第二章 机电一体化系统的机械传动系统

合集下载

机电一体化系统设计_第二章机械部件选择与设计

机电一体化系统设计_第二章机械部件选择与设计

d) 弹簧式自动预紧调整
但结构复杂、轴向刚度较差、适合清载场合。
(3)选择滚珠丝杠副支承方式
为了提高滚珠丝杠传动副的支承刚度,从而提高传 动精度,滚珠丝杠副支承方式具有下属四种方式。
a) 单推--单推式支承
特点:两端止推轴承可使滚珠丝杆产生预拉伸力, 提高了丝杆安装刚度,预拉力越大,轴承寿命降低。
3)滚珠丝杠副的选择设计验算步骤
依据最大工作载荷(N)或平均工作载荷(N)作用下的使用寿命T(h)、 丝杆有效工作行程(mm)、丝杠转速(r/min)或平均转速(r/min)、滚 道硬度HRC以及工况等实际工作条件,进行一系列的验算。 〃 承载能力计算与滚珠丝杠副型号选择 在最大静载荷和动载荷条件下,进行弯曲强度、接触应力强度、 疲劳强度等验算,综合决定选择滚珠丝杠副型号。 〃 压杆稳定性验算或校核 压杆稳定性验算或校的基本要求是不影响滚珠丝杠副的精度和 变形附加载荷产生的摩擦阻力超过极限值。 〃 刚度验算 结构刚度(支承方式相关)和接触刚度(导轨滚道)。 **由此才能完成滚珠丝杠副的选择设计工作。
滚珠丝杠副的四种支承方式及其特点
(4)滚珠丝杠副的制动装置
作用:在垂直安装或在高速移动定位时,防止滚珠 丝杠副逆转发生不安全事故或定位不可靠(无自锁能 力)。 常用:超越离合器、双推式电磁离合器(制动器)。
2 1
6 7
3
4
5
4 3 2 1
超越离合器
双推式电磁离合器
超越离合器的工作原理
超越离合器是利用主动件和从动件的转速变化或回转方 向变换而自动接合和脱开的一种离合器。当主动件带动从 动件一起转动时,称为结合状态;当主动件和从动件脱开 以各自的速度回转时,为超越状态。
超越离合器具有以下功能 a.在快速进给机械中实现快慢速转换、超越功能。 b.实现步进间隙运动和精确定位的分度功能。

机械传动设计的原则

机械传动设计的原则
1. 高精度 精度直接影响产品的质量,尤其是机电一体化产品,其 技术性能、工艺水平和功能比普通的机械产品都有很大的提 高,因此机电一体化机械系统的高精度是其首要的要求。如 果机械系统的精度不能满足要求,则无论机电一体化产品其
第 2 章 机电一体化机械系统设计概念
2. 快速响应 机电一体化系统的快速响应就是要求机械系统从接到指 令到开始执行指令所经过的时间间隔短,这样系统才能精确 地完成预定的任务要求,控制系统也能及时根据机械系统的
第 2 章 机电一体化机械系统设计概念
1. 齿轮系传递的功率不同,其传动比的分配也有所不同。
1) 电动机驱动的二级齿轮传动系统如图2-2所示。由于功率 小,假定各主动轮具有相同的转动惯量J1,轴与轴承转动惯 量不计,各齿轮均为实心圆柱齿轮,且齿宽b和材料均相同 ,效率不计, 则有
i1=( 2 ×i) 1/3 i2=2-1/6i2/3
解 查图2-4,得n=3,Je/J1=70;n=4,Je/J1=35;n=5, Je/J1=26。兼顾到Je/J1 值的大小和传动装置的结构,选n=4。 查图2-5,得i1=3.3。查图2-6,在横坐标ik-1上3.3处作垂直线 与A线交于第一点,在纵坐标ik轴上查得i2=3.7。通过该点作 水平线与B曲线相交得第二点i3=4.24。由第二点作垂线与A 曲线相交得第三点i4=4.95。
第 2 章 机电一体化机械系统设计概念
机电一体化机械系统的设计要从系统的角度进行合理化
机构、传动机构和支承部件。在机械系统设计时,除考虑一 般机械设计要求外,还必须考虑机械结构因素与整个伺服系 统的性能参数及电气参数的匹配,以获得良好的伺服性能。
第 2 章 机电一体化机械系统设计概念
2.1.1
机电一体化机械系统与一般的机械系统相比,除要求具 有较高的制造精度外,还应具有良好的动态响应特性,即快

机电一体化系统的机械系统部件选择与设计

机电一体化系统的机械系统部件选择与设计

4)等效转动惯量最小原则
如二级,等效转动惯量为:
J me
J1
J2 i12
J3
J4
i12
i
2 2
令 dJ me 0, 则 :
di 1
i1 ( 2 i 2 )1 / 6 i i1i 2
3、齿轮传动间隙的调整方法
普通传动:齿轮啮合朝一个方向 伺服传动:齿轮啮合朝两个方向
间隙
进给系统的位移值之后于指定值 开环中 反向时,出现反向死区
有 冲 击 振 动 运 转 1.5 : 2.5
fH :硬度修正系数 : 硬 度 HRC 60 57.5 55 52.5 50 47.5 45 42.5 40
fH
1 1.1 1.2 1.4 2 2.5 3.3 4.5 5
5、滚珠丝杠螺母副设计选择要点
2)确定丝杠名义直径D及长度L 据最大动载荷Q与承载能力确定名 义直径D; 长度L由工作长度确定。
二、机座或支架
1、机电一体化系统对机座或支架的基本要求
控制热源 2)热变形 采用热平衡
3)稳定性:保护几何尺寸和相对位置的精度
二、机座或支架
2、机座或支架结构设计要点 考虑刚度、安装方式、材料选择、结构工艺性、 成本、生产周期等
(1)提高自身刚度
合理选择截面形状及尺寸 合理布置筋板和加强筋 合理开孔和加盖
二、机座或支架
1、机电一体化系统对机座或支架的基本要求
1)刚度和抗振性
刚度抵抗载荷变形的能力,有静刚度和动刚度。抗振 性是承受受迫振动的能力。动刚度大抗振性好。
动刚度 KW=2Kξ=2KB/Wn
K为静刚度(N/m) ξ为阻尼比
B为阻尼系数
Wn为固有振动频率
二、机座或支架

