热电偶测量温度原理

合集下载

热电偶测温原理及应用论文

热电偶测温原理及应用论文

热电偶测温原理及应用论文热电偶是一种常用的温度测量装置,其原理是基于热电效应。

热电偶由两种不同材料的导线组成,当两种导线连接在两个不同温度的点上时会产生热电动势。

这个热电动势与两个温度之间的温差成正比,因此可以通过测量热电动势来确定目标温度。

热电偶的应用范围非常广泛,包括工业生产、科研领域以及日常生活中的温度测量。

在工业生产中,热电偶通常用于实时监测和控制生产过程中的温度,如热处理、熔炼和焊接等。

在科研领域,热电偶被广泛应用于各种实验和研究中,如材料性能测试、生物学实验和地质勘探等。

此外,热电偶也被广泛用于家用电器中,如烤箱、电磁炉和温度计等。

热电偶的测温原理是基于热电效应的,热电效应是指当两个不同导电材料的接触处形成温差时,会产生一个电动势。

这个电动势与温差成正比,可用来测量温度。

热电偶由两种不同的导体组成,一种是铂-铑合金,另一种是铜、铁、镍或康铜等金属。

当这两种导体连接在两个不同温度的点上时,由于热电效应会产生一个热电动势,这个热电动势与两个温度之间的温差成正比。

热电偶的工作原理可用温度-电动势关系表达,常用公式为:\[E = S(T_2 - T_1)\]其中,E为热电动势,S为热电偶的灵敏度(也称为热电系数),T1和T2分别为热电偶的两个测温端温度。

根据热电偶的工作原理,可以通过测量热电动势来确定目标温度。

这通常通过将热电偶连接到一个电子测温仪或数据采集系统上,并根据热电动势的大小来计算出目标温度。

由于热电偶可以在较宽的温度范围内工作,并且具有较高的灵敏度和快速响应特性,因此在许多需要精确温度测量的场合都得到了广泛的应用。

热电偶具有许多优点,例如尺寸小、成本低、响应速度快、可在较宽的温度范围内工作等。

另外,由于热电偶可以直接测量温度差,因此可以减小由于环境温度变化引起的误差。

但是在应用中也有一定的局限性,如热电偶测温精度受到温度非线性、外界干扰、杂散热和接触电势等因素的影响。

由于热电偶的广泛应用和重要性,关于热电偶测温原理及其应用的研究论文也层出不穷。

热电偶的四种原理

热电偶的四种原理

热电偶的四种原理热电偶是一种用来测量温度的仪器,它由两个不同的金属接触片组成,一段金属放入环境中,另一段放入表盘。

当金属接触片受热时,根据四种原理可以产生电信号,可以通过测量电信号来确定温度:第一种原理:自发电阻原理这种原理是使用自发电阻原理,即基于物质可以自发电阻的原理来测量温度的方法。

热电偶的作用是利用金属接触片的电阻受温度的影响而发生变化,进而将该变化化为电信号。

当温度变化时,金属接触片的电阻也会随之变化。

这种变化的电阻可以测量出温度变化。

第二种原理:热电效应原理这种原理是基于热电效应原理,特别是Seebeck效应原理,即当两种不同的金属接触片置于不同温度下时,会引起电势差,从而产生一种温度依赖性的电信号,就是热电效应。

根据该原理,接触片之间的温度差异会改变电势差,进而产生温度依赖性的电信号,以此来测量温度。

第三种原理:电热原理这种原理是基于电热原理,即在电流和元件之间存在热损失,这种热损失是可以测量出来的,可以用来测量温度。

热电偶内部会有一根接触片与一根电源绝缘,仅允许电流通过一段接触片,接触片上引出的电热损失流入表盘,从而产生一种温度依赖性的电信号,便可以用来测量温度。

第四种原理:光驱动原理这种原理是基于光驱动原理,即利用光来激发金属接触片上的电子,产生温度依赖性的电信号,从而测量温度。

热电偶内部会有一根接触片固定在光驱动器上,当光驱动器激发接触片上的电子时,便产生了一种温度依赖性的电信号,以此来测量温度。

总之,热电偶是一种常见的温度测量仪器。

热电偶的原理其实很简单,它是利用金属接触片的电阻受温度辐射引起的变化而产生电信号来测量温度的方法,其中包括自发电阻原理、热电效应原理、电热原理和光驱动原理。

它们都是以各种方式将温度的变化化为温度依赖性的电信号,以此来测量温度。

热电偶的基本原理

热电偶的基本原理

热电偶的基本原理
热电偶是一种用来测量温度的电子装置,其基本原理是基于温度对热电势的影响。

热电偶由两种不同金属制成的导线组成,两个导线的接触处称为热电接头。

当两个热电接头处于不同的温度时,两个导线之间就会产生一定的电势差,这种电势差即为热电势。

热电偶利用热电效应,即两种不同的金属导线由于温度差异而产生电流的现象。

当两个热电接头处于不同的温度时,两个导线的电荷分布发生改变,从而产生电势差。

这个电势差与两种金属导体的热电特性有关,称为热电势。

热电偶通过测量热电势的大小及其随温度的变化规律,可以确定被测量物体的温度。

常用的热电偶包括J型、K型、T型、E型、R型和S型等多种型号,各种型号的热电偶具有不同的灵敏度、量程和使用温度范围。

热电偶测量温度原理

热电偶测量温度原理

1、2两点的温度不同时,回路中就会产生热电势,因而•就有电流产生,电流表就会•发生偏转,这一现象称为热•电效应(塞贝克效应),产生的电势、电流分别叫热电•势、热电流。

