北师大版九学年数学下册课程教案解直角三角形
北师大版数学九年级下册《解直角三角形》word教案
解直角三角形【教学内容】解直角三角形【教学目标】知识与技能:了解解直角三角形的定义,能通过已知条件解直角三角形。
过程与方法:通过本节课的学习,熟练应用勾股定理、直角三角形两锐角关系、边角关系解直角三角形,培养自己知识的运用能力和计算能力。
情感、态度与价值观通过学习,培养学生运用数学知识分析问题、解决问题的能力【教学重难点】重点:学会运用已知条件解直角三角形。
难点:根据条件选择适当方法解直角三角形。
【导学过程】【知识回顾】回答并写出以下问题:Rt∆中,∠C为直角,其余5个元素之间有以下关系:如图,在ABC(1)三边之间关系:(勾股定理)(2)锐角之间的关系:(3)边角之间的关系:【情景导入】直角三角形除直角外,还有三条边和两个锐角,请问至少知道这五个元素中同个元素,就可以求出其他元素呢?【新知探究】探究一、已知两条边解直角三角形:Rt∆中,∠C为直角,∠A,∠B,∠C所对的边分别为a,b,c,且a=√15,例1在ABCb=5,求这个三角形的其他元素。
由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形。
探究二、已知一条边和一个锐角(两个已知元素中至少有一条边)解直角三角形:Rt∆中,∠C为直角,∠A,∠B,∠C所对的边分别为a,b,c,且b=30,∠例2,在ABCB=25°求这个三角形的其他元素(边长精确到1)。
通过以上两种类型,我们可以知道,在直角三角形中如果知道其中的2个元素(其中至少有一个是边),那么就可以求出其余的3个未知元素。
【知识梳理】本节课我们学习了哪些知识?你对解直角三角形有哪些认识?【随堂练习】1、在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,则下列结论成立的是()A、c=a·sinAB、b=c·cosAC、b=a·tanAD、a=c·cosA2、在Rt△ABC中,∠C=90°,根据下列条件解直角三角形:(1)b=23,c=4;(2)c=8,∠A=60°;(3)b=7,∠A=45°;(4)a=24,b=83.3、在△ABC中,∠C为直角,AC=6,BAC∠的平分线AD=43,解此直角三角形。
北师大版数学九年级下册1 解直角三角形1教案与反思
1.4解直角三角形满招损,谦受益。
《尚书》原创不容易,【关注】,不迷路!1.正确运用直角三角形中的边角关系解直角三角形;(重点)2.选择适当的关系式解直角三角形.(难点)一、情境导入如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带成为该市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,根据以上条件你能求出观景台D到徒骇河西岸AC的距离吗?二、合作探究探究点:解直角三角形【类型一】利用解直角三角形求边或角已知在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对应边分别为a、b、c,按下列条件解直角三角形.(1)若a=36,∠B=30°,求∠A的度数和边b、c的长;(2)若a=6,b=6,求∠A、∠B的度数和边c的长.解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,a c=cos B ,即c =acos B =3632=243,∴b =12c =12×243=123; (2)在Rt △ABC 中,∵a =6,b =6,∴c =62,∠A =∠B =45°.方法总结:解直角三角形时应求出所有未知元素,尽可能地选择包含所求元素与两个已知元素的关系式求解. 变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】构造直角三角形解决长度问题一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90,∠E =30°,∠A =45°,AC =122,试求CD 的长.解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可.解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×r (2)2=12,CM=BM =12.在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM tan60°=43,∴CD =CM -MD =12-4 3. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型三】构造直三角形解决面积问题在△ABC 中,∠B =45°,AB =r (2),∠A =105°,求△ABC 的面积.解析:过点A 作AD ⊥BC 于点D ,根据勾股定理求出BD 、AD 的长,再根据解直角三角形求出CD 的长,最后根据三角形的面积公式解答即可.解:过点A 作ADBC 于点D ,∵∠B =5°,∴∠BAD =45°,∴AD =BD =22AB =22×2=1.∵∠A =105°,∴∠CAD =105°-45°=60°,∴∠C =30°,∴CD =ADtan30°=133=3,∴S △ABC =1(CD +BD )·AD =12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课堂达标训练”第7题三、板书设计解直角三角形1.解直角三角形的概念2.解直角三角形的基本类型及其解法3.解直角三角形的简单应用本节课的设计,力求体现新课程理念.给学生自主探索的时间,给学生宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新能力、合作能力,激发学生学习数学的积极性、主动性.【素材积累】指豁出性命,进行激烈的搏斗。
北师大版九年级数学下册《解直角三角形》精品教案
《解直角三角形》精品教案生活中,我们常常遇到与直角三角形有关的问题.知道直角三角形的边可以求出角,知道角也可以求出相应的边.)直角三角形的边和锐角之间关系:tan A==a b解:在Rt△ABC中,a2+b2∴c=b2+a²=2在Rt△ABC中,sinB=B,∠ C所对的边分别为a,b,c,且b=30,∠ B=25°,求这个三角形的其他元素(边长精确到1).解:在Rt△ABC中,∠ C=90°,∠ B=25°,∴∠ A=65∵sin B=b c,b=30,∴c=b =30 25°≈71.∵tan B=b b=30,∴a=b =30 25°≈64.如果已知直角三角形的一边和一个锐角,可以求出其他元素.讲授新课例题讲解从刚刚导入新课的探究中,我们可以发现:在直角三角形中,除直角外的5个元素(即3条边和2个锐角),只要知道其中的2个元素(至少有一个是边),根据三角函数,就可以求出其余的3个未知元素。
在直角三角形中,由直角三角形中已知元素,求出所有未知元素的过程,叫做解直角三角形.解直角三角形的依据:(1)三边之间的关系:a2+b2=c2(勾股定理);(2)锐角之间的关系:∠A+∠B=90°;(3)边角关系:sin A=a c,cos A=b c,tan A=a b.(4)面积公式:S△ABC=12 =12 ·ℎ接下来,我们再看一些具体的例子:【例3】如图,在△ABC中,CD⊥AB,垂足为D.若AB=12,CD=6,tan A=32,求sin B+cos B的值.解:在Rt△ACD中,∵∠ADC=90°,∴tan A=CDAD=6AD=32,∴AD=4,∴BD=AB-AD结合导入的思考和老师的讲解,利用探究理解和掌握解直角三角形的定义和方法。
老师在例题讲解的时候,自己先思考,然后再听老师讲讲授知识,让学生熟练利用探究理解和掌握解直角三角形的定义和方法。
北师大版九年级数学下册1.4解直角三角形教学设计
1.通过小组合作、讨论、探究等方式,培养学生的逻辑思维能力和解决问题的能力。
2.通过实际案例分析,让学生学会将实际问题转化为数学问题,提高学生的数学建模能力。
3.引导学生运用数形结合的思想,将抽象的数学问题具体化,培养学生的直观想象能力。
(三)情感态度与价值观
1.培养学生对待数学问题的积极态度,激发学生学习数学的兴趣,增强学生的自信心。
4.学生的学习兴趣和积极性:激发学生的学习兴趣,调动学生的学习积极性,关注学生在学习过程中的情感体验,使他们在愉悦的氛围中学习。
5.学生的个体差异:关注学生的个体差异,针对不同学生的学习需求,制定合适的教学策略,让每个学生都能在课堂上得到提高。
三、教学重难点和教学设想
(一)教学重难点
1.重点:
(1)理解并掌握解直角三角形的原理和方法,能够熟练运用三角函数求解未知边长和角度。
(2)培养学生将实际问题转化为数学问题的能力,提高数学建模素养。
2.难点:
(1)学生对三角函数的灵活运用,尤其在解决复杂问题时,能够选择合适的三角函数进行求解。
(2)学生在解决实际问题时,能够准确提炼关键信息,建立数学模型,并进行求解。
(二)教学设想
1.教学方法:
(1)采用情境导入法,通过展示生活中的实际案例,激发学生学习兴趣,引出本节课的学习内容。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
为了激发学生对解直角三角形的学习兴趣,我设计了一个与学生生活密切相关的情境:假设我们要测量学校旗杆的高度,如何利用一根尺子和一个量角器来完成这个任务?
