线、PM不具备特殊位置时,辅助线的作法大都为在OB上截取ON OM=,连结PN即可.即有OMP∆≌ONP∆,利用相关结论解决问题.图1 图21.(2022·湖北十堰·九年级期末)在△ABC中,△ACB=2△B,如图①,当△C=90°,AD为△BAC 的角平分线时,在AB上截取AE=AC,连结DE,易证AB=AC+CD.(1)如图②,当△C≠90°,AD为△BAC的角平分线时,线段AB,AC,CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2)如图③,当AD为△ABC的外角平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【答案】(1)AB AC CD=+;证明见解析;(2)AB AC CD+=;证明见解析.【分析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE△△ADC(SAS),则可得△AED=△C,ED=CD,又由△AED=△ACB,△ACB=2△B,所以△AED=2△B,即△B=△BDE,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD△△CAD,可得ED=CD,△AED =△ACD,又由△ACB=2△B,易证DE=EB,则可求得AC+AB=CD.【详解】(1)猜想:AB AC CD=+.AB∥CD⇒AB+CD=BCFDEBAC证明:如图②,在AB 上截取AE AC =,连结DE ,△AD 为ABC 的角平分线时,△BAD CAD ∠=∠,△AD AD =,△()SAS ADE ADC ≌△△, △AED C ∠=∠,ED CD =,△2ACB B ∠=∠,△2AED B ∠=∠.△B EDB ∠=∠,△EB ED =,△EB CD =,△AB AE DE AC CD =+=+.(2)猜想:AB AC CD +=.证明:在BA 的延长线上截取AE AC =,连结ED .△AD 平分FAC ∠,△EAD CAD ∠=∠.在EAD 与CAD 中,AE AC =,EAD CAD ∠=∠,AD AD =,△EAD CAD ≌△△.△ED CD =,AED ACD ∠=∠.△FED ACB ∠=∠.又2ACB B ∠=∠,FED B EDB ∠=∠+∠,EDB B ∠=∠.△EB ED =.△EA AB EB ED CD +===.△AC AB CD +=.【点睛】此题考查三角形综合题、全等三角形的判定与性质、等腰三角形的判定、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.2.(2022·山东烟台·九年级期末)已知在ABC 中,满足2ACB B ∠=∠,(1)【问题解决】如图1,当90C ∠=︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,求证:AB AC CD =+.(2)【问题拓展】如图2,当90C ∠≠︒,AD 为BAC ∠的角平分线时,在AB 上取一点E 使得AE AC =,连接DE ,(1)中的结论还成立吗?若成立,请你证明:若不成立,请说明理由.(3)【猜想证明】如图3,当AD 为ABC 的外角平分线时,在BA 的延长线上取一点E 使得AE AC =,连接DE ,线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明. 【答案】(1)证明见解析(2)成立,证明见解析 (3)猜想AB AC CD +=,证明见解析【分析】(1)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,再根据三角形的外角性质可得45B BDE ∠=∠=︒,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证; (2)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED C ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证;(3)先根据SAS 定理证出AED ACD ≅,根据全等三角形的性质可得ED CD =,AED ACD ∠=∠,从而可得FED ACB ∠=∠,再根据三角形的外角性质可得B BDE ∠=∠,然后根据等腰三角形的判定可得EB ED =,从而可得EB CD =,最后根据线段和差、等量代换即可得证.