热电偶温度计属于接触式温度测量仪表。

是根据热电效应即塞贝克效应原理来测量温度的,是温度测量仪表中常用的测温元件。

将不同材料的导体A、B接成闭合回路,接触测温点的一端称测量端,一端称参比端。

若测量端和参比端所处温度t和t0 不同,则在回路的A、B之间就产生一热电势EAB(t,t0 ),这种现象称为塞贝克效应,即热电效应。

EAB大小随导体A、B的材料和两端温度t和t0 而变,这种回路称为原型热电偶。

在实际应用中,将A、B的一端焊接在一起作为热电偶的测量端放到被测温度t处,而将参比端分开,用导线接入显示仪表,并保持参比端接点温度t0稳定。

显示仪表所测电势只随被测温度而t变化。

第一节热电偶的测温原理在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。

热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。

可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。

尽管如此,热电偶仍在工业生产和科研活动中起着举足轻重的作用。

下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。

一、塞贝克效应和塞贝克电势热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。

在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1-1)中,如果对接点a加热,那么,a,b两接点的温度就会不同,温度不同,就会有电流产生,使得接在电路中的电流表发生偏转。

热电偶测温实验原理

热电偶测温实验原理

热电偶测温实验原理一、什么是热电偶热电偶是一种常用的温度测量传感器,基于热电效应和材料导电性温度系数之间的关系工作。

热电偶由两个不同的金属或金属合金组成,其两端被紧密地连接在一起,并浸泡在测量的温度介质内。

当两端存在温度差时,由于温度差激励下导体内部产生热电动势,进而在热电偶两端产生一个微弱的电信号。

二、热电偶的特性热电偶具有如下特性:1.灵敏度高:热电偶产生的电信号与温度变化呈线性关系,敏感度较高。

2.可靠性高:热电偶材料具有较高的稳定性和耐腐蚀性,使用寿命长。

3.测量范围广:热电偶温度测量范围可达-200℃ ~ 2300℃,可适用于当前众多行业的高、低温度测量。

4.抗电磁干扰:热电偶信号的幅度较小,且存在热电偶两端相反的电信号,具有很好的抗电磁干扰性。

三、热电偶测温实验原理1.实验原理热电偶的测温原理是基于热电效应原理。

当两个不同导电材料连接在一起形成一个回路时,被测量的物体部分与回路的一端(冷端)相接触,另一端(热端)则与较高温度物体相接触,两侧温差产生的热电动势使电荷通过回路。