机电一体化系统设计 第2章 机械系统设计

机电一体化系统设计 第2章  机械系统设计

第 2 章 机械系统部件的选择与设计
§2-2 机械系统传动部件的选择与设计
三、滚珠丝杠副传动部件 滚珠丝杠副支撑方式 双推-自由式/简支式
如下图所示,一端安装推力轴承与圆柱滚子轴承的组合,另一端悬空呈 自由状态,故轴向刚度和承载能力低,多用于轻载、低速的垂直安装的 丝杠传动系统。
第 2 章 机械系统部件的选择与设计
§2-2 机械系统传动部件的选择与设计
机械传动部件及其功能要求
➢ 常用的机械传动部件有螺旋传动、齿轮传动、同步带传动、高速带传 动、各种非线性传动部件等。
➢ 主要功能是传递转矩和转速。因此,它实质上是一种转矩、转速变换 器,其目的是使执行元件与负载之间在转矩与转速方面得到最佳匹配。
➢ 机械传动部件对伺服系统的伺服特性有很大影响,特别是其传动类型、 传动方式、传动刚性以及传动的可靠性对机电一体化系统的精度、稳 定性和快速响应性有重大影响。因此,应设计和选择传动间隙小、精 度高、体积小、重量轻、运动平稳、传递转矩大的传动部件。
第 2 章 机械系统部件的选择与设计
§2-2 机械系统传动部件的选择与设计
三、滚珠丝杠副传动部件 滚珠丝杠副轴向间隙的调整与预紧
弹簧自动调整预紧式
如图所示,双螺母中, 一个活动,另一个固定, 用弹簧使其间始终具有 产生轴向位移的推动力, 从而获得预紧力。其特 点是能消除使用过程中 因磨损或弹性变形产生 的间隙,但其结构复杂、 轴向刚度低,适用于轻 载场合。
单螺母变位导程自预紧式 和单螺母滚珠过盈预紧式
第 2 章 机械系统部件的选择与设计
§2-2 机械系统传动部件的选择与设计
三、滚珠丝杠副传动部件 滚珠丝杠副支撑方式
典型支承方式
第 2 章 机械系统部件的选择与设计

机电一体化(第2章 机械系统)

机电一体化(第2章 机械系统)
机械系统部件的设计要求
与一般的机械系统设计要求相比,机电一体化系统 的机械系统要求定位精度高,动态响应特性好(即响应要 快,稳定性要好),为达到要求,在设计中常提出无间隙、 低摩擦、低惯量、高刚度、高谐振频率、适当的阻尼比等 要求。为达到上述要求,主要从以下几方面采取措施:
(1)单推-单推式
可预拉伸安装,预紧力大, 轴向刚度较高。
简易单推-单推式支承
(2)双推-双推式
轴向刚度最高,适于高刚度、 高速、高精度的丝杠传动。 对丝杠热变形敏感。
(3)双推-简支式
预紧力小,寿命长,常用 于中速、高精度的长丝杠 传动系统。注意丝杠热变 形影响。
(4)双推-自由式
承载能力小,轴向刚度低,多用于 短程、轻载、低速的垂直安装。
4) 缩小反向死区误差,如采取消除传动间隙、减少支承变形的 措施; 5) 提高刚度 改进支承及架体的结构设计以提高刚性、减少振 动、降低噪声。选材上;结构轻型化、紧密化。
这些措施反映了机电一体化系统设计的基本特点。
二、机械传动部件的选择与设计
机械传动部件的主要功能是传递转矩和转速,它实质上 是一种转矩、转速变换器,其目的是使执行元件与负载之间在 转矩与转速方面得到最佳匹配。
(3)谐振频率 包括机械传动部件在内的弹性系统,若不计 阻尼,可简化为质量-弹簧系统,为多自由度系统,有第一谐振 频率和高阶谐振频率等。当外界传来的激振频率接近或等于系 统固有频率时,系统产生谐振,不能正常工作。
还有电气驱动部件的谐振频率。
(4)摩擦 摩擦分为粘性摩擦、库仑摩擦和静摩擦。
实际机械导轨的摩擦特性随材料和表面状态的不同有很 大的不同。
(一)机械传动部件的功能要求及常用的传动部件
机械传动部件的传动类型、传动方式、传动刚性以及传 动可靠性对机电一体化系统的精度、稳定性和快速响应性有重 要影响。机电一体化系统设计时,需要选择传动间隙小、精度 高、体积小、重量轻、运动平稳、传递转矩大的传动部件。

机电一体化系统设计课后习题

机电一体化系统设计课后习题

机电一体化系统设计课后习题
第一章绪论作业
1、简述机电一体化系统的基本功能要素。

第二章机械系统设计作业
1、图所示为一进给工作台。

电动机M、制动器B、工作台A、齿轮G1~G4以及轴1、丝杠轴的数据如表所示。

试求:此装置换算至电动机轴的等效转动惯量。

2、机电一体化系统对机械传动系统的基本要求是什么?
3、齿轮传动链的级数和各级传动比确定的三个基本原则是什么?如何选择?
第三章传感器检测及其接口电路作业
1、传感器的性能指标有哪两大类,各包括那些内容?
2、传感器的选用原则是什么
3、为什么差动变极距型电容位移传感器的精度是普通的变极距电容传感器的2倍?
4、光栅位移传感器主要由哪几部分构成?产生的莫尔条纹最主要的作用是什么?
5、感应同步器的测量方式有几种类型?写出励磁方式和输出信号的表达式。

