锂离子电池的产热量测量

合集下载

车用动力锂电池产热机理研究现状

车用动力锂电池产热机理研究现状

车用动力锂电池产热机理研究现状李斌;常国峰;林春景;许思传【摘要】精确的锂离子电池产热量是电动汽车电池包热管理设计的基础.总结了现有锂离子电池产热模型,指出Bernadi产热模型在计算电池产热时通用性较高.整理了3种测量温熵系数dE/dT的方法:直接测量法、可逆热等值法以及极化热扣除法.给出了Bernadi产热模型关键参数温熵系数dE/dT特征值,为各类锂离子电池包产热计算提供了依据.【期刊名称】《电源技术》【年(卷),期】2014(038)002【总页数】4页(P378-381)【关键词】锂离子电池;产热机理;温熵系数【作者】李斌;常国峰;林春景;许思传【作者单位】同济大学汽车学院,上海201804;同济大学新能源汽车工程中心,上海201804;同济大学汽车学院,上海201804;同济大学新能源汽车工程中心,上海201804;同济大学汽车学院,上海201804;同济大学新能源汽车工程中心,上海201804;同济大学汽车学院,上海201804;同济大学新能源汽车工程中心,上海201804【正文语种】中文【中图分类】TM912.9电动汽车(EV和HEV)在使用过程中“零排放”和高效率的特点日益突显其对于减少环境污染及石油依赖度的重要性,世界各国及主要汽车集团均提出了一系列振兴电动汽车产业的规划。

锂离子电池作为电动汽车动力输出的主要能量来源,其性能及寿命与其工作温度密切相关,需要采用有效的热管理措施以保证其在不同环境及使用条件下正常工作。

为指导电动汽车电池包的热管理方案设计,需要研究电池在不同使用条件下的产热散热情况,建立锂离子电池热模型。

锂离子电池产热模型不断发展,按模型原理可分为电化学-热耦合模型,电-热耦合模型和热滥用模型,按模型维度又可分为集中质量模型(零维模型)、一维模型、二维模型和三维模型[1]。

电池充放电过程中的内部产热是极其复杂的,为了能够建立精确的产热模型,需要研究在任意充放电时刻及电池温度下的电化学反应速率不同以及电池内部的电流密度不均匀分布引起的各类反应热、焦耳热[2],但该种方法往往需要大量的实验数据以确定电池产热模型中的各个参数,费时费力。

算锂离子电池发热量的公式

算锂离子电池发热量的公式

算锂离子电池发热量的公式
锂离子电池发热量的计算公式是基于能量守恒定律和热学原理的,它可以用于估算电池在使用过程中产生的热量。

具体而言,我们可以通过以下公式来计算锂离子电池的发热量:
发热量 = 电池的放电能量 - 电池的化学能量
我们需要知道电池的放电能量。

电池的放电能量可以通过电池的放电容量和电池的工作电压来计算得出。

放电容量是电池能够释放的电荷量,而工作电压是电池在放电时的电压。

放电能量可以表示为:放电能量 = 放电容量 × 工作电压
我们需要知道电池的化学能量。

电池的化学能量是指电池中所含有的可供释放的化学能量。

电池的化学能量可以通过电池的化学反应来估算。

不同类型的锂离子电池具有不同的化学反应,所以具体的计算方法会有所不同。

通过将电池的放电能量减去电池的化学能量,我们就可以得到电池的发热量。

发热量的单位通常是焦耳(J)或千焦(kJ)。

这个值可以帮助我们评估电池在使用过程中的热量释放情况,从而更好地了解电池的性能和稳定性。

锂离子电池发热量的计算公式是基于能量守恒定律和热学原理的。

通过计算电池的放电能量和化学能量之差,我们可以得到电池的发
热量,从而更好地了解电池的性能和稳定性。

这对于锂离子电池的设计和应用具有重要意义。

锂电池充放电产热测试方法_解释说明以及概述

锂电池充放电产热测试方法_解释说明以及概述

锂电池充放电产热测试方法解释说明以及概述1. 引言1.1 概述锂电池作为一种重要的电能存储设备,在电动汽车、可再生能源等领域具有广泛的应用前景。

然而,随着锂电池工作时产生的热量也越来越引起人们的关注。

充放电过程中产生的热量是导致锂电池衰老和故障的主要原因之一。

因此,准确地测量和控制锂电池充放电过程中的产热情况对于确保其安全性、提高其性能以及延长使用寿命至关重要。

本文旨在介绍锂电池充放电产热测试方法,包括充电和放电过程中产热测试方法、重要参数和测量设备等方面的内容。

通过详细解释说明这些方法和相关参数,我们希望能够为进一步改善锂电池设计与优化提供参考,并促进锂电池技术的发展。

1.2 文章结构本文共分为五个部分,每个部分涵盖了不同方面的内容。

第一部分是引言部分,将对整篇文章进行概述并介绍其结构。

第二部分是锂电池充放电产热测试方法解释说明,将详细介绍充电和放电过程中的产热测试方法,并对重要参数和测量设备进行解释,以帮助读者更好地理解和应用这些方法。

第三部分是锂电池充放电产热测试方法概述,将介绍这些方法在实际应用领域的重要性以及其发展背景和现状。

同时,我们也将讨论目前存在的问题和挑战。

第四部分是实验设计与步骤探讨,将深入探讨锂电池充放电产热测试方法的实验设计和步骤。

包括实验样品制备、测试设备准备与校准、以及充放电过程监测、数据获取与分析方法等。

最后一部分是结论与未来展望,在这一部分中,我们将总结本文的主要发现并提出局限性和改进建议。

此外,我们还将对未来发展方向进行展望,并进行推测分析。

1.3 目的本文旨在通过详细阐述锂电池充放电过程中产热情况的测试方法并对相关参数和测量设备进行解释说明,为读者提供一个全面而清晰的了解。

通过这些方法的介绍,我们希望能够促进锂电池产热测试技术的发展,并进一步改善锂电池设计和优化。

最终实现对锂电池充放电过程中产热情况的准确测量与控制,提高锂电池的安全性、性能和使用寿命。

2. 锂电池充放电产热测试方法解释说明:2.1 充电产热测试方法:锂电池的充电过程中,由于内部化学反应、材料特性和能量转换的原因,会产生一定数量的热量。

锂离子电池中的热重差热分析方法(TG-DSC)参数选择和曲线分析

锂离子电池中的热重差热分析方法(TG-DSC)参数选择和曲线分析

锂离子电池中的热重差热分析方法(TG-DSC)的参数选择和曲线分析一.测试原理在锂离子电池研究分析中,热重差热分析方法(TG-DSC)一般用来研究锂离子正负极材料的合成分析研究中,用来指导改善合成条件。

热重差热分析方法(TG-DSC)其实是2种分析方法,是热重分析和差热分析,为了测试方便,通常把这2种方法合成在一起通过热重差热仪,测试一个样品可以得到2种曲线。

热重分析原理:在程序控温下,测量物质与温度的关系的技术(包括在恒温下,测量物质的质量与时间的关系)差热分析原理:差热分析的基本原理是将被测物质与参比物质放在同一条件的测温热电偶上,在程序温度控制下,测量物质与参比物之间温度差与温度变化的一种技术。

其实际就是通过测量材料状态改变时产生的热力学性能变化,来判断材料物理或化学变化过程。

通过重量和热量的变化可以推测材料在升温过程中,材料发生的变化。

二.电池材料测试过程中的差热热重分析数据的受哪些因素的影响呢?(1)样品与称量皿选择选择好样品后,选择称量皿时必须考虑样品在选定的温度范围内不发生化学反应。

否则肯定会影响测定结果。

(2)升温速率的选择升温速率的影响:升温速率太快,TGA曲线会向高温移动;速度太慢,实验效率降低。

比如锂离子磷酸铁锂正极材料的温升速度一般选择为5°/min-10°/min之间。

(3)材料粒度样品的粒度大,材料内部的气体就不容易挥发出来,这样会影响曲线的变化,太细,就容易导致差热曲线往低温方向移动。

锂离子电池的测试中,比如正极材料,一般为纳米或者微米级别。

(4)样品的用量样品的用量也会影响测试数据,试样量小, 测试设备的灵敏度会下降。

试样量大的优点是可以观察到细小的转变,可以得到较精确的定量结果。

在正极材料的测试中,一般测试的样品要求在5~30 mg之间变动。

(5)气氛的影响(氧化/还原、 惰性, 热导性, 静态/动态)一般锂离子电池材料测试中,采用惰性气体进行保护测试。

锂离子电池热特性参数测量方法研究

锂离子电池热特性参数测量方法研究

锂离子电池热特性参数测量方法研究姜余;陈自强【摘要】目的针对深海等极端环境下载人潜水器锂离子动力电池热管理问题,对10 Ah三元镍钴锰锂离子电池展开热特性参数测量方法研究,为锂离子电池热管理建模提供理论依据.方法首先利用精密测量仪器并结合传热学原理对电池导热系数进行计算,其次基于电池温度与环境温度跟随的控制策略搭建高精度的绝热实验箱.绝热环境下,电池的实际产热将会完全转化为自身的内能,与外界之间没有热量交换.在绝热实验箱中利用脉冲测试方法辨识三元镍钴锰锂离子电池的比热容.结果热物性参数测量结果具有较高准确性,带入热模型中的温度计算结果与实际温度测量结果绝对误差不超过0.5℃,平均相对误差为0.0184.结论基于实验方法得到的电池热特性参数能够反映锂离子电池的热状态,测量结果与实际值误差在可接受范围之内.【期刊名称】《装备环境工程》【年(卷),期】2018(015)012【总页数】5页(P60-64)【关键词】镍钴锰酸锂电池;热特性参数;热管理;绝热环境【作者】姜余;陈自强【作者单位】上海交通大学海洋工程国家重点实验室,高新船舶与深海开发装备协同创新中心,上海 200240;上海交通大学海洋工程国家重点实验室,高新船舶与深海开发装备协同创新中心,上海 200240【正文语种】中文【中图分类】TM912近年来,随着世界各国对海洋资源开发的逐渐重视,各种新型海工装备逐渐走进人们的视野。

我国自主研发的“深海勇士号”载人潜水器,创造了世界同一级别深海载人潜水器作业时间最长的纪录,该载人潜水器以锂离子电池为动力源,可实现快速上浮和下潜,增加在深海作业的时间。

锂离子电池相比于其他类型电池有能量密度大、无记忆效应、自放电少等优点[1],然而锂离子电池的性能与工作温度密切相关。

温度过高将会严重影响锂离子电池的寿命,甚至会造成锂离子电池自燃的严重后果[2-3]。

温度过低时,锂离子电池性能大幅度降低,内阻显著增大,在极寒环境下,甚至会导致无法正常放电[4]。

锂离子电池和电池组的产热功率分析和仿真

锂离子电池和电池组的产热功率分析和仿真

锂离子电池和电池组的产热功率分析和仿真温度对于锂离子电池而言非常重要,低温会导致锂离子电池的电性能降低(容量、倍率性能),但是能够提高锂离子电池的存储寿命,高温能够提升电性能(容量、倍率性能),但是会降低电极/电解液界面的稳定性,引起循环寿命的快速衰降。

对于一个由众多电池组成的电池组而言,电池组内部的温度不均匀分布会导致单体电池的性能产生很大的差异,从而导致单体电池之间不均匀的衰降,最终导致电池组的失效,例如北京大学的Quan Xia等人采用A123的LFP电池进行电池组的模拟和仿真试验发现,通过改变电池组的结构,将电池组内的最大温差从4.62K降低到2.5K能够将电池组累计充电600Ah后的可靠性从0.0635提高到0.9328(详见链接:《电池组“可靠性”的影响因素和模型计算》)。

锂离子电池的使用工况对于离子电池的产热具有很大的影响,例如高倍率充放电会在电池内短时间累积更多的热量,而小倍率下则几乎能够实现热平衡,减少电池的温升。

江苏大学的徐晓明(第一作者,通讯作者)等人对55Ah单体电池和电池组的产热功率和温度分布情况进行了研究分析,研究表明单体电池的发热功率会随着环境温度的升高、电池SoC和充放电倍率的降低而降低,对电池组的热分析发现温度最高的区域集中在电池组中央区域,并且发现采用空气散热时气流更容易从电池组的上方流过,因此导致冷却效果不佳。

试验中作者采用了55Ah的方形锂离子电池,电池共有5个测温点,其中两个位于电池的低部、三个位于锂离子电池的侧面,如下图a所示。

电池的产热可以通过温升和电池的比热容来计算(如下式所示),其中Q为电池产热量,C为电池的比热容,m为电池的质量, T为电池的温升,如果进一步将p下式除以时间t,我们能够得到电池的产热功率。

为了保证环境温度的一致,作者采用恒温箱进行精确控温,电池的充放电设备采用了Digatron BTS-600设备,采用安捷伦的34970A设备采集电池的温度信息。

锂离子电池极片和JR各向导热系数测量计算方法

锂离子电池极片和JR各向导热系数测量计算方法

锂离子电池极片与jr材料导热系数的比较
锂离子电池极片的导热系数通常低于jr材料,这主要是由 于极片材料的层状结构和界面热阻所致。通过对比分析, 可以进一步了解两者在导热性能方面的差异及其原因。
02 03
不同测量方法结果的比较
不同测量方法所得结果可能存在一定差异。通过对比分析 不同方法的结果,可以评估各种方法的准确性和可靠性, 为实际应用提供参考依据。
结果与理论预测的比较
将实验结果与理论预测进行比较,可以验证理论模型的正 确性和适用性。同时,通过对比分析实验结果与理论预测 的差异,可以深入了解影响导热系数的关键因素及其作用 机制。
PART 06
结论与展望
REPORTING
WENKU DESIGN
研究结论
测量方法有效性
本研究成功建立了针对锂离 子电池极片和jr各向导热系数
的测量计算方法,并通过实 验验证了该方法的准确性和
可靠性。
导热系数差异
实验结果表明,锂离子电池 极片和jr在不同方向上的导热
系数存在显著差异,这种差 异对电池的热管理性能具有
重要影响。
温度依赖性
研究发现,锂离子电池极片 和jr的导热系数随温度的变化 而变化,呈现出一定的温度 依赖性。
创新点与贡献
创新点
测量jr各向导热系数的方法有 多种,如热线法、激光闪射法 等。不同方法具有不同的测量 原理和适用范围,因此选择合 适的测量方法对于获得准确结 果至关重要。
通过对jr各向导热系数的测量 结果进行分析,可以了解材料 在不同方向上的导热性能差异 。这对于优化jr材料的结构和 性能具有重要意义。
对比分析
01
激光闪射法
利用激光脉冲在极片表面产生瞬 态加热,通过测量极片背面温升 随时间的变化,计算导热系数。

锂离子电池热特性研究及实例仿真分析的开题报告

锂离子电池热特性研究及实例仿真分析的开题报告

锂离子电池热特性研究及实例仿真分析的开题报告一、选题背景及意义随着现代社会电子产品的大规模应用,对电池的性能和安全要求也越来越高。

锂离子电池因其高能量密度、轻量化、使用寿命长等优势被广泛应用于电动汽车、智能手机、平板电脑、笔记本电脑等各种移动设备中。

但是,锂离子电池也存在着一定的安全隐患,例如过充、过放、过热等情况容易导致电池燃烧或爆炸等危险事故。

因此,研究锂离子电池的热特性是非常必要的。

锂离子电池在充放电过程中会产生大量的热量,如果不能及时散热,会导致电池的温度升高。

当电池温度过高时,电极材料会发生变化,从而影响电池的性能和使用寿命。

因此,对锂离子电池的热特性进行研究,有利于提高电池的性能和安全性。

二、研究内容及方法本研究主要针对锂离子电池的热特性进行研究,包括电池的热发散和热传导特性。

研究内容如下:1. 锂离子电池的热特性测试。

通过实验探究不同充放电状态下的锂离子电池的温度变化规律,并观察电池的温度变化情况。

2. 锂离子电池的热模型建立。

建立锂离子电池的热模型,对电池的热发散和热传导过程进行仿真模拟。

3. 锂离子电池热特性仿真分析。

基于锂离子电池的热模型,利用有限元仿真软件对电池的热特性进行仿真分析,分析电池的温度分布、热传导、热发散等特性。

三、预期研究成果及意义通过本研究,我们可以得到锂离子电池在不同工作状态下的热特性表现,并建立锂离子电池热模型,对电池的热特性进行仿真分析。

预期研究成果如下:1. 锂离子电池热特性测试数据。

在实验中得到不同充放电状态下的锂离子电池的温度变化规律,并观察电池的温度变化情况,对数据进行分析整理。

2. 锂离子电池热模型建立。

通过建立锂离子电池的热模型,对电池的热发散和热传导过程进行仿真模拟,得到电池的热特性数据。

3. 锂离子电池热特性仿真分析。

基于锂离子电池的热模型,利用有限元仿真软件对电池的热特性进行仿真分析,分析电池的温度分布、热传导、热发散等特性,为电池的设计和优化提供参考。

锂离子电池产热模型

锂离子电池产热模型

锂离子电池产热模型
锂离子电池产热模型是用来描述锂离子电池在工作过程中产生热量的数学或物理模型。

这些模型有助于理解和预测电池在不同条件下的热行为,从而确保电池的安全性和性能。

锂离子电池产热模型主要包括以下几种:
1. 电化学-热耦合模型:这种模型基于电化学反应动力学和热力学,结合电能、化学能和热能的关系,描述电池内部的反应过程、浓度、电势和温度场的分布。

该模型能够指导电池内部参数的变化对电池电化学性能和热特性的影响。

2. 热滥用模型:这种模型详细归纳了锂离子电池内部的产热来源,包括SEI膜的分解反应、嵌锂碳与溶剂的反应、电解液的分解反应等。

该模型重点考虑了电池在高温下的热失控现象,对电池的安全性评估具有重要意义。

3. 电-热耦合模型:这种模型通过电池内部电流分布仿真温度分布,与电化学-热耦合模型相结合,指导电池微观结构(如电极、隔膜厚度、正负极材料粒子大小等)的设计。

该模型对电池尺寸、电极分布、电极大小、电池组散热系统的设计具有指导意义。

在锂离子电池产热模型中,常用的还有集中产热模型,该模型将电池假设为一种均匀产热的质点,忽略电池的三维结构,简化电池在三维空间的热传导计算。

这些模型在实际应用中可以根据具体需求选择合适的模型进行仿真和分析。

通过不断优化和完善产热模型,可以提高锂离子电池的安全性和性能,推动其在电动汽车、储能系统等领域的应用发展。

大尺寸锂离子电池放电时生热分析与实验

大尺寸锂离子电池放电时生热分析与实验

大尺寸锂离子电池放电时生热分析与实验宋新南;叶海军【摘要】针对大尺寸锂离子电池发热量大,温度分布不均匀等热安全性问题,以45 Ah方形磷酸铁锂电池为例,建立了包括极柱、内芯、外壳等部件的锂离子电池单体几何模型.考虑到温度和放电深度对电池单体内阻的影响,使用Bemardi模型计算出锂离子电池的生热速率,研究了电池单体在不同放电倍率和不同温度下的温升变化情况,并进行了相应的实验验证.研究结果表明:大尺寸锂离子电池的放电倍率越大,温度越低,电池的温升速率越快,温度变化越大.【期刊名称】《电源技术》【年(卷),期】2019(043)002【总页数】4页(P234-237)【关键词】锂离子电池;放电;生热速率;仿真;温升【作者】宋新南;叶海军【作者单位】江苏大学能源与动力工程学院,江苏镇江212013;江苏大学能源与动力工程学院,江苏镇江212013【正文语种】中文【中图分类】TM912节约能源、减少温室气体排放等优势让新能源汽车得到了迅速发展,而动力电池作为新能源汽车的主要动力来源,其性能的优劣将直接影响电动汽车的性能[1]。

随着电池比功率的增加,产热量也随之增加,温度过高和温度分布不均匀等热安全问题不容忽视[2]。

近几年发生的电动汽车电池爆炸燃烧的事件层出不穷,因此研究锂离子电池在不同条件下的温度分布,对电动汽车电池包热管理系统的设计具有重要意义。

综合考虑空间利用率和电池组热管理系统的特点,目前纯电动汽车采用方形锂离子电池已经成为趋势。

CHEN等人首先提出了方形锂离子电池的三维模型,考虑到了电池外壳的热阻与热容量对电池散热性能的影响,研究结果表明:电池单体放电结束后的温度分布不均匀,最高温度出现在中部偏下的部位,通过强制对流的方法可以有效抑制最高温度,但是会降低电池温度的均匀性。

张松通[3]等人研究了在不同放电倍率下的电池的温度变化情况,研究结果表明锂离子电池在放电初期和放电末期的产热速率较高。

Veth等[4]对50 Ah的方形锂离子电池进行了热特性分析,研究发现:电池组的单体电池温度梯度随放电电流的增大而增大,单体的高温区域偏向于负极极耳一侧。

算锂离子电池发热量的公式

算锂离子电池发热量的公式

算锂离子电池发热量的公式
锂离子电池的发热量是一个重要的物理参数,它直接影响电池的安全性和寿命。

为了保证电池的正常运行,我们需要了解和控制发热量。

下面将介绍一个用于计算锂离子电池发热量的公式。

锂离子电池的发热量主要来自于电池内部的化学反应过程。

在放电过程中,锂离子从负极(一般是石墨)向正极(一般是锂金属氧化物)移动,产生电流。

这个过程伴随着化学能的转化,部分能量以热的形式释放出来。

发热量的公式如下:
Q = I × U × t
其中,Q表示发热量,单位为焦耳(J);I表示电流,单位为安培(A);U表示电压,单位为伏特(V);t表示时间,单位为秒(s)。

这个公式简洁明了地描述了发热量与电流、电压和时间之间的关系。

实际上,电流和电压是电池的两个重要参数,而时间则是发热量的积累过程。

通过控制电流和电压,我们可以有效地控制锂离子电池的发热量。

对于锂离子电池的应用来说,控制发热量至关重要。

过高的发热量会导致电池温度升高,甚至引发火灾和爆炸等安全事故;而过低的发热量则会导致电池性能下降,缩短电池寿命。

因此,在设计锂离子电池的应用系统时,我们需要合理选择电流和电压的大小,并控制放电时间,以确保发热量在可接受范围内。

同时,还需要考虑电池的散热系统,以加速发热量的散失,保持电池的温度在安全范围内。

发热量是锂离子电池设计与应用中需要重视的物理参数。

通过合理控制电流、电压和放电时间,我们可以有效控制发热量,保证电池的安全性和寿命。

在实际应用中,我们需要根据具体情况选择合适的参数,并配备良好的散热系统,以确保锂离子电池的正常运行。

锂离子电池充放电产热分析

锂离子电池充放电产热分析

锂离子电池充放电产热分析锂离子电池充放电产热分析锂离子电池是目前最常用的可充电电池之一,其在电动汽车、移动设备和可穿戴设备等领域得到了广泛应用。

然而,充放电过程中会产生大量的热量,这可能会影响电池性能和安全性。

下面将通过逐步思考,分析锂离子电池充放电产热的过程。

首先,我们需要了解锂离子电池的基本工作原理。

锂离子电池由正极、负极和电解质组成。

在充电过程中,正极材料(通常为锂钴酸锂)释放出锂离子,这些锂离子通过电解质传输到负极材料(通常为石墨)。

同时,电池的外部电源通过电解质提供电子到正极材料,使其恢复到原始状态。

放电过程则是相反的过程。

其次,我们来分析锂离子电池充电过程中的产热。

在充电过程中,由于正负极材料的化学反应,电池内部会产生一定的电阻,从而导致电流通过电池时产生热量。

此外,放电过程中的电阻也会产生热量。

这些热量主要来源于电池内部的化学反应和电阻。

第三,我们需要了解电池的热管理系统。

为了避免过高的温度对电池性能和安全性的影响,锂离子电池通常配备了热管理系统。

这个系统可以通过散热片、热传导材料和风扇等组件来散热,以控制电池的温度。

最后,我们来分析锂离子电池放电过程中的产热。

在放电过程中,正负极材料之间的离子传输会引起一定的电阻,从而产生热量。

这种热量主要来源于电池内部的化学反应和电阻。

总结起来,锂离子电池在充放电过程中会产生热量,主要是由于电池内部的化学反应和电阻所导致的。

为了控制电池的温度,锂离子电池通常配备了热管理系统来散热。

在实际应用中,我们需要根据电池的工作条件和环境温度来设计和优化热管理系统,以确保电池的性能和安全性。

锂离子电池产热特性研究进展

锂离子电池产热特性研究进展

锂离子电池产热特性研究进展陈虎; 熊辉; 厉运杰; 李新峰【期刊名称】《《储能科学与技术》》【年(卷),期】2019(008)0z1【总页数】7页(P49-55)【关键词】锂离子电池; 产热; 实验手段; 模型仿真【作者】陈虎; 熊辉; 厉运杰; 李新峰【作者单位】合肥国轩高科动力能源有限公司安徽合肥230011【正文语种】中文【中图分类】O646.21电池是指能够实现电能和化学能相互转换的载体,可以为电子器件提供能量。

与一次电池相比较,二次电池可以重复使用且更加环保,已经是人们生产和生活必不可少的物品。

目前,常用的二次电池主要有铅酸电池、镍镉电池、镍氢电池和锂离子电池等。

其中,锂离子电池具有循环使用寿命长、充放电效率高、比能量高、使用过程无污染等一系列优点,成为目前使用比较广泛的二次电池[1-6]。

锂离子电池根据应用领域可分为消费型锂离子电池(笔记本电脑、手机、相机等其他电子产品)、动力型锂离子电池和储能型锂离子电池。

但是,最近几年发生的锂离子电池着火爆炸等安全事故引起了广大消费者的担忧,锂离子电池的热安全风险阻碍了其进一步发展[7-9]。

锂离子电池在使用的过程中有可能会发生过充、过放电产生枝晶穿透隔膜,造成短路,产生大电流从而引发着火爆炸;或遭到外界挤压、穿刺引起系统内部短路的情况,造成电池内部短路而积累大量的热,电池温度急剧上升继而引发热失控[10-12]。

因此,研究和分析锂离子电池热特性和热安全性,对电池进行优化设计,进而估算不同时刻电池内部温度变化趋势,最终设计和制定热管理方案,保证锂离子电池在合理的温度范围内工作,从而有效保证电池在运行过程中的安全性和可靠性,提高电池的使用寿命,避免由于热失控导致的安全事故有着重要的意义。

目前,对于锂离子电池热问题的研究[13-14]主要从两方面进行,一是通过实验手段来对电池产热进行研究,二是利用模型仿真手段电池产热进行分析。

1 锂离子电池产热实验研究实验方法主要是借助于常用的量热设备,去监测锂离子电池在某种工况下的热特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13Journal of Thermal Analysis and CalorimetryAn International Forum for Thermal StudiesISSN 1388-6150J Therm Anal CalorimDOI 10.1007/s10973-014-3672-zComparison and validation of methods for estimating heat generation rate of large-format lithium-ion batteriesJianbo Zhang, Jun Huang, Zhe Li, Bin Wu, Zhihua Nie, Ying Sun, Fuqiang An & Ningning WuYour article is protected by copyright andall rights are held exclusively by Akadémiai Kiadó, Budapest, Hungary. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publicationand a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at ”.13Comparison and validation of methods for estimating heat generation rate of large-format lithium-ion batteriesJianbo Zhang •Jun Huang •Zhe Li •Bin Wu •Zhihua Nie •Ying Sun •Fuqiang An •Ningning WuReceived:14October 2013/Accepted:27January 2014ÓAkade´miai Kiado ´,Budapest,Hungary 2014Abstract The heat generation rate of a large-format 25Ah lithium-ion battery is studied through estimating each term of the Bernardi model.The term for the reversible heat is estimated from the entropy coefficient and compared with the result from the calorimetric method.The term for the irreversible heat is estimated from the intermittent current method,the V–I characteristics method and a newly developed energy ing the obtained heat generation rates,the average cell temperature rise under 1C charge/discharge is calculated and validated against the results measured in an accelerating rate calo-rimeter (ARC).It is found that the intermittent current method with an appropriate interval and the V–I charac-teristics method using a pouch cell yield close agreement,while the energy method is less accurate.A number of techniques are found to be effective in circumventing the difficulties encountered in estimating the heat generation rate for large-format lithium-ion batteries.A pouch cell,using the same electrode as the 25Ah cell but with much reduced capacity (288mAh),is employed to avoid the significant temperature rise in the V–I characteristics method.The first-order inertial system is utilized to correct the delay in the surface temperature rise relative to theinternal heat generation.Twelve thermocouples are used to account for the temperature distribution.Keywords Lithium-ion battery ÁHeat generation rate ÁEnergy method ÁV–I characteristics method ÁIntermittent current methodIntroductionThe lithium-ion battery is becoming the mainstream power sources for electric vehicles because of its high energy density and long cycle life [1].However,the thermal issues,such as the potential risk of thermal run-away [2–4]and the stringent restriction on both the limits and the variation of the cell operation temperatures,constitute one of the bottlenecks for the widespread use of large-format lithium-ion batteries in electric vehicles.In addition to experimental investigation [1,5,6],thermal simulation is a powerful tool to elucidate the mechanism underlying these thermal issues [7,8].The fundamental governing equation used in the thermal simulation is the heat transfer equation:q C Po To t¼r Ák r T ðÞþq ð1Þwhere q is density,C p is heat capacity,T is temperature,k denotes thermal conductivity,q is the heat generation rate per unit volume.It is evident that the accuracy of the thermal simulation depends on the accuracy of the models to predict the heat generation rates for cells at different states and under various operation conditions.These heat generation rate models can be classified into two types.The first type is based on the thermal-electrochemical battery model andJ.Zhang ÁJ.Huang ÁZ.Li (&)ÁB.WuDepartment of Automotive Engineering,State Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,Chinae-mail:lizhe1212@J.Huange-mail:huangjun12@ Z.Nie ÁY.Sun ÁF.An ÁN.WuCITIC Guo’an MGL Power Technology Co.,Ltd,Beijing 102200,China123J Therm Anal CalorimDOI 10.1007/s10973-014-3672-zprovides deep insights into the underlying causes and detailed components of the heat generation[9,10].How-ever,a large set of parameters,which describe the transport processes and electrochemical processes,are difficult to be determined.Therefore,the accuracy of the heat generation rate depends heavily on the parameters tuning procedure. The heat generation model of the second type is the sim-plified Bernardi heat generation model[11]:Q¼Q revþQ irrevð2ÞQ rev¼ITo UPð3ÞQ irrev¼I VÀUðÞð4Þwhere Q is the total heat generation rate of lithium-ion batteries,Q rev is the reversible heat corresponding to the entropy change of the lithium intercalation/deintercalation reaction,Q irrev is the irreversible heat generated from electrode polarization,V is the terminal voltage,U is the equilibrium potential,and I is the charge/discharge current, assumed to be positive during charge.Bernardi model is solidly founded on physics and has much less parameters.It is the most widely used model in the thermal simulation of the battery.In practice,the irreversible heat generation rate is usually further simpli-fied through defining an overpotential resistance,R,as:R¼VÀUðÞ=I:ð5ÞThe irreversible heat generation rate equation now becomes:Q irrev¼I2Rð6ÞBased on Eqs.(2–6),various methods have been developed[12–20]to estimate the reversible/irreversible heat generation for small lithium-ion batteries used in electronic devices.Much fewer works,however,have been found to study and to validate the heat generation rate for large-format lithium-ion batteries.Regarding the reversible heat term,two methods,the potentiometric method and the calorimetric method,have been proposed and utilized[12–20].The potentiometric method measured the equilibrium potential of the cell adjusted at certain SOC at various temperatures.Taking the derivative of the equilibrium potential with respect to the temperature gave the entropy coefficient,d U/d T.The calorimetric method measured the heatflows during charge and discharge.Assuming that the irreversible heat gener-ation rates during charge and discharge were identical,the entropy coefficient was calculated from the difference of the heatflows.In[15,16],the authors studied the entropy changes associated with the structural and phase changes in negative and positive ing half-cell,they further quantified the individual contribution of each electrode[19].Thomas et al.[20]concluded that,with proper correction for self-discharge,the potentiometric method was more accurate than the calorimetric method in calculating the reversible heat.Regarding the irreversible heat term,Onda et al.[12–14] developed four methods:(1)the V–I characteristics method using voltage–current curves of discharge at a series of constant currents;(2)the OCV-V method using the dif-ference between the open-circuit voltage and the terminal voltage;(3)the intermittent current method using the voltage change after60s of discharge at a constant current;(4)the AC impedance method.Analysis of the previous literatures leads to the follow-ing observations:Firstly,all the methods were originally developed for the small lithium-ion battery.Applying these methods to the large-format lithium-ion batteries will encounter a number of difficulties.One problem is the significant rise of temperature and the evolution of temperature variation across the cell even at moderate rates of charge/discharge [6].Rising and non-uniform temperature makes it difficult to define a representative temperature for the measured overpotential resistance,which is strongly dependent on the battery temperature.Another problem is that there exists a considerable delay in the response of the surface temperature relative to the internal heat generation[6].As a result,it is unconvincing to directly use the surface temperature at one point to calculate the heat generation rate and then to use it to validate the estimated values based on the Bernardi model.Secondly,comparing the various methods can guide the selection of appropriate method to estimate the heat gen-eration rate.Onda et al.[12–14]developed four methods to estimate the irreversible heat term,but they only compared these methods in terms of the overpotential resistance obtained using each method,and then without convincing reasons,they applied the V–I characteristics method alone to simulate the cell temperature rise.In addition,in[17, 18],only the intermittent current method was employed. Onda et al.[12–14]pointed out that the AC method gives much lower overpotential resistance than other three methods,hence it is not considered in this study.Besides, the OCV-V method is essentially the same as the V–I characteristics method when considering the OCV curve as the discharge curve at sufficiently small current,thus,only the V–I characteristics method is included here.The V–I characteristic method has problems in considerable tem-perature rise,while the intermittent current method relies on the selection of the calculation interval,which is somewhat arbitrary in the previous studies.Therefore,the implementation details of these methods need to be closely examined,and the accuracy needs to be compared and validated against measured results.In addition,a newJ.Zhang et al.123method,developed in our group and named energy method in this study,will also be included in the comparison.Therefore,the objectives of this paper are to explore techniques to circumvent the above mentioned difficulties so as to extend,compare,and validate the various methods developed for small lithium-ion batteries to estimate the heat generation rate for large-format lithium-ion batteries.A large-format25Ah lithium-ion battery was used and its heat generation rate was studied based on the simplified Bernardi heat generation model.The potentiometric method and the calorimetric method were used to estimate the reversible heat. The intermittent current method,the V–I characteristics method and a newly proposed energy method were used to estimate the irreversible heat.The estimated values were compared and validated against the results measured in an ARC.A number of techniques,including the use of a pouch cell,the compensation of the time delay,and the use of12 thermocouples to get the average cell temperature,were proposed to circumvent the problems encountered in dealing with large-format cells.The structure of this paper is as fol-lows:‘‘Method development’’section introduces the methods employed in this study;‘‘Experimental’’section describes the experimental details;in‘‘Results and discussion’’section,firstly,we report the results of the entropy coefficient and overpotential resistance,secondly,we validate the estimated heat generation rate using the measured date by the ARC,finally,discussion concerning various methods is provided;‘‘Conclusions’’section is the conclusion.Method developmentThe reversible heatThe potentiometric methodThe term of the reversible heat generation rate was cal-culated by measuring the entropy coefficient d U/d T as shown in Eq.(3).The equilibrium potential of the25Ah cell at a specified initial SOC was measured at a series of temperatures,and the entropy coefficient at this SOC was attained by calculating the slope of thefitted‘temperature-potential’line.Then the SOC of the cell was adjusted with a step length of0.1each time,and the entropy coefficient at each different SOC was obtained.The calorimetric methodThe calorimetric method assumed that the irreversible heat generation rates during charge and discharge were assumed to be identical under the same current amplitude I,and then the entropy coefficient was calculated by Eq.(7)based on Eq.(2):o Uo TP¼Q chaÀQ dis2ITð7Þhere,Q cha and Q dis are the total heat generation rate during charge and discharge,respectively,which were measured with the ARC or other calorimetric methods.The irreversible heatThe V–I characteristics methodA series of constant-current charge or discharge tests at different C-rates are needed to explore the V–I character-istics of the battery[13].Under a specified SOC and temperature,an approximate linear relationship between the terminal voltage and the applied current was found in the constant-current charge or discharge tests.As a result, the slope of the linearlyfitted line gave the overpotential resistance,R VI,of the V–I characteristics method[13].The intermittent current methodThe battery overpotential resistance is widely estimated from the intermittent charge or discharge at a definite SOC and temperature.The most frequently used intermittent current method to obtain the battery DC resistance is introduced in the HPPC test procedures[21].The overpo-tential resistance,R IC,was estimated by Eq.(8):R IC¼V tÀV0ðÞ=Ið8Þwhere(V t-V0)is the voltage change after charging/dis-charging at current I(positive during charge)for time t, which is termed as the interval throughout this paper.Different values of t have been used in the literature.For example,4h was adopted by Yang et al.[18],30s was adopted by Lu et al.[17],and60s was used in[12–14].In the experimental part of this paper,a series of t(10,30,60, 90,110s)was applied and its effect on the accuracy of the estimation results was examined.The energy methodThe irreversible heat was calculated from the overpotential resistance in most of the previous studies[12–19].In addition to these methods,a new method,which was inspired by the concept proposed in the work of Lv et al.[22],was developed in this study to calculate the irre-versible heat directly.The new method is to be referred to as energy method hereafter.(1)Energy balance during charge when charging thebattery from SOC1to SOC2,the total consumed energy from the power supply such as aComparison and validation of methods for estimating heat generation rate123comprehensive tester or a charger,E cha,consisted of three parts,the energy stored in the battery,E bat,the energy corresponding to entropy change,E rev,cha,and the energy dissipation by polarization,E irrev,cha,as expressed in Eq.(9):E cha¼E batþE rev;chaþE irrev;cha:ð9Þ(2)Energy balance during discharge Similarly,whendischarging the battery from SOC2back to SOC1,the energy consumption,E bat,also consisted of three parts,the electrical work performed by the battery,E dis,the energy corresponding to entropy change,E rev,dis,and the energy dissipation by polarization,E irrev,dis,as shown in Eq.(10):E bat¼E disþE rev;disþE irrev;dis:ð10ÞSince the E bat terms in Eqs.(9)and(10)were identical, the irreversible heat could be calculated according to Eq.(11),which was the result of adding Eqs.(9)and(10)using the following two assumptions:first,the sum of the heat due to entropy change during charge and discharge process equaled zero,that is,E rev;disþE rev;cha¼0:Second,the irreversible heat generation during charge and discharge at any temperature and SOC were identical,that is,E irrev;dis¼E irrev;cha¼E iirev:E irrev¼ðE chaÀE disÞ=2ð11ÞAccording to the energy method,an overpotential resistance,R EM,was defined as in Eq.(12)to facilitate the comparison with other methods which estimate the irre-versible heat through the overpotential resistance:R EM¼E chaÀE dis2I D t;ð12Þwhere I is the current and D t is the duration of charge or discharge.Direct measurement of the heat generation rateby the ARCThe ARC was used to provide an adiabatic environment for the cell placed in its chamber under the temperature feedback-and-chasing mode.When the cell underwent a charge or discharge process,its heat generation rate was calculated as in Eq.(13):Q¼mC P d Td t;ð13Þwhere m is the cell mass,C p is the thermal capacity,d T/ d t is the temperature rising rate,which was measured by the attached feedback thermocouples on the surface of the cell.The positions of the feedback thermocouples were strategically chosen to reflect the average temperature of the surface.ExperimentalA25Ah cell and a pouch cell were used in this study, which had the same cathode composited of LiMn x Co y-Ni z O2and LiMn2O4,and the same graphite anode;the only differences were the size and capacity.The specifications of the two cells are shown in Table1.Each fresh cell was cycled forfive times before it was used in the heat mea-surement tests to ensure it had entered a stage of stable performance.During each cycle,the cell wasfirst charged in a constant current-constant voltage(CC–CV)pattern with1/3C as the constant current charging rate,and then discharged at the same rate.Four tests were conducted in this study to explore all the methods introduced in‘‘Method development’’section:(1) Test1:the measurement of the entropy coefficient to estimate the reversible heat;(2)Test2:the intermittent charge/discharge tests of the25Ah cell,which were used to calculate the overpotential resistance both by the inter-mittent current method and the energy method;(3)Test3: the constant current charge/discharge tests of the pouch cell to measure the overpotential resistance by the V–I char-acteristics method and the energy method;(4)Test4:the direct measurement of heat generation rate with the ARC. The detailed experimental design and parameter settings of these four tests are presented below.Measurement of the entropy coefficientAn environment chamber GDJW-225(Yashilin,China) and a six and half voltage monitor34972A(Agilent,USA) were used in this test.The voltage in the equilibrium state Table1The specifications of the two cellsCell specification Value25Ah cell Pouch cellCapacity of1/3C at25°C25Ah288mAh Size16920cm28910cm2 Number of active electrode pairs332Cathode material LiMn x Co y Ni z O2and LiMn2O4 Anode material GraphiteNominal voltage 3.8VRecommended charging method CC-CVEODV/end of discharge voltage3VEOCV/end of charge voltage 4.2VJ.Zhang et al.123was recorded at four temperatures(5,15,25,35°C)as well as eleven SOCs(from1.0to0,in a step length of0.1),and a threshold value of voltage changing rate(voltage changing in a rate less than0.1mV/30min)was preset to control the timing of equilibrium potential measurement. Intermittent charge/discharge tests of the25Ah cellOnly pulse charge and discharge were conducted on the 25Ah cell since continuous charge or discharge would lead to both significant temperature rise and variation, making it difficult to define a representative temperature for the estimated irreversible heat generation rate.During the intermittent charge/discharge tests,the25Ah cell regulated to a definite SOC was charged at0.1C for 2min(except at SOC=1.0where the25Ah cell was dischargedfirst)and then discharged with the same cur-rent back to the original state after8min of rest.The above experiment was repeated at11SOCs(from1.0to0, step=0.1),four temperatures(5,15,25,35°C)andfive charging/discharging C-rates(0.1,0.3,0.5,0.7,0.9C).Constant current charge/discharge tests of the pouchcellThe constant current charge/discharge tests of the pouch cell at0.3,0.5,0.7,0.9,1.1,1.3,1.5C were performed at cell temperatures of5,15,25,and35°C,respec-tively.In order to verify the effectiveness of the pouch cell to suppress the temperature rise during battery cycling,one thermocouple was attached on the surface of the cell.Direct measurement of the heat generation ratewith the ARCThe basics about how the ARC works was introduced elsewhere[23].Li et al.[6]observed significant spatial temperature variations in a25-Ah cell of the same type using thermocouples embedded at12locations inside the cell and another12thermocouples attached at the cor-responding locations on the surface.After analyzing the temperature data of these12locations inside and outside battery in[6],we selected two locations that closely represented the cell average temperature during charge/ discharge to place the feedback thermocouples on the surface of the25-Ah cell.Another12thermocouples were attached on the surface of the25Ah cell as shown in Fig.1.The cell was connected to a battery cycler made by Arbin(USA)and was charged and then dis-charged at1C.The initial temperature of the environ-ment chamber was set as30°C.The threshold temperature rising rate in the feedback-and-chasing mode of the ARC was set as0.02K min-1.Results and discussionThe entropy coefficient(d U/d t)The equilibrium potential of the25Ah cell was found to be almost linear with respect to the temperature,and the slope of thisfitted‘‘potential-temperature’’line gave the entropy coefficient,d U/d t.It should be noted that when the SOC was above0.8and the ambient temperature was above25°C,the self-discharge of the cell was significant.Therefore,under this circumstance,only the equilibrium potentials at lower temperatures were used in the linearfitting to diminish the influence of self-discharge.The entropy coefficient is plot-ted in Fig.2as a function of SOC.The results of the three cells showed good consistency,therefore,only the result of one cell is shown here for concise.In Fig.2,the entropy coefficient is negative and shows a sharp increase for SOC\0.2.When the SOC increases from 0.3to0.5,the entropy coefficient turns to be positive and reaches its peak value at SOC=0.5.After this peak,the entropy coefficient tends to decrease till SOC=0.7.The minimum value of the entropy coefficient around SOC=0Pos Neg.A1A5T1T2A9A10A11A7A3A4A8A12A2A6Fig.1A schematic plot of the locations of thermocouplesComparison and validation of methods for estimating heat generation rate123is ascribed to the graphite anode(refer to Fig.4in[23]). Meanwhile,both the peak at SOC=0.5and the valley at SOC=0.7are possibly related to the cathode material of LiMn2O4(refer to Fig.1in[25]).The features shown in Fig.2are similar to those in literatures(refer to Fig.7in[24] and Fig.1in[25]).However,since the composition of electrode materials in this study is not identical with that in the literatures,no further attempt is made to compare these results quantitatively.Measurement of the overpotential resistanceThe overpotential resistance of the25Ah cell by the energy methodAccording to Eq.(12),the overpotential resistance of the 25Ah cell by the energy method was calculated from the data of the intermittent charge/discharge tests.As shown in Fig.3a,the R EM is a nonlinear function of temperature,J.Zhang et al. 123SOC and C-rate.In addition,as shown in Fig.3b,the R EM follows a negative correlation with the C-rate.Similar phenomenon has also been observed by Lu and Prakash [17].There are several possible reasons.First,the charge transfer resistance is smaller at higher C-rates according to Butler–Volmer equation[26].Second,even though the ambient temperature is controlled by the thermostat,more heat is actually generated inside the cell during charge/ discharge at higher C-rates.This results in a transient higher internal temperature of the cell and leads to a decrease of the R EM.Furthermore,it indicates that the C-rate dependency of the R EM is more significant at lower temperatures and smaller SOCs,because the C-rate dependency is weakened when the SOC approaches1.0, and is negligible when the temperature is35°C.It should be noted that the energy method is based on the assumption that the irreversible heat generation rate during charge is the same as that during discharge.Therefore,the R EM of charge and discharge are not distinguished in this section.The overpotential resistance of the25Ah cellby the intermittent current methodThe overpotential resistance of the25Ah cell by the intermittent current method,R IC,was calculated by applying the Eq.(12)to the data of intermittent charge/ discharge tests with a specific t,which equals60s in Fig.4.Figure4shows that the R IC decreases with the increase of temperature,SOC or C-rate,which is quite similar with that of the R EM in‘‘The overpotential resis-tance of the pouch cell by the V–I characteristics method’’section.However,unlike that of R EM,the R IC during charge and discharge can be calculated,respectively.It is shown in Fig.4c that the R IC during discharge is larger than that during charge at lower SOC ranges,while the R IC during charge is larger at some higher SOCs.This phenomenon is confirmed by other methods in this study(‘‘The overpo-tential resistance of the pouch cell by the V–I characteris-tics method’’section)and the mechanism is to be explained later in‘‘The overpotential resistance of the pouch cell by the V–I characteristics method’’section.The overpotential resistance of the pouch cellby the V–I characteristics methodA thermocouple was attached to the surface of the pouch cell to verify the effectiveness of using the pouch cell to avoid the significant temperature rise.Due to the small capacity and large heat dissipation surface of the pouch cell,the temperature rise during charge and discharge at1C was found to be less than1°C.A linear relationship between the terminal voltage and the constant current is detected at most SOCs except when SOC equals0.0during charge and0.1during discharge. The slope of the V–I curve gave the overpotential resis-tance of charge and discharge by the V–I characteristics method,R VI.Figure5indicates that the R VI of discharge is larger than that of charge when the SOC is smaller than0.4. When the SOC increases further,the R VI of charge exceedsComparison and validation of methods for estimating heat generation rate123that of discharge.The underlying reasons were studied in [27]using both the current-interrupt technique in the time-domain and the dynamic electrochemical impedance spectroscopy (DEIS)in the frequency-domain.It was found that the charge transfer resistance and the diffusion resistance during charge are larger than those during dis-charge under high SOCs,while the situation is opposite at low SOCs.Furthermore,using a half-cell,the charge transfer resistances during charge and discharge of one electrode were compared using the DEIS [28].It was contended that due to the dependency of the exchange current on the surface concentration and due to the surface concentration variation during intermittent charge/dis-charge,the charge transfer resistances,which are related to the exchange current,are different between charge and discharge,and specifically,that of discharge is usually larger than that of charge [28].The overpotential resistance of the pouch cell by the energy methodWhen the pouch cell is charged or discharged at constant currents,Eq.(11)could be written as:R EM ¼V cha ÀV dis2Ið14Þwhere V cha and V dis are the terminal voltage of the pouch cell under charging and discharging with the current I at a specified SOC.Equation (14)was applied to process the data of the constant-current charge/discharge tests,and the calculated overpotential resistance of the pouch cell by the energy method,denoted as R EM,P or ‘‘R EM of pouch cell’’,is shown in Fig.5as a function of SOC and temperature.Figure 5shows that the R EM,P is inversely correlated with the charge/discharge C-rate,which is similar to the R EM in ‘‘The overpotential resistance of the 25Ah cell by the energy method ’’section,and generally larger than the R VI .Two considerations are presented as follows.First,the explanation concerning why the R EM is inversely correlatedwith the C-rate is also feasible in the case of the R EM,P .Second,a possible explanation for the relationship between the value of the R EM,P and that of the R VI is shown in Fig.6.In the V–I characteristics method,when extending the V –I line to zero-current,the zero-current voltage is possibly larger (smaller)than the equilibrium potential U during charge (discharge).Therefore,the slope of the solid V –I line in Fig.6,which gives the R VI ,is smaller than the slope of the dotted line connecting the two points (I i ,V i )and (0,U ),which corresponds to the R EM,P .In addition,when the applied current I i is larger,the slope of the dotted line becomes smaller.Therefore,it is another approach to show that the R EM,P tends to decrease when the applied current C-rate is increased.Measurement of the heat generation rate of the 25Ah cell with the ARCFigure 7shows the average temperature rising rates of the 25Ah cell during charge and discharge at 1C in an adiabatic environment provided by the ARC.Since there exists a response delay of the surface temperature rise to the internalCharge current/AV o l t a g e /Vk 0 = R VIk i = R EM,iU 0I i ,V iFig.6A schematic plot of the explanation why the R EM,P holds an inverse proportion to the charge/discharge C-rate and is generally larger than the R VIJ.Zhang et al.123。

相关文档
最新文档