PT的接线方式和几种常见接地点的作用
PT的接线方式和几种常见接地点的作用
PT的接线种类和VV接线分析时间:2011-11-10点击:6280长川电气技术中心:常用电压互感器的接线电压互感器在三相电路中常用的接线方式有四种,如下图1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。
2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。
如图1(b)。
3.三个单相电压互感器接成Y0/Y0形,如图1(c)。
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
V/V型的接线图分析V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。
也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。
因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。
左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。
根据ab和ub的线电压可以计算出ca线电压,。
若二次侧ab相接反,从相量图看,则ca线电压变为。
电压互感器几种常见接地点的作用一次侧中性点接地由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。
如下图所示。
因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。
当系统中发生单相接地时,系统中会出现零序电流。
如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。
电压互感器常见接线图 (图文) 民熔
电压互感器接线图电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。
但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。
词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。
民熔电压互感器简介:JDZ-10高压电压互感器10kv半封闭式0.5级羊角型特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片电压互感器的电力系统通常有四种接线方式。
电压互感器的接地和相位必须严格连接,严禁电压互感器二次侧短路。
1、单相电压互感器接线方式一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。
二、两个单相电压互感器互V/V型的接线方式两台单相电压互感器的V/V接线方式可以测量线电压,但不能测量相电压。
广泛应用于20kV以下中性点不接地或经消弧图接地的电网。
3、三台单相电压互感器Y0/Y0接线方式三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型三台单相三绕组电压互感器或一台三相五柱三绕组电压互感器接Y0/Y0/Δ型,接Y0型二次线圈,向仪表、继电器和绝缘监测电压表供电。
辅助次级线圈连接成一个开放的三角形,为绝缘监测电压继电器供电。
三相系统正常工作时,三相电压平衡,开三角形两端电压为零。
当一相接地时,开三角形两端出现零序电压,使绝缘监测电压继电器动作并发出信号。
PT三相五柱式原理说明
PT开口三角(三相五柱式电压互感器)的工作原理电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器基本相同。
电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。
三相五柱式电压互感器,是磁系统具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。
1 三相五柱式电压互感器的接地方式电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b 相接地和中性点接地两种方式,其接线方式见图1、2。
信息来源:图1 电压互感器二次通过b相及JB接地原理图信息来图2 电压互感器二次不接地原理图信息来源:1.1 电压互感器二次绕组两种接地方式的比较信息:输配电设备网1.1.1 在同步回路中在b相接地系统中,对中性点非直接接地系统,单相接地时,中性点位移,不能用相电压同步,必须用线电压同步。
如同步点两侧均为b相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。
对中性点直接接地系统,可用辅助二次绕组的相电压同步。
信息来自:1.1.2 在保护回路中信息来源:在b相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保护误动作。
②因为辅助信息请登陆:输配电设备网绕组的一端与b相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0,对零序方向元件不利。
PT、CT简介参考文档
电流互感器
三种人工调节误差的方法: (1)匝数补偿法
(2)二次绕组并联附加阻抗元件
(3)附加磁场法
电流互感器
接线方式: (1)两相星形(V 形)连接
电流互感器
接线方式: (1)两相星形(V 形)连接
电流互感器
接线方式: (1)两相星形(V 形)连接
电流互感器
接线方式(续): (2)分相连接