(1)证明:△AD 为BAC ∠的角平分线,△EAD CAD ∠=∠,在AED 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS ≅,△ED CD =,AED ACD ∠=∠,又△90ACB ∠=︒,2ACB B ∠=∠,△45B ∠=︒,90AED ∠=︒,△45AED BDE B ∠=∠=∠-︒,△B BDE ∠=∠,△EB ED =,△EB CD =,△AB AE EB AC CD =+=+.(2)解:(1)中的结论还成立,证明如下:△AD 为BAC ∠的角平分线时,△EAD CAD ∠=∠,在AED 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS ≅,△AED C ∠=∠,ED CD =,△2ACB B ∠=∠,△2AED B ∠=∠,又△AED B EDB ∠=∠+∠,△B EDB ∠=∠,△EB ED =,△EB CD =,△AB AE EB AC CD =+=+.(3)解:猜想AB AC CD +=,证明如下:△AD 平分EAC ∠,△EAD CAD ∠=∠,在AED 与ACD △中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,△()AED ACD SAS ≅,△ED CD =,AED ACD ∠=∠,如图,△180180AED ACD ︒-∠=︒-∠,即FED ACB ∠=∠,△2ACB B ∠=∠,△2∠=∠,FED B又△FED B EDB∠=∠+∠,△EDB B∠=∠,△EB ED=,+===,△AB AE EB ED CD△AB AC CD+=.【点睛】本题主要考查了三角形全等的判定与性质、等腰三角形的判定,熟练掌握三角形全等的判定方法是解题关键.3.(2022·浙江·九年级期中)(1)如图1,在△ABC中,△ACB=2△B,△C=90°,AD为△BAC 的平分线交BC于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)(2)如图2,当△C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.(3)如图3,当△ACB≠90°,△ACB=2△B ,AD为△ABC的外角△CAF的平分线,交BC的延长线于点D,则线段AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.【答案】(1)见解析;(2)AB=AC+CD;(3)AB=CD﹣AC【分析】(1)在AB上截取AE=AC,连接DE,根据角平分线的定义得到△1=△2.推出△ACD△△AED (SAS).根据全等三角形的性质得到△AED=△C=90,CD=ED,根据已知条件得到△B=45°.求得△EDB=△B=45°.得到DE=BE,等量代换得到CD=BE.即可得到结论;(2)在AC取一点E使AB=AE,连接DE,易证△ABD△△AED,所以△B=△AED,BD=DE,又因为△B=2△C,所以△AED=2△C,因为△AED是△EDC的外角,所以△EDC=△C,所以ED=EC,BD=EC,进而可证明AB+BD=AE+EC=AC;(3)在AB的延长线AF上取一点E,使得AE=AC,连接DE.证明△ACD△△AED,根据全等三角形的性质得到DE=BE,BE=CD,即可得出结论.【详解】(1)证明:在AB上取一点E,使AE=AC△AD为△BAC的平分线△△BAD=△CAD.在△ACD和△AED中,AE ACBAD CADAD AD=⎧⎪∠=∠⎨⎪=⎩△△ACD△△AED(SAS).△△AED=△C=90°,CD=ED,又△△ACB=2△B,△C=90°,△△B=45°.△△EDB=△B=45°.△DE=BE,△CD=BE.△AB=AE+BE,△AB=AC+CD.(2)证明:在AB取一点E使AC=AE,在△ACD和△AED中,AC AEBAD EADAD AD===⎧⎪∠∠⎨⎪⎩,△△ACD△△AED,△△C=△AED,CD=DE,又△△C=2△B,△△AED=2△B,△△AED是△EDC的外角,△△EDB=△B,△ED=EB,△CD=EB,△AB=AC+CD;(3)猜想:AB=CD﹣AC证明:在BA的延长线上取一点E,使得AE=AC,连接DE,在△ACD和△AED中,AC AECAD EADAD AD=⎧⎪∠=∠⎨⎪=⎩,△△ACD△△AED(SAS),△△ACD=△AED,CD=DE,△△ACB=△FED,又△△ACB=2△B△△FED=2△B,又△△FED=△B+△EDB,△△EDB=△B,△DE=BE,△BE=CD,△AB=BE-AE△AB=CD﹣AC.【点睛】本题考查全等三角形的判定和性质,关于线段和差关系的证明,通常采用截长补短法.4.