2.教学过程:
(1)向学生展示旗杆的图片,并提出问题:“同学们,你们知道这根旗杆的高度吗?如何才能测量出来呢?”
北师大版九年级数学下册:第一章 1.4《解直角三角形》精品教案
北师大版九年级数学下册:第一章 1.4《解直角三角形》精品教案一. 教材分析北师大版九年级数学下册第一章《解直角三角形》是整个初中数学的重要内容,它不仅巩固了初中阶段的知识,同时也为高中阶段的数学学习打下了基础。
本节课的主要内容是让学生掌握直角三角形的性质,学会使用勾股定理和锐角三角函数,并能解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。
但是,对于如何运用勾股定理和锐角三角函数解决实际问题,他们可能还存在一定的困难。
因此,在教学过程中,我们需要关注学生的学习需求,引导学生主动探索,培养他们的解决问题的能力。
三. 教学目标1.理解直角三角形的性质,掌握勾股定理和锐角三角函数的定义及应用。
2.能够运用勾股定理和锐角三角函数解决实际问题。
3.培养学生的观察能力、思考能力和解决问题的能力。
四. 教学重难点1.教学重点:直角三角形的性质,勾股定理和锐角三角函数的定义及应用。
2.教学难点:如何引导学生运用勾股定理和锐角三角函数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生主动探索直角三角形的性质,激发学生的学习兴趣。
2.问题驱动法:设置一系列问题,引导学生思考和解决问题,培养学生的思维能力。
3.合作学习法:学生进行小组讨论和实践,提高学生的合作能力和动手能力。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.教学素材:准备一些实际的直角三角形问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用生活实例,如测量楼房的高度等,引出直角三角形的问题,激发学生的学习兴趣。
2.呈现(10分钟)通过课件展示直角三角形的性质,引导学生观察和思考,总结出直角三角形的性质。
3.操练(10分钟)让学生通过实际问题,运用勾股定理和锐角三角函数解决问题,巩固所学知识。
4.巩固(10分钟)设置一些练习题,让学生独立完成,检查他们对直角三角形性质的掌握程度。
北师大版初三数学下册《解答直角三角形》教学设计
北师大版初三数学下册《解答直角三角形》教学设计一、教学目标:本教学设计旨在通过研究直角三角形的解答方法,帮助学生掌握解答直角三角形问题的基本技巧,培养学生的解题能力和思维能力。
具体教学目标如下:1. 理解直角三角形的定义和特性;2. 研究使用勾股定理解答直角三角形问题;3. 掌握解题过程中的常用方法和技巧;4. 能够灵活运用所学知识解答相关问题。
二、教学内容:1. 直角三角形的定义和特性;2. 勾股定理的原理和应用;3. 解答直角三角形问题的常用方法和技巧。
三、教学重点:1. 理解直角三角形的定义和特性;2. 掌握勾股定理的运用;3. 熟练运用解答直角三角形问题的方法和技巧。
四、教学步骤:步骤一:引入直角三角形的定义和特性1. 利用课件或黑板,向学生介绍直角三角形的定义和特性。
2. 引导学生观察直角三角形的特点,包括角度和边长的关系。
步骤二:讲解勾股定理的原理和应用1. 通过示意图和简单的数学公式,向学生讲解勾股定理的原理和应用。
2. 给学生提供一些例题,让他们尝试使用勾股定理解答问题。
步骤三:教授解答直角三角形问题的常用方法和技巧1. 介绍解答直角三角形问题的常用方法和技巧,如利用已知边长比值、利用相似三角形等。
2. 给学生提供一些实际问题,引导他们运用所学方法解答问题。
步骤四:练与巩固1. 给学生一些练题,让他们在课堂上或课后进行练。
2. 鼓励学生互相交流和讨论解题思路,加深对知识的理解和掌握。
五、教学评价与反馈:1. 在学生练时,教师可以适时给予指导和解答,帮助他们纠正错误和加深理解。
2. 通过观察学生的表现和回答问题的准确性,评价他们对直角三角形解答方法的掌握情况。
3. 提供反馈和建议,帮助学生进一步提高解题能力。
六、教学资源准备:1. 教学课件或黑板;2. 教材《北师大版初三数学下册》;3. 练题和实际问题。
七、教学延伸:1. 鼓励学生自主研究,探索更多直角三角形的解答方法和应用场景;2. 引导学生进行相关拓展思考,提出更深入的问题或探究性研究。
新北师大版九年级数学下册《一章 直角三角形的边角关系 4 解直角三角形》教案_4
《解直角三角形》(第1课时)教学设计一、教学内容解析本节课的教学内容是解直角三角形。
解直角三角形是锐角三角函数这章的一个重要内容。
它是初中阶段继直角三角形中两锐角之间的关系、三边之间的关系之后需要新学的边角之间的关系。
对整体把握理解直角三角形的现实应用价值具有里程碑式的意义。
本节内容意在促进学生进一步理解锐角三角函数概念、巩固特殊角的锐角三角函数值。
同时是对后面要学的利用锐角三角函数知识去解决实际问题提供知识储备。
因此本节内容在本章中具有承上启下的作用。
借助身边的实际问题抽象成数学问题,我们总结出了解直角三角形的概念,这是初中阶段又一次数形结合的具体体现。
利用直角三角形中的已知元素,通过分析、归纳得出未知元素的过程,可以让学生体会数学思维的严谨性。
这对今后学习其它数学知识具有启发意义。
教科书中给我们给出的是典型例题。
通过剖析典题,梳理解直角三角形的流程。
可以确定本节课的教学重点为:如何去解直角三角形。
二、学生学情分析我所授课的班级是舟曲县峰迭新区中学九年级(3)班,该班学生数学基础相对来说较好些,大部分学生个性活泼,课堂上学习积极性较高。
通过学锐角三角函数的概念、特殊角的锐角三角函数值,发现大部分学生对知识的掌握较熟练。
然而,学生分析问题的能力和逻辑推理能力相对来说差异较大,部分学生的思维过程不够严谨,特别是对锐角三角函数的概念理解存在一定困难。
从典型例题可以看出,分析已知元素与未知元素之间的关系,选择适当的锐角三角函数去求未知元素显得尤为关键。
因此,本节课的教学难点是:灵活选择三角函数关系式,熟练、合理地去解直角三角形。
三、教学目标设置(1)知识技能1.理解解直角三角形的概念,会由已知两边、已知一边一角求解直角三角形。
2.掌握解直角三角形的基本类型,一般过程方法。
(2)过程方法经历解直角三角形的过程,进一步体验直角三角形中的边角关系,深化对三角函数概念的理解,逐步培养学生分析问题的能力。
(3)情感态度通过让学生体验“提出问题——建立模型——解决问题”的过程来培养学生对数学的学习兴趣,学习过程注重渗透数形结合的数学思想,感悟数学的美、美在数学的美学价值。
1.4解直角三角形教学设计2023—2024学年北师大版数学九年级下册
(3)实体模型操作:使用直角三角形模型等实体模型,让学生亲自操作和观察,增强学生的实践操作能力和空间想象力。
(4)电子白板应用:利用电子白板,进行实时演示和交互,方便教师展示解题过程和思路,同时也方便学生进行笔记和回顾。
(4)学会将直角三角形的问题转化为数学模型,并运用所学知识解决实际问题。
2.教学难点
本节课的难点在于学生对勾股定理和三角函数的理解和应用。具体来说,难点内容包括:
(1)勾股定理的推导和应用:学生需要理解勾股定理的推导过程,并能够熟练运用勾股定理解决直角三角形的问题;
(2)三角函数的定义和运用:学生需要理解三角函数的概念和性质,并能够熟练运用三角函数解直角三角形;
其次,在基础知识讲解环节,我发现部分学生在理解勾股定理时存在一定的困难。他们对于定理的记忆和应用似乎不够熟练。针对这一点,我考虑在后续的课程中,引入更多的实际案例,让学生在解决具体问题时,自然而然地运用到勾股定理。
再来,课堂讨论环节进行得较为顺利,但我也观察到,学生在分组讨论时,组内分工并不均衡。有些学生发言较少,而有些学生则占据了主导地位。为了改善这一现象,我计划在未来的课堂中,采取更为平等的讨论方式,比如让学生轮流发表观点,或者设置小组任务,确保每个学生都能参与到讨论中。
(1)阅读材料:《数学之美》、《数学家的故事》、《数学魔术》等,让学生通过阅读了解数学的趣味性和应用。
(2)视频资源:探索频道、国家地理等制作的相关数学纪录片,如《勾股定理的秘密》、《数学的力量》等,让学生通过视频了解数学的历史和应用。
(3)数学竞赛:鼓励学生参加各种数学竞赛,如全国中学生数学奥林匹克竞赛、美国数学竞赛等,提高学生的解题能力和应用能力。
北师大版九年级数学下册1.4《解直角三角形》教案