在热电偶测量中,测量实际上是测量热电偶两端的电压。

热电偶两端产生的电压信号与热电偶的参考电极温度相对应,经过校准后即可获得被测物体的温度。

2.实验材料实验中需要的材料如下:•热电偶•稳压电源•文件夹•油浴3.实验步骤实验步骤如下:1.将热电偶连接成功能齐全的读数器或万用表。

2.将热电偶中的端线用文件夹夹紧,并通电预热10分钟左右。

3.准备一个油浴,油浴温度可以通过稳压电源进行控制。

4.将热电偶热端浸入油浴中,记录热端的温度。

5.随着油浴在热端降温,记录相应的热电偶温度,形成温度时间序列数据。

6.实验完成后,通过数据处理和分析,得到温度的变化数字表格,可以绘制温度时间曲线,明确温度变化趋势。

四、总结热电偶是一种可靠、灵敏的温度传感器,广泛应用于科学研究中的温度测量工作中。

通过实验,可以进一步了解热电偶原理和温度测量方法,具有推动测量技术进步的重要意义。

热电偶测量温度的原理与应用

热电偶测量温度的原理与应用

热电偶测量温度的原理与应用1. 热电偶原理热电偶是一种常用的温度测量装置,其原理基于热电效应。

其基本构成是由两种不同金属导线组成的电极对,当两个导线接触并形成闭合回路时,产生了热电效应。

热电效应是指当两个导线的温度存在差异时,导线之间会产生电压。

这种电压受到温度差异的影响,并且具有线性关系。

2. 热电偶的工作原理热电偶的工作原理基于两个主要效应:塞贝克效应和泰尔贝克效应。

2.1 塞贝克效应塞贝克效应是指当两个不同金属导线接触并形成闭合回路时,由于温度差异引起的电压差。

这种电压差称为塞贝克电势差。

塞贝克效应是一种温度差测量原理,其产生的电压差与温度差务必具有线性关系。

2.2 泰尔贝克效应泰尔贝克效应是指当热电偶的两个导线的两端存在不同温度时,导线本身会产生冷热电势差。

冷端和热端的电势差为塞贝克电势差的一部分,这是由于导线材料的特性引起的。

泰尔贝克效应是一种温度测量原理,使得热电偶电压与环境温度存在关联。

3. 热电偶的应用热电偶由于其简单、可靠和广泛使用的特点,在许多领域中被广泛应用于温度测量。

下面是一些常见的应用场景:3.1 工业过程控制热电偶常用于工业过程控制中,例如炉温、熔炼温度、蒸汽温度等的监测和控制。

由于热电偶具有较高的测量范围和耐高温性能,这使得它们在工业环境中非常合适。

3.2 热处理热电偶广泛用于热处理过程中的温度测量。

例如,淬火、退火和热镀等过程需要严格控制温度。

热电偶的高精度和可靠性使其成为热处理过程中的理想选择。

3.3 实验室研究热电偶在实验室研究中也有广泛的应用。

例如,材料科学领域的热性能测量、热解析等可以通过热电偶来进行准确测量。

3.4 汽车工业热电偶常用于汽车工业中的温度测量,例如引擎温度、液体温度等的监测。

汽车引擎制造商使用热电偶来确保引擎在严酷工作条件下的温度控制。

3.5 空调与制冷热电偶也被广泛用于空调和制冷系统的温度测量和控制,确保系统的高效运行。

4. 总结热电偶是一种基于热电效应的温度测量装置,利用塞贝克效应和泰尔贝克效应测量温度差异产生的电压差。

热电偶测温原理是什么

热电偶测温原理是什么

热电偶测温原理是什么热电偶是一种常用的温度传感器,其测温原理是基于热电效应。

热电偶由两种不同金属导线组成,它们的接触点被称为热电接头。

当热电接头处于不同温度时,就会产生热电动势,即温差电动势。

这种温差电动势可以通过测量电压来确定温度,从而实现温度的测量。

热电偶的测温原理基于两种主要效应,塞贝克效应和泊松效应。

塞贝克效应是指当两种不同金属导体的热电接头处于温度差时,会产生电动势。

而泊松效应则是指当电流通过两种不同金属导体时,会产生热量,从而产生温度差。

这两种效应共同作用,使得热电偶成为一种可靠的温度传感器。

热电偶的工作原理可以用一个简单的例子来解释。

假设我们有一根由铁和铜两种金属组成的热电偶,将其两端分别连接到一个电压表上。

当热电偶的接头处于不同温度时,铁和铜之间会产生热电动势,从而在电压表上显示出一个电压值。

通过这个电压值,我们就可以计算出热电偶接头的温差,进而确定被测物体的温度。

热电偶测温原理的优点在于其测量范围广,可以覆盖从极低温度到极高温度的范围。

此外,热电偶还具有响应速度快、结构简单、成本低廉等优点,因此在工业生产和科学研究中得到了广泛的应用。

然而,热电偶也存在一些局限性,例如对温度变化的响应不够灵敏,以及在测量极低温度时易受到环境干扰的影响。

因此,在实际应用中,需要根据具体的测量要求选择合适的温度传感器。

总的来说,热电偶测温原理是基于热电效应,通过测量热电接头产生的电动势来确定温度。

它具有测量范围广、响应速度快、成本低廉等优点,是一种常用的温度传感器。

然而,在实际应用中需要注意其局限性,选择合适的温度传感器以满足具体的测量要求。

热电偶测温的原理及其应用

热电偶测温的原理及其应用

热电偶测温的原理及其应用1. 热电偶测温的原理热电偶是一种常用的温度测量传感器,它基于热电效应原理工作。

热电效应是指在不同温度条件下的两种不同金属导体接触处,会产生电势差的现象。

热电偶由两种不同金属导体构成,常用的是铂铑合金和镍铬合金。

热电偶测温的原理是基于热电效应的温度-电势关系。

当热电偶的两端温度不同时,两种导体产生的电势差会发生变化。

这个电势差与温度之间存在着一种严格的函数关系,称为热电偶的温度-电势特性曲线。

2. 热电偶测温的优势热电偶测温具有以下几个优势:•广泛的测量范围:热电偶可以测量非常高的温度,一般可达1800°C,甚至更高。

•快速的响应速度:热电偶的响应速度非常快,通常在几十毫秒内就可以达到稳定状态。

•精度较高:热电偶测温的精度一般可以达到0.5°C,部分特殊型号的热电偶甚至可以达到0.1°C。

•结构简单:热电偶的结构非常简单,由两根不同金属导线焊接组成,易于制造和安装。

•可靠性高:热电偶具有较高的可靠性,能够在恶劣的工作环境下长期稳定工作。

3. 热电偶的应用领域热电偶在工业和科学领域有广泛的应用,以下是热电偶的一些典型应用场景:•工业生产过程控制:热电偶可以用于测量大型冶金炉、玻璃窑、陶瓷炉和高温熔炼炉等工业生产过程中的温度,实现温度的自动控制和监测。

