数学答题技巧---2019高考数学冲刺_答题技巧

合集下载

2019年高考数学--最后一课

2019年高考数学--最后一课
的、一般性的解法提供有意义的启发。
该方法可用于第19,21题的解答
Байду номын сангаас
④辅助解答 一道题目的完整解答,既有主要的实质性的步 骤,也有次要的辅助性的步骤。实质性的步骤 未找到之前,找辅助性的步骤是明智之举,既 必不可少而又不困难。如:准确作图,把题目 中的条件翻译成数学表达式,设应用题的未知 数等。 书写也是辅助解答。“书写要工整、卷面能得 分”是说第一印象好会在阅卷老师的心理上产 生光环效应:书写认真—学习认真—成绩优 良—给分偏高。
该方法可用于第20,22题的解答
提倡有效得分
高考数学试卷共有22个题,考试时间为两个小 时,平均每题约为5.7分钟。为了给解答题的中 高档题留下较充裕的时间,每道选择题、填空题 应在二至三分钟之内解决。若这些题目用时太长, 即使做对了也是“潜在丢分”,或“隐含失分”。 I、立足中下题目,力争高水平
祝各位同学
2012年高考成功!
高考数学取得自己满意 的成绩!
下午出发前,做好—查、看、忆、愿:
查 1、 看两证、数学文具(包括三
笔、直尺或多用板、圆规、橡皮等)、 是否带齐?且必须带齐!!
看 2、 数学高考常用重要结论及其常
考思想方法等!!(可利用考前自习时间完成错
题集的再排查及其它相关内容)
忆 3、 近期数学学习过程中,
自己印象最深的一道题、自身最欣 赏的一种解题方法等等!!(让自已进
该方法可用于第17,19题的解答
②跳步答题 解题过程卡在某一环节上是常见的。这时, 我们可以先承认中间结论,往后推,看能否得到结论。如 果不能,说明这个途径不对,立即改变方向;如果能得出 预期结论,就回过头来,集中力量攻克这一“卡壳处”。 由于考试时间的限制,“卡壳处”的攻克来不及了,那 么可以把前面的写下来,再写出“证实某步之后,继续 有……”一直做到底,这就是跳步解答。也许,后来中间 步骤又想出来,这时不要乱七八糟插上去,可补在后面, “事实上,某步可证明或演算如下”,以保持卷面的工整 若题目有两问,第一问想不出来,可把第一问作“已知” “先做第二问”,也是跳步解答。

高考数学复习十大选择题的解题技巧

高考数学复习十大选择题的解题技巧

2019-2019高考数学复习十大选择题的解题技巧高考数学选择题比其他类型题目难度较低,但知识覆盖面广,要求解题熟练、灵活、快速、准确。

现总结了以下十大选择题的解题技巧,帮助同学们提高答题效率及准确率。

1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

4.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

高考数学答题技巧:选择题十大解法

高考数学答题技巧:选择题十大解法

2019年高考数学答题技巧:选择题十大解法查字典数学网整理了2019年高考数学答题技巧:选择题十大解法,帮助广大高中学生学习数学知识!高考数学选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。

选择题的解题思想,渊源于选择题与常规题的联系和区别。

它在一定程度上还保留着常规题的某些痕迹。

而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。

因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。

选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。

由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。

6大漏洞是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;8大原则是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。

经过我的培训,很多的学生的选择题甚至1分都不丢。

下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.25/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。

题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。

高考数学解题技巧与规范答题

高考数学解题技巧与规范答题

2019高考数学解题技巧与规范答题为了使同学们更好的复习数学,小编整理了2019高考数学解题技巧与规范答题,供同学们参考。

一、调整好状态,控制好自我。

(1)保持清醒。

数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)提前进入角色,考前做好准备.按清单带齐一切用具,提前半小时到达考区,一方面可以消除紧张、稳定情绪、从容进场,另一方面也留有时间提前进入角色让大脑开始简单的数学活动,进入单一的数学情境。

如:1.清点一下用具是否带齐(笔、橡皮、作图工具、身份证、准考证等)。

2.把一些基本数据、常用公式、重要定理在脑子里过过电影。

3.最后看一眼难记易忘的知识点。

4.互问互答一些不太复杂的问题。

5.注意上厕所。

(3)按时到位。

今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5分钟内。

建议同学们提前15~20分钟到达考场。

二、浏览试卷,确定考试策略一般提前5分钟发卷,涂卡、填密封线内部分和座号后浏览试卷:试卷发下后,先利用23分钟时间迅速把试卷浏览一遍,检查试卷有无遗漏或差错,了解考题的难易程度、分值等概况以及试题的数目、类型、结构、占分比例、哪些是难题,同时根据考试时间分配做题时间,做到心中有数,把握全局,做题时心绪平定,得心应手。

三、巧妙制定答题顺序在浏览完试卷后,对答题顺序基本上做到心中有数,然后尽快做出答题顺序,排序要注意以下几点:1.根据自己对考试内容所掌握的程度和试题分值来确定答题顺序。

2.根据自己认为的难易程度,按先易后难先小后大先熟后生的原则排序。

四、提高解选择题的速度、填空题的准确度。

数学选择题是知识灵活运用,解题要求是只要结果、不要过程。

因此,逆代法、估算法、特例法、排除法、数形结合法尽显威力。

12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求快、准、巧,忌讳小题大做。

高考数学答题技巧:七分靠水平三分凭发挥

高考数学答题技巧:七分靠水平三分凭发挥

2019高考数学答题技巧:七分靠水平三分凭发挥2019高考数学答题技巧之如何超常发挥:面对紧张的复习,考生们更迫切地希望自己在考场上能够发挥好,获得好的成绩。

为了让考生能在考场上获得好成绩,专家特向考生介绍相关的考试临场得分策略,供考生参考。

据专家介绍,考试其实七分靠水平,三分凭发挥,考生掌握一定的考试临场得分策略,对考生考出最佳水平很重要。

首先要提前进入角色,净化考试情境。

考试时间是有限的,考试过程中要争分夺秒,因此考生在进入考场前应提前进入角色,让大脑开始简单的思维活动,进入单一的考试情境。

清点考试用具;对一些重要知识,如定义概念、原理规律、公式法则等过过电影对一些难记、易忘的知识,再粗略地浏览一遍。

这三个环节是不能缺少的。

其次,迅速摸清题型,制订解题策略。

考生在刚拿到试卷时,不必匆匆作答。

可以先从头到尾通览全卷,做到心中有数。

第一要回答那些一眼看得出结论的简单选择题或填空题。

这样,就能产生旗开得胜、势在必得的心理效应,从而促使思维活动及时进入最佳竞技状态。

第二要防止小题大做。

对于客观性试题(选择、填空题)可压缩答题时间,从而节约出更多的时间解答后面的大题。

实施先熟后生策略。

先做内容比较简单、题型又比较熟悉的试题,然后再做那些难一点的试题。

因为从心理学角度看,中等难度的试题容易刺激人的精神亢奋,会使人情不自禁地进入答题境界。

高考数学答题技巧:妥善分步解答,确保争分夺秒。

评卷采用的是分段评分的办法,在答题过程中,考生应坚持以下两点:1、如何超常发挥?克服会而不对,对而不全的通病。

有的考生的试卷中的试题本来会做,但最后答案却是错误的会而不对;有的考生答案虽然是对的,但中间有逻辑缺陷或概念不清,结果造成对而不全。

因此,提醒考生,会做的题目一定要认真仔细。

从以往考生的答卷中可以看出,特别难的题得1、2分容易,而简单的题得满分却很难。

2、高考数学答题坚持高分原则。

首先,两道题都会做的,应先选高分题做,然后再做低分题,以减少由于时间不足而产生失分的情况。

高考数学解答题答题技巧

高考数学解答题答题技巧

2019年高考数学解答题答题技巧平时做解答题就要多总结方法,可是书面的也总结了许多,在这儿我主要讲考试。

我们做这些解答题的时候必须严格按照演绎推理的方式科学逻辑地进行解答和表述,可以说这里已经没有“投机取巧”的机会,但仍然有一些让我们“多拿几分”,“夺取高分”的策略哦。