《解直角三角形》教案【教学目标】知识技能目标:初步理解解直角三角形的含义,掌握运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形的未知元素.过程性目标:在解决与直角三角形有关的实际问题中如何把问题数学模型化.通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和分析问题解决问题的能力.情感态度目标:在解决问题的过程中引发学生形成数形结合的数学思想,体会数学与实践生活的紧密联系.从而增强学生的数学应用意识.【重点难点】重点:理解并掌握直角三角形边角之间的关系,运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形的未知元素.难点:从已知条件出发,正确选用适当的边角关系或三角函数解题.【教学过程】一、创设情境知识回顾1.在一个直角三角形中,共有几条边?几个角?(引出“元素”这个词语)2.在Rt△ABC中,∠C=90°.a,b,c,∠A,∠B这些元素间有哪些等量关系呢?讨论复习:Rt△ABC的角角关系、三边关系、边角关系分别是什么?总结:直角三角形的边角关系(1)两锐角互余:∠A+∠B=90°(2)三边满足勾股定理:a2+b2=c2(3)边与角的关系:sin A=cos B=,cos A=sin B=,tanA=.3.填一填记一记角α30°45°60°三角函数sin αcos αtan α二、探究归纳在Rt△ABC中,(1)根据∠A=60°,斜边AB=30,你能求出这个三角形的其他元素吗?(2)根据AC=,BC=,你能求出这个三角形的其他元素吗?(3)根据∠A=60°,∠B=30°,你能求出这个三角形的其他元素吗?从以上关系引导学生发现,在直角三角形中,只要知道其中两个元素(至少有一个是边)就可以求出其余的几个元素,从而引出解直角三角形的定义:在直角三角形中由已知元素求出所有未知元素的过程就是解直角三角形.例1:在Rt△ABC中,∠C为直角,∠A,∠B,∠C所对的边分别为a,b,c,且a= ,b=,求这个三角形的其他元素.例2:在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且b=30, ∠B=25°.解这个直角三角形(结果保留小数点后一位).注意强调:在解直角三角形的过程中,常会遇到近似计算,尽量选择原始数据,避免累积误差.三、交流反思通过本节课的学习,大家有什么收获?四、检测反馈1.如图在Rt△ABC中,∠C=90°,AC=,BC=,解这个直角三角形.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.(1)已知∠B=45°,c=,解这个直角三角形.(2)已知∠A-∠B=30°,b+c=30,解这个直角三角形.五、布置作业课本P17 习题1,2六、板书设计4 解直角三角形1概念: 2.例题: 3.应用:探究练习七、教学反思这节课由于内容较多,学生需要变式思维.我通过利用多媒体教学技术的优势,提供给学生直观形象,既提高了学生的解题能力,又增强了他们运用数学的意识.这是我努力创设授课过程的出发点和重中之重.在教学过程中,采取了学生自主学习、小组讨论和师生互动的形式.通过教师积极组织引导,学生通过利用所掌握的解直角三角形知识与技能解决了生活中的实际问题,同时激发了学生学习数学的积极性,为学生今后的学习奠定了基础.取得了教师预期的教学效果,比较圆满地完成了本节课的教学目标.。
北师大版九年级数学下册:1.4《解直角三角形》教学设计
北师大版九年级数学下册:1.4《解直角三角形》教学设计一. 教材分析《解直角三角形》是北师大版九年级数学下册第1章“锐角三角函数”的后续内容,学生在学习了锐角三角函数的基础上,进一步研究直角三角形的性质和解法。
本节课的内容包括直角三角形的边角关系,锐角三角函数的定义,正弦、余弦、正切函数的定义及它们之间的关系。
通过本节课的学习,使学生掌握解直角三角形的方法,为后续学习圆的方程、三角函数等知识奠定基础。
二. 学情分析学生在之前的学习中已经掌握了锐角三角函数的基本概念和性质,具备一定的观察、分析和解决问题的能力。
但解直角三角形这一部分内容较为抽象,需要学生具有较强的空间想象能力和逻辑思维能力。
此外,学生在解题过程中可能存在对锐角三角函数的运用不够熟练,对直角三角形边角关系的理解不够深入等问题。
三. 教学目标1.知识与技能目标:使学生掌握解直角三角形的方法,理解正弦、余弦、正切函数的定义及它们之间的关系。
2.过程与方法目标:通过观察、分析、推理等过程,培养学生空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.教学重点:解直角三角形的方法,正弦、余弦、正切函数的定义及它们之间的关系。
2.教学难点:对直角三角形边角关系的理解,以及在不同情况下选择合适的解法。
五. 教学方法1.情境教学法:通过生活实例引入直角三角形的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、分析、推理,培养学生的空间想象能力和逻辑思维能力。
3.小组合作学习:学生在小组内讨论、交流,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示直角三角形的图形、性质和解法。
2.练习题:准备不同难度的练习题,用于巩固所学知识。
3.教学道具:准备一些直角三角形的模型,方便学生观察和操作。
七. 教学过程1.导入(5分钟)利用生活实例,如测量身高、计算跳远距离等,引导学生回顾锐角三角函数的知识,激发学生对解直角三角形的兴趣。
北师大版九年级数学下册:1.4《解直角三角形》教学设计
北师大版九年级数学下册:1.4《解直角三角形》教学设计一. 教材分析北师大版九年级数学下册1.4《解直角三角形》是本节课的主要内容。
直角三角形在现实生活和科学研究中有广泛的应用,学习解直角三角形对于提高学生的数学应用能力具有重要意义。
本节课的内容包括了解直角三角形的性质,学会使用勾股定理,运用三角函数等方法解直角三角形。
二. 学情分析九年级的学生已经掌握了初中阶段的基础数学知识,对三角形的基本概念和性质有一定的了解。
但是,对于解直角三角形的实际应用,学生可能还比较陌生。
因此,在教学过程中,需要结合学生的实际情况,从实际问题出发,引导学生理解和掌握解直角三角形的方法。
三. 教学目标1.知识与技能目标:使学生了解直角三角形的性质,学会使用勾股定理,运用三角函数等方法解直角三角形。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:直角三角形的性质,勾股定理,三角函数在解直角三角形中的应用。
2.难点:如何将实际问题转化为直角三角形问题,并运用相关知识解决。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.案例教学法:通过分析典型案例,使学生理解和掌握解直角三角形的方法。
3.小组合作学习:培养学生的团队合作精神,提高学生的沟通能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的实际情况,设计教学活动和案例。
2.学生准备:掌握三角形的基本概念和性质,预习本节课的内容。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,如测量高度、距离等,引发学生的思考,引出本节课的主题——解直角三角形。
2.呈现(10分钟)教师展示典型案例,使学生了解直角三角形的性质,学会使用勾股定理,运用三角函数等方法解直角三角形。
3.操练(10分钟)学生分组讨论,结合典型案例,进行解直角三角形的实际操作,巩固所学知识。
数学北师大版九年级下册解直角三角形(一)教学设计
1.4解直角三角形(一)教学设计一、教学内容分析本课时的内容是解直角三角形,为了引起学生对教学内容的兴趣,所以在本课时的开头引入了一个实际问题,从而自然过度到直角三角形中,已知两个元素求其他元素的情境中. 通过例题的讲解后引出什么是解直角三角形,从而了解解直角三角形的意义。
通过讨论直角三角形的边与角之间的关系,到解直角三角形过程中,使学生能掌握解直角三角形的知识. 以及在解直角三角形时,选择合适的工具解,即优选关系式.从而能提高分析问题和解决问题的能力.二、学生情况分析学生已经学完了任意直角三角形的角角关系(两角互余)、边边关系(勾股定理),以及特殊的直角三角形的一些特殊性质.三、教学目标1.知识与技能(1)使学生理解解直角三角形中五个元素的关系,什么是解直角三角形。
(2)会运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形。
2.过程与方法通过综合运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题,解决问题的能力。
3.情感态度与价值观渗透数形结合的数学思考,培养学生综合运用知识的能力和良好的学习习惯三、重点与难点1、重点:直角三角形的解法。