PT、CT简介
二期四值
主要内容:
电压互感器(PT)的作用 电压互感器种类 电磁式电压互感器 电容式电压互感器 电流互感器 问题和答案 典型事故处理
电压互感器(PT)的作用
把高电压按比例关系变换成100V或更低等级的 标准二次电压,供保护、计量、仪表装置使用。同时, 使用电压互感器可以将高电压与电气工作人员隔离。 电压互感器虽然也是按照电磁感应原理工作的设备, 但它的电磁结构关系与电流互感器相比正好相反。电 压互感器二次回路是高阻抗回路,二次电流的大小由 回路的阻抗决定。当二次负载阻抗减小时,二次电流 增大,使得一次电流自动增大一个分量来满足一、二 次侧之间的电磁平衡关系。可以说,电压互感器是一 个被限定结构和使用形式的特殊变压器。
压),确认故障类型。 3、汇报值长,通知检修。 4、停用该段母线备自投装置以及其电动机低电压保护(或将厂用
微机快切装置切闭锁位置)。 5、取掉TV回路低电压保护直流保险。 6、按TV停电步骤将TV停电。 7、检查并更换断线相保险,同时对TV本体进行检查。 8、测绝缘正常后将TV恢复运行。 9、重新投运所退保护及自动装置。 10、记录TV停电时间,正确计算厂用电量。
电容式电压互感器
工作原理: 电容分压原理,如下图。
电容分压原理
电容式电压互感器
电压互感器常见接线图 图文 民熔
电压互感器接线图电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。
但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。
词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。
民熔电压互感器简介:JDZ-10高压电压互感器10kv半封闭式0.5级羊角型特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片电压互感器电力系统中通常有四种接线方式,电压互感器接线接地、相位等必须按严格的接法,并且电压互感器二次侧严禁短路。
一、一个单相电压互感器接线方式一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。
二、两个单相电压互感器互V/V型的接线方式两个单相电压互感器互V/V型的接线方式两个单相电压互感器的V/V形接线,可测量线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。
三、三个单相电压互感器Y0/Y0型的接线方式三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
PT的接线种类和VV接线分析
常用电压互感器的接线电压互感器在三相电路中常用的接线方式有四种,如下图1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表与继电器,如图1(a)。
2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。
如图1(b)。
3.三个单相电压互感器接成Y0/Y0形,如图1(c)。
可供给要求测量线电压的仪表与继电器,以及要求供给相电压的绝缘监察电压表。
4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
V/V型的接线图分析V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。
也就就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。
因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然就是三相电量。
左图就是正确接线,从相量图瞧三相平衡;右图就是错误接线,从相量图瞧三相不平衡。
图1 (正确) 图2(错误)图3根据ab与ub的线电压可以计算出ca线电压,。
若二次侧ab相接反,从相量图瞧,则ca线电压变为。
电压互感器几种常见接地点的作用一次侧中性点接地由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。
如下图所示。
因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。
当系统中发生单相接地时,系统中会出现零序电流。
如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV 就不会动作,发不出接地信号。
对于三相五柱式电压互感器,其一次侧中性点同样要接地。
PT的接线种类和VV接线分析
常用电压互感器的接线电压互感器在三相电路中常用的接线方式有四种,如下图1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。
2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。
如图1(b)。
3.三个单相电压互感器接成Y0/Y0形,如图1(c)。
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
V/V型的接线图分析V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。
也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。
因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。