1. 缺步解答如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,你可以在实战中运用分析一下。

2. 跳步答题解题过程卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答.也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整.若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答的方法。

3.退步解答“以退求进”是一个重要的解题策略.对于一个较一般的问题,如果你一时不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论.总之,退到一个你能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决.为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。

4.逆向解答对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证.如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

高考数学复习:题型特点和答题技巧

高考数学复习:题型特点和答题技巧

2019年高考数学复习:题型特点和答题技巧1.选择题——“不择手段”题型特点:(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。

作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。

思辨性的要求充满题目的字里行间。

(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。

这个特色在高中数学中已经得到充分的显露。

因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。

因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。

常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

解题策略:(1)注意审题。

把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

高考数学各类题型的答题套路及技巧

高考数学各类题型的答题套路及技巧

高考数学各类题型的答题套路及技巧高考数学必考题及解题技巧篇一1、解三角形常用知识:正余弦定理、面积公式、边角互换、均值不等式,注意角范围的叙述(三角形内角和定理);三角函数与解三角形,向量相结合:化一公式、诱导公式、二倍角公式、基本关系式,均值不等式、周期的求法。

2、数列求通项an的方法:公式法、累加法、累乘法、构造法、倒数法、同除法、an与S,和Sn-1的等量关系。

求Sn的常用方法:公式法、错位相减法、裂项相消法、分组求和法等。

3、立体几何证明平行:做辅助线(中位线,平行四边形,相似三角形等)可证面面平行,线面平行性质等。

证明垂直:勾股定理;等腰,等边三角形性质;菱形,正方形性质;基本图形的垂直;线面垂直得线线垂直;面面垂直性质,直径所对的圆周角等。

求距离:解三角形,等体积法等。

求空间角:做辅助线,建系,标出相应点的坐标,求出平面的法向量,写出相应的夹角公式,线面角公式等。

高考数学答题技巧篇二1、高考数学答题带着量角器进考场带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。