(2022·北京九年级专题练习)在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC 平分BAE ∠,90ACE ∠=︒,则线段AE 、AB 、DE 的长度满足的数量关系为______;(直接写出答案)(2)如图(2),AC 平分BAE ∠,EC 平分AED ∠,若120ACE ∠=︒,则线段AB 、BD 、DE 、AE 的长度满足怎样的数量关系?写出结论并证明.【答案】(1)AE =AB +DE ;(2)AE =AB +DE +12BD ,证明见解析.【分析】(1)在AE 上取一点F ,使AF =AB ,由三角形全等的判定可证得△ACB ≌△ACF ,根据全等三角形的性质可得BC =FC ,∠ACB =∠ACF ,根据三角形全等的判定证得△CEF ≌△CED ,得到EF =ED ,再由线段的和差可以得出结论;(2)在AE 上取点F ,使AF =AB ,连结CF ,在AE 上取点G ,使EG =ED ,连结CG ,根据全等三角形的判定证得△ACB ≌△ACF 和△ECD ≌△ECG ,由全等三角形的性质证得CF =CG ,进而证得△CFG 是等边三角形,就有FG =CG =12BD ,从而可证得结论.【详解】解:(1)如图(1),在AE 上取一点F ,使AF =AB .∵AC 平分∠BAE ,∴∠BAC =∠FAC .在△ACB 和△ACF 中,AB AF BAC FAC AC AC ⎧⎪∠∠⎨⎪⎩===∴△ACB ≌△ACF (SAS ).∴BC =FC ,∠ACB =∠ACF .∵C 是BD 边的中点,∴BC =CD .∴CF =CD .∵∠ACE =90°,∴∠ACB +∠DCE =90°,∠ACF +∠ECF =90°.∴∠ECF =∠ECD .在△CEF 和△CED 中,CF CD ECF ECD CE CE ⎧⎪∠∠⎨⎪⎩===∴△CEF ≌△CED (SAS ).∴EF =ED .∵AE =AF +EF ,∴AE =AB +DE .故答案为:AE =AB +DE ;(2)AE =AB +DE +12BD .证明:如图(2),在AE 上取点F ,使AF =AB ,连结CF ,在AE 上取点G ,使EG =ED ,连结CG .∵C 是BD 边的中点,∴CB =CD =12BD .∵AC 平分∠BAE ,∴∠BAC =∠FAC . 在△ACB 和△ACF 中,AB AF BAC FAC AC AC ⎧⎪∠∠⎨⎪⎩===∴△ACB ≌△ACF (SAS ).∴CF =CB ,∠BCA =∠FCA .同理可证:△ECD ≌△ECG ∴CD =CG ,∠DCE =∠GCE .∵CB =CD ,∴CG =CF .∵∠ACE =120°,∴∠BCA +∠DCE =180°−120°=60°.∴∠FCA +∠GCE =60°.∴∠FCG =60°.∴△FGC 是等边三角形.∴FG =FC =12BD .∵AE =AF +EG +FG ,∴AE =AB +DE +12BD .【点睛】本题主要考查了全等三角形的判定与性质的运用,能熟练应用三角形全等的判定和性质是解决问题的关键.模型2.角平分线垂两边(角平分线+外垂直)【模型解读与图示】已知如图1,OP 为OAB ∠的角平分线、PM OA ⊥于点M 时,辅助线的作法大都为过点P 作PN OB ⊥即可.即有PM PN =、OMP ∆≌ONP ∆等,利用相关结论解决问题. 图1图2图3D B邻等对补模型:已知如图2,AP 是∠CAB 的角平分线,EP =DP辅助线:过点P 作PG ⊥AC 、PF ⊥AB结论:①︒=∠+∠180EPD BAC (D P E A 、、、四点共圆);②EG DF =;③DF AE AD 2+=1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,△AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,△1DF DE ==, △1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1. 【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键.2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =( )A .40°B .45°C .50°D .60°【答案】C【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC =∠ACD ﹣∠ABC =2x °﹣(x °﹣40°)﹣(x °﹣40°)=80°,∴∠CAF =100°, 在Rt △PFA 和Rt △PMA 中,{PA PAPM PF ==,∴Rt △PFA ≌Rt △PMA (HL ),∴∠FAP =∠PAC =50°.故选C .【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM =PN =PF 是解题的关键.3.