左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。
图1 (正确)图2(错误)图3根据ab和ub的线电压可以计算出ca线电压,。
若二次侧ab相接反,从相量图看,则ca线电压变为。
电压互感器几种常见接地点的作用一次侧中性点接地由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。
如下图所示。
因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。
当系统中发生单相接地时,系统中会出现零序电流。
如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。
对于三相五柱式电压互感器,其一次侧中性点同样要接地。
电压互感器PT
PT实际上是一个带铁心的变压器。
它主要由一、二次线圈、铁心和绝缘组成。
当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。
改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。
电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,PT的一次线圈并联在高压电路中,二次侧接测量仪表、继电保护等,在正常工作时二次绕组近似于开路状态,所以,正常运行中的PT二次侧不允许短路,蔡美芳特别提醒你,二次设计一定要注意。
电流互感器是相反的,不允许开路的。
注意事项:1.电压互感器在投入运行前要按照规程规定的项目进行试验检查。
例如,测极性、连接组别、摇绝缘、核相序等。
2.电压互感器的接线应保证其正确性,一次绕组和被测电路并联,二次绕组应和所接的测量仪表、继电保护装置或自动装置的电压线圈并联,同时要注意极性的正确性。
3.接在电压互感器二次侧负荷的容量应合适,接在电压互感器二次侧的负荷不应超过其额定容量,否则,会使互感器的误差增大,难以达到测量的正确性。
4.电压互感器二次侧不允许短路。
由于电压互感器内阻抗很小,若二次回路短路时,会出现很大的电流,将损坏二次设备甚至危及人身安全。
电压互感器可以在二次侧装设熔断器以保护其自身不因二次侧短路而损坏。
在可能的情况下,一次侧也应装设熔断器以保护高压电网不因互感器高压绕组或引线故障危及一次系统的安全。
5.为了确保人在接触测量仪表和继电器时的安全,电压互感器二次绕组必须有一点接地。
因为接地后,当一次和二次绕组间的绝缘损坏时,可以防止仪表和继电器出现高电压危及人身安全。
电压互感器的接线方式(1)用一台单相电压互感器来测量某一相对地电压或相间电压的接线方式(2)用两台单相互感器接成不完全星形,也称V—V接线,用来测量各相间电压,但不能测相对地电压,广泛应用在20KV以下中性点不接地或经消弧线圈接地的电网中。
Pt100热电阻两线制、三线制和四线制接线对测温精度地影响
[图文]Pt100热电阻两线制、三线制和四线制接线对测温精度的影响1、Pt100热电阻的三种接线方式在原理上的不同:二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。
四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。
2、Pt100热电阻的三种接线方式对测量精度的影响连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效消除这种影响。
与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子:I+、I-、V+、V-。
其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。
请参阅下图:(1)四线制就是从热电阻两端引出4线,接线时电路回路和电压测量回路独立分开接线,测量精度高,需要导线多。
(2)三线制就是引出三线,Pt100B铂电阻接线时电流回路的参端和电压测量回路的参考为一条线(即检测设备的I-端子和V-端子短接)。
精度稍好。
(3)两线制就使引出两线,Pt100B铂电阻接线时接线时电流回路和电压测量回路合二为一(即检测设备的I-端子和V-端子短接、I+端子和V+短接短接)。
测量精度差。
文档铂热电阻的接线造成温度失真现象的研究[ 录入:tai-yan |时间:2007-07-24 00:44:20 | 作者: | 来源:采集所得 | 浏览:158次 ]摘要: 项目推广中发现很多矿井主通风机的监测温度经常出现不同程度的虚高现象, 分析其原因是测温线路的接线引起了较大的温度误差。
文章对测温线路进行了理论分析, 并通过实验得出导线电阻的大小对温度影响的关系。
0 引言PT100(铂热电阻) 温度传感器具有精度高、测温范围宽、使用方便等优点, 在工业过程控制和测量系统中得到了广泛的应用。
用铂热电阻测温时, 将铂热电阻接入二次仪表, 例如巡检仪温度模块等, 通过二次仪表测量出铂热电阻的阻值,从而算出温度。
电压互感器接地方式与效果
1、为了防止高低压绕组间绝缘击穿时造成设备和人身事故,电压互感器的每一组二次绕组必须有一点接地。
对于二次侧中性点接地的绕组,以满足此要求;对于二次侧中性点不接地的绕组,为了安全及准同期回路的需要,一般采用中相(V 相)接地。
所以互感器二次侧接地应称为保护接地。
2、为什么电压互感器二次侧必须接地?其作用是防止一次绝缘击穿,高压窜入低压而危及人身和设备安全。
电压互感器的一次线圈是接于高压系统。
如果运行中电压互感器的一、二次侧绝缘损坏击穿,则高压将窜入二次回路,除损坏二次设备,还严重威胁着电工人员的人身安全。
因此,电压互感器二次侧必须有一点接地。