2、难点:从已知条件出发,正确选用适当的边角关系或三角函数解题。
四、教学过程:(一)、复习引入在直角三角形中,共有三条边、三个角(六个元素),你能根据所学的知识谈谈它们之间的关系吗?教师提出问题,引起学生思考,然后小组内讨论,回答。
设计意图:回顾复习直角三角形中边与边、角与角、边与角之间的关系(二)、回顾汇总问:边与边、角与角、边与角之间的关系教师根据学生的回答归纳:在直角三角形中:1.三边之间关系:a2+b2=c2(勾股定理)2.锐角之间关系:∠A+∠B=90°3.边角之间关系:正弦函数:sinA=余弦函数:cosA=正切函数:tanA=教师提出问题,引导提示学生思考总结(引问:边与边、角与角、边与角之间的关系)设计意图:通过回顾复习,为解直角三角形打下基础,学生尝试总结回答,教师讲评汇总。
北师大版九年级下册4解直角三角形教学设计
北师大版九年级下册4解直角三角形教学设计1. 教学背景该教学设计是九年级下册数学知识点——解直角三角形的教学设计。
在学习本课时,学生应已掌握三角形的定义,会画直角三角形,对勾股定理有初步的认识。
2. 教学目标1.了解解直角三角形的定义及方法;2.掌握利用勾股定理解决直角三角形问题;3.培养学生分析问题和解决问题的能力;4.激发学生兴趣,提高数学课堂氛围。
3. 教学内容3.1 解直角三角形3.1.1 直角三角形及勾股定理的基本知识1.直角三角形和直角三角形的性质;2.勾股定理及其证明。
3.1.2 勾股定理的应用1.求斜边、已知斜边求直角边;2.判断三角形是否为直角三角形。
3.2 解直角三角形的例题通过解直角三角形的例题让学生掌握及应用所学的理论知识。
4. 教学方法采用线上线下相结合的教学方法。
4.1 线上教学教师可通过教育软件、网络直播等方式进行授课。
其中,教育软件的课件可以包含形象清晰的图片、动画和视频等多媒体形式,以便让学生更好地理解概念、提供具体解题步骤和方法;网络直播技术可以以在线直播的形式实现远程教学。
4.2 线下教学通过线下教学加深学生对知识的理解和记忆,在课程内容充分掌握的前提下,安排如下活动:1.小组讨论:教师提供一些简单的直角三角形问题,让学生分组进行讨论、协作解题。
2.群体竞赛:在课堂末尾组织群体竞赛,以增强学生对知识的掌握。
5. 教学评估通过作业和测试,评估学生的学习成果。
5.1 作业布置一定量的作业让学生巩固所学知识,培养学生的自学能力。
5.2 测验在课程结束时,对学生进行测验,检验学生掌握知识的状况,为下一步教学提供关键的依据。
6. 教学素材1.PPT展示;2.录播课程;3.教育软件。
7. 教学总结通过教学设计,学生可以在解直角三角形课程中提高数学水平和自学能力,并且由于采用了多种教学方法,能够激发学生的学习兴趣,提高课堂效率,为学生的数学学习奠定基础。
《解直角三角形》示范公开课教学设计【北师大版九年级数学下册】
第一章 直角三角形的边角关系1.4 解直角三角形 教学设计一、教学目标1.了解解直角三角形的含义.2.经历解直角三角形的过程,掌握解直角三角形的方法.二、教学重点及难点重点:直角三角形的解法.难点:灵活运用三角函数的知识解直角三角形.三、教学用具多媒体课件、直尺或三角板。
四、相关资源《复习三角函数》动画.五、教学过程【复习引入】生活中,我们常常遇到与直角三角形有关的问题.为了解决这些问题,往往需要确定直角三角形的边和角.在直角三角形中有6个元素,分别是三条边、三个角,请根据所学知识写出它们之间的关系.师生活动:教师提出问题,引导学生思考,然后让学生讨论,尝试回答.答:能,如图,在Rt △ABC 中,∠C =90°,(1)三边之间的关系:a 2+b 2=c 2(勾股定理);(2)锐角之间的关系:∠A +∠B =90°;(3)边角之间的关系:正弦:;余弦:;正切:. sin A A =∠的对边斜边cos A A =∠的邻边斜边tan A A A =∠的对边∠的邻边A CB ab c 那么至少知道几个元素,就可以求出其他的元素呢?这节课我们就来探究这个问题. 设计意图:回顾复习直角三角形中边与边、角与角、边与角之间的关系为本节课的学习作准备.【探究新知】做一做 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C所对的边分别为a ,b ,c ,且a=b师生活动:教师出示问题,学生思考并完成解题过程.解:在Rt △ABC 中,∵a2+b 2=c 2,ab∴c=在Rt △ABC 中,sinB =12b c ==,∴∠B =30°.∴∠A =60°. 归纳:在直角三角形中,如果已知其中两边的长,那么就能求出这个三角形的其他元素.由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.设计意图:通过探究让学生明白在直角三角形中,如果已知其中两边的长,那么就能求出这个三角形的其他元素.鼓励学生结合勾股定理、三角形内角和定理以及锐角三角函数的知识进行初步的解直角三角形的探索.想一想 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且b =30,∠B =25°,求这个三角形的其他元素(边长精确到1).师生活动:教师出示问题,学生思考并完成解题过程.解:在Rt △ABC 中,∠C =90°,∠B =25°,∴∠A =65°. ∵sin B =b c ,b =30,∴c =3071sin sin 25b B =︒≈. ∵tan B =b a ,b =30,∴a =3064tan tan 25b B =︒≈. 归纳:在直角三角形中,如果已知一边和一个锐角,那么就能求出这个三角形的其他元素.设计意图:通过探究让学生明白在直角三角形中,如果已知一边和一个锐角,那么就能求出这个三角形的其他元素.求解方法另外有很多,可引导学生思考各种求解方法之间的差异与共性.结论:在直角三角形的6个元素中,直角是已知元素,如果再知道一条边和第三个元素,那么这个三角形的所有元素就都可以确定下来. 总结 解直角三角形的类型及方法(1)解直角三角形有四种基本类型:①已知斜边和一条直角边;②已知两条直角边;③已知斜边和一个锐角;④已知一条直角边和一个锐角.(2)在解直角三角形时,可以用勾股定理确定直角三角形的三边关系,由锐角三角函数得到边角关系.在选择关系时,应遵循以下基本原则:有斜(斜边)用弦(正弦、余弦),无斜(斜边)用切(正切),宁乘勿除,尽量采用原始数据.设计意图:通过总结让学生明白解题方法和规律.【典例精析】例 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且∠A =60°,c =20,解这个直角三角形.师生活动:教师出示例题,学生思考并完成本题.解:在Rt △ABC 中,∠C =90°,∠A =60°,∵∠A +∠B =90°,∴∠B =90°-∠A =30°. ∵sin B =b c ,即sin 30°=b c ,c =20,∴b =c ·sin30°=120102⨯=. 由勾股定理,得a =22222010300103c b -=-==.设计意图:通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高分析和解决问题的能力.【课堂练习】1.在下列所给出的直角三角形中,不能求解的是( ).(1)已知一直角边和所对锐角;(2)已知两锐角;(3)已知两直角边;(4)已知斜边和一锐角;(5)已知一直角和斜边.A .仅(2)B .(2)(3)C .(2)(4)D .(2)(5)2.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ).A .7sin 35°B .C .7cos 35°D .7tan 35°3.如图,在△ABC 中,∠C =90°,AC =5 cm ,∠BAC 的平分线交7cos35︒BC 于点D ,ADcm ,则BC =________cm. 4.如图,在Rt △ABC 中,∠C =90°,点D 是BC上一点,∠DAC =30°,BD =2,AB =,则AC =________.5.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,根据下列条件求出直角三角形的其他元素(角度精确到1°);(1)已知a =4,b =8;(2)已知b =10,∠B =60°;(3)已知c =20,∠A =60°.师生活动:教师先找几名学生板演,然后讲解出现的问题.参考答案1.D .2.C .3..45.解:(1)在Rt △ABC 中,∠C =90°,a =4,b =8,由勾股定理,得c 2=a 2+b 2.∴c =又∵tan A =4182a b ==,∴∠A ≈27°. ∵∠A +∠B =90°,∴∠B =90°-∠A ≈63°.