•航空航天:热电偶可以用于航空航天领域中的高温环境下温度的测量,例如火箭发动机、航天器再入大气层时的温度监测等。

•电力行业:热电偶可以用于火力发电厂的锅炉燃烧温度监测,以及核电站中的燃料温度监测等。

•石油化工:热电偶可以用于原油精炼工艺中的温度测量,以及化工设备中的温度监测等。

•科学研究:热电偶在科学研究领域中也有广泛应用,例如地质勘探中温度的探测、实验室中的温度测量等。

4. 热电偶测温的注意事项在使用热电偶进行温度测量时,需要注意以下几点:•温度范围选择:不同的热电偶适用于不同的温度范围,应根据实际需要选择适合的热电偶型号。

说明热电偶测温的原理,以及热电偶的基本定律。

说明热电偶测温的原理,以及热电偶的基本定律。

说明热电偶测温的原理,以及热电偶的基本定律。

说明热电偶测温的原理,以及热电偶的基本定律
热电偶是一种感温器,它通过测量双探头组件之间的温差来获得某个物体的温度。

当热电偶的探头接近物体时,探头表面会与物体接触,从而流动的热量会被感知到,此时探头之间的温度差就会反映出物体的温度。

热电偶是建立在物理学热效应定律的基础上,主要依靠电流对温度的反应来测量温度。

当物体的温度升高,探头之间的电阻值会随之发生变化,从而影响电流的流动,从而反映出物体的温度的动态变化。

热电偶的基本定律就是由温度变化而引起的电阻变化:随着温度的升高,电阻也会随之升高。

以上就是热电偶测温的原理和热电偶的基本定律。

通过热电偶可以准确的测量物体的温度变化,从而可以应用于工业,农业等领域中,为工业发展起到重要的作用。

- 1 -。

简述热电偶的工作原理

简述热电偶的工作原理

简述热电偶的工作原理
热电偶是一种常用的温度测量传感器,利用热电效应来测量温度。

热电偶由两种不同金属的导线组成,它们通过焊接或者压接的方式连接在一起,这样就形成了一个闭合的电路。

当热电偶的两端温度不一样时,就会产生一个电动势,这个电动势与温度之间存在一定的关系,通过测量这个电动势就可以确定温度的大小。

热电偶的工作原理主要是基于热电效应。

热电效应是指当两种不同金属连接在一起形成闭合回路时,当连接处存在温度差异时,就会产生一个电动势。

这个电动势的大小与温差成正比,这就是热电效应的基本原理。

热电偶的工作原理可以简单地用两个金属导体连接在一起来解释。

当两个金属导体连接在一起形成回路时,如果两个连接处存在温度差异,就会产生一个电动势。

这个电动势的大小与温度差异成正比,而且方向与金属的种类和连接方式有关。

通过测量这个电动势,就可以确定连接处的温度差异,从而得知温度的大小。

热电偶的工作原理还可以通过热电效应的数学表达式来解释。

根据热电效应的数学表达式,热电动势与温度差异之间存在一定的
线性关系。

这个关系可以用一个线性方程来表示,通过这个方程就可以准确地计算出温度的大小。

总的来说,热电偶的工作原理是基于热电效应的。

通过测量热电偶两端产生的电动势,就可以确定温度的大小。

热电偶具有灵敏度高、响应速度快、测量范围广等优点,因此在工业控制、科学研究等领域得到了广泛的应用。

希望通过本文的介绍,读者对热电偶的工作原理有了更清晰的认识。

简述热电偶的工作原理

简述热电偶的工作原理

简述热电偶的工作原理热电偶是一种常用的温度传感器,它利用热电效应来测量温度。

热电偶由两种不同金属导体组成,当两种导体的接触点处于不同温度时,就会产生热电动势,从而产生电压信号。

本文将简要介绍热电偶的工作原理。

热电偶的工作原理基于热电效应,即当两种不同金属导体形成闭合回路时,它们的接触点处于不同温度时,就会产生热电动势。

这种现象被称为塞贝克效应。

热电偶的工作原理可以用热电动势方程来描述:E = S(T2 T1)。

其中,E为热电动势,S为热电系数,T2和T1分别为两种导体的温度。

热电偶的工作原理可以简单地理解为,当两种不同金属导体的接触点处于不同温度时,就会产生一个电压信号,通过测量这个电压信号就可以得到温度值。

热电偶的工作原理还受到温度差效应的影响。

温度差效应是指当两种导体的接触点温度不同,导体内部也会存在温度梯度,从而产生额外的电动势。

这种效应会对热电偶的测量精度产生影响,因此在实际应用中需要进行补偿。

热电偶的工作原理还受到温度与电动势的非线性关系的影响。

在一定温度范围内,热电动势与温度呈线性关系,但在极端温度下,这种关系会出现偏差。

因此,在实际应用中需要根据热电偶的特性进行修正。

总的来说,热电偶的工作原理是基于热电效应和温度差效应的。

通过测量热电偶产生的电压信号,就可以得到温度值。

然而,在实际应用中需要考虑到温度与电动势的非线性关系以及温度差效应对测量精度的影响。

因此,在使用热电偶进行温度测量时,需要进行相应的修正和补偿,以确保测量结果的准确性和可靠性。

以上就是关于热电偶工作原理的简要介绍,希望能对您有所帮助。

热电偶温度传感器的工作原理

热电偶温度传感器的工作原理

热电偶温度传感器的工作原理
热电偶温度传感器是一种常用的温度测量装置,它利用热电效应来测量被测物体的温度。

热电偶温度传感器由两种不同金属材料制成的两个导电材料组成,这两个导电材料连接成一个闭合的电路。

当热电偶的一端暴露在被测物体中时,这一端会受到被测物体的温度影响,从而产生一个温差电势。