2、高考数学答题取特殊值法圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就可以了。

3、高考数学答题空间几何空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。

如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得。

4、高考数学答题图像法超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。

如果条件过多,用图像法秒杀。

不等式也是特值法图像法。

先易后难我们在答数学试卷的时候,一定要先选择自己会的有把握的,要按照这个顺序,确保自己会都正确,我们在做其他的题。

高考考前指导数学规范答题技巧

高考考前指导数学规范答题技巧

普集高中校本教材-------------高考数学规范答题规范答题1 应对填空题要注重反思与验算考题再现:1.已知全集S={1,3,x3-x2-2x},A={1,|2x-1|},如果S A={0},则这样的实数x的集合是.学生作答:甲生:{0,-1,2} 乙生:-1,2 丙生(-1,2)规范解答{-1,2}老师忠告:(1)由于填空题不像选择题那样有一个正确答案供我们校正结果,所以填空题更容易丢分.因此,对得出的结果要注意验算与反思,验算一下结果是否符合题意,反思一下表达形式是否符合数学的格式,像乙、丙两位同学已经求得了x的值,但由于书写格式不对,造成丢分.(2)注意集合“三性”,防止“奸细”混入.例如甲同学就是没有考虑到x=0时,A={1,1}违反了元素的互异性原则,应舍去.考题再现:2.(2009·上海,2)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是.学生作答:甲生:a<1 乙生:a≥1规范作答:a≤1老师忠告:(1)集合的“交、并、补”特别要小心的是“端点值的取舍”.常犯的错误就是对“端点值”把握不准,其实很简单,只要单独反思一下“端点值”即可.(2)一定要养成“在数轴上进行集合(数集)运算”的好习惯,借助数轴,集合的运算关系一目了然.上面甲同学丢掉了端点值,乙同学没有搞清并集的含义及画法.规范答题2 注重数学思维能力的培养考题再现:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1的一条折线表示;西红柿的种植 成本与上市时间的关系用图2的抛物线表示.(1)写出图1表示的市场售价与时间的函数关系式P=f (t );写出图2表示的种植成本与时间的函数关系式Q=g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注 :市场售价和种植成本的单位:元/百千克,时间单位:天) 学生作答: 解 设f(t)=kt+b,当0≤t ≤200,由图可得方程 当t >200时,所以p=f(t)=t+300设g(t)=A(t-150)2+100 把t=250,Q=150代入g(t)解得(2)设F (t )=f(t)-g(t)当0≤t ≤200时,当t=50时,F(t)取得最大值F(t)max=100 当200<t ≤300时,不合题意, 1,300,100200300-==⎩⎨⎧=+=k b b k b 解得⎩⎨⎧=+=+300300100200b k b k 3002)(,2300-=∴⎩⎨⎧=-=t x f k b ,2001=A ).3000(100)150(2001)(2≤≤+-=t t t g5.87212001)(]100)150(2001[300)(22++-=+--+-=t t t F t t t F 化简得答 当上市时间为50天时,纯收益最大;最大为100元.规范解答解 (1)由图1可得市场售价与时间的函数关系为由图2可得种植成本与时间的函数关系为(2)设t 时刻的纯收益为h(t),则由题意得h (t )=f (t )-g (t ),当0≤t ≤200时,配方整理得 所以,当t=50时,h(t)取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得 所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大. 老师忠告:(1)解题能力由解题的结果体现,但思维能力水平的高低由解题步骤体现,清晰条理的解题步骤表现了解答人的数学素养,同时它也能提高一个人的数学素养.(2)第(1)小题的解答复杂而混乱,反映了解答人思维上的混乱与慌乱进而造成错误.第(2)小题中对200<t ≤300时不合题意的说明不恰当,没有说服力,要丢分!(3)对应用题的解答,要深刻理解题意.对解决方案先做到胸有成竹,才有“下笔成章”.若有不同情况,要分别说出各种情况下的答案,再汇总确定答案. 规范答题3 注重表达式及结果的化简 考题再现:已知函数f (x )=(1)若f (x )=2,求x 的值; ⎩⎨⎧≤<-≤≤-=;300200,3002,2000,300)(t t t t t f .3000,100)150(2001)(2≤≤+-=t t t g ⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-=.300200,20251272001,2000,2175212001)(22t t t t t t t h 即,100)50(2001)(2+--=t t h ,100)350(2001)(2+--=t t h .212||x x -(2)若2tf(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 学生作答解 由题意得规范解答解老师忠告(1)解答数学题时,若能及时对表达式进行化简,会使运算过程变的简单且正确率高,反之冗长的表达式不仅书写麻烦,且给考生增加心理上的压力; 运算结果不注重化简更是直接丢分.(2)该生在求f(x)解析式时,当x<0时,f (x )解析式化简不彻底,使进一步解答时显得逻辑上存在漏洞.(3)对(2)化简变形的方向性不明确造成变形无法进行,反映出平时训练时对步骤的严谨性要求不够,对此类问题的通解通法掌握不好.⎪⎪⎪⎩⎪⎪⎪⎨⎧=<->-=-0,00,2120,212)(x x x x f x x x x ).12(log 21)2(,22122)()1(212+=∴=-=-∴=+x x f x x x x 即 0)1(2)2(2,022220)212()212(20)()2(2)2(2322≥+-+≥⋅-⋅+-≥-+-∴≥+---m m m m m t mf t f t t t t t t t t t t t t t ;212)(,0xx x f x -=>时当⎪⎩⎪⎨⎧≤>-=∴===-=-=<-0,00,212)(.0)(,0;022212)(,0x x x f x f x x f x x x x x xx 时当时当).21(log ,02.212,01222,2212)1(22+=∴>±==-⋅-=-x x x x x x x 解得即由条件可知),5[].5,17[)21(],2,1[).12(,012).12()12(02122122,]2,1[)2(2224222+∞-∴--∈+-∴∈+-≥∴>---≥-≥⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-∈的取值范围是即时当m t m m m t t t t tt tt t t t规范答题4 注重解题步骤“数学” 的表达考题再现 考题再现:1.(2009·北京理,18)设函数f (x )=x e kx (k ≠0). (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )的单调区间;(3)若函数f (x )在区间(-1,1)内单调递增,求k 的取值范围. 学生作答解 (1)f ′(x )=(1+kx )·e kx ,f ′(0)=1,f (0)=0.∴曲线y=f(x)在点(0,f(0))处的切线方程为y=x .(2)由f ′(x)=(1+kx)·e kx =0,得x=-1k (k ≠0).若k>0,则当x ∈(-∞,-1k )时,f(x)<0,函数f(x)单调递减;当x ∈(-1k ,+∞)时,f ′(x)>0,函数f(x)单调递增.若k<0,则当x ∈(-∞,-1k )时,f ′(x)>0,函数f(x)单调递增;当x ∈(-1k ,+∞)时,f ′(x)<0,函数f(x)单调递减.(3)若k>0,则-1k <-1,得k<1时函数f(x)在(-1,1)内单调递增.若k<0则-1k >1,得k>-1函数f(x)在(-1,1)内单调递增. 规范解答解 (1)f′(x)=(1+kx)e kx ,f′(0)=1,f(0)=0, 曲线y =f(x)在点(0,f(0))处的切线方程为y =x.(2)由f′(x)=(1+kx)e kx=0,得x =-1k (k≠0),若k>0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f′(x)<0,函数f(x)单调递减;当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f′(x)>0,函数f(x)单调递增,若k<0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f′(x)>0,函数f(x)单调递增;当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f′(x)<0,函数f(x)单调递减,综上所述:当k>0时,函数f(x)的增区间是⎝ ⎛⎭⎪⎫-1k ,+∞,减区间是⎝ ⎛⎭⎪⎫-∞,-1k ;当k<0时,函数f(x)的增区间是⎝ ⎛⎭⎪⎫-∞,-1k ,减区间是⎝ ⎛⎭⎪⎫-1k ,+∞.