3、一般电压互感器的二次接地都在配电装置端子箱内经端子排接地。
对220千伏的电压互感器二次侧一般采用中性点接(也叫零相接地);对发电机及厂用电的电压互感器,大都采用二次侧B机接地。
为什么电压互感器的二次侧有两种接地方法呢?主要原因是:(1)习惯问题。
通常有的地方(380伏低压厂用母线)为了节省电压互感器台数,选有V/V接。
为了安全,二次侧总得有个接地点,这个接地点一般选在二次侧两线圈的公共点。
而为了接线对称,习惯上总把一次侧的两个线圈的首端一个接在A相上,一个接在C相上,而把公共端接在B相。
因此,二侧侧对应的公共点就是B相,于是,成了B相接地。
从理论上讲,二次侧哪一相端头接地都可以,一次侧哪一相作为公共端的连接相也者可以,只要一、二次对应就行。
对于三个线圈星形连接的电压互感器有的也采用二次侧B相接地(如发电机及厂用高压母电压互感器),同样是为了接线对称的习惯问题。
有的星形连接的电压互感器,二次侧B相接地是为了与低压厂用各电压等级的电压互感器二次侧接方式相一致,因为在一个发电厂的厂用电中,总不希望同时存在几种电压互感器二次侧接地方式,不然的话,会给厂用电的二次接线造成不应有的麻烦。
(2)继电保护的特殊需要。
220千伏的线路都装有距离保护,而距离保护对于电压互感器二次回路均要求零相接地,因为要接断线闭锁装置需要有零线。
电压互感器二次回路接地方式及其影响解析
电压互感器二次回路接地方式及其影响解析发表时间:2016-01-07T10:35:16.093Z 来源:《电力设备》2015年6期供稿作者:党政[导读] 深圳供电局有限公司为了保障人身及设备的安全,防止一次高压窜入二次回路,电压互感器二次回路必须接地。
(深圳供电局有限公司广东深圳 518000)摘要:电压互感器是把高电压变换成标准二次电压以供保护、测量、仪表等装置使用的设备。
然而,电压互感器二次回路故障却时常导致继电保护装置的误动与拒动,降低了系统的安全系数不利于电网内设备的安全运行。
据此,文中结合当前实际,对电压互感器二次回路接地的必要性及二次回路多点接地对继电保护装置造成的影响进行了分析,最终提出了一种对PT二次回路接地方式的改善措施。
关键词:电压互感器;二次回路;继电保护;影响分析Abstract:Voltage transformer is the equipment that convers high voltage into a standard secondary voltage for protection,measurement,instruments and other devices.However,the failure of voltage transformer often results in the malfunction of protection device,that is not conducive to the safe operation of the grid and reduce the safety factor of the system.Accordingly,the text combined the current situation,analysised the impact and necessity of the voltage transformer secondary circuit grounding method.Ultimately,we got the improvement measures about the voltage transformer secondary circuit grounding method. Key words:Voltage transformer;secondary circuit;protection device引言为了保障人身及设备的安全,防止一次高压窜入二次回路,电压互感器二次回路必须接地。
Pt100热电阻两线制、三线制和四线制接线对测温精度的影响
[图文]Pt100热电阻两线制、三线制和四线制接线对测温精度的影响1、Pt100热电阻的三种接线方式在原理上的不同:二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。
四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。
2、Pt100热电阻的三种接线方式对测量精度的影响连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效消除这种影响。
与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子:I+、I-、V+、V-。
其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。
请参阅下图:(1)四线制就是从热电阻两端引出4线,接线时电路回路和电压测量回路独立分开接线,测量精度高,需要导线多。
(2)三线制就是引出三线,Pt100B铂电阻接线时电流回路的参端和电压测量回路的参考为一条线(即检测设备的I-端子和V-端子短接)。
精度稍好。
(3)两线制就使引出两线,Pt100B铂电阻接线时接线时电流回路和电压测量回路合二为一(即检测设备的I-端子和V-端子短接、I+端子和V+短接短接)。
测量精度差。
铂热电阻的接线造成温度失真现象的研究[ 录入:tai-yan | 时间:2007-07-24 00:44:20 | 作者: | 来源:采集所得 | 浏览:158次 ]摘要: 项目推广中发现很多矿井主通风机的监测温度经常出现不同程度的虚高现象, 分析其原因是测温线路的接线引起了较大的温度误差。