温差电势是指两个导电材料之间由于温度差异而产生的电势差。

热电偶中,产生温差电势的效应主要有热电效应和塞贝克效应。

热电效应是指当金属导体的两个不同温度点之间存在温度梯度时,会在这两个点之间产生一个电势差。

这个电势差的大小与金属导体的热电系数有关。

塞贝克效应是指当两种不同的金属导体形成一个闭合电路时,如果电路中存在温度梯度,就会在闭合电路中产生一个电势差。

这个电势差的大小与两种金属导体的热电系数、温度梯度和连接方式有关。

通过测量热电偶两端的电势差,可以得知被测物体的温度。

热电偶的工作原理可以用以下步骤总结:
1. 将热电偶一端暴露在被测物体中,使其与被测物体的温度接触。

2. 被测物体的温度会导致热电偶产生一个温差电势。

3. 测量热电偶两端的电势差。

4. 根据已知的热电偶特性和温度电势曲线,将电势差转化为相应的温度值。

总之,热电偶温度传感器利用热电效应和塞贝克效应测量被测物体的温度,通过测量热电偶两端产生的温差电势来推导温度值。

热电偶测量温度的原理

热电偶测量温度的原理

热电偶测量温度的原理
热电偶是一种常用的温度测量装置,它基于热电效应的原理进行温度测量。

热电偶由两种不同金属组成的导线材料组成,两端形成一个热电结。

根据热电效应的原理,当两个不同金属材料形成一个闭合回路时,如果两个接点处温度不同,就会在回路中产生一种称为热电势的电动势。

这种热电势与接触处的温度差有关。

具体而言,热电偶的工作原理是利用两种不同金属的热电势差来测量温度。

一般情况下,热电偶的工作原理可归纳为两个重要方面:热电效应和温度-电势关系。

首先是热电效应。

当两种不同金属材料在接触处温度不同时,不同材料之间会存在电势差,称为热电势。

这个热电势是由于两种金属的电子云在温度不同的条件下具有不同的能带结构所导致的。

其次是温度-电势关系。

根据热电效应的原理,热电偶通过测量两个接点处温度差来计算物体的温度。

由于不同金属材料的热电势与温度之间存在一定的关系,可以通过测量产生的电压来推导出温度。

在热电偶的实际应用中,常常将其中一个金属材料作为参考电极,将温度相对于参考电极的电压作为测量温度的依据。

这样可以减小测量误差,并使测量结果更加可靠。

总的来说,热电偶的工作原理是基于热电效应,通过测量两种金属之间的热电势差来计算温度。

通过选择合适的金属材料组合和准确测量电压,可以得到精确的温度测量结果。

热电偶工作原理图

热电偶工作原理图

热电偶工作原理图
热电偶是一种常用的温度测量仪器,它利用两种不同金属导体的热电势差来测
量温度。

热电偶的工作原理图如下:
1. 金属导体。

热电偶由两种不同金属导体组成,通常是铂铑合金和铜或铁。

这两种金属导体
的热电势差会随温度的变化而改变,因此可以通过测量热电势差来确定温度的变化。

2. 热电势差。

当两种不同金属导体的接触处形成温差时,就会产生热电势差。

这是由于两种
金属导体的电子云结构和电子迁移率不同所致。

热电势差的大小与温度差成正比,因此可以通过测量热电势差来确定温度的大小。

3. 温度测量。

将热电偶的两端连接到温度测量仪器上,通过测量热电势差的大小来确定温度
的变化。

由于热电势差与温度成正比,因此可以通过标定热电偶的热电势差-温度
曲线来确定温度的大小。

4. 应用领域。

热电偶广泛应用于工业生产和科学研究中,用于测量高温、低温和变温环境下
的温度。

由于热电偶具有响应速度快、测量范围广、价格低廉等优点,因此在许多领域得到了广泛的应用。

总结。

热电偶是一种利用两种不同金属导体的热电势差来测量温度的仪器。

其工作原
理是利用两种金属导体的热电势差随温度变化而改变的特性,通过测量热电势差来
确定温度的大小。

热电偶在工业生产和科学研究中得到了广泛的应用,具有响应速度快、测量范围广、价格低廉等优点。

热电偶测温原理

热电偶测温原理

热电偶测温原理热电偶(Thermocouple)是一种常用的温度测量仪器,它利用两种金属在不同的温度下会产生的电势来测量温度。

本文将会介绍热电偶测温的原理、基本结构及中用到的一些物理知识。

一、热电偶测温原理热电偶的原理是物理热效应理论热电效应。

热电效应是指在两种不同金属之间,当温度发生变化时,它们之间就会产生一定电势。

也就是说,当热电偶中的两种不同金属在不同温度条件下被夹紧时,它们之间就会产生电势,也就称为热电偶电势(Thermoelectric Potential)。

这是热电偶作温度测量的基础。

二、热电偶的基本结构热电偶的结构是由一对电极(Electrode)和一根电缆(Cable)组成的。

热电偶电极一般由不同的金属制成,例如金属铜(Copper)和金属钼(Molybdenum),其中一端的电极接在另一端的电缆上,另一端的电极接在另一端的电缆上。

两个电极之间的温差即为热电偶的测量温度。

三、热电偶测温中用到的一些物理知识(一)热性质热性质是指物质在接受高温或低温刺激时所发生的物理性变化,它与温度等参数有关。

热性质的变化可分为热扩散(Thermal Diffusion)、热膨胀(Thermal Expansion)、热导率(Thermal Conductivity)等。