(3)由(2)知,若k>0,则当且仅当-1k ≤-1,即k≤1时,函数f(x)在(-1,1)内单调递增,此时0<k≤1.若k<0,则当且仅当-1k ≥1,即k≥-1时,函数f(x)在(-1,1)内单调递增,此时-1≤k<0.综上可知,函数f(x)在(-1,1)内单调递增时,k 的取值范围是[-1,0)∪(0,1]. 老师忠告(1)结论的完备性,答案的准确性是拿到满分的关键.(2)第(2)问中,并没有回答出函数的单调区间,要注意“f(x)的增区间是(a ,b)”与“f(x)在(a ,b)上是增函数”的区别.一般来说,由分类讨论得出的结论,要做汇总说明. (3)第(3)问中,一方面要注意区间的“端点值”不要漏掉,另一方面要注意与分类范围取交集. 考题再现2.已知函数f(x)=x 4-3x 2. (1)求f(x)的单调区间;(2)若与曲线y =f(x)相切的直线过原点,求该切线方程. 学生作答解 (1)f′(x)=4x 3-6x =4x ⎝⎛⎭⎪⎫x +62⎝ ⎛⎭⎪⎫x -62,由f′(x)>0,解得-62<x<0或x>62,由f′(x)<0,解得x<-62或0<x<62;故f(x)的递增区间为⎝ ⎛⎭⎪⎫-62,0,⎝ ⎛⎭⎪⎫62,+∞f(x)的递减区间为⎝⎛⎭⎪⎫-∞,-62,⎝ ⎛⎭⎪⎫0,62.(2)由题意,原点是切点,得f′(0)=0,故切线方程为y =0.规范答题解 (1)f′(x)=4x 3-6x =4x ⎝⎛⎭⎪⎫x +62⎝ ⎛⎭⎪⎫x -62,由f′(x)>0,解得-62<x<0或x>62,由f′(x)<0,解得x<-62或0<x<62;故f(x)的递增区间为⎝ ⎛⎭⎪⎫-62,0,⎝ ⎛⎭⎪⎫62,+∞,递减区间为⎝⎛⎭⎪⎫-∞,-62,⎝ ⎛⎭⎪⎫0,62.(2)若原点是切点,则f′(0)=0,得切线方程y =0.若原点不是切点,设切点 P(x 0,y 0) (x 0·y 0≠0)则k =f′(x 0)=4x 30-6x 0=y0x0=x 30-3x 0,得x 0=±1. 当x 0=1时,P(1,-2),k =-2, 切线方程为2x +y =0;当x0=-1时,P(-1,-2),k =2, 切线方程为2x -y =0.综上所述:所求切线方程为y =0或2x +y =0或2x -y =0. 老师忠告:(1)特别要注意某些数学符号的用法,如:取值范围、定义域、值域等的合并要用“∪”,而单调区间是不能用“∪”的,如函数在多个区间上都是增函数,则这几个区间用“,”隔开或用“和”字连接.(2)要注意区别“在曲线上点A(a ,b)处的切线”与“过点A(a ,b)的曲线的切线”两种说法的区别.规范答题5 审题不仔细,导致失分 考题再现:是否存在实数a,使函数y=sin2x+acos x+ 在闭区间 上的最大值为1? 若存在,求出对应的a 值;若不存在,请说明理由.学生作答:解 假设存在实数a,2385-a ⎥⎦⎤⎢⎣⎡2π,02385cos sin 2-++=a x a x y 则2185cos cos 2-++-=a x a x 21854)2(cos 22-++--=a a a x .234,234121854,221854)2(,cos 2max 22符合题意或故存在或解得时当则令=-==-==-+==-++--==a a a a a a y a t a a a t y x t规范解答:解 假设存在实数a,老师忠告:审题不仔细,导致换元时忽视了新元的取值范围,本题中自变量的取值范围限制在上,根据余弦函数的性质,新元t 的取值范围应该是[0,1],而不是R 或[-1,1].规范答题6 思维定势,乱套公式 考题再现已知函数f(x)=a ·(b -a ),其中向量a =(cos ωx,0),b =( sin ωx,1),且ω为正实数.(1)求f(x)的最大值;(2)对任意m ∈R ,函数y=f(x),x ∈[m ,m+π]的图象与直线 有且仅有一个交点,求ω的值,并求满足 的x 值. 学生作答解.10,21854)21(,10,cos ,1cos 0,2π021854)2(cos 2185cos cos 2385cos sin 222222≤≤-++--=≤≤=≤≤≤≤-++--=-++-=-++=t a a a t y t x t x x a a a x a x a x a x a x y 则令时当则,12185,0cos ,0,0,02)2(max =-===<<a y x t a a 时即则当时即当.,0,512值足条件的故这种情况下不存在满由于解得a a a <=.23,.,21320,1320,123813,1cos ,1,2,12)3(max 符合题意存在综上知值足条件的故这种情况下不存在满由于解得时即则当时即当=<==-===>>a a a a y x t a a )12π7,12π(213)(⎥⎦⎤⎢⎣⎡∈-=x x f 21=y 2||))()1(a b a a (b a -⋅=-⋅=x f 21)6π2sin(22cos 12sin 23cos 2sin 23cos 0sin cos 322--=+-=-=-+=x x x x x x x x ωωωωωωωω规范解答 解.21)(1)6π2sin(1的最大值为又x f x ∴≤-≤-ω ,23)6π4sin(,21321)6π4sin(,21)6π4sin()(,2π,π2π,)(,21)()2(=-∴-=--∴--=∴=∴=∴∴=x x x x f x f y x f ωω的周期为有且只有一个交点与直线函数.24π58π,3π23π6π4===-∴x x x 或即或3(1)3cos sin 01sin 2.2x x x ωωω⋅=+⨯=a b .21)(,1)6π2sin(1.21)6π2sin(212cos 212sin 2322cos 12sin 23cos 2sin 232的最大值为x f x x x x x x x x ∴≤-≤---=--=+-=-=ωωωωωωωω ,21)()2(的大值为函数x f ,21π),[),(有一个交点有且仅的图象与直线=+∈=y m m x x f y .12π54π,3π23π6π2π],,0[6π2,6π7,6π2,12π7,12π.23)6π2sin(,21321)6π2sin(,21)6π2sin()(.1π,2π2.π)(===-∴∈-∴⎥⎦⎤⎢⎣⎡∈∴⎥⎦⎤⎢⎣⎡∈=-∴-=--∴--=∴=∴=∴∴x x x x x x x x x x f T x f 或即或为的周期函数 ωω老师忠告本题中2ω相当于公式 中的ω,需明确其意义.思维定势,乱套公式,造成由 得ω=2,致使后面运算全部出错,仅得7分. 规范答题7 步骤不完整,导致失分 考题再现已知数列{a n }的前n 项和为S n ,点(n ,S n ) (n ∈N +)均在函数y =f (x )=3 x 2-2 x 的图象上.(1)求数列{a n }的通项公式;(2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N +都成立的最小正整数m . 学生作答.10,20)1611(21)1611(21)]161561()13171()711[(21),161561(21]5)1(6)[56(33)1()2(.56)]1(2)1(3[)23(.23.23)()N )(,()1(1122122为整数所以满足要求的最小正由故得知由所以所以的图象上均在函数因为点m m n n n n b T n n n n a a b n n n n n S S a n n S x x x f y n S n ni i n n n n n n n n n <+-+-=+--++-+-==+--=-+-==-=-----=-=-=-==∈∑=+-+ 规范解答解 (1)因为点(n ,S n ) (n ∈N +)均在函数y =f(x)=3 x 2-2 x 的图象上,所以S n =3n 2-2n. 当n ≥2时,a n =S n -S n -1=(3n 2-2n)-[3(n -1)2-2(n -1)]=6n -5. 当n =1时,a 1=S 1=3×12-2=6×1-5, 所以,a n =6n -5 (n ∈N +). (2)由(1)得知b n =3 a n a n +1=3(6n -5)[6(n +1)-5]=12⎝⎛⎭⎪⎫16n -5-16n +1, 故T n =∑n i =1b i =12[⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1=12⎝⎛⎭⎪⎫1-16n +1. 因此,要求12⎝⎛⎭⎪⎫1-16n +1<m 20 (n ∈N +)成立的m , ωπ2=T π,π2=ω必须且仅须满足12≤m20,即m ≥10,所以满足要求的最小正整数m 为10. 老师忠告在第(1)问中没有注意到a n =S n -S n -1成立的条件,造成步骤的缺失,因而被扣分.