6、已知光电脉冲编码器的周脉冲数Z=1200,在t=10s的时间内测轴的脉冲数N=6000,则光电脉冲编码器测得的角位移是多少?轴的转速是多少?
第四章控制电机及其选择计算作业
1、机电一体化系统的伺服驱动有哪几种形式?各有什么特点?
2、步进电动机的选用原则是什么?
3、直流PWM调压比其它调压方式有什么优点?
4、交流变频调速有哪几种类型。

机电一体化试题

机电一体化试题

I、机电一体化是微电子技术向机械工业渗透过程中逐渐形成的一种综合技术,其主要的相关技术可以归纳成机械技术、传感检测技术、计算机与信息处理技术、自动控制技术、伺服驱动技术和系统总技术。

3、摩擦对伺服系统的影响有引起动态滞后,降低系统的响应速度,导致系统误差和产生系统差。

4、谐波齿轮传动机械系统中,设柔轮为固定件,波发生器为输入,刚轮为输出,则包含输入与输出运动方向关系在内的传动比计算式为陰2二Z g /(Z g - Z r )。

7、机电一体化系统中,在满足系统总传动比不变的情况下,常采用等效转动惯量最小原则、重_ 量最轻原则和输出轴转角误差最小原则。

9、机电一体化机械系统主要包括以下三大机构传动机构、导向机构、执行机构。

10、机械传动系统的特性包括运态响应特性和伺服特性。

II、标准滚动轴承接其所能承受的载荷方向或公称接触角的不同,可分为圆柱滚子轴承、圆锥滚子轴承。

13、为了避免外部设备的电源干扰,防止被控对象电路的强电反窜,通常采取将微机的前后向通道与被连模块在电气上隔离的方法,称为光电隔离。

14、用软件进行“线性化”处理,方法有三种:计算法、查表法和插值—15、在机电一体化测控系统中,传感器的输出量与被测物理量之间的关系,绝大部分是非线性的。

造成非线性的原因主要有两个:一是许多传感器的转换原理并非线性:二是采用的测量电路也是非线性的。

1 N16、算术平均滤波Y=N^ X i ,N的选取应按具体情况决定,N越大,则平滑度高,滤波N y效果越好。

对于流量信号N= 8〜16 ;压力信号N= 4_。

18、传感器与前级信号的放大与隔离装置有运算放大器、测量放大器、程控测量放大器、隔离放大器。

20、伺服系统因被控对象的运动、检测部件以及机械结构等的不同而对伺服系统的要求有差异,但所有伺服系统的共同点是带动控制对象按指定规律作机械运动。

25、把微机系统后向通道的弱电控制信号转换成能驱动执行元件动作的具有一定电压和电流的强电功率信号或液压气动信号,称为脉冲功率放大器。

《机电一体化概论》教学内容

《机电一体化概论》教学内容

《机电一体化概论》教学内容第一章机电一体化的基本概念【教学目的】弄明白学习机电一体化的重要性,掌握机电设备的发展方向,弄懂机电一体化基本涵义及各部的作用与功能。

【教学内容】1、机电一体化的定义;2、机电一体化的相关技术;3、机电一体化技术的发展前景;4、机电一体化的应用实例。

第二章机电一体化中机械系统部件的选择与设计【教学目的】认识在机电一体化设备中,机械技术方面的特殊要求,了解机械三大系统:传动系统、导向机构、执行机构各自的特点和要求。

【教学内容】1、概述;2、传动机构;3、导向与支承机构;4、机械执行机构第三章机电一体化中微型计算机控制系统及接口设计【教学目的】掌握控制系统的一般设计思路的系统总体方案确定、控制算法确定、微型计算机的选择、系统总体设计、软件设计的注意事项。

掌握微机基本构成,即CPU构成及各部分作用,微型计算机构成,微型计算机系统构成及各部分作用,掌握微型计算机的分类和各类的特点。

【教学内容】1、控制系统的一般设计思路;2、机电一体化中的微型计算机系统;3、单片机控制系统的设计;4、执行元件的功率驱动接口。

第四章机电一体化中传感器与微机的接口技术【教学内容】1、传感器前级信号的放大与隔离;2、信号在传输中的变换;3、传感器与微型计算机的接口;4、传感器的非线性补偿。