热导率是指物质导热性能,热电偶中,金属钼和金属铜之间的热导率可以影响热电偶电势的变化幅度。

(二)热传导热传导是指由于温度的变化,物质中产生的一种能量传递。

它反映了物质内部温度差异所带来的加热和冷却效应。

热电偶中,热传导是指当电缆中接到电极两端的温度不同时,产生的热能传播效应,这种热能的传播会影响到整个热电偶的温度测量精度。

四、结论以上,我们主要介绍了热电偶测温的原理、基本结构及中用到的一些物理知识,热电偶的温度测量依赖于物理热效应理论,两种不同金属之间在不同温度下产生的电势才能测量出温度。

而热电偶的精度又受到热性质、热传导能力及金属热导率的影响,因此热电偶测温要做到准确时,就要根据不同材料及环境实际情况,科学精准的设计相应热电偶及系统,由此来提升测温精度。

热电偶测量温度的原理

热电偶测量温度的原理

热电偶测量温度的原理
热电偶是基于“查贝雪克效应”的原理来测量温度的。

查贝雪克效应是指两种不同金属的接触处产生电势差的现象。

热电偶由两种不同的金属线组成,一般常用的是铂铑合金和铜铜镍合金。

当热电偶的接触端的温度发生变化时,两种金属的电子自由活动性也会发生变化,电子的迁移速度会改变,从而导致在两种金属之间形成一个电势差。

这个电势差与温度成正比。

热电偶的工作原理是利用导电材料的温度变化引起的电势差。

热电偶的接头置于需要测量温度的位置,然后通过电路进行连接。

当接头温度发生变化时,热电势会引起一定的电流通过电路,通过测量电流的变化,就可以得到温度的变化。

需要注意的是,热电偶依赖于两种金属产生的电势差,而不是单独每种金属的温度来测量温度。

因此,在使用热电偶进行温度测量时,需要标定热电偶的特性曲线,以将电势差转化为温度值。

热电偶温度传感器的工作原理

热电偶温度传感器的工作原理

热电偶温度传感器的工作原理
热电偶温度传感器是一种常用的温度测量装置,利用热电效应原理来实现温度的测量。

热电偶由两种不同材料的金属导线组成,通常是铜和铜镍合金。

这两根金属导线用绝缘材料包裹,只露出一小段作为测温接头。

当测温接头受到温度变化时,两种不同材料的热电势也会发生变化,这就是热电效应。

热电效应具体包括两个方面:温差效应和材料效应。

温差效应是指当测量接头与参比接头之间存在温差时,两根金属导线之间产生的电势差。

材料效应是指不同的金属导线对温度变化的敏感程度不同,导致在测量接头与参比接头之间产生一个固定的电势差。

热电偶温度传感器的工作原理就是通过测量这个热电势差来确定温度。

一般情况下,热电偶的参比接头与一个已知温度的场所相连,例如恒温水槽。

测量接头与待测温度环境相连。

测量电路中,通过将测量接头和参比接头连接到一个电测设备上(如微伏表),就可以测得两个接头之间的电压信号。

然后,根据已知的两根金属导线的特性曲线,可以将测得的电压转化为相应的温度值。

这个转化过程需要使用一个热电偶温度-电势表(也称为热电偶温度计),其中记录了不同温度下
的电势值对应的温度。

因此,通过测量热电势差并利用热电偶温度-电势表,我们就可以确定待测环境的温度。

总结来说,热电偶温度传感器的工作原理是基于热电效应,在不同温度下产生的电势差来测量温度。

通过测量接头与参比接头之间的电压信号,并利用热电偶温度-电势表,可以转化为相应的温度值。

热电偶温度计的基本原理

热电偶温度计的基本原理

热电偶温度计的基本原理热电偶温度计属于接触式温度测量仪表。

是根据热电效应即塞贝克效应原理来测量温度的,是温度测量仪表中常用的测温元件。

将不同材料的导体A、B接成闭合回路,接触测温点的一端称为测量端(或工作端),另一端称为参比端(或自由端)。

若测量端和参比端所处温度t和t0不同,则在回路的A、B之间就产生一热电势EAB (t,t0),这种现象称为塞贝克效应,即热电效应。

EAB大小随导体A、B的材料和两端温度t和t0而变,这种回路称为原型热电偶。

在实际应用中,将A、B的一端焊接在一起作为热电偶的测量端放到被测温度t处,而将参比端分开,用导线接入显示仪表,并保持参比端接点温度t0稳定。

显示仪表所测电势只随被测温度而t变化。

在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。

因此,在热电偶测温时,可接入测量仪表,测得热电势后,即可知道被测介质的温度。

根据热电势与温度函数关系。

可制成热电偶分度表。

分度表是在自由端温度To=0℃的条件下得到的。

不同的热电偶具有不同的分度表。

从理论上讲,任何两种导体都可以配制成热电偶,但实际上并不是所有材料都能制作热电偶,故对热电极材料必须满足以下几点:(1)热电偶材料受温度作用后能产生较高的热电势,热电势和温度之间的关系呈线性或近似线性的单值函数关系;(2)能测量较高的温度,并在较宽的温度范国内应用,经长期使用后,物理、化学性能及热电特性保持稳定;(3)要求材料的电阻温度系数要小,电阻率高,导电性能好,热容量要小;复现性要好,便于大批生产和互换,便于制定统一的分度表;(4)机械性能好,材质均匀;(5)资源丰富,价格便宜。