在第(2)问的解答中没有写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案不能得全分,犯了“大题小作”中的“一步到位”错误. 规范答题8 书写紊乱,所言无据 考题再现设正整数数列{a n }满足:a 2=4,且对于任何n ∈N +,有2+1 a n +1<1 a n +1 a n +11n -1n +1<2+1a n.求数列{a n }的通项a n .学生作答解规范解答解 (1)由已知不等式得:2+1a n +1<n(n +1)⎝ ⎛⎭⎪⎫1a n +1 a n +1<2+1 a n .① 当n =1时,由①得:2+1 a 2<2⎝ ⎛⎭⎪⎫1a 1+1 a 2<2+1 a 1, 即2+14<2 a 1+24<2+1 a 1,解得23<a 1<87.∵a 1为正整数,∴a 1=1.当n =2时,由①得:2+1 a3<6⎝ ⎛⎭⎪⎫14+1 a3<2+14, 解得8<a 3<10.∵a 3为正整数,∴a 3=9.∴a 1=1,a 3=9.11212111113323312311112(1)()2.11111,22()2,122122,44281111. 1.2,26()2.374481091,4,9,n n n nn n n a a a a n a a a a a a a a n a a a a a a a a n +++<++<+=+<+<++<+<+<<∴==+<+<+<<∴=====当时得即当时由得(2)由a1=1,a2=4,a3=9,猜想:an=n2.下面用数学归纳法证明1°当n=1,2时,由(1)知an =n2均成立;2°假设n=k (k≥2)成立,即ak=k2,则n=k+1时,由①得2+1ak+1<k(k+1)⎝⎛⎭⎪⎫1k2+1ak+1<2+1k2⇒k3(k+1)k2-k+1<ak+1<k(k2+k-1)k-1⇒(k+1)2-k+1k2-k+1<ak+1<(k+1)2+1k-1∵k≥2时,(k2-k+1)-(k+1)=k(k-2)≥0,∴k+1k2-k+1∈(0,1],又∵k-1≥1,∴1k-1∈(0,1].又ak+1∈N+,∴(k+1)2≤ak+1≤(k+1)2.故ak+1=(k+1)2,即当n=k+1时,an=n2成立.综上,由1°,2°知,对任意n∈N+,an=n2老师忠告解题表述的总原则是:说理充分,逻辑严谨,层次清楚,表述规范.本解答从头到尾只有方程,没有必要的文字说明,而且像写作文,关键点不突出,一定会失去应得之分,还要注意解题步骤最忌像“散文”一样连着写下来,让方程、答案淹没在文字之中,应像“诗”一样分行写出,出现一个结果就另起一行单独书写,这样即使阅卷速度快,也不会因为找不到你的得分点而少给分;正确结论的获得要通过严格推理,或在猜想出结论后再利用数学归纳法加以严格证明.本解答中用不完全归纳法猜想数列的通项,犯了以偏概全的错误,缺乏思维的严谨性,扣分是必然的.规范答题9 审题马虎,题意理解有误考题再现1.甲、乙两地相距s km,汽车从甲地匀速行驶到乙地,速度不得超过c km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小, 汽车应以多大速度行驶? 学生作答 甲生解 (1)依题意,汽车从甲地匀速行驶到乙地所用的时间是 ,全程运输成本为y=a+bv 2,故所求函数为y=a+bsv,定义域为{v|0<v ≤c}.乙生解 (1)由题意可知:汽车从甲地到乙地所用时间为 ,运输成本为故函数表达式为 定义域为 (2)依题意s ,a ,b ,v 均为正数,故规范解答解 (1)依题意,汽车从甲地匀速行驶到乙地所用的时间是sv,全程运输成本为y =a s v +bv2s v =s ⎝ ⎛⎭⎪⎫a v +bv .故所求函数为y =s ⎝ ⎛⎭⎪⎫a v +bv ,定义域为{v|0<v ≤c}.因此,当v =c 时,全程运输成本最小.事实上,s ⎝ ⎛⎭⎪⎫a v +bv -s ⎝ ⎛⎭⎪⎫a c +bc=s ⎣⎢⎡⎦⎥⎤a ⎝ ⎛⎭⎪⎫1v -1c +b(v -c)=svc(c -v)(a -bcv) ∵c -v ≥0且a>bc2,∴a -bcv ≥a -bc2>0. ∴s ⎝ ⎛⎭⎪⎫a v +bv ≥s ⎝ ⎛⎭⎪⎫a c +bc (当且仅当v =c 时,等号成立). 综上所述,为使全程运输成本最小,当 ab ≤c 时,行驶速度v = ab ;当ab>c 时,行驶速度v =c. 老师忠告甲生在答题前没有认真审题,想当然的认为运输成本中的固定部分就是a ,与时间的长短没关系,事实上题目交待的很清楚,汽车每小时的运输成本中固定部分vsvs ),(2bv v a s v s bv v s a y +=•+•=v s),(bv va s y +=(].,0c 运输成本最小.全程时,等号成立,时,即时,当且仅当b a v b a v bv v a ab s bv vas =∴==≥+,2)(,,0,②.,的减函数是易证时当若全程运输成本最小时v y c v c b a b a v≤<>=∴为a 元,只是语句较长,看了后面部分又忘记了前面部分的总的要求.因此,在今后的考试中,做应用题时,一定要认真阅读两遍以上.乙生在答题时,由于审题马虎没有注意到或做题时忘记“速度不得超过c km/h”实际问题中的条件限制,使解答不够完整.应分 ≤c 时, >c 时两种情况求运输成本y 最小时汽车的行驶速度. 考题再现2.如图所示,将一矩形花坛ABCD 扩建成一个更大 的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知AB =3米,AD = 2米.(1)要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内?(2)当DN 的长为多少时,矩形花坛AMPN 的面积 最小?并求出最小值.学生作答规范解答解 (1)设DN 的长为x (x>0)米,则AN =(x +2)米∵DN AN =DCAM ,∴AM =3(x +2)x , ∴SAMPN =AN ·AM =3(x +2)2x .由SAMPN>32,得3(x +2)2x>32,又x>0,得3x2-20x +12>0,解得:0<x<23或x>6,即DN 长的取值范围是⎝ ⎛⎭⎪⎫0,23∪(6,+∞).(2)矩形花坛AMPN 的面积为 y =3(x +2)2x =3x2+12 x +12 x =3x +12 x +12≥2 3 x ·12x +12=24b a ba.24.241212321212312123)2(3)2(.326.632,012203,32)2(3,32,)2(3,)2(3,)2(,)1(22222的面积的最小值为故矩形花坛的面积为矩形花坛或长的取值范围是即或即得米则米的长为设AMPN xx x x x x x x x y AMPN x x DN x x x x x x S x x AM AN S xx AM AMDC ANDN x AN x DN AMPN AMPN =+•≥++=++=+=<>><>+-∴>+>∴+=•=∴+=∴=+=当且仅当3x =12x ,即x =2时,矩形花坛AMPN 的面积取得最小值24. 故DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米. 老师忠告该生在答卷过程中,存在着较多不规范的问题,一是由于马虎忽略了实际应用问题中的线段的长为正数的限制条件,导致第(1)问答案错误;二是审题不仔细,第(2)问明明有两个设问,但只解答了一个;三是做题不严谨,面积y 有没有最小值,关键是“=”能不能成立,没有验证“=”成立的条件就直接得最小值为24的结论;四是数学符号运用不规范,线段的长度在代数、三角、立体几何中用线段端点的两字母表示即可,只有在解析几何中对表示线段两端的字母加上绝对值符号.规范答题10 因定理运用所需条件不全失分 考题再现如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点.(1)求证:AN ∥平面A 1MK ; (2)求证:平面A 1B 1C ⊥平面A 1MK.学生作答证明:(1) ∵K 、N 分别为C 1D 1,CD 的中点 ∴ AN ∥A 1K ∴ AN ∥面A 1MK(2) ∵M 、K 分别为AB ,C 1D 1的中点 ∴ MK ∥BC 1 又四边形BCC 1B 1为正方形∴ BC 1⊥B 1C ∴ MK ⊥B 1C 又A 1B 1⊥面BCC 1B 1∴ A 1B 1⊥BC 1∴ MK ⊥A 1B 1 ∴ MK ⊥面A 1B 1C ∴面A 1MK ⊥面A 1B 1C 规范解答证明(1)如图所示,连接NK.在正方体ABCD —A 1B 1C 1D 1中,∵四边形AA 1D 1D ,DD 1C 1C 都为正方形, ∴AA 1∥DD 1,AA 1=DD 1,C 1D 1∥CD ,C 1D 1=CD. ∵N ,K 分别为CD ,C 1D 1的中点,∴DN ∥D 1K ,DN=D 1K , ∴四边形DD 1KN 为平行四边形.∴KN ∥DD 1,KN=DD 1, ∴AA 1∥KN ,AA 1=KN.∴四边形AA 1KN 为平行四边形.∴AN ∥A 1K.A 1K 平面A 1MK ,AN 平面A 1MK ,∴AN ∥平面A 1MK.(2)连接BC 1.在正方体ABCD —A 1B 1C 1D 1中,AB ∥C 1D 1,AB=C 1D. ∵M ,K 分别为AB ,C 1D 1的中点,∴BM ∥C 1K,BM=C 1K. ∴四边形BC 1KM 为平行四边形.∴MK ∥BC 1.