第五章机电一体化中伺服系统设计【教学目的】掌握步进电机的概念、拍的概念,三相三拍步进电机的工作原理,双三拍步进电机的工作原理;掌握步进电机的特点。

【教学内容】1、概述;2、步进电机的驱动及其控制;3、直流伺服驱动及其控制;4、交流伺服驱动;5、控制方式的选择及应用实例。

第六章机电一体化系统设计及应用实例【教学目的】掌握机电一体化产品的一般设计开发步骤,掌握生产节拍的要求、机械系统的配置、控制系统配制、故障报警系统的配制要求。

【教学内容】1、机电一体化产品的设计开发步骤;2、机电一体化系统设计应用实例1;3、机电一体化系统设计应用实例2。

机电一体化技术--机械系统

机电一体化技术--机械系统

2、采取的具体技术措施 、 1) 采用低摩擦阻力的传动部件和导向支承部件。 ) 采用低摩擦阻力的传动部件和导向支承部件。 2)缩短传动链,提高传动与支承刚度。 )缩短传动链,提高传动与支承刚度。 3)选用最佳传动比,以达到提高系统分辨率、减少 )选用最佳传动比,以达到提高系统分辨率、 等效到执行元件输出轴上的等效转动惯量, 等效到执行元件输出轴上的等效转动惯量,尽可能 提高加速能力。 提高加速能力。 4)缩小反向死区误差。 )缩小反向死区误差。 5)改进支承及架体的结构设计以提高刚性、减少振动、 )改进支承及架体的结构设计以提高刚性、减少振动、 降低噪声。 降低噪声。
二、基本要求
机械传动部件对伺服系统的伺服特性有很 大影响,特别是其传动类型、传动方式、 大影响,特别是其传动类型、传动方式、传动 刚性以及传动的可靠性对机电一体化系统的精 稳定性和快速响应性有重大影响。 度、稳定性和快速响应性有重大影响。
1、影响传动机构动力学特性的因素及其要求 、
1)阻尼 )
内循环
1—丝杠 丝杠
2—螺母 螺母
3—滚珠 滚珠
4—回程引导装置 回程引导装置
滚珠在循环过程中始终与丝杠表面接触。 滚珠在循环过程中始终与丝杠表面接触。循环回路 流畅性好、效率高、螺母径向尺寸小。 短、流畅性好、效率高、螺母径向尺寸小。反向器加工困 装配调整不方便。 难,装配调整不方便。
外循环
插管式外循环结构 1-弯管 弯管 滚珠 螺纹滚道 丝杠 2-压板 3-丝杠 4-滚珠 5-螺纹滚道 压板
2)丝杠转动、螺母移动 )丝杠转动、
要限制螺母的转动,故需导向装置。 要限制螺母的转动,故需导向装置。其特点是结构 紧凑、丝杠刚性较好。适用于工作行程较大的场合。 紧凑、丝杠刚性较好。适用于工作行程较大的场合。

《机电一体化技术与系统》各章作业答案

《机电一体化技术与系统》各章作业答案

第二部分各章作业答案第一章绪论★1、机电一体化的基本概念和涵义是什么?★机电一体化的英文名词如何拼合?(P1) 【参考答案】机电一体化是从系统的观点出发,将机械技术、微电子技术、信息技术、控制技术等在系统工程基础上有机地加以综合,实现整个机械系统最佳化而建立起来的一门新的科学技术。

机电一体化在国外被称为Mechatronics是日本人在20世纪70年代初提出来的,它是用英文Mechanics的前半部分和Electronics的后半部分结合在一起构成的一个新词,意思是机械技术和电子技术的有机结合。

★2、机电一体化的发展趋势包括哪几个方面?(P2)【参考答案】机电一体化的发展趋势可概况为以下三个方面:(4-3-2)(1)性能上,向高精度、高效率、高性能、智能化的方向发展;(2)功能上,向小型化、轻型化、多功能方向发展;(3)层次上,向系统化、复合集成化的方向发展。

★3、一个较完善的机电一体化系统包括哪几个基本要素?★其核心部分是什么?(P4-P5) 【参考答案】一个较完善的机电一体化系统应包括以下几个基本要素:机械本体、动力部分、检测部分、执行机构、控制器和接口。

其核心部分是控制器。

★4、什么是接口?接口的功能有哪些?(P5)【参考答案】为实现各子系统或要素之间物质、能量或信息交换而进行的连接就是接口。

接口的基本功能有交换、放大、传递。

5、机电一体化的相关技术有哪些?(P2-P4)【参考答案】机械技术、检测传感技术、信息处理技术、自动控制技术、伺服传动技术、系统总体技术。

第二章机械传动与支承技术1、熟练掌握以数控机床进给传动为例说明机械传动系统建模的步骤、方法。

重点在传动惯量折算的推导过程。

(P13-P15)★【举例说明】在图1所示的数控机床进给传动系统中,电动机通过两级减速齿轮Z1、Z2、Z3、Z4及丝杠螺母副驱动工作台作直线运动。

设J l为轴I部件和电动机转子构成的转动惯量;J 2、J 3为轴Ⅱ、Ⅲ部件构成的转动惯量;K1、K2、K3分别为轴I、Ⅱ、Ⅲ的扭转刚度系数;K为丝杠螺母副及螺母底座部分的轴向刚度系数;m为工作台质量;C为工作台导轨粘性阻尼系数:T1、T2、T3分别为轴I、Ⅱ、Ⅲ的输入转矩。

第2章机械传动与支承技术

第2章机械传动与支承技术

第2章 机械传动与支承技术2.2 机械传动系统的特性一、机电一体化对机械传动的要求1、简述机电一体化对机械传动要求有哪些?机电一体化机械系统应具有良好的伺服性能,要求机械传动部件转动惯量小、摩擦小、阻尼合理、刚度大、抗振性能好、间隙小;并满足小型、轻量、高速、低噪声和高可靠性等要求;还要求机械部分的动态性能和电动机速度环的动态性能匹配。

2、机械传动的主要性能取决于 二、机械传动系统特性机械传动系统的性能与系统本身的阻尼比ξ、固有频率ωn 有关,ωn 、ξ和机械系统的结构参数密切相关。

因此,机械系统的结构参数对伺服系统的性能有很大影响。

1、转动惯量(低好)2、摩擦。

摩擦力可分为粘性摩擦力Fv 、库仑摩擦力Fc 和静摩擦力Fs 三种,方向均与运动方向相反。

摩擦对伺服系统的影响主要有:(1)摩擦引起动态滞后和系统误差;(2)摩擦引起的低速爬行。

要求静摩擦尽可能小,精密低速伺服系统采用无刷电动机直接驱动消除传动间隙,采用静压气体支承轴系减小摩擦。

3、阻尼(合适)机械部件产生振动时的振幅取决于阻尼比ξ、固有频率ωn 有,阻尼越大则振幅就小。

适当的阻尼取值为0.4<ξ<0.8欠阻尼简述阻尼对弹性系统有哪些影响?P25 答:三方面影响。

4、刚度(高好)提高刚度增加闭环稳定性,但增加了转动惯量、摩擦和成本。

5、谐振频率(足够高)机械部件构成的弹性系统可简化为质量弹簧系统。

⑴直线运动弹性系统的固有频率ωn 为(扭转运行)(直线运行),Jkm k c n πωπω2121==⑵单自由度扭转弹性系统的固有频率ωn 为⑶机械部件的谐振频率满足经验公式c r ωω)126(-≥,其中ωr 为最低谐振频率,ωc 为闭环系统的剪切频率。