(2)在Rt △ABC 中,∠C =90°,∵∠A +∠B =90°,∠B =60°,∴∠A =90°-∠B =30°.又∵tan B =b a ,b =10, ∴tan60°=10a. ∴a = ∵sin A =a c ,即sin 30°=a c , ∴c =2a ,∴c =2=. (3)在Rt △ABC 中,∠C =90°,∠A =60°,∵∠A +∠B =90°,∴∠B=90°-∠A=30°.∵sin B=bc,即sin 30°=bc,c=20,∴b=c·sin30°=120102⨯=.由勾股定理,得a===.设计意图:通过学生自主练习,可以查看学生答题的情况,统计差错及目标达成率,也可以让学生真正地动手、动脑,从而达到很好地掌握知识的目的.六、课堂小结1.解直角三角形的概念由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.2.解直角三角形的类型及方法(1)解直角三角形有四种基本类型:①已知斜边和一条直角边;②已知两条直角边;③已知斜边和一个锐角;④已知一条直角边和一个锐角.(2)在解直角三角形时,可以用勾股定理确定直角三角形的三边关系,由锐角三角函数得到边角关系.在选择关系时,应遵循以下基本原则:有斜(斜边)用弦(正弦、余弦),无斜(斜边)用切(正切),宁乘勿除,尽量采用原始数据.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计1.4 解直角三角形1.解直角三角形的概念2.解直角三角形的类型及方法。
1.4 解直角三角形(教案)-北师大版数九年级下册
第4节解直角三角形1.了解解直角三角形的概念,使学生理解直角三角形中五个元素的关系.2.经历解直角三角形的过程,掌握运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形的方法.1.在研究问题的过程中思考如何把实际问题转化为数学问题,进而把数学问题具体化.2.通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和解决问题能力.1.在解决问题的过程中引导学生形成数形结合的数学思想,体会数学与实践生活的紧密联系.增强学生的数学应用意识,激励学生敢于面对数学学习中的困难.2.通过获取成功的体验和克服困难的经历,增进学生学习数学的信心,养成学生良好的学习习惯.【重点】理解并掌握直角三角形边角之间的关系,运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形中的未知元素.【难点】从已知条件出发,正确选用适当的边角关系或三角函数解题.【教师准备】多媒体课件.【学生准备】复习三角函数和勾股定理的相关知识.导入一:课件出示:在日常生活中,我们常常遇到与直角三角形有关的问题,知道直角三角形的边可以求出角,知道角也可以求出相应的边.如图所示,在Rt△ABC中共有几个元素?我们如何利用已知元素求出其他的元素呢?【师生活动】复习直角三角形的性质(两锐角互余和勾股定理)和三角函数的概念.【学生活动】通过独立思考和与同伴交流,分析出Rt△ABC中的6个元素,并尝试利用已知元素求未知元素.[设计意图]在学生分析直角三角形6个元素的过程中,学生自然而然地会想到直角三角形的相关性质,在复习旧知的同时,又为学习新知奠定了良好的基础.导入二:课件出示:如图所示,AC是电线杆AB的一根拉线,测得拉线AC=12m,AB=6m,你能求出拉线底端到电线杆底端的长度BC吗?能求出拉线AC与地面BC所成角的度数和拉线AC与电线杆AB所成角的度数吗?学生分析:可以利用勾股定理求拉线AC的长度,易知拉线与地面所成角为∠BCA,拉线与电线杆所成角为∠BAC,利用三角函数知识和计算器即可求出∠BCA和∠BAC的度数.【引入】这节课我们就综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数的知识探究直角三角形中的边和角的求解方法.[设计意图]通过生活中实际情境的引入,使学生对本节课的学习任务一目了然,学生在探究的过程中就可以抓住重点和难点.[过渡语]我们已经了解了直角三角形中6个元素分别是三条边和三个角,那么至少要知道几个元素,才可以求出其他元素呢?下面我们进行分类探究.【做一做】在Rt△ABC中,如果已知其中两边的长,你能求出这个三角形的其他元素吗?课件出示:(教材例1)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a=,b=,求这个三角形的其他元素.思路一教师引导学生分析:1.直角三角形中已知两边可以利用定理求出第三条边.2.直角三角形中,已知两边可以利用求∠A(或∠B)的度数.3.再利用求∠B(或∠A)的度数.【师生活动】教师引导学生分析,得出解直角三角形的方法,理清解题思路.【学生活动】得出结论:1.勾股定理2.三角函数2.两锐角互余解:在Rt△ABC中,a2+b2=c2,a=,b=,∴c===2.在Rt△ABC中,sin B===,∴∠B=30°,∴∠A=60°.思路二分组探究,思考下面的问题:1.由两个已知条件a=,b=能不能求出其中的一个锐角?2.如何再求出另外一个锐角的度数?3.如何再求出第三条边的长【师生活动】学生先独立思考,然后小组讨论.教师巡视,及时发现问题,予以纠正.完成后各小组展示解题的方法和步骤,师生共同验证.解:在Rt△ABC中,a=,b=,∴tan A===,∴∠A=60°,∴∠B=30°.在Rt△ABC中,sin B=sin30°=,即=,∴c=2.【教师小结】解直角三角形的概念:由直角三角形中已知的元素,求出所有的未知元素的过程,叫做解直角三角形.[设计意图]通过对直角三角形6个元素的分析及对猜测的探究活动,自然而然地引出解直角三角形的概念,并让学生及时总结解题方法,加深对概念的理解.[知识拓展]已知直角三角形两条边求其他元素的方法:方法1:已知两条边的长度,可以先利用勾股定理求出第三边,然后利用锐角三角函数求出其中一个锐角,再根据直角三角形两锐角互余求出另外一个锐角.方法2:已知两条边的长度,可以先利用锐角三角函数求出其中一个锐角,然后根据直角三角形中两锐角互余求出另外一个锐角,再利用锐角三角函数求出第三条边.解:在Rt△ABC中,AC=12,AB=6,由勾股定理得BC=6.在Rt△ABC中,tan∠BCA===,∴∠BCA=60°,∴∠BAC=30°.∴拉线底端到电线杆底端的长度BC是6m,∠BCA和∠BAC的度数分别是60°和30°.[设计意图]通过对导入题的解答,加深学生对解直角三角形概念的理解,提高解题的综合能力.三角形的其他元素(边长精确到1).〔解析〕在直角三角形中可以利用两锐角互余求另外一个锐角的度数,然后利用与锐角∠B 和边b有关的三角函数先求出其中一条边a或c,再利用三角函数或勾股定理求出第三条边c或a.解:在Rt△ABC中,∠C=90°,∠B=25°,∴∠A=65°.∵sin B=,b=30,∴c==≈71.∵tan B=,b=30,∴a==≈64.【教师设疑】此题还有其他解法吗?【学生活动】学生相互交流他们的解法.[设计意图]通过对学习活动的探究,学生逐步掌握了解直角三角形所要具备的条件,并在探究的过程中及时总结归纳出解直角三角形的思路和方法,为后面的练习和应用打下了良好的基础.[知识拓展]已知直角三角形一条边和一个锐角求其他元素的方法:已知一个锐角的度数,先根据直角三角形两锐角互余求出另外一个锐角的度数;又知道一条边的长度,根据三角函数的定义可以求出另外两条边的长度;也可以先利用三角函数的定义求出其中一条边的长度,再利用三角函数或勾股定理求出第三条边的长度.在Rt△ABC中,如果已知两个锐角,可以解直角三角形吗?【学生活动】学生先独立判断,再分组讨论.学生小结:只知道角度是无法求出直角三角形的边长的.问题2只给出一条边长这一个条件,可以解直角三角形吗?学生小结:只给出一条边长,不能解直角三角形.【教师点评】解直角三角形必须满足的一个条件是已知“一条边”.【师生总结】解直角三角形需要满足的条件:在直角三角形的6个元素中,直角是已知元素,如果再知道一条边和第三个元素,那么这个三角形的所有元素就都可以确定下来.【教师提示】第三个元素既可以是角也可以是边.[知识拓展]解直角三角形的思路和方法:在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,则有:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.(4)面积的不同表示法:S△ABC=ab=ch(h为斜边上的高).1.解直角三角形的概念:由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.2.