在正方体ABCD —A 1B 1C 1D 1中,A 1B 1⊥平面BB 1C 1C ,BC 1平面BB 1C 1C ,∴A 1B 1⊥BC 1.∵MK ∥BC 1,∴A 1B 1⊥MK.∵四边形BB 1C 1C 为正方形,∴BC 1⊥B 1C.∴MK ⊥B 1C.∵A 1B 1平面A 1B 1C ,B 1C 平面A 1B 1C ,A 1B 1∩B 1C=B 1,∴MK ⊥平面A 1B 1C.∵MK 平面A 1MK , ∴平面A 1MK ⊥平面A 1B 1C. 老师忠告该生(1)问中AN ∥A 1K 跨度太大,缺少关键步骤,应先证四边形ANKA 1为平行四边形,(2)问中MK ∥BC 1跨度大,证MK ⊥面A 1B 1C 及面A 1MK ⊥面A 1B 1C 时,缺少运用有关定理证明垂直的条件,这种粗线条的思维是不可行的,一定要处处留心,条理清晰.规范答题11 解题过程缺少必要的文字说明 考题再现如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 是等腰直角三角形,∠BAC=90°,且AB=AA 1,D 、E 、F 分别是B 1A 、CC 1、BC 的中点.现设A 1A=2a.(1)求证:DE ∥平面ABC ; (2)求证:B 1F ⊥平面AEF ;(3)求二面角B 1—AE —F 的正切值. 学生作答(1)证明 ∵D 、E 分别为AB 1、CC 1的中点, ∴ DE ∥AC ,又DE 面ABC ,∴DE ∥面ABC. (2)证明 B(2a,0,0),C(0,2a,O),F(a,a,0),E(0,2a,a),B(2a,0,2a)B 1F ·EF=0,B 1F ·AF=0 (3)解 面AEF 的法向量为B 1F=(-a ,a ,-2a )设面AEB 1的法向量为n=(x,y,1)..,111AEF F B F ,AF EF AF F B EF F B 面又⊥∴=⋂⊥⊥∴.5,5,tan 65,cos 1,sin 61,cos )1,21,1(0·0·),2,0(),2,0,2(1112111111---∴->=<∴=><->=<∴-=•=><∴--=∴⎪⎩⎪⎨⎧==∴==的正切值为二面角又F AE B F B n F B n F B n ,FB n F B n n ,AE n AB n a a AE a a AB规范解答(1)证明 如图建立空间直角坐标系A —xyz ,则A (0,0,0),B (2a ,0,0),C (0,2a,0),A 1(0,0,2a),B 1(2a,0,2a),C 1(0,2a,2a).取AB 的中点H ,连接DH ,CH.∵E (0,2a ,a ),D (a ,0,a ),H (a ,0,0),∴CH=(a ,-2a ,0),ED=(a ,-2a ,0), ∴CH ∥DE.∵CH 平面ABC ,而DE ∥平面ABC ,∴DE ∥平面ABC.(2)证明 ∵B (2a ,0,0),C (0,2a ,0),∴F (a ,a ,0),∴B 1F=(-a ,a ,-2a ),EF=(a ,-a ,-a ),AF=(a ,a ,0),∴B 1F ·EF=(-a )·a+a ·(-a )+(-2a )·(-a )=0,B 1F ·AF=(-a )·a+a ·a+(-2a )·0=0, ∴B 1F ⊥EF ,B 1F ⊥AF.∵EF ∩AF=F ,∴B 1F ⊥平面AEF.(3)解 设平面AB 1E 的一个法向量为m=(x,y,z),∵AB 1=(2a ,0,2a ),AE=(0,2a ,a ),∴m ·AB 1=2ax+2az=0,m ·AE=2ay+az=0,由(2)知平面AEF 的一个法向量为B 1F=(-a ,a ,-2a ),设B 1F 与m 所成的角为θ.则cos θ= ∵平面AB 1E 与平面AEF 所成的二面角为锐二面角,∴二面角B 1—AE —F .∴二面角B 1—AE —F . 老师忠告该生在第(1)问审题中将条件理想化,DE 根本不是中位线,在(2)问中缺少文字说明,应交待建系,求出向量的坐标,最后把向量转化成直线,在(3) 问中没注意隐含条件,二面角B 1—AE —F 的平面角为锐角.审题时要审条件、审结论、审关系、审图形,解题过程中必要的文字说明不可少. 规范答题12 符号应用不规范,忽视隐含条件 考题再现).,21,(,21.a a a m y x --==⎪⎩⎪⎨⎧-=-=∴则a z 令z.z 2221223662a a a a a --==||11F B ||m 65在平面直角坐标系xOy 中,已知点A (-1,0)、 B (1,0),动点C 满足条件:△ABC 的周长为2+ .记动点C 的轨迹为曲线W. (1)求W 的方程;(2)经过点(0, )且斜率为k 的直线l 与曲线W 有两个不同的交点P和Q ,求k 的取值范围;(3)已知点M ( ,0),N (0,1),在(2)的条件下,是否存在常数k ,使得向量 与 共线?如果存在,求出k 的值;如果不存在,请说明理由.学生作答解 (1)设C (x,y ), ∵AC+BC+AB=2+ , AB=2 ∴AC+BC= >2,∴由定义知,动点C 的轨迹是以A 、B 为焦点,长轴长为 的椭圆.∴a= ,c=1, ∴b 2=a 2-c 2=1, ∴W 的方程为 (2)设直线l 的方程为y=kx+ ,代入椭圆方程,得 整理得 ①因为直线l 与椭圆有两个不同的交点P 和Q 等价于 解得k<- 或k>∴满足条件的k 的取值范围为k< - 或 k>(3)设P (x 1,y 1),Q(x 2,y 2)则 =(x 1+x 2,y 1+y 2)由①得x 1+x 2=- ,因为M ( ,0),N (0,1),所以 ,所以 与 共线等价于x 1+x 2= (y 1+y 2)解得k= 所以不存在常数k ,使得向量 与 共线 规范解答解(1)设C (x ,y ),∵|AC|+|BC|+|AB|=2+ ,|AB|=2,∴|AC|+|BC|= >2,∴由定义知,动点C 的轨迹是以A 、B 为焦点,长轴长为 的椭圆除去与x 轴的两个交点. ∴a= ,c=1.∴b 2=a 2-c 2=1.∴W 的方程为 +y 2=1(y ≠0).(2)设直线l 的方程为y=kx+ ,代入椭圆方程,得 +(kx+ )2=1.2222OQ OP +MN 22222221222=+y x21)2(222=++kx x 0122)21(22=+++kx x k 024)21(48222>-=+-=∆k k k 22222222OQ OP +22124kk+2)1,2(-=MN OQ OP +MN 2-22OQ OP +MN 222222222x 222x 2整理,得 ① 因为直线l 与椭圆有两个不同的交点P 和Q 等价于解得k< - 或k> .∴满足条件的k 的取值范围为(-∞, - )∪( , +∞).(3)设P (x 1,y 1),Q (x 2,y 2),则 =(x 1+x 2,y 1+y 2),由①得x 1+x 2=- , ②又y 1+y 2=k(x 1+x 2)+ , ③因为M ( ,0),N (0,1),所以 =(- ,1).所以 与 共线等价于 x 1+x 2=- (y 1+y 2).将②③代入上式,解得k= .所以不存在常数k ,使得向量 与 共线. 老师忠告在(1)中线段的长度要遵循解析几何的规定加上绝对值符号,由于△ABC的三点不能共线,故动点C 的轨迹与x 轴的两个交点要去除.题目做完后,一定要经过认真的检查和分析,防止不必要的疏漏和错误.在(3)中由于未能在卷面上体现出y 1+y 2而造成步骤不完整,这种失分令人痛惜. 规范答题14 因解答使用结论降低试题难度而丢分 考题再现设抛物线y2=2px (p>0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明:直线AC 经过原点O. 学生作答证明 记A(x 1,y 1)、B(x 2,y 2),则y 1y 2=-p 2,因为BC//x 轴,且点C 在准线x= 上,所以点C 的坐标为 规范解答0122)21(22=+++kx x k 024)21(48222>-=+-=∆k k k 22222222OQ OP +22124k k +222MN MN MN OQ OP +OQ OP +22222p -2(,)2py -.,221112O AC OA k x y y p p y k CO 经过原点所以直线的斜率也是直线即的斜率为故直线==-=(,0),2p证明 如图所示,因为抛物线y 2=2px (p>0)的焦点为F ,由于直线AB 不可能与x 轴平行,所以经过点F 的直线AB 的方程可设为x=my+ 代入抛物线方程得y 2-2pmy-p 2=0.若记A(x 1,y 1)、B(x 2,y 2), 则y 1、y 2是该方程的两个根,所以y 1y 2=-p 2.因为BC ∥x 轴,且点C 在准线x= 上,所以点C 的坐标为 故直线CO 的斜率为即k 也是直线OA 的斜率,所以直线AC 经过原点O. 老师忠告解答高考解答题的理论根据应该是教材中的定义、定理、公理和公式,对于课本习题、例题的结论,是要通过证明才能直接使用,否则将被“定性”为解题不完整而被扣分.此考生直接运用课本中的引申结论“y 1y 2=-p 2”而跳过拟考查的知识点、能力点而可能被扣2到4分.由于使用“升华结论”达不到考查能力、考查过程的目的,因此不能以题解题,不能直接运用教材以外的东西,以免被扣分..2p2p -2(,).2py -21112,2y y p k p y x ===-优秀学习资料欢迎下载。