文章对测温线路进行了理论分析, 并通过实验得出导线电阻的大小对温度影响的关系。
0 引言PT100(铂热电阻) 温度传感器具有精度高、测温范围宽、使用方便等优点, 在工业过程控制和测量系统中得到了广泛的应用。
用铂热电阻测温时, 将铂热电阻接入二次仪表, 例如巡检仪温度模块等, 通过二次仪表测量出铂热电阻的阻值,从而算出温度。
PT高压侧接地
其实所谓系统中性点接地一般就是指电源变压器中性点接地,6KV厂用电系统均为中性点不接地系统,也就是说厂用电的电源变压器(高厂变或启备变)接到6KV母线这一侧中性点是不接地的。
厂用电母线上的PT高压侧中性点均要接地,发生单相接地时,由于PT不是电源,只有变压器侧才是电源,也就是说PT高压侧中性点和接地点虽然形成通路,但是接地点和PT高压侧中性点都是在变压器电源侧以外的,始终都没有和变压器电源侧形成回路,PT高压侧中性点和接地点虽然形成的回路始终没有电源提供,没有电位差,当然无法产生大电流!当PT的一次侧中性点直接接地时,每个PT上承受的实际上是相对地电压,而UA+UB+UC=3U0这个公式中的UA、UB、UC实际上就是相对地电压,所以PT的一次侧中性点直接接地时可以测量到开口电压。
当PT的一次侧中性点不接地时则每个PT上承受的实际上是相对中性点电压,我认为如果认为电源电压始终不变的话,则发生单相接地的时候PT上承受的相对中性点电压也是不变的,所以UA+UB+UC=0,所以无法测量到开口电压。
只有在变压器中性点接地的系统发生接地后,接地点经过变压器的其中一相绕组再经中性点,才能形成一个有电位差的回路(变压器接地相绕组提供电位差),从而产生大电流!JZQ消谐器技术介绍一、前言电气设备总是具有电感或电容属性。
如电力变压器、互感器、发电机、消弧线圈、电抗器、线路导线电感等为电感元件,线路导线对地电容、相间电容、补偿电容器、高压设备杂散电容等可作为电容元件。
当系统进行操作或发生故障时,这些电感、电容元件形成各种振荡回路,在一定的能源条件下,产生串联谐振现象,导致系统中某部分或某元件上出现严重的谐振过电压。
谐振过电压的持续时间比操作过电压要长得多,甚至可稳定存在,直到破坏谐振条件为止。
谐振过电压的危害性既决定于其幅值的大小,也决定于持续时间的长短。
谐振过电压将危及电气设备绝缘安全,甚至会因谐振持续的过电流烧毁小容量电感元件设备(如电压互感器)。
PT的接线种类和VV接线分析资料讲解
P T的接线种类和V V接线分析常用电压互感器的接线电压互感器在三相电路中常用的接线方式有四种,如下图1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。
2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。
如图1(b)。
3.三个单相电压互感器接成Y0/Y0形,如图1(c)。
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
V/V型的接线图分析V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。
也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。
因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。
左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。
图1 (正确)图2(错误)图3根据ab和ub的线电压可以计算出ca线电压,。
若二次侧ab相接反,从相量图看,则ca线电压变为。
电压互感器几种常见接地点的作用一次侧中性点接地由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。
如下图所示。
因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。
当系统中发生单相接地时,系统中会出现零序电流。
如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。
PT、CT的选择和使用
PT。
将高电压变成低电压的互感器。
在正常使用情况下,其比差和角差都应在允许范围内。
利用电磁感应原理改变交流电压量值的器件。
将交流高电压转化成可供仪表、继电器测量或应用的变压设备。
PT是一个带铁心的变压器。
它主要由一、二次线圈、铁心和绝缘组成。
当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。
改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的PT。
PT将高电压按比例转换成低电压,即100V,PT 一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式PT应用广泛),另有非电磁式的,如电子式、光电式。
工作原理:其工作原理与变压器相同,基本结构也是铁心和原、副绕组。
特点是容量很小且比较恒定,正常运行时接近于空载状态。
PT本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。
为此,PT的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。
测量用PT一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。
实验室用的PT往往是原边多抽头的,以适应测量不同电压的需要。
供保护接地用PT还带有一个第三线圈,称三线圈PT。