6、传动间隙(尽可能小)传动间隙造成运动反向时产生回程误差,且影响闭环系统的稳定性。

传动间隙主要形式有齿轮副间隙、丝杠螺母传动间隙、丝杠轴承的轴向间隙、轴联器扭转间隙等。

◆齿轮副间隙的消除方法有两种:⑴刚性消隙法。

机电一体化系统的机械系统概述

机电一体化系统的机械系统概述

(2)良好的动态响应特性 — 响应快、稳定性好。 要求机械系统从接到指令到开始执行指
令指定的任务之间的时间间隔短,这样 控制系统才能及时根据机械系统的运行 状态信息,下达指令,使其准确地完成 任务。要求机械系统的工作性能不受外 界环境的影响,抗干扰能力强。
(3)无间隙、低摩擦、低惯量、大刚 度。
(4)高的谐振频率、合理的阻尼比。
图2-4、图2-5及图2-6的用法参见例2-2。
图2-4 大功率传动装置确定传动级数曲线(P32)
图2-5 大功率传动装置确定第一级传动比曲线
101
2 3 4 6 8 10
8
8
6
6
4
4
i k
2
2
B
A
1
1
2 3 4 6 8 10
ik-1
图2-6 大功率传动装置确定各级传动比曲线
第3章 机电一体化系统的机械系统 例2-2 设有i=256的大功率传动装置, 试按等效转动惯量最小
效形式:柔轮筒体的疲劳破坏。
第3章 机电一体化系统的机械系统
❖应用: 由于谐波传动具有其他传动无法比拟的诸多独
特优点,近几十年来,它已被迅速推广到机床、 机器人、汽车、造船、纺织、冶金、常规武器、 精密光学设备、印刷机构以及医疗器械等领域, 并获得了广泛的应用。
国内外的应用实践表明,无论是作为高灵敏度 随动系统的精密谐波传动,还是作为传递大转矩 的动力谐波传动,都表现出了良好的性能。
i4
2
(
80 22
8
)15

6.9887
验算i= i1 i2 i3 i4≈80。
❖ 若以传动级数n为参变量, 齿轮系中折算到电 动机轴上的等效转动惯量Je与第一级主动齿轮的 转动惯量J1之比为Je/J1, 其变化与总传动比i的关 系如图2-3所示。

机电一体化系统设计(第2版)第二章机械系统部件及其建模

机电一体化系统设计(第2版)第二章机械系统部件及其建模

以进给驱动系统为例,系统中各谐振频率的相互关系
位置调节环的谐振频率ω0p 电气驱动部件(速度环)的谐振频率ω0A 机械传动部件第一个谐振频率ω0mech1
机械传动部件第n个谐振频率ω0mechn
40~120rad/s (2~3)ω0p (2~3)ω0A
(2~3)ω0mech(n-1)
6.间隙
间隙将使机械传动系统产生回程误差,影响伺服系统中位置环的稳定性。有间隙时,应减小位置环增益。间隙的主 要形式有齿轮传动的齿侧间隙、丝杠副的传动间隙、轴承的轴向间隙、联轴器的扭转间隙等。
机械传动部件一般可简化为的二阶振动系统,其阻尼比ζ为:
实际应用中一般取0.4≤ζ≤0.8的欠阻尼,既能保证振荡在一定的范围内过渡过程较平稳、过渡过程时间较 短,又具有较高的灵敏度。
4.刚度
刚度为使弹性体产生单位变形量所需的作用力。对于伺服系统的失动量来说,系统刚度越大,失动量越小。对于 伺服系统的稳定性来说,刚度对开环系统的稳定性没有影响,而对闭环系统的稳定性有很大影响,提高刚度可增 加闭环系统的稳定性。 刚度的提高往往伴随着转动惯量、摩擦和成本的增加,在方案设计中要综合考虑。
二、机械传动系统的特性
1.转动惯量 转动惯量大会使机械负载增大、系统响应速度变慢、灵敏度降低、固有频率下降,容易产生谐振。同时,转动惯 量的增大会使电气驱动部件的谐振频率降低,而阻尼增大。
在满足系统刚度的条件下,机电一体化系统机械部分的质量和转动惯量越小越好。 2.摩擦
三类摩擦力与速度的关系 a)黏性摩擦 b)静摩擦与库仑摩擦
二阶系统传递函数框图
第一节 常用机械系统部件数学模型的建立
左图中m1为汽车质量;c为减振器阻尼系数;k1为弹簧刚度;m2为汽 车轮子的质量;k2为轮胎弹性刚度;x1(t)和x2(t)分别为m1和m2的 绝对位移。由此可以得到系统的动力学方程为:

机电一体化系统设计课件——第2章(5):机械系统的部件选择与设计(轴系)

机电一体化系统设计课件——第2章(5):机械系统的部件选择与设计(轴系)