解直角三角形的类型:(1)已知直角三角形两条边求其他元素.(2)已知直角三角形一条边和一个锐角求其他元素.3.解直角三角形需要满足的条件:除直角外,再知道一条边和第三个元素,就可以解直角三角形.1.如图所示的是教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=,则边BC的长为()A.5cmB.10cmC.20cmD.30cm解析:在直角三角形ABC中,根据三角函数定义可知tan∠BAC=,∵AC=30cm,tan∠BAC=,∴BC=AC·tan∠BAC=30×=10(cm).故选B.2.如图所示,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°·sin54°D.点A到OC的距离为cos36°·sin54°解析:根据图形得出点B到AO的距离是指BO的长,根据锐角三角函数定义得出BO=AB sin36°,即可判断A,B错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角函数定义得出AD=AO sin36°,AO=AB·sin54°,所以AD=sin36°·sin54°,即可判断C正确,D错误.故选C.3.如图所示,已知在Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC=.解析:∵在Rt△ABC中,cos B==,∴sin B==,tan B==.∵在Rt△ABD中,AD=4,∴AB===.∵tan B==,∴AC=AB tan B=×=5.故填5.4.如图所示,在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.解析:如图所示,过点A作AD⊥BC于D,∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=2BD=6.故填6.5.如图所示,在Rt△ABC中,∠C=90°,AB=10,cos A=,求BC的长和tan B的值.解:在Rt△ABC中,∠C=90°,AB=10,cos A===,∴AC=4,根据勾股定理,得BC==6,∴tan B===.4解直角三角形解直角三角形:一、教材作业【必做题】教材第17页习题1.5第1,2题.【选做题】教材第18页习题1.5第3,4题.二、课后作业【基础巩固】1.在直角三角形ABC中,已知∠C=90°,∠A=50°,BC=5,则AC等于()A.3sin50°B.3sin40°C.3tan50°D.3tan40°2.如图所示,已知在Rt△ABC中,∠C=90°,AC=4,tan A=,则AB的长是()A.2B.8C.2D.43.(2015·桂林中考)如图所示,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.4.要用8m长的梯子爬到4m高的墙上,则梯子与地面的夹角为度.【能力提升】5.如图所示的是一张简易活动餐桌,测得OA=OB=30cm,OC=OD=50cm,B点和O点是固定的.为了调节餐桌高矮,A点有3处固定点,分别使∠OAB为30°,45°,60°,则这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)()A.40cmB.40cmC.30cmD.30cm6.如图所示,在△ABC中,cos B=,sin C=,AC=5,则△ABC的面积是.7.(2015·湖北中考)如图所示,AD是△ABC的中线,tan B=,cos C=,AC=,求:(1)BC的长;(2)sin∠ADC的值.8.张大爷家有一块三角形土地如图所示,测得∠A=30°,∠B=45°,BC=20m.请你帮助张大爷计算这块土地有多少平方米.9.如图所示,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使A,C,E成一条直线(结果保留整数)?(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°≈0.60,cos 37°≈0.80,tan37°≈0.75)【拓展探究】10.(2014·宁波中考)如图所示,从A地到B地的公路需经过C地,图中AC=10km,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A,B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)公路改直后比原来缩短了多少千米?(参考数据:sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【答案与解析】1.D(解析:∵在直角三角形ABC中,∠C=90°,∠A=50°,∴∠B=90°-∠A=90°-50°=40°.∵tanB=,∴AC=BC·tan B=3tan40°.故选D.)2.C(解析:在Rt△ABC中,∵∠C=90°,∴tan A=.∵AC=4,tan A=,∴BC=AC·tan A=2,∴AB===2.故选C.)3.(解析:在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD,∴tan∠BCD=tanA===.故填.)4.60(解析:要用8m长的梯子爬到4m高的墙上,梯子、地面和墙正好构成直角三角形,∴梯子与地面的夹角的正弦值为=.∵sin60°=,∴梯子与地面的夹角为60°.故填60.)5.B(解析:过点D作DE⊥AB于点E,易知∠OAB=30°时,桌面离地面最低,∴DE的长即为最低长度.∵OA=OB=30cm,OC=OD=50cm,∴AD=OA+OD=80cm.在Rt△ADE中,∵∠OAB=30°,AD=80cm,∴DE=AD=40cm.故选B.)6.(解析:过点A作AD⊥BC,∵在△ABC中,cos B=,sin C=,AC=5,∴cos B==,∴∠B=45°.∵sinC===,∴AD=3,∴在Rt△ADC中,CD==4,∴在等腰直角三角形ADB中,BD=AD=3,则△ABC的面积是×BC×AD=×(3+4)×3=.故填.)7.解:过点A作AE⊥BC于点E,∵cos C=,∴∠C=45°.在Rt△ACE中,CE=AC·cos C=1,∴AE=CE=1.在Rt△ABE中,tan B=,即=,∴BE=3AE=3,∴BC=BE+CE=4.(2)由(1)知BC=4,∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD-CE=1.∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.8.解:如图所示,过点C作CD⊥AB于D.易知CD=BD=BC·sin=AB·CD=×10(+)×10≈273.2(m2).答:这块土地约45°=20×=10,∴AD===10,∴AB=AD+BD=10(+),∴S△ABC有273.2m2.9.解:(1)若使A,C,E成一条直线,则需∠ABD是△BDE的外角,∴∠BED=∠ABD-∠D=127°-37°=90°,∴DE=BD·cos37°≈520×0.80=416(m),∴施工点E离D距离约为416m时,正好能使A,C,E成一条直线.(2)由(1)得在Rt△BED中,∠BED=90°,∵∠D=37°,∴BE=BD·sin37°≈520×0.60=312(m).∵BC=80m,∴CE=BE-BC≈312-80=232(m),∴公路段CE的长约为232m.10.解:(1)如图所示,过点C作CH⊥AB于H.在Rt△ACH中,CH=AC·sin∠CAB=AC·sin25°≈10×0.42=4.2(km),AH=AC·cos∠CAB=AC·cos25°≈10×0.91=9.1(km),在Rt△BCH中,BH=CH÷tan ∠CBA≈4.2÷tan37°≈4.2÷0.75=5.6(km),∴AB=AH+BH≈9.1+5.6=14.7(km).故改直的公路AB的长约为14.7km.(2)在Rt△BCH中,BC=CH÷sin∠CBA≈4.2÷sin37°≈4.2÷0.60=7(km),则AC+BC-AB≈10+7-14.7=2.3(km).答:公路改直后比原来缩短了约2.3km.为使学生迅速掌握本节课的知识,上课开始就对解直角三角形所用到的知识点:直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系等知识点进行了复习回顾,因为合理选用这些关系是正确、迅速解直角三角形的关键.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,在处理例题时,首先,应让学生独立完成,培养学生分析问题、解决问题的能力,同时渗透数形结合思想.