(2022·江苏扬州·中考真题)如图,在ABCD 中,BE 、DG 分别平分ABC ADC ∠∠、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ⊥,垂足为F .若ABCD 的周长为56,6EF =,求ABC ∆的面积. 【答案】(1)见详解(2)84【分析】(1)由平行四边形的性质证()ABE CDG ASA ∆≅∆即可求证;(2)作EQ BC ⊥,由ΔΔΔABC ABE EBC S S S =+即可求解;(1)证明:在ABCD 中,△//AB CD ,△BAE DCG ∠=∠,△ABCD 的周长为56,AB BC +=BE 平分∠EQ EF ==ABC S S ∆∆=【点睛】本题主要考查平行四边形的性质、三角形的全等、角平分线的性质,掌握相关知识CD 交射线OA 于点F ,射线CE 交射线OB 于点G .(1)如图1,若CD △OA ,CE △OB ,请直接写出线段CF 与CG 的数量关系;(2)如图2,若△AOB =120°,△DCE =△AOC ,试判断线段CF 与CG 的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM△OA于M,CN△OB于N,证明△CMF△△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:△OP平分△AOB,CF△OA,CG△OB,△CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM△OA,CN△OB,△OP平分△AOB,CM△OA,CN△OB,△AOB=120°,△CM=CN(角平分线上的点到角两边的距离相等),△△AOC=△BOC=60°(角平分线的性质),△△DCE=△AOC,△△AOC=△BOC=△DCE=60°,△△MCO=90°-60° =30°,△NCO=90°-60° =30°,△△MCN=30°+30°=60°,△△MCN=△DCE,△△MCF=△MCN-△DCN,△NCG=△DCE-△DCN,△△MCF=△NCG,在△MCF和△NCG中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩△△MCF △△NCG (ASA ),△CF =CG (全等三角形对应边相等).【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.模型3.角平分线垂中间(角平分线+内垂直)【模型解读与图示】已知如图1,OP 为AOB ∠的角平分线,PM OP ⊥于点P 时,辅助线的作法大都为延长MP 交OB 于点N 即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.(2019·陕西)如图,在△ABC 中,∠B=30°,∠C=45°,AD 平分∠BAC 交 BC 于点 D,DE⊥AB,垂足为 E.若 DE=1,则 BC 的长为(A )
图3 如图 3,在△ABC 中,BC>BA,BO 是∠ABC 的平分线.
③采用截长补短法构造全等三角形 如图 3,在△ABC 中,BC>BA,BO 是∠ABC 的平分线.
(截长法)在BC上取线段BE=BA,连接OE, 则△BEO≌△BAO;
( 补 短 法 ) 延 长 BA 至 点 D , 使 BD = BC , 连 接 OD,则△BDO≌△BCO.
A.2+ 2 B. 2+ 3 C.2+ 3 D.3
9.(2019·永州)已知∠AOB=60°,OC 是∠AOB 的平分线,点 D 为 OC 上一点,过 D 作直线 DE⊥OA,垂足为 E,且直线 DE 交 OB 于点 F,如图 所示.若 DE=2,则 DF= 4 .
10.(2019·威海改编)如图,在四边形 ABCD 中,AB∥DC,过点 C 作 CE⊥BC,交 AD 于点 E,且 EC 平分∠BED.连接 BE.若 AB=6,则 CD= 3.
模型 2 利用角平分线,作辅助线构造全等三角形 ①过角平分线上的点作角两边的垂线 如图 1,BO 是∠ABC 的平分线,过点 O 作 OE⊥AB 于点 E,OF⊥BC 于点 F,则 OE=OF,△BEO≌△BFO.
图1
②过角平分线上任意一点作角平分线的垂线 如图 2,BO 是∠ABC 的平分线,EF⊥BO,则△BEO≌△BFO. ③采用截长补短法构造全等三角形
解题通法:三角形一内角与另一外角的平分线的夹角等于第三个内 角的一半.
模型3 两外角平分线的夹角 ∠如A之图间,的在关△系AB为C:中∠,OBO=,90C°-O是12∠△AA.BC的外角平分线,则∠O与
解题通法:三角形两外角的平分线的夹角等于90°与第三个内角的 一半的差.
.