为了保证热电偶可靠和稳定地工作对热电偶有如下要求:(1)组成热电偶的两个热电极的焊接必须牢固;(2)两个热电极彼此之间应很好地绝缘,以防短路;(3)补偿导线与热电偶自由端的连接要方便可靠;(4)保护套管应能保证热电极与有害介质充分隔离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、2两点的温度不同时,回路中就会产生热电势,因而•就有电流产生,电流表就会•发生偏转,这一现象称为热•电效应(塞贝克效应),产生的电势、电流分别叫热电•势、热电流。

热电偶温度计属于接触式温度测量仪表。

是根据热电效应即塞贝克效应原理来测量温度的,是温度测量仪表中常用的测温元件。

将不同材料的导体A、B接成闭合回路,接触测温点的一端称测量端,一端称参比端。

若测量端和参比端所处温度t和t0 不同,则在回路的A、B之间就产生一热电势EAB(t,t0 ),这种现象称为塞贝克效应,即热电效应。

EAB大小随导体A、B的材料和两端温度t和t0 而变,这种回路称为原型热电偶。

在实际应用中,将A、B的一端焊接在一起作为热电偶的测量端放到被测温度t处,而将参比端分开,用导线接入显示仪表,并保持参比端接点温度t0稳定。

显示仪表所测电势只随被测温度而t变化。

第一节热电偶的测温原理在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。

热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。

可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。

尽管如此,热电偶仍在工业生产和科研活动中起着举足轻重的作用。

下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。

一、塞贝克效应和塞贝克电势热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。

在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1-1)中,如果对接点a加热,那么,a,b两接点的温度就会不同,温度不同,就会有电流产生,使得接在电路中的电流表发生偏转。

这一现象现今称为温差电效应或塞贝克效应,相应的电势称为温差热电势或塞贝克电势,它在热电偶回路中产生的电流称为热电流。

A、B称为热电极,接点a是用焊接的方法连接一起的,测温时,将它置于被测温度场中,称为测量端或者工作端,接点b一般要求恒定在某一温度称为参考端或自由端。

3.热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。

必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。

因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。

在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

冷端温度补偿器的型号应与热电偶的型号相符,并在规定温度范围内使用; 冷端温度补偿器与热电偶连接时极性不能接错; 根据补偿器的平衡点温度调整仪表起始点,使指针批示在平衡点温度; 具有自动补偿机构的显示仪表不安装补偿器;补偿器必须定期检查和检定。