微型滚动轴承
精 密 分 度 头 主 轴 系 统
上图为一精密分度头主轴系统。它采用的是密 珠轴承,主轴由止推密珠轴承2、4和径向密珠轴承1、 3组成。这种轴承所用滚珠数量多且接近于多头螺旋 排列。由于密集的钢珠有误差平均效应,减小了局 部误差对主轴轴心位置的影响,故主轴回转精度有 所提高;每个钢珠公转时沿着自己的滚道滚动而不 相重复,减小了滚道的磨损,主轴回转精度可长期 保持。实践证明,提高钢珠的密集度有利于主轴回 转精度的提高,但过多地增加钢珠会增大摩擦力矩。 因此,应在保证主轴运转灵活的前提下,尽量增多 钢珠数量。图b为推力密珠轴承保持架孔分布情况, 图c为径向密珠轴承保持架孔的分布情况。
液体静压轴承工作原理
液体静压轴承工作原理 1、2、3、4-油腔;5-金属薄膜;6-圆盒;7-回油槽;8-轴套
磁悬浮轴承工作原理
磁悬浮轴承是利用磁场力将轴无机械摩擦、无润滑地悬浮在空间的一种新型轴承。其工 作原理如下图所示。径向磁悬浮轴承由转子(转动部件)6和定子(固定部件)5两部分组成。定子 部分装上电磁体,保持转子悬浮在磁场中。转子转动时,由位移传感器4检铡转子的偏心,并 通过反馈与基准信号l(转子的理想位置)进行比较,调节器2根据偏差信号进行调节,并把调节 信号送到功率放大器3以改变电磁体(定子)的电流,从而改变磁悬浮力的大小,使转子恢复到 理想位置。 径向磁悬浮轴承的转轴(如主轴一般要配备辅助轴承,工作时辅助轴承不与转轴接触当断 电或磁悬浮失控时能托住高速旋转的转轴,起到完全保护作用。辅助轴承与转子之间的间隙 一般等于转子与电磁体气隙的一半。轴向悬浮轴承的工作原理与径向磁悬浮轴承相同 。
会使轴伸长或使轴系零件间隙发生变化,影响整 个传动系统的传动精度、旋转精度及位置精度。又由 于温度的上升会使润滑油的粘度发生变化,使滑动或 滚动轴承的承载能力降低。

机电一体化技术 第2版 课后习题答案

机电一体化技术 第2版 课后习题答案

机电一体化技术课后习题答案第一章绪论1-1 简述机电一体化的含义答:机电一体化是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成的系统的总称。

1-2 机电一体化产品的主要组成、作用及其特点是什么?答:1.机械本体2.动力源3.检测和传感装置4.控制与信息处理装置5.执行机构机械本体用于支撑和连接其他要素,并把这些要素合理的结合起来,形成有机的整体。

动力系统为机电一体化产品提供能量和动力功能,驱动执行机构工作以完成预定的主功能。

传感与检测系统将机电一体化产品在运行过程中所需要的自身和外界环境的各种参数及状态转换成可以测定的物理量,同时利用检测系统的功能对这些物理量进行测定,为机电一体化产品提供运行控制所需的各种信息。

执行装置在控制信息的作用下完成要求的动作,实现产品的主功能。

1-3 机电一体化产品的分类有哪些?答:1.数控机械类2.电子设备类3.机电结合类4.电液伺服类5.信息控制类1-4 您在生活中还遇到哪些机电一体化产品?试分析其组成及功能。

答:工业机器人等。

工业机器人一般由机械系统、驱动系统、控制系统、检测传感系统和人工智能系统等组成。

各系统功能如下所述。

1)机械系统。

该系统主要是完成抓取工件(或工具)实现所需运动的机械部件,包括手部、腕部、臂部、机身以及行走机构。

2)驱动系统。

驱动系统的作用是向机械系统(即执行机构)提供动力。

随驱动目标的不同,驱动系统的传动方式有液动、气动、电动和机械式四种。

3)控制系统。

控制系统是机器人的指挥中心,它控制机器人按规定的程序运动。

控制系统可记忆各种指令信息(如动作顺序、运动轨迹、运动速度及时间等),同时按指令信息向各执行元件发出指令;必要时还可对机器人动作进行监视,当动作有误或发生故障时即发出警报信号。

4)检测传感系统。

它主要检测机器人机械系统的运动位置、状态,并随时将机械系统的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使机械系统以一定的精度达到设定的位置状态。

机电系统检测与控制-第二章机械系统数学模型建立

机电系统检测与控制-第二章机械系统数学模型建立

n
k化
k
j
i
2 j
j 1
式中 k化——转化弹性系数;
kj——各构件的弹性系数;
ij——各构件到被研究元件间的传动比。
此式是对旋转传动系统而言的,如果是移动 系统则需要变换。
2.1 机械系统建模中基本物理量的描述
移动系统弹性系数的转化: 串联弹簧的等效数学表达式为:
1 1 1 1
T t T0
T (t) T ( ) T (t) f
2.1 机械系统建模中基本物理量的描述
(三)阻力系统转化为当量粘滞阻尼系数
上边讲的系统中存在的阻力性质是不相同的, 但系统在运行过程中都要消耗能量是共同的。在数 学模型的建立中,只有与构件运动速度成正比的阻 力才是可行的。所以,利用摩擦阻力与粘滞阻力所 消耗的功相等这一基本原则来求取转化粘滞阻尼系 数。
v6
2

m6
v6

12
2
5

12
2
4

12
2
2
z3 z4

12
2
1
z3 z4
z1 z2
m化

0.27[ J1
z2z4 z1z3
2

J2

J3

z4 z3
2

J4

J5
]
m6
2.1 机械系统建模中基本物理量的描述
二、弹性系数的转化 轴向弹性系数k
k化 k1 k2
kn
并联弹簧的等效其数学表达式为:
k化 k1 k2 kn
2.1 机械系统建模中基本物理量的描述
三、阻尼系数的转化 机械系统在工作过程中,相互运动的元件间存