模型 4 内角平分线和高线的夹角 如图,在△ABC 中,AD 是 BC 边上的高,AE 是∠BAC 的平分线(AE 可能在 AD 的左侧或右侧),则∠EAD= 12|∠B-∠C| .
别是∠BAC,∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+
∠ACD=(A ) A.75°
B.80°
C.85°
D.90°
3.(2018·深圳改编)如图,在 Rt△ABC 中,∠C=90°,AD 平分∠BAC, BE 平分∠ABC,AD,BE 相交于点 F,且 AF=4,EF= 2,则 AE= 10.
过点 M 作 MN∥BC 交 AC 于点 N,且 MN 平分∠AMC.若 AN=1,则 BC
的长为( BD.8
7.(2019·安顺节选)如图,在四边形 ABCD 中,AB∥CD,AF 与 DC 的延长线交于点 F,点 E 是 BC 的中点.若 AE 是∠BAF 的平分线,试探 究 AB,AF,CF 之间的等量关系,并证明你的结论.
与角平分线有关的基本模型
一、三角形中角平分线的夹角问题
模型 1 两内角平分线的夹角
如图,在△ABC 中,∠ABC,∠ACB 的平分线 BE,CF 相交于点 G,
则∠BGC 与∠A 之间的关系为: ∠BGC=90°+12∠A
.
解题通法:三角形两内角的平分线的夹角等于90°与第三个内角的一 半的和.
模型 2 一个内角和一个外角平分线的夹角 如图,在△ABC 中,BP 平分∠ABC,CP 平分∠ACB 的外角,BP 与 CP 相交于点 P,则∠P 与∠A 之间的关系为: ∠P=12∠A.
1.(2019·大庆)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外
角∠ACM 的平分线,BE 与 CE 相交于点 E.若∠A=60°,则∠BEC=( B )
A.15°
B.30°
C.45°
D.60°
2.(2018·黄石)如图,在△ABC 中,AD 是 BC 边上的高,AE,BF 分
12.感知:如图 1,AD 平分∠BAC.∠B+∠C=180°,∠B=90°,易 知:DB=DC.
探究:如图 2,AD 平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°, 求证:DB=DC.
11.如图,在△ABC 中,∠ACB=2∠B,∠1=∠2,求证:AB=AC +CD.
证明:延长 AC 至点 E,使 AE=AB,连接 DE. ∵AB=AE,∠1=∠2,AD=AD, ∴△ABD≌△AED(SAS).∴∠B=∠E. ∵∠ACD=∠E+∠CDE,∠ACD=2∠B, ∴∠ACD=2∠E.∴∠E=∠CDE. ∴CD=CE.∴AB=AE=AC+CE=AC+CD.
解:结论:AB=AF+CF. 证明:延长 AE 交 DF 的延长线于点 G. ∵E 是 BC 的中点,∴CE=BE. ∵AB∥DC,∴∠BAE=∠G. 又∵∠AEB=∠GEC,BE=CE, ∴△AEB≌△GEC(AAS). ∴AB=GC. ∵AE 是∠BAF 的平分线,∴∠BAG=∠FAG. ∵∠BAG=∠G,∴∠FAG=∠G.∴FA=FG. 又∵CG=CF+FG,∴AB=AF+CF.
4.如图,在△ABC 中,∠A=α,△ABC 的两外角平分线交于点 D1,
∠CBD1 的平分线与∠BCD1 的平分线交于点 D2,∠CBD2 的平分线与 ∠BCD2 的平分线交于点 D3,则∠D3= 157.5°-81α (用含 α 的代数式表示).
二、与角平分线有关的图形和辅助线作法 模型 1 角平分线+平行线→等腰三角形 常见模型有以下四种:
解题通法:遇到角平分线及平行线,除了可以得到角度的关系,还可 以得到一个等腰三角形.
5.(2019·陕西)如图,OC 是∠AOB 的平分线,l∥OB.若∠1=52°,则
∠2 的度数为( C) A.52°
B.54°
C.64°
D.69°
6.(2018·淄博)如图,在 Rt△ABC 中,CM 平分∠ACB 交 AB 于点 M,