高考数学答题技巧与套路精选

高考数学答题技巧与套路精选

高考数学答题技巧与套路精选高考数学答题技巧一、难题先跳过手热好得分周洁娴,毕业于华师一附中理科班,高考664分。

说到去年高考数学和理科综合,周洁娴仍心有余悸。

数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。

她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。

“我感觉脑袋也像机器,需要预热!”二、开头最易错回头可救分“基础题得分和丢分都很容易。

”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。

陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。

做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。

“既然得不到难题分,一定要保证简单题不错。

”周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。

结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。

三、时间很宝贵掐表做综合对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。

周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。

当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。

好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。

毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。

答题时,应先做自己最拿手的科目。

四、审题别偷懒用时别吝啬“不集中精力仔细审题,一不留神就丢分。

”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。

他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。

“要留意题目的所有条件。

”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。

这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。

“文科综合更是重在审题。

”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。

高考数学答题技巧与方法导数

高考数学答题技巧与方法导数

2019年高考数学答题技巧与方法—导数2019年高考数学答题技巧与方法导数导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。

知识整合1.导数概念的理解。

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

专家指点高考数学答题技巧

专家指点高考数学答题技巧

2019年专家指点高考数学答题技巧先易后难先同后异一、提前进入角色很多同学都有这样的习惯, 每次刚刚考试完, 会有很多遗憾, 总想如果这次考试要是重新考的话, 我会考得比较好。

那么, 要想在高考这一次考试中取得比较好的成绩, 必须要少留遗憾, 最正常的发挥, 至于不会做的, 或者根本做不出来的谈不上遗憾, 就怕自己的水平没有发挥出来。

提前进入角色应该特别关注以下两个问题:1、生活作息上的适当调整。

首先, 调整好自己的生物钟, 不要熬夜, 做题尽量放在白天与高考同步。

其次, 尽量保持与平时一致的生活习惯, 饮食上不要有太大的改变, 避免肠胃不适。

再次, 要有积极的心理暗示。

人的潜力有时候自己都难以相信, 当你精力集中、心理暗示到一定程度, 可以使自己超水平发挥的。

2、高考前几天要在数学学科做好“保温”。

有三点要注意:第一, 分析订正错题, 总结常见的几类错误。

第二, 分类看旧题, 针对重点内容重点看。

看看《考试说明》要求比较高的知识点, 总结一下通性和通法, 进行专项内容的总结和分类, 形成解决这类问题的常见方法。

第三, 适当做一些新题。

新题难度不要太大, 中等或者偏下。

中等可以保持你的斗志, 偏下是为了保温。

二、监考发卷后迅速摸清题情高考会提前五分钟发卷, 这五分钟同学们不要答卷, 先用一分钟填考试信息, 接下来同学们就要尽快地摸清题情。

1、识别试卷中曾做过的, 会做的题。

也要注意有没有可能会做, 但是需要花大量的时间的题。

心里要立刻有一个答题的顺序。

2、舍得放弃, 正确对待得与失。

万一遇到某个题从来都没有见过, 可以大概看看是哪个类型, 用什么方法能解决, 这个题目是考察什么, 迅速决定是否放弃。

如果觉得花两个小时也不一定能做出来, 这个时候要舍得放弃, 集中自己的精力, 解决自己会做的问题, 高考考得不是会多少, 而是对多少。

三、四先四后即先易后难、先熟后生、先高后低、先同后异。

1.易与熟: 涉及的概念公式方法能融会贯通, 脱口而出, 一目了然。

高考数学答题技巧与规范答题

高考数学答题技巧与规范答题

高考数学答题技巧与规范答题高考数学答题技巧与规范答题一、调整好状态,控制好自我。

(1)保持清醒。

数学的考试时间在下午,建议同学们正午最好歇息半个小时或一个小时,此间尽量放松自己,从心理上暗示自己:只有静心歇息才能保证考试时清醒。

(2)提早进入角色,考前做好准备.按清单带齐全部器具,提早半小时抵达考区,一方面能够消除紧张、稳固情绪、冷静进场,另一方面也留有时间提早进入角色让大脑开始简单的数学活动,进入单调的数学情境。

如:1.盘点一下器具能否带齐(笔、橡皮、作图工具、身份证、准考据等 )。

2.把一些基本数据、常用公式、重要定理在脑子里过过电影。

3.最后看一眼难记易忘的知识点。

4.互问互答一些不太复杂的问题。

5.注意上卫生间。

(3)准时到位。

今年的答题卡不再独自发放,要求答在答题卷上,但发卷时间应在开考前 5 分钟内。

建议同学们提早15~20分钟抵达考场。

二、阅读试卷,确立考试策略一般提早 5 分钟发卷,涂卡、填密封线内部分和座号后阅读试卷:试卷发下后,先利用23 分钟时间快速把试卷阅读一遍,检查试卷有无遗漏或差错,认识考题的难易程度、分值等概略以及试题的数量、种类、构造、占分比率、哪些是难题,同时依据考试时间分派做题时间,做到成竹在胸,掌握全局,做题时思绪平定,驾轻就熟。

三、奇妙拟订答题次序在阅读完试卷后,对答题次序基本上做到成竹在胸,而后尽快做出答题次序,排序要注意以下几点:1.依据自己对考试内容所掌握的程度和试题分值来确立答题次序。