三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。
正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。
一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。
线圈出现零序电压则相应的铁心中就会出现零序磁通。
为此,这种三相PT采用旁轭式铁心(10KV及以下时)或采用三台单相PT。
对于这种互感器,第三线圈的准确度要求不高,但要求有一定的过励磁特性(即当原边电压增加时,铁心中的磁通密度也增加相应倍数而不会损坏)。
PT接线方式
电压互感器的接线方式(图)来源:电力资料网时间:2010-07-19标签:电压互感器接地接线三相系统(1)Vv 接线方式:广泛用于中性点绝缘系统或经消弧线圈接地的35KV及以下的高压三相系统,特别是10KV三相系统,接线来源于三角形接线,只是“口”没闭住,称为Vv接,此接线方式可以节省一台电压互感器,可满足三相有功、无功电能计量的要求,但不能用于测量相电压,不能接入监视系统绝缘状况的电压表。
信息来源:(2)Y,yn接线方式:主要采用三铁芯柱三相电压互感器,多用于小电流接地的高压三相系统,二次侧中性接线引出接地,此接线为了防止高压侧单相接地故障,高压侧中性点不允许接地,故不能测量对地电压。
(3)YN,yn接线方式:多用于大电流接地系统。
(4)YN,yn,do接线方式:也称为开口三角接线,在正常运行状态下,开口三角的输出端上的电压均为零,如果系统发生一相接地时,其余两个输出端的出口电压为每相剩余电压绕组二次电压的3倍,这样便于交流绝缘监视电压继电器的电压整定,但此接线方式在10KV 及以下的系统中不采用。
电压互感器实际上是一个带铁心的变压器。
它主要由一、二次线圈、铁心和绝缘组成。
电压互感器的接线方式很多,常见的有以下几种:(1)用一台单相电压互感器来测量某一相对地电压或相间电压的接线方式(2) 用两台单相互感器接成不完全星形,也称V—V接线,用来测量各相间电压,但不能测相对地电压,广泛应用在20KV以下中性点不接地或经消弧线圈接地的电网中。
(3) 用三台单相三绕组电压互感器构成YN,yn,d0或YN,y,d0的接线形式,广泛应用于3~220KV系统中,其二次绕组用于测量相间电压和相对地电压,辅助二次绕组接成开口三角形,供接入交流电网绝缘监视仪表和继电器用。
用一台三相五柱式电压互感器代替上述三个单相三绕组电压互感器构成的接线,除铁芯外,其形式与图3基本相同,一般只用于3~15KV系统。
(4)电容式电压互感器接线形式。
pt100热电阻三线制原理
pt100热电阻三线制原理
热电阻是一种测量温度的传感器,常用的类型之一是PT100
热电阻。
PT100热电阻是基于铂电阻特性工作的,其电阻值随
温度的变化而变化。
为了准确地测量温度,通常需要使用三线制连接方式。
三线制连接方式是通过三条导线来连接PT100热电阻和测量
设备。
其中两条导线用于传递电流,一条导线用于测量电阻的电压。
三条导线的接线方式如下:
- 第一条导线连接PT100热电阻的一端,同时连接一个稳定的
电流源。
- 第二条导线连接PT100热电阻的另一端,同时连接一个电压表。
- 第三条导线连接电流源和电压表的公共接地点。
工作原理是这样的:电流从第一条导线流过PT100热电阻,
根据热电阻的电阻值,会有一定的电压降落在第二条导线上。
电压表用于测量这个电压值,进而确定PT100热电阻的电阻值,从而推导出温度值。
由于使用了三线制连接方式,可以有效地减小由于导线电阻造成的误差。
其中一条导线用于电流供应,不产生测量误差;第二条导线用于测量电阻的电压,准确测量了PT100热电阻的
电阻值;第三条导线用于公共接地,保证了信号的地参考一致。
总结来说,PT100热电阻三线制原理是利用三条导线完成电流
供应和电压测量,通过测量电阻值来间接确定温度值。
这种连接方式可以提高测量的准确性,并减小由于导线电阻带来的误差。
PT、CT的选择和使用
PT。
将高电压变成低电压的互感器。
在正常使用情况下,其比差和角差都应在允许范围内。
利用电磁感应原理改变交流电压量值的器件。
将交流高电压转化成可供仪表、继电器测量或应用的变压设备。
PT是一个带铁心的变压器。
它主要由一、二次线圈、铁心和绝缘组成。
当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。
改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的PT。
PT将高电压按比例转换成低电压,即100V,PT一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式PT应用广泛),另有非电磁式的,如电子式、光电式。
工作原理:其工作原理与变压器相同,基本结构也是铁心和原、副绕组。
特点是容量很小且比较恒定,正常运行时接近于空载状态。
PT本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。
为此,PT的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。
测量用PT一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。
实验室用的PT往往是原边多抽头的,以适应测量不同电压的需要。
供保护接地用PT还带有一个第三线圈,称三线圈PT。
三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。
正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。