本节课力求给学生更多自主探索的时间,让其在宽松和谐的氛围中学习,使他们学得更主动、更轻松,力求在探索知识的过程中培养学生探索能力、创新精神、合作精神,激发学生学习数学的积极性、主动性.同时,在学生选择解直角三角形的诸多方法的过程中,鼓励学生通过多种解法去解答.在选用合适的三角函数解决问题时,要引导学生总结出分析问题的方法,巧妙联系已知和未知之间的函数关系,选取合适的三角函数求解.再教时,增加解实际问题中直角三角形的例题的练习,因为学生对把实际问题转化成数学问题的能力还不太强.随堂练习(教材第17页)(1)c=4,∠A≈27°,∠B≈63°.(2)a=,c=,∠A=30°.(3)a=10,b=10,∠B=30°.习题1.5(教材第17页)1.(1)b=19,∠A=45°,∠B=45°.(2)c=12,∠A=30°,∠B=60°.2.(1)a=10,b=10,∠B=45°.(2)b=12,c=24,∠A=60°.3.解:tan∠ACD==,∴∠ACD≈27.5°,∠ACB=2∠ACD≈2×27.5°=55°.4.解:(1)墙高=6sin75°≈6×0.966≈5.8(m).(2)cosα=,解得α≈66°.∵50°<66°<75°,∴此时人能够安全使用这个梯子.本节课学生学习的重点是解直角三角形的方法,所以理解解直角三角形的概念是掌握解直角三角形方法的前提,而熟练运用勾股定理、两锐角互余以及锐角三角函数的定义则是解直角三角形的关键,学生要做好复习和预习工作,把握好各个元素之间的关系.此外,在没有直角三角形的图形中,通过作垂线或其他辅助线构造直角三角形也是学生要重点掌握的能力和技巧.解非直角三角形时,构造直角三角形的方法:(1)利用作高构造直角三角形,如下图所示.(2)利用勾股定理或逆定理构造直角三角形,如下图所示.(3)利用已知角构造直角三角形,如下图所示.。
第1章1.4解直角三角形(教案)2023-2024学年九年级下册数学(教案)(北师大版)
今天我们在课堂上一起探讨了解直角三角形的知识,回顾整个教学过程,我觉得有几个地方值得反思和总结。
首先,我在导入新课环节通过提出与生活相关的问题,激发了学生的兴趣。他们能够积极参与,提出自己在生活中遇到的实际问题,这有助于提高他们对本节课内容的学习兴趣。但在这一过程中,我也发现部分学生对直角三角形的概念理解不够深入,需要在后续教学中加强基础知识的巩固。
3.培养学生的空间想象力和几何直观,通过绘制直角三角形图形,加深对几何图形的理解。
4.激发学生的合作意识和团队精神,通过小组讨论、互动交流,共同解决问题,提升沟通能力。
5.培养学生勇于探索、积极思考的学习态度,形成自主学习、终身学习的观念。
三、教学难点与重点
1.教学重点
-理解并掌握直角三角形的定义和性质,特别是斜边、邻边和对边的关系。
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义和应用这两个重点。对于难点部分,我会通过具体例子和比较来帮助大家理解如何运用这些函数解直角三角形。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解直角三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何使用测量工具和三角函数求解未知高度或距离。
3.成果分享:每个小组将选择一名代表来分享他们的讨பைடு நூலகம்成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形的基本概念、锐角三角函数的重要性和应用。同时,我们也通过实践活动和小组讨论加深了对解直角三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版九年级下册数学1.4《解直角三角形》教案
《解直角三角形》教案教学目标:1.知识与能力:理解直角三角形中五个元素的关系,会运关系解直角三角形;2.过程与方法:通过探究实践,培养分析问题与解决问题的能力与方法;.3.情感态度价值观:通过数形结合的思想方法,培养良好的学习习惯.学习重点:利用边角关系解直角三角形.学习难点:三角函数在解直角三角形中的灵活运用.教学过程:一、知识回顾1.在直角三角形中,除直角外共有几个元素?2.如图,在Rt △ABC 中∠C =90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?提示:自学教材第16页内容.牢记三种关系:直角三角形中元素间的三种关系:(1)两锐角关系:∠ A + ∠ B = 90º(2)三边关系:a 2+b 2=c 2(勾股定理)(3)边与角的关系: sin a A c =cos b A c = tan a A b= 二、情景导航教师根据图片提出问题:这里有一株折倒的大树,你能测量后,根据测量结果求出大树的原高度吗?三、例题讲解 例1Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a = , b = ,求这个三角形的其他元素.归纳定义:解直角三角形的定义:由直角三角形中已知的元素,求出所未知的元素的过程,叫做解直角三角形.例2:在Rt△ABC 中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,且b=30,∠B=25°,求这个三角形的其他元素(边长精确到1).小结:在直角三角形的6个元素中,直角是已知元素,如果再知道一条边和第三个元素,那么三角形的所有元素就都可以确定下来.三、随堂练习1.在Rt△ABC中∠C=90°,∠A、∠B、∠C的所对的边分别是a、b、c,根据下列条件求出直角三角形的其他元素..(1)a=19,b=(2)a=,b=2.在Rt△ABC 中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,根据下列条件求出这个三角形的其他元素.(1)已知a=4,c =8;(2)已知b=10,∠B=60°;(3)已知c=20,∠A=60°.四、归纳猜想1.112122⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩.两条直角边.已知两条边.一直角边与斜边解直角三角形的分类.一直角边一锐角.已知一边一角.斜边与一锐角2.身边的数学问题解决(分层学习)五、解决问题如图,工地上有一V形槽(AC=BC),测得它的上口宽20 mm,深19.2 mm,求V形角(∠ACB)的度数.六、课堂小结:1.解直角三角形的概念:2.解直角三角形的分类:3.解直角三角形注意问题:七、目标检测在Rt△ABC 中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,根据下列条件,求出这个三角形的其他元素.(1)已知a=4,b=8;(2)已知b=10,∠B=60°;(3)已知c=20,∠A=60°七、作业:课本第17页习题1.5第2题,课本18页第4题.。
【北师大版教材适用】九年级数学下册《解直角三角形》教案
北师大版九年级数学下册精编教学设计系列解直角三角形【知识与技能】理解直角三角形中三条边及两个锐角之间的关系,能运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.【过程与方法】通过综合运用勾股定理及锐角三角函数等知识解直角三角形的过程,逐步培养学生分析问题、解决问题的能力.【情感态度】渗透数形结合思想,在解决问题过程中,感受成功的快乐,树立良好的学习习惯.【教学重点】运用直角三角形的边角关系解直角三角形.【教学难点】灵活运用锐角三角函数解直角三角形.一、情境导入,初步认识问题如图(1)所示的是意大利的比萨斜塔,设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为C,如图(2),在Rt△ABC 中,ZC =90,BC =5.2m,AB= 54.5m,你能根据上述条件求出图(2)中∠A的度数(即塔身中心线与垂直中心线的夹角的度数)吗?与同伴相互交流.【教学说明】运用锐角三角函数来解决生活中趣味性问题的过程,可激发学生的学习兴趣,增强运用所学过知识解决问题的信心,教师适时予以点拨.二、思考探究,获取新知在上述问题中,我们已知直角三角形的一条直角边和斜边,利用锐角三角函数可求出它的锐角的度数,事实上,我们还可以借助直角三角形中两锐角互余,求出另一个锐角度数,也可以利用勾股定理得到另一条直角边.一般地,由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三形思考(1)直角三角形中,除直角外的5个元素之间有哪些关系?(2)知道5个元素中的几个,就可以求出其余元素?【教学说明】学生相互交流获得结论,教师再与学生一道进行系统的总结,完善知识体系.如图,在 Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,那么除直角C 外的5个元素之间有如下关系:(1) 三边之间的关系:a 2+b 2=c 2(2) 两锐角之间的关系:∠A+∠B=90°;(3) 边角之间的关系:通过它们之间的关系,可以发现,知道其中的2个元素(至少有一条是边),就可以求出其他所 有元素.三、典例精析,掌握新知例 1 如图,在 Rt △ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且62==b a ,,解这个直角三角形.【分析】由62==b a ,首先联想到勾股定理可得,22=c ,再利用21222sin ===c a B 知∠A=30°,从而∠B=60°.这是一例除直角外的两个已知元素都是边的情形,在求它的锐角度数时,有时必须借助计算器才行.例 2 如图,在 Rt △ABC 中,∠C=90°,∠B=40°,且b=20,解这个直角三角形(结果保留一位小数).【分析】本例是已知一条边和一个锐角,求这个直角三角形的另两边长和另一个锐角.首先可轻松得到∠A=50°,再利用a B c B 20tan ,20sin ==可求出a ,c 的值,也可由ABAC A =cos ,则c2050cos =︒ 求c 的值,再利用勾股定理,或利用锐角的正切函数求出a 的值.注意:由于40°,50°均不是特殊角,它的三角函数值可利用计算器获得.【教学说明】以上两例在实际教学时,都可先让学生自主探究,独立完成.教师巡视,对有困难的学生给予指导,让学生在探究中加深对知识的理解.最后师生共同给出解答,让学生进行自我评析,完善认知.四、运用新知,深化理解1.Rt △ABC 中,∠C=90°,根据下列条件解直角三角形:(1)a=30,b=20;(2)∠B=62°,c=16.2.已知△ABC中,AD是BC边上的高,且AD=2,2AC,AB=1.2(1)如图(1),求∠BAC度数;(2)如图(2),试求∠BAC的度数.【教学说明】学生自主探究,也可相互交流,探讨问题的解答.教师巡视,适时点拨,让学生在练习中巩固本节所学知识.五、师生互动,课堂小结1.常见的解直角三角形问题可分为哪两类?与同伴交流.2.解直角三角形需要除直角外的两个已知条件,其中必须有一个已知边,为什么?【教学说明】师生共同回顾,反思,完善对本节知识的认知1.布置作业:2.完成练习册中本课时的练习.利用知识回顾,使学生进一步巩固和深化对锐角三角函数和直角三角形知识的理解,建立起清晰的知识框架,形成严谨的思维习惯.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识技能
1.在 Rt△ ABC 中,∠C=90°,根据下列条件求出直 角三角形的其他几个元素 (1)a=19,c=19 2 (2)a=6 2, b=6 6 2.在 Rt△ ABC 中,∠C=90°,根据下列条件求出直 角三角形的其他几个元素 (1)c=20,∠A=45° (2)a=36,∠B=30°
∴梯子与地面所在的角大约是 66°
由 α 要满足 50°≤a≤75°可知,这时梯子是安全的。
2014.12
解决有关比萨斜塔倾斜的问题.
设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B 点向垂直中心线引垂线,垂足为点C(如图),在Rt△ABC中, ∠C=90°,BC=5.2m,AB=54.5m
想
∵sinB=
b c
,b=30∴c
=
b sinB
=
30 sin25°
≈71
∵tanB=
b a
,b=30∴a =
b tanB
=
30 tan25°
≈64
在直角三角形的6个元素中,直角是已知元素,如果再知道一 条边和第三个元素,这个三角形的所有元素就可以确定下来。
2014.12
随堂练习 在Rt△ABC中,∠C=90°,根据下列条件求出直角三角形 的其他几个元素(角精确到1°) (1)已知a=4,b=8 (2)已知b=10, ∠B=60° (1)已知c=20, ∠A=60°
问:
(1)使用这个梯子最高可以安全攀上多高的
B
墙(精确到0.1m)
(2)当梯子底端距离墙面2.4m时,梯子与地
面所成的角a等于多少(精确到1°)?这时人
是否能够安全使用这个梯子?
解:如图,在Rt △ABC中,∠C=90°
α
A
C
(1)由题可知,当∠A=75°,对边BC的长度就攀上
的最高高度。
∵sinA=
=
10 19.2
≈0.5208
∴∠ACD≈27.5° ∴∠ACB=2∠ACD≈2×27.5° =55°. ∴V 型角的大小约 55°.
2014.12
问题解决4
这样的问题怎么解决
问题: 要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与
地面所成的角a一般要满足50°≤a≤75°.现有一个长6m的梯子,
度为( D )
A. 40 3m B. 80 3m C. 120 3m D. 160 3m
解:过 A 作 AD⊥BC 于 D,
则∠BAD=30°,∠CAD=60°,
AD=120m。
D
∴BC=BD+CD
=120·tan30°+120·tan60°
=160 3m
2014.12
中考链接
4.(2014•扬州)如图,在四边形 ABCD 中,AB=AD=6,AB⊥BC,
AD⊥CD,∠BAD=60°,点 M、N 分别在 AB、AD 边上,若 AM:
MB=AN:ND=1:2,则 tan∠MCN=( A )
33
25
A. 13
B. 11
23 C. 9
D. 5-2
O
E
2014.12
2014.12
2014.12
问题解决
3.如图,工件上有一V型槽,测得它的上口宽20mm,深19. 2mm.求V型角(∠ACB)的大小(结果精确到10 ).
解:由题意知,AB=20mm,CD=19.2mm ∵AC=BC,CD⊥AB ∴AD=10mm ∵在 Rt△ ACD 中,∠ADC=90°
∴tan∠ACD=
AD CD
.
cos A
2014.12
特殊角的三角函数值表
三角函数 锐角α
正弦sinα
余弦cosα
正切tanα
300
1
3
3
2
2
3
2
2
450
1
2
2
600
31
3
2
2
2014.12
在直角△ABC中,如果已知其中两边的长,你能求出这个三 角形的其他元素吗?
例 1:在 Rt△ABC 中,∠C 为直角,∠A、∠B、∠C
所对的边分别为 a、b、c,且 a= 15,b= 5,求这个
在三角形的其他元素。
A
解:在 Rt△ABC 中,∠C=90°,
做
则 c= a2+b2= 15+5=2 5
一
c
做
b
b 51 sinB= c = 2 5 = 2
∴∠B=30°, ∠A=60°
C
a
B
由直角三角形中已知的元素,求出所有未知元
素的过程,叫做解直角三角形。
2014.12
在直角△ABC中,如果已知一边和一个锐角,你能求出这个 三角形的其他元素吗?
例 2:在 Rt△ABC 中,∠C 为直角,∠A、∠B、∠C
所对的边分别为 a、b、c,且 b=30,∠B=25°,求这个
在三角形的其他元素。
解:在 Rt△ABC 中,∠C=90°,∠B=25°,
想 一
∴∠A=65°
A
b
c
Ca
B
在解直角三角形的过程中,一般要用到下面一些关系:
2014.12
在解直角三角形的过程中,一般要用到下面一些关系:
1.直角三角形三边的关系: 勾股定理 a2+b2=c2.
2.直角三角形两锐角的关系:两锐角互余 ∠A+ ∠B=900.
3.边角之间的关系
sin
A
A的对边 斜边
a c
sin
B
B的对边 斜边
b c
Байду номын сангаас
A
cos
A
A的邻边 斜边
b c
cos B
B的邻边 斜边
a c
b
c
tan A
A的对边 A的邻边
a b
tan
B
B的对边 B的邻边
b a
C
a
B
4.互余两角之间的三角函数关系:
sinA=cosB. tanA﹒tanB=1
5.同角之间的三角函数关系: sin A
sin2A+cos2A=1. tan A
九年级数学(下)第一章直角三角形的边角关系 第四节 解直角三角形
B
c
a
┌
A
b
C
2014.12
解直角三角形
解直角三角形:在直角三角形中,由已知元素求未知元素的过程.
事实上,在直角三角形的六个元素中,除直 角外,如果再知道两个元素(其中至少有一 个是边),这个三角形就可以确定下来,这 样就可以由已知的两个元素求出其余的三个 元素.
解:由题可知,BE=2.7 米 在 Rt△DEB 中,∠DEB=90° ