人教版七年级数学上册第四章《几何图形》初步小结与复习教案

合集下载

人教版七年级数学上册《第四章几何图形初步》教案

人教版七年级数学上册《第四章几何图形初步》教案

第四章几何图形初步第一课时立体图形与平面图形授课目的(1)初步认识立体图形和平面图形的见解 .(2)能从详尽物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出近似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体 .(3)过程:在研究实物与立体图形关系的活动过程中,对详尽图形进行概括,发展几何直觉 .授课重点、难点 :授课重点:常有几何体的鉴别授课难点:从实物中抽象几何图形.三、授课过程1.创立情境,导入新课 .让我们一起来看看北京奥运会奥运村模型图.(出示章前图)显现丰富多彩的图形世界.2直观感知,鉴别图形( 1)关于各样各样的物体 , 数学中关注是它们的形状、大小和位置.(2)显现一个长方体教具,让学生分别从整体和局部抽象出几何图形 . 观察长方体教具的外形,从整体上看,它的形状是长方体,看不相同的侧面,获取的是正方形或长方形,只看棱、极点等局部,获取的是线段、点 .(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形 .( 4)引导学生得出几何图形、立体图形、平面图形的见解.我们把从实物中抽象出的各样图形统称为几何图形. 比方长方体,长方形,圆柱,线段,点,三角形,四边形等. 几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等 .有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.3.实践研究 .(1)引导学生观察帐篷 ,, 金字塔的图片 , 从面抽象出棱柱 , 棱锥 .(2)你能说说圆柱与棱柱 , 圆锥与棱锥的差异吗 ?(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(4 )以下列图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来4.小结这节课你有什么收获 ?5.作业设计课本第 121 页习题 4.1 第 1、2 题;第二课时几何图形授课目的1.能鉴别简单几何体的三种视图.2.会画简单立体图形及其他们的简单组合的三种视图.3.进一步认识立体图形与平面图形之间的关系.4.引导学生把所学的数学知识应用到生活中去,解决身边的数学问题 .5.在从不相同方向看立体图形的活动过程中,体验立体图形与平面图形之间的互相转变,进而建立空间见解,发展几何直觉 .重点与难点重点:1.在观察的过程中初步领悟从不相同方向观察同一物体可能看到不相同的结果 .2.能鉴别简单物体的三视图,会画简单立体图形及其他们组合的三种视图 .难点:1. 在面和体的变换中丰富几何直觉和数学活动经验,发展空间观念2.能鉴别简单物体的三视图,会画简单立体图形及其他们组合的三种视图 .三、授课过程1.创立情况,引入新课( 1)思虑:为请欣赏漫画并什么会出现争执?(2)“横看作岭侧成峰,远近高低各不相同 . 不识庐山真面目,只缘身在此山中 . ”这是宋代诗人苏轼的出名诗句(《题西林壁》).你能说出“横看作岭侧成峰”中包括的数学道理吗?2.新课学习(1)不相同角度看直棱柱、圆柱、圆锥、球让学生分别从正面、左面、右侧,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球 , 圆锥,由浅入深,领悟从不相同方向看直棱柱、圆柱、圆锥、球等立体图形获取的平面图形,难点是在领悟曲面的透视图,让学生交流、体验,集体作出小结 . (能够给出三个视图的名称)( 2)猜一猜,看一看Ⅰ . 左看右看上看下看一个物体都是圆?( 猜一物体 )Ⅱ . 什么物体左看右看上看下看都是正方形?若是长方形呢?( 各猜一物体 )Ⅲ. 桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的 .(3)分别从不相同方向观察以下实物 ( 茶叶盒、魔方、书、乒乓球等) ,你看到了什么图形 ?你能一一画下来吗 7( 画出表示图即可 )(4)(从不相同角度看简单的组合图形,由少许组合渐渐加多)以以下列图,画出以下几何体分别从正面、左面,上面看,获取的平面图形 .(学生独立思虑、合作交流,最后从模型上获取考据)3.实践与研究( 1)上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能获取什么图形?(2)再试一试,画出它的三视图.(3)怎样画得又快又准 ?( 4)用6个相同的小方块搭成一个几何体,它的俯视图以下列图 .则一共有几种不相同形状的搭法( 你能够用实物模型着手试一试)?4. 参照练习(⒈)图,桌上放着一个球和一个圆柱,下面a、b、c、d、e这五幅图分别是从什么方向看到的?(⒉)一个正方体中,截去一个小正方体的立体图以下列图,从左面观察这个图形,获取的平面图形是()(3)一个由8 个正方体组成的立体图形,从正面和上面观察这个图形时,获取的平面图形以下列图,那么从左面观察这个图形时,获取的平面图形可能是()( 4)如图分别是某立体图形三视图,请依照图说出立体图形的名称⑴ 正视俯视左视图图图⑵正视图俯视图右视图5.作业设计课本第 118页练习 1 ,课本第 121页习题 4.1 第3、4题第三课时几何图形授课目的⒈认识直棱柱、圆锥等简单立体图形的侧面张开图。

最新人教版七年级数学上册第四章《几何图形初步复习》教案2

最新人教版七年级数学上册第四章《几何图形初步复习》教案2

教学目标1.经历展开与折叠,切截以及从不同方向看等数学活动,积累数学活动经验.2.认识常见几何图形的基本特征,能对这些几何图形进行正确的识别和简单分类.3.通过丰富的实例,进一步认识点、线、面、体,了解有关点、线及某些图形的一些简单性质.4.在现实情境中认识线段、射线、直线、角等简单平面图形.5.会用符号表示角、线段、射线、直线,会进行线段或角的比较,能估计一个角的大小,会进行角的单位的简单换算.教学重点1.会画并能识别立体图形及从不同方向看一些简单立体图形所得到的平面图形.2.线段、射线、直线的概念,线段的长短比较,线段的中点概念的掌握.3.对角定义的理解;角的表示方法;角的度量.4.角的分类、比较以及角的平分线.5.互余、互补的概念及性质.教学难点1.对几何图形进行简单的分类,识别立体图形的展开图.2.线段运算表达式的选择.3.平角、周角的概念以及它们与直线射线的区别;角的表示方法的正确使用;作一个角等于已知角.4.角之间的和、差、倍、分等关系.5.能正确运用互余、互补的概念及性质解答实际问题.教材处理本节复习课分三部分,一是有关概念,二是基础练习,三是提高练习.在复习过程中可以先让学生熟悉本章的知识体系,然后结合典型练习重温知识要点,最后再进一步提高拓展.通过复习让学生进一步理解掌握图形的有关知识.教学方法设计典型例题,检测学生知识,科学地进行小结与归纳.教学过程一、熟悉知识体系设计说明通过引领学生回忆本章的知识要点,形成知识框架,让学生对本章知识有一个整体的把握,同时了解各知识之间的内在联系.二、基础知识回顾1.常见的立体图形设计说明根据知识设计问题,让学生在解决问题中,回顾知识,使知识系统化.(1)常见的柱体:棱柱、圆柱棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱.包括三棱柱、四棱柱、五棱柱等.圆柱:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆柱.(2)常见的锥体:棱锥、圆锥棱锥:有一个面是多边形,其余各面是有一个公共点的三角形,由这些面围成的几何体叫做棱锥.棱锥包括三棱锥、四棱锥、五棱锥.圆锥:以直角三角形一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成几何体叫做圆锥.(3)球体:半圆以它的直径所在直线为旋转轴,旋转所形成的曲面所围成的几何体叫做球体.基础练习1(1)将下列几何体分类,柱体有________,锥体有________,球体有__________(填序号).(2)橙子类似__________体,菠萝类似__________体,角柜类似__________体,金字塔类似__________体,粉笔盒类似__________体.2.立体图形的展开与折叠基础练习2(1)如图,把左边的图形折叠起来,它会变为().(2)将左边的正方体展开能得到的图形是().(3)下列图形中,哪一个是正方体的展开图().3.从正面、左面、上面观察立体图形基础练习3(1)观察图形,问:从三个方向看圆锥所得的平面图形是().A.从正面和从上面看是三角形,从左面看是圆B.从正面和从左面看是三角形,从上面看是圆C.从正面和从左面看是三角形,从上面看是圆和圆心D.从正面和从上面看是三角形,从左面看是圆和圆心(2)观察长方体,从三个方向看得到的图是().A.三个大小不一样的长方形,但其中有两个可能大小一样B.三个正方形C.三个一样大的长方形D.两个长方形,一个正方形(3)物体的形状如图所示,则从上面看物体得到的图是().4.点、线、面、体几何图形都是由点、线、面、体组成的.包围体的是面,有平面、曲面.面与面相交的地方是线,有直线、曲线等.线与线相交的地方是点.“点动成线、线动成面、面动成体”.基础练习4流星坠落会在空中留下一条__________,这说明了________;转动的自行车的辐条(俗称“钢丝”)会形成一个__________,这说明了________;薄薄的硬币在桌面上转动时,看上去像________,这说明了____________________.5.直线、射线、线段的表示及性质(1)直线的表示方法:可用一个小写字母或者两个大写字母表示.(2)射线的表示方法:两个大写字母,一条射线可用它的端点和射线上的另一点来表示.注意表示端点的字母必须写在前面.(3)线段的表示方法:①用两个端点的两个大写字母表示;②可以用一个小写字母表示.(4)直线的基本性质:经过两点有且只有一条直线.基础练习5如图所示,在线段AB上任取D、C、E一点,那么图中共有几条线段?思路启迪:关键在于确定一个端点固定的线段的可能性条数.如图所示,以A为端点的线段有AD,AC,AE,AB4条,以D为端点且与前面不重复的线段有DC,DE,DB3条;以C为端点且与前面不重复的线段有CE,CB2条;以E为端点且与前面不重复的线段有EB1条,所以图中共有线段4+3+2+1=10(条).6.线段的长短比较:(1)叠合法;(2)度量法.7.线段的中点:线段上的一点把线段分成两条相等的线段,这点叫做线段的中点.基础练习6如图,已知C点为线段AB的中点,D点为BC的中点,AB=10 cm,求AD的长度.8.两点的距离:(1)两点的所有连线中线段最短,即为:两点之间,线段最短.(2)连接两点间的线段的长度,叫做两点之间的距离.基础练习7把一段弯曲的公路改直,可以缩短路程,其理由是().A.两点之间线段最短B.两点确定一条直线C.线段有两个端点D.线段可以比较大小思路启迪:本题是应用几何公理解释生活中现象的问题,由于这是两点之间连线长度的比较,符合“两点之间,线段最短”的公理.9.角的定义与记法:(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两边.(2)角的表示方法:①用三个大写字母表示,但是顶点字母必须写在中间;②用一个大写字母表示;③用数字或希腊字母表示.基础练习81.下列说法中正确的是().A.平角是一条直线B.周角是一条射线C.两条射线组成的图形叫做角D.一条射线绕它的端点旋转而形成的图形叫做角思路启迪:平角与直线是两个不同的概念,平角的两边可以构成一条直线,但平角不是直线,所以A错误;同样,周角也不是射线,所以B错误;两条没有公共端点的射线组成的图形就不是角,所以C错误;由角的定义知,D正确.答案:D2.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是().答案:D10.角的度量:角的度量单位是度、分、秒.注:要明确在进行度、分、秒有关计算时,首先要明确它是60进制.基础练习9(1)把31.62°化成度、分、秒得__________,(2)58°23′45″=__________度.思路启迪:本题考查度、分、秒之间的转化,由大的单位转化为小的单位用乘法,由小的单位转化为大的单位用除法.答案:(1)31.62°=31°+0.62°=31°+0.62×60′=31°+37.2′=31°+37′+12″=31°37′12″;(2)45″=45×(160)′=0.75′,23.75′=23.75×()°≈0.396.所以58°23′45″≈58.396°.11.角的和与差12.角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.基础练习10(1)已知:∠AOB=40°,OC是∠AOB的平分线,则∠AOC的余角度数是__________.(2)如图,OC平分∠AOB,∠BOC=20°,则∠AOB=__________.13.互为余角、互为补角的概念与性质:(1)定义:如果两个角的和是平角,那么称这两个角互为补角,简称互补.如果两角的和是直角,那么称这两个角互为余角,简称互余.(2)性质:①同角(等角)的补角相等;②同角(等角)的余角相等.基础练习11(1)下列叙述正确的是().A.180°是补角 B.120°和60°互为补角C.120°和60°是补角D.60°是30°的补角(2)若∠A的余角是70°,则∠A的补角是().A.70°B.110°C.20°D.160°(3)如图,∠AOC和∠BOD都是直角,如果∠AOB=150°,那么∠COD等于().A.30°B.40°C.50°D.60°14.方位角:方位角一般以正南正北为基准,描述物体运动的方向.基础练习12甲看乙的方向为南偏西25°,那么乙看甲的方向是().A.北偏东75°B.南偏东75°C.北偏东25°D.北偏西25°三、巩固提高,熟练技能设计说明通过形式不同的练习,从不同的角度帮助学生进一步加深对知识的理解,训练学生熟练的运算技能.(一)选择题1.下列四个图中的线段(或直线、射线)能相交的是().A.(1) B.(2) C.(3) D.(4)2.下列说法中错误的有().(1)线段有两个端点,直线有一个端点(2)角的大小与我们画出的角的两边的长短无关(3)线段上有无数个点(4)同角或等角的补角相等(5)两个锐角的和一定大于直角A.1个B.2个C.3个D.4个3.如左下图所示,∠1与∠2互余,∠α=134°,则∠β的度数是().A.134°B.136° C.154°D.156°4.如右上图所示,M是AB上一点,AM=8 cm,BM=2 cm,N是AB的中点,则MN 的长为().A.1 cm B.2 cm C.3 cm D.4 cm(二)填空题1.如果两个角互补,并且它们的差是30°,那么较大的角等于__________.2.时针指示6点45分,它的时针和分针所成的锐角度数是__________.3.已知线段AB,在BA的延长线上取一点C,使CA=3AB,则CB=__________AB,CA=__________CB.4.将一个周角分成360份,其中每一份是__________°的角,直角等于__________°,平角等于__________°,30.6°=__________°__________′=__________′;30°6′=________°.(三)解答题1.计算(1)49°38′+66°22′;(2)180°-79°19′;(3)22°16′×5;(4)182°36′÷4.2.如左下图,在圆锥底面圆周上的B点处有一只蚂蚁,要从圆锥体侧面爬一圈后,再回到B点,请你结合圆锥的展开图设计一条最短路径.3.请画出右上图中的几何体从正面、左面、上面看分别得到的图形.4.已知线段AB上两点C、D,其中AB=a cm,CD=b cm,E、F分别是AC、DB的中点.求(1)AC+DB的长度;(2)E、F两点间的距离.5.在一条直线上取两个点A、B,共得几条线段?在一条直线上取三个点A、B、C,共得几条线段?在一条直线上取A、B、C、D四个点时,共得多少条线段?在一条直线上取n个点时,共可得多少条线段?四、总结反思,情意发展1.本节课你学习了什么?2.本节课你有哪些收获?3.通过今天的学习,你想进一步探究的问题是什么?五、布置作业课本第147页复习题4的第8、14、15题.评价与反思全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力.因此,在选择教学内容时注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点.设计者:李静。

七年级数学上册 第四章 几何图形初步复习教案 (新版)新人教版

七年级数学上册 第四章 几何图形初步复习教案 (新版)新人教版

几何图形初步一、教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.二、教学重点与难点重点:理解本章的知识结构,掌握本章的全部定理和公理;难点:理解本章的数学思想方法;三、教学方法启发式教学,结合多媒体和学案实施教学.四、学法指导引导——活动——讨论五、教学准备教师:多媒体课件、学案等;六、教学过程1、温故知新【多媒体展示】回顾课本,思考以下问题:1.本章学习了哪些内容?2.它们之间的联系是什么?请列出知识结构图.学生独立完成,最后交流知识结构图,点明知识要点和其中联系。

2、问题探究【多媒体展示】问题1:在本章中,从哪些方面反映了立体图形与平面图形的关系?学生小组讨论、交流,得到结论,教师补充:展开图、三视图、运动问题等。

3、典例分析【多媒体展示】例1:在下列图形中(每个小四边形皆为相同的正方形),可以是一个正方体表面展开图的是()例2:如图,从正面看A、B、C、D四个立体图形,可以得到a、b、c、d四个平面图形,把上下两行相对应的立体图形与平面图形用线连接起来.学生自主作答,教师个别提问,检查知识掌握情况。

4、问题探究【多媒体展示】问题2:与以前相比,你对直线、射线、线段和角有什么新的认识?在解决有关线段和角的问题中,常用到哪些数学思想方法?学生小组讨论、交流,得到结论,教师补充:分类讨论,转化等思想.5、典例分析【多媒体展示】例3:点A,B,C 在同一条直线上,AB=3 cm,BC=1 cm.求AC的长.例4:已知∠α和∠β互为补角,并且∠β的一半比∠α小30°,求∠α、∠β.学生自主作答,教师个别提问,检查知识掌握情况。

6、能力拓展【多媒体展示】例:如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN,求∠NEM的度数.学生小组内交流解答过程,教师做好指导工作.7、收获小结:1.本节课学到哪些知识?2.本节课有哪些疑惑?8、布置作业:课本练习题;七、板书设计:几何图形初步1.几何图形:(1)分类:立体图形和平面图形;(2)展开图和三视图;2.直线、射线和线段:(1)表示方法:(2)性质:3.角:(1)定义:(2)表示方法:(3)度量:4.余角和补角:(1)定义;(2)性质;。

人教版七年级数学上册第四章几何图形初步小结与复习教案

人教版七年级数学上册第四章几何图形初步小结与复习教案

几何图形初步小结与复习教案教学目标:1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;教学重点:理解本章的知识结构,掌握本章的全部定理和公理;教学难点:理解本章的数学思想方法.一、本章的知识结构框图二. 知识点梳理(一)几何图形1.几何图形:平面图形,三角形、四边形、圆等. 立体图形,棱柱、棱锥、圆柱、圆锥、球等.2. 立体图形的平面展开图:三视图3. 点、线、面、体:点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:B符号:若点C是线段AB的中点,则AC=BC=12AB,AB=2AC=2BC.6、线段的性质两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系(1)点在直线上 (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):3、角的度量单位及换算4、角的分类5、角的比较方法(1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形:符号:若OB 是∠AOC 的平分线,则∠AOB =∠BOC = 21∠AOC.9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向(2)北(南)偏东(西)方向(3)东(西)北(南)方向三、练习1、下列说法中正确的是( )A 、延长射线OPB 、延长直线CDC 、延长线段CD D 、反向延长直线CD2、下面是我们制作的正方体的展开图,每个平面内都标注了字母,请根据要求回答问题:(1)和A面所对的会是哪一面?(2)和B面所对的会是哪一面?(3)面E会和哪些面相交?四、作业148页第7、8题。

人教版七年级数学上册第四章《几何图形初步》教学设计

人教版七年级数学上册第四章《几何图形初步》教学设计

人教版七年级数学上册第四章《几何图形初步》教学设计一. 教材分析人教版七年级数学上册第四章《几何图形初步》是学生学习几何的入门章节,主要内容包括:平面图形的性质、相交线、平行线、垂直、角的度量等。

本章节的目的是让学生掌握一些基本的几何图形和概念,培养学生观察、思考、动手操作的能力。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对平面图形有一定的认识。

但部分学生可能对一些几何概念和性质的理解还不够深入,因此在教学过程中需要注重引导学生从实际操作中理解和掌握知识。

三. 教学目标1.知识与技能:使学生掌握平面图形的性质,学会用直尺和圆规作图,理解相交线、平行线、垂直的概念。

2.过程与方法:培养学生观察、思考、动手操作的能力,提高空间想象能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的逻辑思维能力。

四. 教学重难点1.教学重点:平面图形的性质,相交线、平行线、垂直的概念及性质。

2.教学难点:相交线、平行线、垂直的判断和证明。

五. 教学方法1.情境教学法:通过实物、模型等引导学生直观地认识几何图形。

2.动手操作法:让学生通过实际操作,加深对几何概念和性质的理解。

3.讨论法:引导学生分组讨论,培养学生的合作精神和沟通能力。

4.讲解法:教师针对重难点进行讲解,帮助学生理解和掌握知识。

六. 教学准备1.教具:直尺、圆规、模型、实物等。

2.课件:制作与本章节内容相关的课件,以便进行直观教学。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的几何图形,如教室里的桌子、窗户等,引导学生关注平面图形,激发学生学习兴趣。

2.呈现(10分钟)教师通过课件展示平面图形的性质,如三角形、矩形的性质,引导学生直观地认识和理解。

3.操练(10分钟)教师布置一些实际操作题,如用直尺和圆规作图,让学生动手操作,加深对几何概念的理解。

4.巩固(10分钟)教师针对本节课的重点知识进行提问,检查学生对知识的理解和掌握程度。

人教版数学七年级上册《 第四章 几何图形初步 》教学设计

人教版数学七年级上册《 第四章 几何图形初步 》教学设计

人教版数学七年级上册《第四章几何图形初步》教学设计一. 教材分析《第四章几何图形初步》是人教版数学七年级上册的重要内容,主要包括平面几何图形的性质和判定,以及几何图形的画法。

本章内容为学生提供了丰富的图形信息,培养学生的空间想象能力、逻辑思维能力和创新能力。

本章内容在日常生活中和后续学习中都有广泛的应用,对于学生形成完整的数学知识体系具有重要意义。

二. 学情分析学生在进入七年级之前,已经学习了初步的数学知识,对数学有了一定的认识。

但七年级的学生刚刚接触几何图形,对几何图形的性质和判定可能感到抽象难懂。

因此,在教学过程中,教师需要关注学生的认知水平,采取适当的教学方法,激发学生的学习兴趣,帮助学生理解和掌握几何图形的初步知识。

三. 教学目标1.知识与技能:使学生了解平面几何图形的基本概念,掌握一些基本的几何性质和判定方法,学会用几何语言描述几何图形。

2.过程与方法:培养学生观察、分析、归纳和推理的能力,提高空间想象能力。

3.情感态度与价值观:激发学生学习几何图形的兴趣,培养学生的创新意识和团队协作精神。

四. 教学重难点1.重点:平面几何图形的基本性质和判定方法。

2.难点:几何图形的性质和判定在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和实际问题,激发学生的学习兴趣,引导学生理解和掌握几何图形的性质和判定。

2.互动教学法:教师与学生、学生与学生之间的讨论和交流,提高学生的参与度和积极性。

3.实践教学法:让学生动手操作,培养学生的实践能力和创新能力。

4.归纳教学法:引导学生通过观察、分析、归纳和推理,发现几何图形的性质和判定方法。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习状况,设计教学活动和教学评价。

2.学生准备:预习教材,了解基本的几何图形概念。

3.教学资源:多媒体课件、几何模型、练习题等。

七. 教学过程1.导入(5分钟)教师通过生活实例或实际问题,引入几何图形的概念,激发学生的学习兴趣。

新人教版初中数学七年级上册《第四章几何图形初步:小结》优质课教案_0

新人教版初中数学七年级上册《第四章几何图形初步:小结》优质课教案_0

几何图形初步复习与小结教学设计【教学目标】知识目标:1.直观认识立体图形,掌握平面图形(线段、射线、直线)的基本知识;2.掌握角的基本概念,能利用角的知识解决一些实际问题。

能力目标:通过小组合作培养学生合作学习能力。

情感目标:通过自主构建的尝试,激发学生自信心,渗透事物普遍联系的辩证唯物主义观点【教学重点】线段、射线、直线、角的性质和运用【教学难点】角的运算与应用;空间观念建立和发展;几何语言的认识与运用。

【教学活动设计】一.创设情境,点明课题老师出示墨水盒,让学生结合第四章的内容回答墨水盒有那些特征?进而引入课题并板书课题及几何图形的分类。

二.通过导学案课前预习活动,自主整理本章系统知识1.下列说法正确的是( )A. 在线段、射线、直线中直线最长B. 连结两点的线段叫做两点之间的距离C. 直线AB与直线BA表示同一条直线D.点E在线段CD上,若CE+ED=CD,则E是线段CD中点2.下列说法错误的是( )A.用度、分、秒表示91.34°为91°20′24″B.若射线OC在∠AOB内,∠AOC+∠BOC=∠AOB,则OC平分∠AOBC.若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3;D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3;3.若∠A = 20°18′,∠B = 20°15′30″,∠C = 20.25°,则()A.∠A>∠B>∠C B.∠B>∠A>∠CC.∠A>∠C>∠B D.∠C>∠A>∠B(通过课前练习的三道选择题,引出本章的重点内容有:①直线、射线、线段关系;②直线、射线两公理;③线段中点;④角的度量、比较与运算、余角和补角的性质并对几何图形知识结构图进行完善,并出示知识框架。

)三.例题探究,突破难点例1如图,点C在线段AB上,点M、N分别是AC、BC的中点当AC=8cm,CB=6cm,求线段MN的长。

人教版七年级上册 第四章几何图形初步 复习教案

人教版七年级上册 第四章几何图形初步 复习教案

第八讲---几何图形初步初中数学 重难点年级1. 立体图形(立体图形的基础、三视图、展开图等) 2. 直线,射线,线段三者的区别与联系 3. 角的基本知识,角的比较和运算,余角和补角的相关概念7 年级【知识储备】知识点一 多姿多彩的图形:通过多姿多彩的图形引入几何图形,使我们认识立体图形、平面图形,通过三视 图我们可以把立体图形转化为平面图形来研究和处理,也可以把立体图形展开为平面图形;几何体也简 称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都 是由点、线、面、体组成的,点是构成图形的基本元素。

举例:广场礼花在夜空中留下的图形,你是否看到了点动成线?在电视中看到收割机在麦田中收割 小麦,你是否看到了线动成面? 知识点二 1.直线、射线、线段的区别与联系:从图形上看,直线、射线可以看做是线段向两边或一边无限延 伸得到的,或者也可以看做射线、线段是直线的一部分;线段有两个端点,射线有一个端点,直线没有 端点;线段可以度量,直线、射线不能度量。

2.直线、线段性质: 经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线; 两点的所有连线中,线段最短;简单说:两点之间,线段最短。

3.线段中点:把一条线段分成两条相等的线段的点叫线段中点,如图:若点 C 是线段 AB 的中点,则有(1)AC=BC= 式成立,亦能说明点 C 是线段 AB 的中点。

AB 或(2)AB=2AC=2BC,反之,若有(1)式或(2)4.关于线段的计算:两条线段长度相等,这两条线段称为相等的线段,记作 AB=CD,平面几何中线段 的计算结果仍为一条线段。

即使不知线段具体的长度也可以作计算。

1例:如图:AB+BC=AC,或说:AC-AB=BC知识点三:1.角的意义:有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的 两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图形。

人教版七年级数学上册4.1几何图形小结(教案)

人教版七年级数学上册4.1几何图形小结(教案)
(3)几何图形在实际生活中的应用:培养学生将几何知识应用于实际问题的能力。
难点举例:如何引导学生发现生活中的几何图形,理解其应用价值。
(4)空间观念的培养:帮助学生建立空间观念,理解几何图形在三维空间中的关系。
难点举例:如何通过观察和想象,理解几何图形在三维空间中的形态和结构。
在教学过程中,教师需针对以上重点和难点内容,采用生动的实例、直观的演示、启发式的提问等方法,帮助学生理解掌握本节课的核心知识。同时,注重培养学生的空间观念和实际应用能力,提高学生的数学素养。
3.加强实践,注重应用。实践活动环节,学生们分组讨论和实验操作,表现出很高的积极性。这说明学生们喜欢动手实践,愿意去探索和解决问题。在今后的教学中,我要加大实践环节的比重,让学生们更多地参与到实际操作中来,提高他们解决实际问题的能力。
4.引导讨论,促进思考。小组讨论环节,学生们积极发表自己的观点,进行交流。我认为这种讨论方式有助于培养学生们的逻辑思维和表达能力。在以后的教学中,我要多设置一些开放性的问题,引导学生进行思考和讨论,提高他们的思维能力。
人教版七年级数学上册4.1几何图形小结(教案)
一、教学内容
本节课为人教版七年级数学上册第四章第一节“几何图形小结”。教学内容主要包括以下几部分:
1.对平面几何图形进行分类,包括三角形、四边形、圆等。
2.掌握各种几何图形的性质,如三角形的内角和、四边形的对角线等。
3.学会使用几何图形的周长和面积公式进行计算,如矩形的面积、三角形的周长等。
4.了解几何图形在实际生活中的应用,培养学以致用的能力。
直接输出:
二、核心素养目标
1.培养学生的直观想象能力,通过观察和操作几何图形,形成对几何形状和结构的认识。
2.提高学生的逻辑推理能力,通过分析几何图形的性质和关系,推导出相关结论。

人教版七年级数学上册《 第四章 几何图形初步 》教学设计

人教版七年级数学上册《 第四章 几何图形初步 》教学设计

人教版七年级数学上册《第四章几何图形初步》教学设计一. 教材分析《第四章几何图形初步》是初中数学人教版七年级上册的重要内容,主要包括平面图形的认识、线段的性质、角的概念、相交线和平行线等知识。

本章内容为学生提供了丰富的图形模型,有助于培养学生的空间想象能力和抽象思维能力。

通过本章的学习,学生能够掌握几何图形的基本概念和性质,为后续几何学习打下坚实的基础。

二. 学情分析七年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面图形有一定的了解。

但部分学生可能对几何图形的性质和概念理解不深,容易混淆。

因此,在教学过程中,教师需要关注学生的认知水平,善于引导学生在实践中发现规律,提升学生的几何素养。

三. 教学目标1.知识与技能:使学生掌握平面图形的基本概念和性质,学会用几何语言描述图形,提高空间想象能力。

2.过程与方法:培养学生通过观察、操作、思考、交流等方法解决问题的能力。

3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队协作精神,使学生感受到数学与生活息息相关。

四. 教学重难点1.重点:平面图形的基本概念、性质和几何语言的表达。

2.难点:对几何图形的理解和运用,以及相交线和平行线的判断。

五. 教学方法1.情境教学法:通过生活实例和实物模型,引发学生的兴趣,提高学生的参与度。

2.启发式教学法:引导学生主动思考、发现问题、解决问题。

3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。

4.反馈评价法:及时了解学生的学习情况,调整教学策略。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示图形。

2.实物模型:准备一些几何模型,如三角形、四边形等,方便学生直观理解。

3.练习题:准备适量的基础练习题和拓展题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例引入平面图形的概念,如教室的黑板、窗户等,引导学生关注身边的几何图形。

2.呈现(10分钟)展示课件,介绍平面图形的基本概念和性质,如线段、角、相交线和平行线等。

2024年人教版数学七年级上册第四章小结与复习

2024年人教版数学七年级上册第四章小结与复习

解:设 AB = 2x cm,
AB MC
D
BC = 5x cm,CD = 3x cm,
则 AD = AB+BC+CD =10x cm.
∵M 是 AD 的中点,
1 ∴AM = MD = 2 AD = 5x cm. 由 MC + CD= M D得,3x + 6 = 5x. 解得 x = 3. 故 BM = AM- AB =5x-2x = 3x = 3×3 = 9 (cm),
例6 如图,是一个三级台阶,A 和 B是这个台阶的两 个相对的端点,A 点上有一只蚂蚁,想到 B 点去吃可 口的食物. 若这只蚂蚁从 A 点出发,沿着台阶面爬到 B 点,你能画出蚂蚁爬行的最短路线吗?
A
B
解:如图,将台阶面展开成平 A 面图形. 连接 AB 两点,因为两点 之间线段最短,所以线段 AB 为蚂蚁爬行的最短路线.
B C
OC 是 ∠AOB 的角平分线, O
A
∠AOC =∠BOC = 1 ∠AOB 2
∠AOB = 2∠BOC = 2∠AOC
4. 余角和补角
(1) 定义 ① 如果两个角的和等于90°( 直角 ),就说这 两个角互为余角 ( 简称为两个角互余 ). ② 如果两个角的和等于180°(平角),就说这 两个角互为补角 ( 简称为两个角互补 ).
由(1)知,∠COF=90°,
F
A O
C
E
D B
∴∠AOC=∠COF-∠AOF=90°-60°=30°.
由(1)知,∠AOC和∠BOD与∠AOD 互补,
∴∠BOD=∠AOC=30°(同角的补角相等).
例9 已知∠AOB=90°,∠COD=90°,画出示意图
并探究∠AOC与∠BOD的关系.

第四章几何图形初步小结教学设计人教版七年级数学上册

第四章几何图形初步小结教学设计人教版七年级数学上册
4.理解角的概念,掌握角的符号表示,会比较角的大小,认识度、分、秒并能进行简单的换算,会计算角的和与差.了解角的平分线、余角、补角的概念,知道补角和余角的性质.
5.初步认识几何图形是描述现实世界的重要工具,初步应用几何图形的知识解决一些简单的实际问题,培养学习图形与几何知识的兴趣,通过交流活动,初步形成积极参与数学活动,主动与他人合作交流的意识.
6.角的表示与度量
接下来我们来看角的表示,像这个角可以用三个字母来表示,其中表示顶点
的字母O一定要写在中间,表示为∠AOB,如果顶点处只有一个角,这个角也可以记为∠O,此外,我们可以用小写的希腊字母来表示这个角,记为∠α,或者我们也可以用阿拉伯数字来表示这个角,记做∠1。我们经常用量角器来测量角,度、分、秒是常用的角的度量单位,它们是60进制的,即1度=60分,1分=60秒。
如果在线段AB上有一点C,那么图中共有几条线段呢?
这三条线段满足什么和差关系?
线段AB上有特殊的点吗?
如果点C是线段AB的中点,那么图中的三条线段又有怎样特殊的数量关系呢?
接下来我们来看射线,这条射线可以表示为射线OA或射线l,要注意的是在用两个大写字母表示时,表示端点的字母要写在前面。
我们复习完了直线,射线,线段的知识后,发现它们的学习过程是按照从图形到定义到表示方法到大小比较再到有关计算,那么对于由两条射线构成的图形角,我们就可以进行类比学习,接下来来看角。
教学设计
课程基本信息
学科
初中数学
年级
七年级
学期
秋季
课题
几何图形初步复习小结
教科书
书 名:人教版教材
出版社:人民教育出版社
教学目标
1.通过从实物和具体模型的抽象,了解几何图形、立体图形与平面图形以及几何体、平面和曲面、直线和曲线、点等概念.

最新人教版七年级数学上册 第四章 几何图形初步 优秀教案教学设计 含教学反思

最新人教版七年级数学上册 第四章 几何图形初步 优秀教案教学设计 含教学反思

第四章几何图形初步4.1 几何图形 (1)4.1.1 立体图形与平面图形 (1)第1课时认识几何图形 (1)第2课时从不同方向看立体图形和立体图形的展开图 (4)4.1.2 点、线、面、体 (8)4.2 直线、射线、线段 (11)第1课时直线、射线、线段 (11)第2课时比较线段的长短 (14)4.3 角 (18)4.3.1 角 (18)4.3.2 角的比较与运算 (21)4.3.3 余角和补角 (25)4.4 课题学习设计制作长方体形状的包装纸盒 (31)4.1 几何图形4.1.1 立体图形与平面图形第1课时认识几何图形【知识与技能】通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.【过程与方法】能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.【情感态度】从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动、主动与他人合作交流的意识.【教学重点】识别简单几何体.【教学难点】从具体事物中抽象出几何图形.一、情境导入,初步认识播放北京奥运会的比赛场馆宣传片.导语:2008年奥运会在我国首都北京举行,尽管已成为历史的记忆,但它永远铭刻在每一个中国人的心中,让我们一起来看看北京奥运会国家体育场(鸟巢)图.(出示章前图)你能从中找到一些熟悉的图形吗?学生看书小组讨论交流.引导学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流,并思考在这些图片或实物中有我们熟悉的图形吗?【教学说明】奥运会的成功举办向全世界展现了我们祖国的综合国力,选用2008年北京奥运会国家体育场(鸟巢)图作为引例能调动学生的学习兴趣,同时对学生进行爱国主义教育,增强他们的民族自信心和自豪感.通过多媒体向学生展示丰富的图形世界,给学生带来直观感受,让学生体会图形世界的多姿多彩;在此基础上,要求学生从中找出一些熟悉或不熟悉的几何图形,并结合生活中具体例子(如建筑设计、艺术设计等),说明研究几何图形的应用价值,从而调动学生学习的积极性,激发学习的兴趣.二、思考探究,获取新知找一找探索教材第115页思考题并出示实物(如地球仪、字典及魔方等)及多媒体演示(如谷堆、铅笔、帐篷、卢浮宫、金字塔等),它们与我们学过的哪些图形相类似?【教学说明】长方体、正方体、圆柱、圆锥、球都是学生已经学习过的图形,棱柱、棱锥也是学生很熟悉的图形,通过找一找,结合具体实例引入.从熟悉的生活中识别立体图形,不仅帮助学生理解,而且让他们感受生活中处处有数学.议一议出示已准备好的教具棱柱、圆柱、棱锥、圆锥模型,让学生看一看,比较观察后说说它们的异同.(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充.)看一看再动手摸一摸,观察、感觉几何体之间的联系与区别,是为了更好地识别几何体.想一想生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答.教师提醒学生体会几何图形与生活的密切联系.赛一赛小组长组织组员完成教材第116页思考题,并进行学习汇报.让学生主动参与学习活动,自主完成平面图形学习,交流各自的学习成果,培养学生的自主学习能力.三、典例精析,掌握新知例1 如图,将下列两个图形沿AB剪开,再展开,实际动手做一做,再对照实物画出展开后的图形.【解析】圆锥的侧面展开图是一个扇形,底面是一个圆.圆柱的侧面展开图是一个矩形,两底面是两个等圆.由此我们可以了解组成圆锥和圆柱的基本图形.解:圆锥、圆柱的展开图如下:【教学说明】认识一个图形的组成,实际动手操作是最有效的途径.解完这道题,你应得到这样的启示:实践是认识生活、认识世界的必经之路.例2 请说出下列几何体的名称,再根据你的感受简要说说它们的一些特征.【分析】(1)—(6)的名称比较容易识别,要善于发现其中所体现的独特特征.解:(1)圆柱.特征:两个底面是圆的几何体;(2)圆锥.特征:像锥体,且底面是圆;(3)正方体(也叫立方体).特征:所有面都是正方形;(4)长方体.特征:其侧面均为长方形(特殊情况有两个面为正方形);(5)棱柱.特征:底面为多边形,侧面为长方形;(6)球.特征:圆圆的实体.【教学说明】几何体的识别以直观为主,其几何特征也以形象感觉说明即可.当然,你还可以尽可能地从其他角度去感受这些几何体的特征,因为观察角度的变化,发现的特征就可能不一样.试试看.例3 先观察下列图形,再动手填写下表.【分析】从上图可以看出四边形被一条对角线分成两个三角形,从五边形的一个顶点可以引2条对角线,六边形被对角线分成4个三角形,从n边形的一个顶点可以引出的对角线条数恰为其边数与3之差即(n-3)条.所以构成的三角形为边数与2之差,即(n-2)个.解:2,4,n-3;2,4,n-2.四、运用新知,深化理解1~2.教材第116页练习.【教学说明】这两道题较为简单,教师可让学生口答,如学生回答不全教师可补充.【答案】略五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.选做题:(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.本节教学应通过实际问题启发、做、想、试等方式让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现并认识立体图形与平面图形,这样的教学,可使学生得到探索发现的成功感,自然获取知识并形成应用能力.第2课时从不同方向看立体图形和立体图形的展开图【知识与技能】1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看.2.通过实际操作,能认识和判断立体图形的平面展开图.【过程与方法】在立体图形与平面图形相互转换的过程中,初步建立空间观念,培养几何意识.【情感态度】激发学生学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.【教学重点】识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形.【教学难点】画出从正面、左面、上面看正方体及简单组合体的平面图.一、情境导入,初步认识多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境.跨越学科界限,以苏东坡的诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”营造一个崭新的数学学习氛围,并从中挖掘蕴含的数学道理.比一比讲台上依次放置粉笔盒、乒乓球、热水瓶.请四位学生上来后按照不同的方位站好,然后向同学们汇报各自看到的情形.从身边的事物入手,采用游戏的形式,有助于学生积极主动地参与,激发学生的学习潜能,感受新知.自己从中发现从不同的方向看,确实看到的可能不一样.如何进行楼房的图纸设计?出示楼房模型.多媒体展示神舟八号无人飞船.问:如何进行飞船的图纸设计?(出示三张设计平面图),并问每张图分别从什么方向看?看起来,楼房、航天飞船等均是立体图形,但是设计图都是平面图形,建筑单位、工厂均按照平面设计图加工,其中一个小零件如课本第117页图4.1-6,先需要看的图是图(2),所以,我们要研究立体图形从不同方向看它得到的平面图.进一步培养学生的空间想象能力以及与他人合作交流的能力.二、思考探究,获取新知探究 1 分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)让学生从不同方向观察立体图形,体验立体图形转化为平面图形的过程.长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形,以四人小组为学习单位进行小组创作,培养学生的观察力和创新能力.教科书第117页图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?【教学说明】小组合作学习,你摆我答,动手画一画,展示此活动设计既能引发学生动脑思考、动手实践,在你摆我答的小组合作学习中,又给学生创造了交流的机会,引导学生学会合作,突破创新,达到共同提高的目的.探究2 (1)出示教材第118页图4.1-9的平面展开图,让学生说一说这是什么立体图形?【教学说明】教师让学生回答,若学生对此有困难,可让学生自己动手画一画,剪一剪,仔细体会.(2)让学生拿出自己的墨水盒或其他正方体方盒,动手剪一剪,看能得到几种正方体的展开图.【教学说明】正方体的展开图是教学重点,教师必须对此重视,让学生以小组为单位展开讨论和剪切,争取尽可能地多剪出几种展开图,教师根据学生回答情况予以板书和归纳.三、典例精析,掌握新知例1 你能画出如图所示的正方体和圆柱体的从不同方向看到的平面图形吗?试试看!【分析】正方体的从不同方向看到的平面图形都是正方形,圆柱体从正面、左面看到的平面图形都是长方形,从上往下看是圆.解:正方体看到的结果分别如图所示:圆柱体看到的结果如下所示:例 2 (1)前面所讲的苏东坡的《题西林壁》中有一句传诵千古的名句:“横看成岭侧成峰,远近高低各不同”,请用简单的几何图形画出这句话所表达的意境.(2)同伴交流一下这句话给我们的启示,特别谈谈对我们学习数学知识的启迪.【分析】从诗句的意思中应看出这句话是以群山为背景的.诗句中所蕴含的哲理会是仁者见仁,智者见智,所以,互相交流十分必要.解:(1)如图(2)以下启示供参考:“变换思考角度,获得的结论就不同”.“从不同角度看同一问题,可能获得不同的解决途径”等.例 3 如图,需要再补画一个面,折叠后才能围成一个正方体,下面是四位同学补画另一个面的情况(图中阴影部分),其中正确的是().【分析】A、C、D三项中的展开图都不能围成正方体,只有B项符合要求.【答案】B四、运用新知,深化理解1~3.教材第118~119页练习.【教学说明】这几道题是考查立体图形的视图和展开图的.题目较为简单,教师可让学生举手回答.【答案】1.(1)是从上面看到的;(2)是从正面看到的;(3)是从左面看到的.2.圆柱体—(4),圆锥体—(6),三棱柱—(3).3.C五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?提醒学生注意:多看,多动手,多想象,是学好几何知识的基本途径之一.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.本节教学应通过引导观察和实际动手操作,让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现从不同角度看物体可以得到不同的结果,在实践中体验认识生活与客观世界,并逐步养成勤于动手,善于观察,勇于思考的学习习惯.4.1.2 点、线、面、体【知识与技能】通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感态度】学生养成积极主动的学习态度和自主学习的方式.【教学重点】认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】在实际背景中体会点的含义.一、情境导入,初步认识多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.【教学说明】从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示这些生活实例在城市的位置,让学生体会到“点”的含义.二、思考探究,获取新知课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?观察、讨论,让学生共同体会“点动成线、线动成面、面动成体”.让学生举出更多的“点动成线、线动成面、面动成体”的例子.小组合作学习,学生利用学具完成教材第120页练习第2题.(动手转一转)【教学说明】教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力.学生自己动手实践操作,加深学生印象,化解难度.教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等.让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子.1.教材119页思考,并回答它的问题.【教学说明】引导学生观察后得出结论:面与面相交得到线,线与线相交得到点.2.教材120页练习第1题(提供实物,议一议,动手摸一摸),对于第1题,思考以下问题:这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?【教学说明】让学生自己体会并小组讨论得出点、线、面、体之间的关系.三、典例精析,掌握新知例 1 直观地认识形形色色的平面图形,特别是对简单的多边形——三角形有更多的感觉,认识多边形可由三角形组合而成.如:有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2,3,4,……的等边三角形,这些等边三角形的边长为n,所用卡片总数为S:试求当n=12时,S=_______.【分析】据图可以看出,当n=2时,S=4;当n=3时,S=9;当n=4时S=16,由此可推出:卡片总数S与边长n之间的关系式S=n2,故所求答案为144.例2 利用点、线、面、体的几何特征和它们之间的关系,可以进行图形分割与变化.如:苏学美同学为班级“学生专栏”设计了报头图案,并用文字说明图案的含义,如图(1).请你用最基本的几何图形(如直线、射线、线段、角、三角形、四边形、多边形、圆、圆弧等)中若干个,为“环保专栏”在图(2)方框中设计一个报头图案,并简要说明图案的含义.【教学说明】本题由学生自主完成,互相交流.四、运用新知,深化理解1.下列说法中,正确的有()(1)柱体的两个底面一样大;(2)圆柱的面与面的交线都是圆;(3)棱柱的底面是四边形;(4)棱柱的侧面一定是长方形;(5)长方体一定是柱体;(6)长方体的面不可能是正方形.A.(1)(2)(4)B.(1)(2)(5)C.(2)(3)(5)D.(2)(4)(5)2.一个几何体只有一个顶点、一个侧面、一个底面,则这个几何体是()A.棱柱B.棱锥C.圆锥D.圆柱3.飞机飞行表演在空中留下漂亮的“彩带”用数学知识解释为_______;在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了_______,这说明_______;把一张纸对折,形成一条折痕,用数学知识解释为_______;用铁丝围成一个长方形,绕它的一边旋转,形成一个_______,这说明_______.4.如图是在一个正方体的一个角挖去一个小正方体后得到的几何体,这个几何体的顶点个数是_______.5.请你从数学的角度描述下列现象.(1)国庆之夜,炸响的礼花在天空中(瞬间)留下美丽的弧线;(2)用一条拉直的细线切一块豆腐;(3)将2012张十六开的白纸摞成长方体.【教学说明】教师先让学生自主完成上述几题,然后让学生回答并予以点评.【答案】1.B 2.C 3.点动成线线线动成面面与面相交成线圆柱体面动成体4.14 5.(1)点动成线(2)线动成面(3)面动成体五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?要求学生留心观察身边的事物,从实际生活中感受理解几何知识.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.本节教学重在指导学生通过观察生活中的实物,抽象出几何图形的形成过程,把培养学生的观察、思考、提炼的素质放在首位.学生之间可以以小组为单位,在合作中交流,使知识的认识变为学生主动参与的过程.4.2 直线、射线、线段第1课时直线、射线、线段【知识与技能】1.进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解两点确定一条直线的性质,并能初步应用.3.会画一条线段等于已知线段.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.【教学重点】认识直线、射线、线段的区别与联系.学会正确表示直线、射线、线段,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.【教学难点】能够把几何图形与语句表示、符号书写很好地联系起来.一、情境导入,初步认识1.观察教材第125页图4.2-1.2.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级八个班,问至少需要买几颗钉子?你能帮总务处的师傅算一算吗?【教学说明】创设实际问题情景,引导学生思考,激发学习兴趣.二、思考探究,获取新知学生按照学习小组,利用打好的小洞,10cm长,1cm宽的硬纸条和撒扣进行实践活动,小组之间交流实践成果,相互补充完善,并解决问题1和2得到直线性质:两点确定一条直线.画一画要求学生分别画一条直线、射线、线段,教师给出规范表示方法.【教学说明】学生通过动手实践,观察分析,猜想,合作交流,体验并感悟到直线的性质.让学生自己归纳性质,在小组交流中完善表述.(教学中学生用自己的语言描述性质,语言可能不够准确简练、完整细致,面对这种情况,不必操之过急,要允许学生有一个发展的时间与空间.)结合自己所画图形寻找直线、射线、线段的特征,说说它们之间的区别与联系并交流.思考:怎样由一条线段得到一条射线或一条直线?举出生活中一些可以看成直线、射线、线段的例子.设计意图:在自己动手画好直线、射线和线段的基础上,要求学生说出它们的区别与联系,目的是使学生进一步认识线段、射线、直线.完成教科书126页练习,使学生逐步懂得几何语句的意义并能建立几何语句与图形之间的联系.数学活动独立探究:画一条线段等于已知线段a,说说你的想法.小组交流补充.教师边说边示范尺规作图并要求学生写好结论.【教学说明】慢慢让学生读清楚题意并学会按照要求正确画出图形.并让学生自己说出想法,培养学生独立操作、自主探索的数学实验学习能力.三、典例精析,掌握新知例1 动手画一画,邀同伴讨论下列问题:(1)过一个已知点可以画多少条直线?(2)过两个已知点可以画多少条直线?(3)过三个已知点一定可以画出直线吗?(4)经过平面上三点A,B,C中的每两点可以画多少条直线?(5)借鉴(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线会有什么样的结果?如果不能画,请简要说明理由,如能画,画出图来.【分析】解答本题时,要仔细读题,注意体会不同问题间的细微区别,以便求得正确的答案.解:(1)过一点可以画无数条直线.(2)过两个点可以画唯一的一条直线.(3)过三个已知点不一定能画出直线,当三点不共线时,不能作出直线;当三点共线时,能画一条直线.(4)当A,B,C三点不共线时,过其中的每两点可以画一条直线,所以共有三条直线;当A,B,C三点共线时,上面画的三条直线重合了,只能画一条直线,如图(一):(5)经过平面内四点中的任意两点画直线有三种结果,如图(二):①当A,B,C,D四个点在同一条直线上时,只可以画出一条直线.②当A,B,C,D四个点有三个点在同一条直线上时,可画出4条直线.③当A,B,C,D四个点中任意三个点都不在同一条直线上时,可画出6条直线.【教学说明】题(3)和题(4)中分别没有明确平面上三点,四点是否在同一条直线上,解答时要分各种可能情况解答,这种解答方法叫分类讨论.运用分类方法时,要考虑到可能出现的所有情形,不能丢掉任何一种,否则就不完整,不全面.例2 如图(1)(2)(3)中给出的直线,射线,线段,根据它们各自性质,判断其能否相交?【分析】这是用几何图形语言给出的已知条件的例题,读懂图形语言是学习几何知识的基础.结合直线、射线、线段的几何性质作出判断.解:图(1)中直线AB与直线CD相交;图(2)中射线CD与直线AB不相交,因为射线CD是以C为端点C向D所在方向延伸的;图(3)中射线CD与线段AB不相交,因为线段AB不能延伸,而射线CD延伸方向为C向D所在方向,故它们不相交;图(4)中线段AB与线段CD不相交,因为线段AB与线段CD都不能延伸.【教学说明】本题解答关键在理解三种基本图形的延伸性质.四、师生互动,课堂小结请学生互相交流我知道了哪些概念?我学会了什么解题方法?我发现了什么新知识?1.布置作业:从教材习题4.2中选取.2.完成练习册中本课时的练习.本课时主要介绍直线、射线、线段的概念、表示方法,以及它们的区别与联系,是典型的概念教学课.教学中,教师应给学生充分探寻直线的基本知识,直线、射线、线段的表示方法的素材和动手动脑、合作交流的时间与空间,鼓励学生在活动观察时感受概念的形成过程,获得数学体验.提醒学生结合生活经验、留心周围事物,借助实物来认识图形.第2课时比较线段的长短【知识与技能】1.结合图形认识线段间的数量关系,学会比较线段的大小.2.知道两点之间的距离和线段中点的含义.【过程与方法】。