一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。
线圈出现零序电压则相应的铁心中就会出现零序磁通。
为此,这种三相PT采用旁轭式铁心(10KV及以下时)或采用三台单相PT。
对于这种互感器,第三线圈的准确度要求不高,但要求有一定的过励磁特性(即当原边电压增加时,铁心中的磁通密度也增加相应倍数而不会损坏)。
关于PT和CT接线方式
一、互感器的安全接地①电流互感器的二次回路必须有且只能有一点接地,一般在端子箱经端子排接地。
但对于有几组电流互感器连接在一起的保护装置,如母差保护、各种双断路器主接线的保护等,则应在保护屏上经端子排接地。
②电压互感器的二次回路只允许有一点接地,接地点宜设在控制室内。
独立的、与其它互感器无电联系的电压互感器也可在开关场实现一点接地。
为保证接地可靠,各电压互感器的中性线不得接有可能断开的开关或熔断器等。
③已在控制室一点接地的电压互感器二次线圈,必要时,可在开关场将二次线圈中性点经放电间隙或氧化锌阀片接地,应经常维护检查防止出现两点接地的情况。
④来自电压互感器二次的四根开关场引出线中的零线和电压互感器三次的两根开关场引出线中的N线必须分开,不得共用。
二、电压互感器的接线方式电压互感器的接线方式很多,常见的有以下几种:如图所示①用一台单相电压互感器来测量某一相对地电压或相间电压的接线方式。
图①中上面示意接线方式多用于110~220kV系统,下面的图多用于3~35kV系统。
②用两台单相互感器接成不完全星形,也称V—V接线,用来测量各相间电压,但不能测相对地电压,广泛应用在20kV以下中性点不接地或经消弧线圈接地的电网中。
③用三台单相三绕组电压互感器构成YN、yn、d0或YN、y、d0的接线形式,广泛应用于3~220kV系统中,其二次绕组用于测量相间电压和相对地电压,辅助二次绕组接成开口三角形,供接入交流电网绝缘监视仪表和继电器用。
用一台三相五柱式电压互感器代替上述三个单相三绕组电压互感器构成的接线,除铁芯外,其形式与图③基本相同,一般只用于3~15KV系统。
④电容式电压互感器接线形式类似方式③,只是一次测电压从分压电容器引出,适用于110~500kV系统中。
在中性点不接地或经消弧线圈接地的系统中,为了测量相对地电压,PT一次绕组必须接成星形接地的方式。
在3~60kV电网中,通常采用三只单相三绕组电压互感器或者一只三相五柱式电压互感器的接线形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PT的接线种类和VV接线分析
时间:2011-11-10点击:6280
长川电气技术中心:
常用电压互感器的接线
电压互感器在三相电路中常用的接线方式有四种,如下图
1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。
2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。
如图1(b)。
3.三个单相电压互感器接成Y0/Y0形,如图1(c)。
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监
察电压表。
4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
V/V型的接线图分析
V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。
也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。
因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。
左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。
根据ab和ub的线电压可以计算出ca线电压,。
若二次侧ab相接反,从相量图看,则ca线电压变为。
电压互感器几种常见接地点的作用
一次侧中性点接地
由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。
如下图所示。
因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。
当系统中发生单相接地时,系统中会出现零序电流。
如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。
对于三相五柱式电压互感器,其一次侧中性点同样要接地。
由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。
而应在二次中性点接地。
二次侧接地
电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。
当一次、二次侧绕组间的绝缘被高压击穿时,一次侧的高压会窜到二次侧,有了二次侧的接地,能确保人员和设备的安全。
另外,通过接地,可以给绝缘监视装置提供相电压。
二次侧的接地方式通常有中性点接地和V相接地两种,如下图所示。
根据继电保护等具体要求加以选用。
采用V相接地时,中性点不能再直接接地。
为了避免一、二次绕组间绝缘击穿后,一次侧高压窜入二次侧,故在二次侧中性点通过一个保护间隙接地。
当高压窜入二次侧时,间隙击穿接地,v相绕组被短接,该相熔断器会熔断,起到保护作用。
二次侧接地点按规程规定,均应选在主控室保护屏经端子排接地,而在配电装置处只设置试验检修时的安全接地点。
铁心接地
在电压互感器外壳上有一个接地桩头,这是铁心和外壳的接地点,起安全保护作用。