第2章 机电一体化的单元技术2.1-2.2

第2章 机电一体化的单元技术2.1-2.2

12
机械传动系统的特性
机电一体化的机械系统应具有良好的伺服性能, 要求机械传动部件应有足够的制造精度,满足快 速稳定和高效的要求,还应使机械传动部分动态 特性与执行元件的动态特性相匹配。 机械传动系统的主要特性有: 转动惯量 阻尼 刚度 间隙
第二章 机电一体化的单元技术
13
转动惯量
转动惯量过大的不利影响:
缩短传动链,提高传动与支承刚度,以减小结构的 弹性变形
通过刚度、质量和摩擦系数等参数的合理匹配得到 适当的阻尼比
第二章 机电一体化的单元技术
9
常用传动机构及其传动功能
第二章 机电一体化的单元技术
10
传动机构的发展
随着机电一体化技术的发展,要求传动机 构不断适应新的技术要求: 精密化 高速化 小型化和轻量化
6
第二章 机电一体化的单元技术
7
2.机械系统设计要求 机电一体化中的机械系统应满足以下三方面的要求, 以达到伺服系统的设计指标: 1.高精度 2.动作响应快 3.稳定性好
3. 设计内容 机械本体设计
无间隙、低惯性、低振动、低噪声和适当阻尼比的要求
机械传动设计
机械传动的控制
第二章 机电一体化的单元技术
第二章 机电一体化的单元技术
11
传动机构的设计内容
包括系统设计和结构设计两个方面 估算载荷 选择总传动比,选择伺服电机 选择传动机构的形式 确定传动级数,分配各级传动比 配置传动链,估算传动链精度 传动机构结构设计 计算传动装置的刚度和结构固有频率 做必要的工艺分析和经济分析
第二章 机电一体化的单元技术
Ek
1 2
Jerwk2
∵ E Ek