冷端补偿:概述温度测量应用中有多种类型的变送器,热电偶是最常用的一种,可广泛用于汽车、家庭等领域。

与RTD、电热调节器、温度检测集成电路(IC)相比,热电偶能够检测更宽的温度范围,具有较高的性价比。

另外,热电偶的牢固、可靠性和快速响应时间使其成为各种工作环境下的首要选择。

当然,热电偶在温度测量中也存在一些缺陷,例如,线性特性较差。

虽然它们与RTD、温度传感器IC相比可以测量更宽的温度范围,但线性度却大打折扣。

除此之外,RTD和温度传感器IC可以提供更高的灵敏度和精度,可理想用于精确测量系统。

热电偶信号电平很低,常常需要放大或高分辨率数据转换器进行处理。

如果排除上述问题,热电偶的低价位、易使用、宽温度范围使其得到广泛使用。

热电偶基础热电偶是差分温度测量器件,由两段不同的金属/合金线构成,一段用作正端,另一段用作负端。

表1列出了四种最常用的热电偶类型、所用金属以及对应的温度测量范围。

每种热电偶在其规定的温度范围内具有独特的热电特性。

两种不同类型的金属接(焊接)在一起后形成两个结点,如图1a所示,环路电压是两个结点温差的函数。

这种现象称为Seebeck效应,用于解释热能转换为电能的过程。

Seebeck 效应相对于Peltier效应,Peltier效应用于解释电能转换成热能的过程,典型应用有电热致冷器。

图1a所示,测量电压VOUT是检测端(热端)结电压与参考端(冷端)结电压之差。

因为VH和VC是由两个结的温度差产生的,VOUT也是温差的函数。

定标因数,α,对应于电压差与温差之比,称为Seebeck系数。

图1b所示是一种最常见的热电偶应用。

该配置中引入了第三种金属(中间金属)和两个额外的节点。

本例中,每个开路端与铜线电气连接,这些连线为系统增加了两个额外节点,只要这两个节点温度相同,中间金属(铜)不会影响输出电压。

这种配置允许热电偶在没有独立参考结点的条件下使用。

VOUT仍然是热端与冷端温度之差的函数,与Seebeck系数有关。

然而,由于热电偶测量的是温度差,为了确定热端的实际温度,冷端温度必须是已知的。

冷端温度为0°C (冰点)时是一种最简单的情况,如果TC = 0°C,则VOUT = VH。

这种情况下,热端测量电压是结点温度的直接转换值。

美国国家标准局(NBS)提供了各种类型热电偶的电压特征数据与温度对应关系的查找表。

所有数据均基于0°C冷端温度。

利用冰点作为参考点,通过查找适当表格中的VH可以确定热端温度。

在热电偶应用初期,冰点被当作热电偶的标准参考点,但在大多数应用中获得一个冰点参考温度不太现实。

如果冷端温度不是0°C,那么,为了确定实际热端温度必须已知冷端温度。

考虑到非零冷端温度的电压,必需对热电偶输出电压进行补偿,既所谓的冷端补偿。

选择冷端温度测量器件如上所述,为了实现冷端补偿,必须确定冷端温度,这可以通过任何类型的温度检测器件实现。

在通用的温度传感器IC、电热调节器和RTD中,不同类型的器件具有不同的优、缺点,需根据具体应用进行选择。

对于精度要求非常高的器件,经过校准的铂RTD能够在很宽的温度范围内保持较高精度,但其成本很高。

精度要求不是很高时,热敏电阻和硅温度传感器IC能够提供较高的性价比,热敏电阻比硅IC具有更宽的测温范围,而传感器IC具有更高的线性度,因而性能指标更好一些。

修正热敏电阻的非线性会占用较多的微控制器资源。

温度传感器IC具有出色的线性度,但测温范围很窄。

总之,必需根据系统的实际需求选择冷端温度测量器件,需要仔细考虑精度、温度范围、成本和线性指标,以便得到最佳的性价比。

考虑因素一旦建立了冷端补偿方法,补偿输出电压必须转换成相应的温度。

一种简单的方法既是使用NBS提供的查找表,用软件实现查找表需要存储器,但查找表对于连续的重复查询提供了一种快速、精确的测量方案。

将热电偶电压转换成温度值的另外两种方案比查找表复杂一些,这两种方法是:1) 利用多项式系数进行线性逼近,2) 对热电偶输出信号进行模拟线性化处理。

软件线性逼近只是需要预先确定多项式系数,不需要存储,因而是一种更通用的方案。

缺点是需要较长时间解多阶多项式,多项式阶数越高,处理时间越长,特别是在温度范围较宽的情况下。

多项式阶数较高时,查找表相对提供了一种精度更高、更有效温度测量方案。

出现软件测试方案之前,模拟线性化常被用来将测量电压转换成温度值(除了人工查找表检索外)。

这种基于硬件的方法利用模拟电路修正热电偶响应的非线性。

其精度取决于修正逼近多项式的阶数,在目前能够测试热电偶信号的万用表中仍采用这种方法。

应用电路下面讨论了三种利用硅传感器IC进行冷端补偿的典型应用,三个电路均用来解决温度范围较窄(0°C至+70°C和-40°C至+85°C)的冷端温度补偿,精度在几个摄氏度以内。

第二个电路包含一个远端二极管温度检测器,由连接成二极管的晶体管为其提供测试信号。

第三个电路中的模/数转换器(ADC)内置冷端补偿。

所有三个电路均采用K型热电偶(由镍铬合金和镍基热电偶合金组成)进行温度测量。

示例#1图2所示电路中,16位Σ-Δ ADC将低电平热电偶电压转换成16位串行数据输出。

集成可编程增益放大器有助于改善ADC的分辨率,这对于处理热电偶小信号输出非常必要。

温度检测IC靠近热电偶安装,用于测量冷端附近的温度。

这种方法假设IC温度近似等于冷端温度。

冷端温度传感器输出由ADC的通道2进行数字转换。

温度传感器内部的2.56V基准节省了一个外部电压基准IC。

工作在双极性模式时,ADC可以转换热电偶的正信号和负信号,并在通道1输出。

ADC 的通道2将MAX6610的单端输出电压转换成数字信号,提供给微控制器。

温度检测IC的输出电压与冷端温度成正比。

为了确定热端温度,需首先确定冷端温度。

然后通过NBS提供的K型热电偶查找表将冷端温度转换成对应的热电电压。

将此电压与经过PGA增益校准的热电偶读数相加,最后再通过查找表将求和结果转换成温度,所得结果即为热端温度。

表2列出了温度测量结果,冷端温度变化范围:-40°C至+85°C,热端保持在+100°C。

实际测量结果在很大程度上取决于本地温度检测IC的精度和烤箱温度。

示例#2图3所示电路中,远端温度检测IC测量电路的冷端温度,与本地温度检测IC不同的是IC不需要靠近冷端安装,而是通过外部连接成二极管的晶体管测量冷端温度。

晶体管直接安装在热电偶接头处。

温度检测IC将晶体管的测量温度转换成数字输出。

ADC的通道1将热电偶电压转换成数字输出,通道2没有使用,输入直接接地。

外部2.5V基准IC为ADC提供基准电压。

表3列出了温度测量结果,冷端温度变化范围:-40°C至+85°C,热端保持在+100°C。

实际测量结果在很大程度上取决于远端二极管温度检测IC的精度和烤箱温度。

示例#3图4电路中的12位ADC带有温度检测二极管,温度检测二极管将环境温度转换成电压量,IC通过处理热电偶电压和二极管的检测电压,计算出补偿后的热端温度。

数字输出是对热电偶测试温度进行补偿后的结果,在0°C至+700°C温度范围内,器件温度误差保持在±9 LSB以内。

虽然该器件的测温范围较宽,但它不能测量0°C以下的温度。

相关文档
最新文档