初一数学第四章复习教案

初一数学第四章复习教案

初一数学复习教案主备人:____钟琳玲_____ 审核人:____黄顺佳_____一、复习内容:第四章《几何图形初步》二、教材分析:本章的主要内容是图形的初步认识,教科书从学生生活周围熟悉的物体入手,使学生对物体的形状的认识从感性逐步上升到抽象的几何图形。

通过从不同方向看立体图形和展开图形,初步认识立体图形与平面图形的练习。

在此基础上,认识一些简单的平面图形——直线、射线、线段和角。

三、学生分析:四、教学目标:1、认识一些简单的几何体的平面展开图及会画简单几何体的三视图。

2、掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和及应用。

五、复习重点: 线段、射线、直线、角的性质和运用六、复习难点:角的运算与应用;空间观念建立和发展;几何语言的认识与运用。

七、教学方法:先学后教八、教学课时:1课时九、教学过程:知识梳理1、对于各种各样物体,我们数学主要是关注的是物体的、和。

2、从实物中抽象出的各种图形统称;在各种几何图形中,若各部分不都在同一平面内我们称它们为;若各部分都在同一平面内,我们称它们为。

3、点、线、面、体与几何图形的关系:点动成,线动成,面动成。

其中是构成图形的基本元素。

4、填写表格:5、经过两点有且一条直线,简述为:。

6、线段的最短性描述为、简单说成:。

7、连接两点间的线段的,叫做这两点的距离。

89、线段中点:线段上的一点把一条线段分成,这一点叫这条线段的中点。

类似的还可以将线段三等分、四等分。

8、几何语言表达: C如图,∵C 是线段AB 的中点。

∴或 AB=2 =2此图中存在着的和差关系:9、角的定义1:有 端点的两条 组成的图形叫角。

其中公共端点叫角的 ,两条射线叫角的 .角的两条边是 线。

角的定义2(如图2)角也可以看作 而形成的图形;10、角的度量中常用的角的度量单位有 、 、 ,分别的符号是 、 、 。

90°-18°25′37〞= ; 37.26°= ° ′ 〞;11、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的 ,类似的还可以将角分成三等分、四等分。

人教版数学七年级上册第四章图形认识初步复习优秀教学案例

人教版数学七年级上册第四章图形认识初步复习优秀教学案例
5.作业小结:在课程的最后,我布置相关的作业,让学生运用所学知识进行练习,巩固课堂所学内容。同时,我提醒学生在完成作业时注意图形的大小、方向和位置,培养他们的细节意识和准确性。这种教学方式能够帮助学生及时巩固所学知识,提高他们的学习成果。
(三)学生小组讨论
1.将学生分成若干小组,每组提供一些实际问题或图形,让学生讨论并尝试解决。
2.引导学生运用所学知识进行分析、讨论和交流,培养他们的团队协作能力和沟通能力。
3.教师巡回指导,解答学生的疑问,给予个别化的帮助和指导。
(四)总结归纳
1.邀请学生代表汇报小组讨论的结果,总结他们在解决问题过程中遇到的主要问题和解决方法。
3.小组合作学习:我将学生分成若干小组,鼓励他们相互讨论、交流和合作,共同解决问题。这种教学方式不仅能够培养学生的团队协作能力和沟通能力,还能够激发他们的学习动力和自信心。
4.反思与评价:在教学过程中,我引导学生对自己的学习过程进行反思,总结学习经验和方法,提高自我认知能力。同时,组织学生进行互评和自评,培养他们的评价能力和批判性思维。这种教学方式能够帮助学生更好地掌握知识,提高他们的学习效果。
3.教师对学生的学习情况进行全面评价,关注他们的进步和优点,激发他们的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1.利用图片或实物模型展示各种几何图形,如线段、射线、直线、角等,引导学生观察和描述这些图形的特征。
2.提出问题:“你们已经学习了哪些几何概念和性质?它们之间有什么联系?”让学生回顾已学知识,为新课的学习做好铺垫。
3.通过本章节的学习,使学生能够形成积极的情感态度,树立自信心,培养良好的学习习惯和团队合作精神。
三、教学策略
(一)情景创设
1.利用实物模型、图片等教学资源,为学生提供丰富的几何图形实例,激他们的学习兴趣和空间想象力。

人教版七年级数学上册《 第四章 几何图形初步 》教案

人教版七年级数学上册《 第四章 几何图形初步 》教案

人教版七年级数学上册《第四章几何图形初步》教案一. 教材分析《第四章几何图形初步》是人教版七年级数学上册的一章重要内容,主要介绍了平面几何图形的性质和分类,包括线段、角、三角形、四边形等基本几何图形的性质和判定。

本章内容是学生进一步学习几何的基础,对于培养学生的空间观念和逻辑思维能力具有重要意义。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于图形的认知也有一定的了解。

但是,学生对于几何图形的性质和分类还不够清晰,对于证明和推理的能力还有待提高。

因此,在教学过程中,需要注重引导学生从直观到抽象的思维过程,培养学生的空间想象能力和逻辑推理能力。

三. 教学目标1.了解和掌握基本几何图形的性质和分类。

2.能够运用几何知识解决一些实际问题。

3.培养学生的空间观念和逻辑思维能力。

四. 教学重难点1.重点:基本几何图形的性质和分类。

2.难点:对于几何图形的证明和推理。

五. 教学方法1.情境教学法:通过实际问题,引导学生思考和探索,激发学生的学习兴趣。

2.直观教学法:通过实物模型和图形,帮助学生直观地理解几何图形的性质。

3.推理教学法:引导学生运用逻辑推理的方法,证明几何图形的性质。

六. 教学准备1.准备相关的实物模型和图形,如线段、角、三角形等。

2.准备多媒体教学设备,如投影仪、电脑等。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量线段长度、计算角度等,引导学生思考和探索,激发学生的学习兴趣。

2.呈现(10分钟)教师通过实物模型和图形,向学生介绍线段、角、三角形等基本几何图形的性质。

引导学生通过观察和操作,发现和总结几何图形的性质。

3.操练(10分钟)教师给出一些练习题,让学生运用所学的几何知识进行解答。

教师可以通过多媒体教学设备,展示学生的解答过程,并进行讲解和指导。

4.巩固(10分钟)教师通过一些实际问题,让学生运用所学的几何知识进行解决。

教师可以引导学生进行小组讨论和交流,帮助学生巩固所学的知识。

人教版数学七年级上册第四章《几何图形初步》复习教学设计

人教版数学七年级上册第四章《几何图形初步》复习教学设计
(二)讲授新知
1.教学内容:回顾并巩固点、线、面的基本概念,讲解三角形、四边形、圆等基本图形的分类和性质。在此基础上,引入几何图形的绘制方法和计算技巧。
2.教学方法:采用直观演示法、启发式教学法和讲解法,结合多媒体课件和实物模型,帮助学生理解几何图形的性质和特点。
3.目标:使学生掌握几何图形的基本知识和操作方法,为解决实际问题奠定基础。
(2)运用直观演示法,通过实物、教具等展示几何图形的性质和特点,增强学生的直观感知。
(3)实施启发式教学,引导学生主动探究几何图形的性质和规律,培养学生的逻辑思维能力。
(4)开展小组合作学习,促进学生之间的交流与分享,提高学生的团队协作能力。
2.教学策略:
(1)注重分层教学,针对不同学生的学习需求,设计不同难度的教学任务和练习题。
3.强化几何图形在实际生活中的应用,帮助学生建立几何知识与现实生活的联系,提高学生的几何应用能力。
4.通过小组合作、讨论交流等形式,培养学生的团队协作能力和沟通能力。
5.注重情感教育,关注学生的心理需求,营造轻松愉快的学习氛围,使学生在愉悦的情感体验中学习几何知识。
三、教学重难点和教学设想
(一)教学重难点
1.重点:掌握几何图形的基本概念、性质和判定方法,以及几何图形的绘制和计算。
2.难点:
(1)空间想象能力的培养和提高;
(2)几何图形性质与判定方法的灵活运用;
(3)解决实际问题时,将几何知识与生活情境相结合的能力。
(二)教学设想
1.教学方法:
(1)采用情境教学法,创设生活情境,让学生在情境中感受几何图形的美,激发学习兴趣。
4.理解并运用几何图形的性质和判定方法,提高解决问题的能力。
(二)过程与方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何图形初步小结与复习教案
教学目标:
1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章全部知识;
2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;
教学重点:
理解本章的知识结构,掌握本章的全部定理和公理;
教学难点:
理解本章的数学思想方法.
一、本章的知识结构框图
二. 知识点梳理
(一)几何图形
1.几何图形:平面图形,三角形、四边形、圆等. 立体图形,棱柱、棱锥、圆柱、圆锥、球等.
2. 立体图形的平面展开图:三视图
3. 点、线、面、体:
点:线和线相交的地方是点,它是几何图形最基本的图形.
线:面和面相交的地方是线,分为直线和曲线.
面:包围着体的是面,分为平面和曲面.
体:几何体也简称体.
点动成线,线动成面,面动成体.
(二)直线、射线、线段
1、基本概念
直线射线线段
图形
端点个数无一个两个
表示法
直线a
直线AB
(BA)
射线AB
线段a
线段AB(BA)
作法叙述作直线AB;
作直线a
作射线AB
作线段a
作线段AB
连接AB
延长叙述不能延长反向延长射线AB 延长线段AB;
反向延长线段BA
2、直线的性质
经过两点有一条直线,并且只有一条直线.
简单地:两点确定一条直线.
3、画一条线段等于已知线段
(1)度量法(2)用尺规作图法
4、线段的大小比较方法
(1)度量法(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.
图形:
C B
A
符号:若点C是线段AB的中点,则AC=BC=1
2
AB,AB=2AC=2BC.
6、线段的性质
两点的所有连线中,线段最短.简称:两点之间,线段最短.
7、两点的距离
连接两点的线段长度叫做两点的距离.
8、点与直线的位置关系
(1)点在直线上(2)点在直线外.
(三)角
1、角:由公共端点的两条射线所组成的图形叫做角.
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
5、角的比较方法
(1)度量法(2)叠合法
6、角的和、差、倍、分及其近似值
7、画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.
(2)借助量角器能画出给定度数的角.
(3)用尺规作图法.
8、角的平线线
定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形:
符号:若OB 是∠AOC 的平分线,则∠AOB =∠BOC = 21
∠AOC.
9、互余、互补
(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.
(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.
(3)余(补)角的性质:等角的补(余)角相等.
10、方向角
(1)正方向
(2)北(南)偏东(西)方向
(3)东(西)北(南)方向
三、练习
1、下列说法中正确的是( )
A 、延长射线OP
B 、延长直线CD
C 、延长线段C
D D 、反向延长直线CD
2、下面是我们制作的正方体的展开图,每个平面内都标注了字母,请根据要求回答问题:
(1)和A 面所对的会是哪一面?
(2)和B 面所对的会是哪一面?
(3)面E 会和哪些面相交?
四、作业
148页第7、8题。

相关文档
最新文档