2.依据自己以为的难易程度,按先易后难先小后大先熟后生的原则排序。

四、提升解选择题的速度、填空题的正确度。

数学选择题是知识灵巧运用,解题要求是只需结果、不要过程。

所以,逆代法、估量法、特例法、清除法、数形联合法尽显威力。

12 个选择题,若能掌握得好,简单的一分钟一题,难题也不超出五分钟。

因为选择题的特别性,由此提出解选择题要求快、准、巧,禁忌小题大做。

填空题也是只需结果、不要过程,所以要力争完好、严实。

高考数学答题技巧:考试最后15分钟很重要

高考数学答题技巧:考试最后15分钟很重要

2019高考数学答题技巧:考试最后15分钟很重要2019高考数学答题技巧:考试最后15分钟很重要,把前边题认真做好才能做好高考数学压轴题。

一、培养好数学思想在二轮专题复习中强调对数学思想的理解,一直是烟台市高考数学复习的一大特色。

从1993年开始,烟台市数学老师就强调学生数学思想的培养,加强学生解题思路、解题方法的训练。

数学思想包括四大方面:涵数方程、数形结合、分类讨论、转化与化归,这四者的核心都是转化。

在转化中学生容易忽视直接转化和等与不等的转化,考试时不常想到这两种方式,导致不少题做不出来。

二、合理选择运算途径考试时间有限,合理选择运算途径可以节省时间,得出准确的运算结果。

很多同学是不撞南墙不回头,一条道走到黑,想到一种方法,就立马着手运算,结果算了半天也算不出答案。

柳老师说,正确的方法应当是在看完题后,先预测一下所选择的途径是否麻烦,权衡一下再下笔。

运算过程中要灵活运用公式、法则和相关的运算律,尤其是选择合理的数学思想,以提高解题速度。

答题一定要规范,使用数学术语。

复习时要养成做完题认真检查的习惯,看看是否有空题没做,字母、符号、答案是否抄错。

细节决定成败,做题时一定要细心。

三、试题要首先保证做对一般来说,后边的题分值比较大,很多同学老觉得后边的压轴大题才是挣分的题。

考试时做前面的题就比较毛躁,一心求速度,忽视了质量,以至明明可以做对的题都丢分了。

柳老师说:高考首先要保证把题做对,不能一味想着把题做完。

前面的题认认真真做好了,底气也就足了,可以有一种更好的心态去做后面的压轴题。

这才是一个良性循环。

四、最后15分钟很重要高考数学答题技巧,考试只剩15分钟时,很多同学就开始不安了,把试卷翻来翻去,结果什么也没做成。

其实,同学们应该保持坦然的心态,冷静思考。

如果此时题目没做完,也千万不要慌,15分钟也是可以做完一道大题的。

就算题目都做完了,也要充分利用好最后的15分钟,说不定在这最后的时间里,你会有意想不到的收获。

高考数学答题技巧:选择题解题必胜十大绝招

高考数学答题技巧:选择题解题必胜十大绝招

2019高考数学答题技巧:选择题解题必胜十大绝技2019高考数学答题技巧:选择题解题必胜十大绝技选择题从难度上讲是比其他类型题目降低了,但学问覆盖面广,要求解题娴熟、精确、敏捷、快速。

选择题的解题思想,渊源于选择题与常规题的联系和区分。

它在肯定程度上还保留着常规题的某些痕迹。

而另一方面,选择题在结构上具有自己的特点,即至少有一个答案 (若一元选择题则只有一个答案 )是正确的或合适的。

因此可充分利用题目供应的信息,解除迷惑支的干扰,正确、合理、快速地从选择支中选出正确支。

选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过仔细的视察、分析和思索才能揭露其潜在的示意作用,从而从反面供应信息,快速作出推断。

由于我多年从事高考试题的探讨,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和详细的解决方法,我把它总结为:6大漏洞、8大法则。

6大漏洞是指:有且只有一个正确答案;不问过程只问结果;题目有示意;答案有示意;错误答案有严格标准;正确答案有严格标准;8大原则是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目示意原则;选择项示意原则;客观接受原则;语言的精确度原则。

经过我的培训,许多的学生的选择题甚至1分都不丢。

下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊状况下不真,则它在一般状况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A. -5/4B.-4/5C.4/5D. 25/5解析:因为要求k1k2的值,由题干示意可知道k1k2的值为定值。

题中没有给定A、B、C三点的详细位置,因为是选择题,我们没有必要去求解,通过简洁的画图,就可取最简洁计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样干脆确认交点,可将问题简洁化,由此可得,故选B。

高考数学必考题型答题技巧

高考数学必考题型答题技巧

高考数学必考题型答题技巧参考学习!数学必考题型答题技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。

即:9、观察法_、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

_、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论_、恒相等成立的有用条件(1)a_+b=0对于任意_都成立关于_的方程a_+b=0有无数个解a=0且b=0。

高考数学冲刺:答题技巧及方法

高考数学冲刺:答题技巧及方法

2019年高考数学冲刺:答题技巧及方法2019年高考数学冲刺:答题技巧及方法一、答题和时间的关系整体而言,高考数学要想考好,必需要有扎实的基础学问和肯定量的习题练习,在此基础上辅以一些做题方法和考试技巧。

往年考试中总有很多考生埋怨考试时间不够用,导致自己会做的题最终没时间做,觉得很亏。

高考考的是个人实力,要求考生不但会做题还要精确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。

因此,对于大部分高考生来说,养成快速而精确的解题习惯并娴熟驾驭解题技巧是特别有必要的。

二、快与准的关系在目前题量大、时间紧的状况下,准字则尤为重要。

只有准才能得分,只有准你才可不必考虑再花时间检查,而快是平常训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。

如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。

适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

三、审题与解题的关系有的考生对审题重视不够,匆忙一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。

只有耐性细致地审题,精确地把握题目中的与量(如至少,0,自变量的取值范围等等),从中获得尽可能多的信息,才能快速找准解题方向。

四、会做与得分的关系要将你的解题策略转化为得分点,主要靠精确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现会而不对对而不全的状况,考生自己的估分与实际得分差之甚远。

如立体几何论证中的跳步,使很多人丢失1/3以上得分,代数论证中以图代证,尽管解题思路正确甚至很奇妙,但是由于不擅长把图形语言精确地转译为文字语言,得分少得可怜;再如去年理17题三角函数图像变换,很多考生心中有数却说不清晰,扣分者也不在少数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

更多免费资料Q群94014946,梦奇最可爱制作
2019高考数学选择题答题秘诀
数学选择题在当今高考试卷中,不但题目多,而且占分比例高。

数学选择题具有概括
性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。

解答选择题的基本策略是准确、迅速。

准确是解答选择题的先决条件,选择题不设中
间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏
漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制
在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。

高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的
解答可用特殊的方法快速选择。

解选择题的基本思想是既要看到各类常规题的解题思想,
但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,
在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面
提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是
解选择题的基本策略。

(一)数学选择题的解题方法
1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再
与选择支对照,从而作出选择的一种方法。

运用此种方法解题需要扎实的数学基础。

例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为()
解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。

故选A。

例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l有且仅有一个平面与α垂直;③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直。

其中正确命题的个数为()
A.0B.1C.2D.3
解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正
确的,故选D。

例3、已知F1、F2是椭圆+=1的两焦点,经点F2的的直线交椭圆于点A、B,
若|A B|=5,则|A F1|+|BF1|等于()
A.11B.10C.9D.16
解析:由椭圆的定义可得|A F1|+|A F2|=2a=8,|B F1|+|BF2|=2a=8,两式相加后将|A B|=5=|A F2|+|BF2|代入,得|A F1|+|BF1|=11,故选A。

例4、已知在[0,1]上是的减函数,则a的取值范围是()
A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)
解析:∵a>0,∴y1=2-ax是减函数,∵在[0,1]上是减函数。

∴a>1,且2-a>0,∴1<a<2,故选B。

1在数学学习上有困惑的同学可以私聊梦奇哦。

相关文档
最新文档