Jerim 1m i(w vik)2jn 1Jj(w w kj)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、常用机械传动装置 齿轮传动、同步带传动、谐波齿轮传动、滚珠 丝杠传动,其它传动元件。 3、基本要求 传动间隙小、精度高、体积小、重量轻、运 动平稳、传动转矩大。 4、机电一体化机械传动装置的发展方向
精密化,高速化,小型化,轻量化。
2.2.2 常用齿轮传动装置
机电一体化系统中,常用的齿轮传动部件: 定轴传动轮系、行星齿轮传动轮系、谐波齿轮传 动轮等。
在设计齿轮传动装置时,上述三条原则应根据具体工 作条件综合考虑。
(1)对于传动精度要求高的降速齿轮传动链,可按输 出轴转角误差最小原则设计。
(2)对于要求运转平稳、启停频繁和动态性能好的 降速传动链,可按等效转动惯量最小原则和输出轴转角误 差最小原则设计。
(3)对于要求质量尽可能小的降速传动链,可按质量
1、等效转动惯量最小原则 P31 利用该原则所设计的齿轮传动系统,换算 到电机轴上的等效转动惯量为最小。 齿轮系传递的功率不同, 其传动比的分配 也有所不同。
(1)小功率传动装置
对于n级齿轮系,有(P31)
2n n1 1
i 2 i 2(2n 1) 2n1
1
ik
2( k1)
2
i 2n / 2
(2)良好的动态响应特性
— 响应快、稳定性好。
要求机械系统从接到指令到开始执行指令指定的任务 之间的时间间隔短,这样控制系统才能及时根据机械系统 的运行状态信息,下达指令,使其准确地完成任务。要求 机械系统的工作性能不受外界环境的影响,抗干扰能力强。
(3)无间隙、低摩擦、低惯量、大刚度。 (4)高的谐振频率、合理的阻尼比。
i1 i2 i3 n i
即可使传动装置的重量最轻。 上述结论对于大功率传动系统是不适用的,
因其传递扭矩大,故要考虑齿轮模数、齿轮齿宽 等参数要逐级增加的情况。
(2)大功率传动装置
大功率减速传动装置按质量最小原则确定的 各级传动比表现为“前大后小”的传动比分配方 式。
减速齿轮传动的后级齿轮比前级齿轮的转矩 要大得多,同样传动比的情况下齿厚、质量也大 得多,因此减小后级传动比就相应减少了大齿轮 的齿数和质量。大功率减速传动装置的各级传动 比可以按图2-7和图2-8选择。
配。
2.2.4 传动链的级数和各级传动比的分配
齿轮系统的总传动比确定后,根据对传动链的技术要 求,选择传动方案,使驱动部件和负载之间的转矩、转速 达到合理匹配。
若总传动比较大,又不准备采用谐波、少齿差等传动, 需要确定传动级数,并在各级之间分配传动比。
单级传动比增大使传动系统简化,但大齿轮的尺寸增 大会使整个传动系统的轮廓尺寸变大。可按下述三种原则 适当分级,并在各级之间分配传动比。
轴Ⅲ
机械性能等效;然后, 在单 轴 Ⅱ 一轴基础上根据输入量和 轴Ⅰ 输出量的关系建立它的输 入/输出数学表达式(即数 学模型)。
xo
mCK G4
G2
J2 T2 K2 G3
JK 11
T1 xi G1
J3 T3 K3
1、转动惯量的折算 P15
把轴Ⅰ、Ⅱ、Ⅲ上的转动惯量和工作台的质量都 折算到轴Ⅰ上, 作为系统的等效转动惯量。
最小原则设计。
总之,减速传动装置传动比的分配原则是 设计减速器的指导思想和基本方法。在实际 减速器设计中,应结合减速器的具体要求, 认真分析、论证方案实现的可行性、经济性、 可靠性等指标,并对减速器的转动惯量、结 构尺寸、精度要求等进行合理协调,尽可能 达到合理的匹配,达到减速器具有体积小、 重量轻、运转平稳、可频繁启动和动态特性 好、传动精度高、误差最小等基本要求。
Δ4 5 i3i4
Δ6
7 i4
8
(2 7)
由式(2-7)可以看出,如果从输入端到输出端的各级传 动比按“前小后大”原则排列, 则总转角误差较小, 而且 低速级的误差在总误差中占的比重很大。因此,要提高传 动精度, 就应减少传动级数, 并使末级齿轮的传动比尽可 能大,制造精度尽可能高。
4、三种原则的选择
i
图2-8 大功率传动装置三级传动比曲线 ( i <100时,使用图中的虚线)
例2-4 设 n=3, i=202, 求各级传动比。 解:查图2-8可得
i1≈12,i2≈5,i3≈3.4
3、输出轴转角误差最小原则
为了提高机电一体化系统中齿轮传动系统传 递运动的精度,各级传动比应按“先小后大”原 则分配,以便降低齿轮的加工误差、安装误差以 及回转误差对输出转角精度的影响。
2.2 机械传动系统的设计
2.2.1 概述
1、 机械传动是一种把动力机产生的运动和动力传递给
执行机构的中间装置,是一种扭矩和转速的变换器,其目 的是在动力机与负载之间使扭矩得到合理的匹配,并可 通过机构变换实现对输出的速度调节。
在机电一体化系统中,伺服电动机的伺服变速功能 在很大程度上代替了传统机械传动中的变速机构,只有 当伺服电机的转速范围满足不了系统要求时,才通过传 动装置变速。
1、定轴轮系传动
i1
i2
i=i1 i2
2、行星齿轮传动轮系 主要由传动齿轮、定位齿轮、行星齿轮和行 星架等组成。
行星齿轮传动轮系的组成与工作原理
3、谐波齿轮传动
基本组成:柔轮、刚轮、波形发生器 P34
工作原理
主要组成元件
工作过程
实用产品
谐波齿轮传动过程
2.2.3 齿轮传动系总传动比的确定 P30
1)
K1 z1 K2 z1 z3 K3 K
机床进给系统的数学模型:P19
J
d 2 xo dt 2
2.3 基本物理量的折算及数学模型的建立 P14
轴Ⅲ 轴Ⅱ 轴Ⅰ
x o
mCK G4
G2
J2 T2 K2 G3
JK 11
T1 xi G1
J3 T3 K3
图2-11 数控机床进给系统
物理量折算到传动链
中的某个元件上(本例是 折算到轴Ⅰ上), 使复杂的 多轴传动关系转化成单一 轴运动, 转化前后的系统总
i
JL 或 JL Jm i2
Jm
(2-2)
i
JL 或 JL Jm i2
Jm
(2-2)
式(2-2)表明, 得到传动装置总传动比i的最佳 值的时刻就是JL换算到电动机轴上的转动惯量正 好等于电动机转子的转动惯量Jm的时刻, 此时, 电动机的输出转矩一半用于加速负载,一半用于加
速电动机转子, 达到了惯性负载和转矩的最佳匹
第二章 机电一体化系统的 机械传动系统
2.1 概述
2.1.1 机械系统的组成
1、传动机构 机电一体化机械系统中的传动机构不仅仅是转速和转矩 的变换器,而且已成为伺服系统的一部分,它要根据伺服控制 的要求进行选择设计,以满足整个机械系统良好的伺服性 能。 2、导向机构 导向机构的作用是支承和导向,它为机械系统中各运动装 置能安全、准确地完成其特定方向的运动提供保障,一般指导 轨、轴承等。
i2
2( 21)
80 24 1 2( 2 ) 4/2
2.1085
i3
2
(
80 24 / 2
4
)15
3.1438
i4
2
(
80 22
8
)15
6.9887
验算i= i1 i2 i3 i4≈80。
❖ 若以传动级数n为参变量, 齿轮系中折算到电
动机轴上的等效转动惯量Je与第一级主动齿轮的 转动惯量J1之比为Je/J1, 其变化与总传动比i的关 系如图2-3所示。
图2-4、图2-5及图2-6的用法参见例2-2。
图2-4 大功率传动装置确定传动级数曲线(P32)
图2-5 大功率传动装置确定第一级传动比曲线
101
2 3 4 6 8 10
8
8
6
6
4
4
i k
2
2
B
A
1
1
2 3 4 6 8 10
ik-1
图2-6 大功率传动装置确定各级传动比曲线
例2-2 设有i=256的大功率传动装置, 试按等效转动惯量最
在伺服系统中,通常采用负载角加速度最大原则选择总
传动比,以提高伺服系统的响应速度。传动模型如图2-1所
示。
图中:
M
Jm ——电动机M转子的转动
惯量;
Jm
G L
i JL
θm ——电动机M的角位移;
m
L
JL ——负载L
TLF
θL ——负载L TLF ——
图2-1 电机、传动装置和负载的传动模型
i —— 齿轮系G的总传动比。
Ta
Tm
TLF i
(Jm
JL i2
)
m
(Jm
JL i2
)
i
L
则L
Tmi TLF Jmi2 J L
(2-1)
在式(2-1)中,若改变总传动比i, L 之改变。根据负载角加速度最大的原则, 令 dL / di 0 ,则解得
2
i TLF Tm
TLF Tm
JL Jm
若不计摩擦,即TLF=0, 则
J
J1
J2(
z1 z2
)2
J3(
z1 z2
z3 )2 m( z1
z4
z2
z3 )2 ( L )2
z4 2
2、粘性阻尼系数的折算 P16
考虑到其他各环节的摩擦损失比工作台导轨的 摩擦损失小得多,故只计工作台导轨的粘性阻尼系 数C。
工作台导轨折算到轴Ⅰ上的粘性阻力系数, 其值为
C ( z2 z4 )2( L )2C

Je/J1 与 i的关系确定传动级数。
图2-3 小功率传动装置确定传动级数曲线
❖ (2)大功率传动装置 大功率传动装置传递的扭矩大,各级齿轮副
的模数、齿宽、直径等参数逐级增加,各级齿轮 的转动惯量差别很大。
相关文档
最新文档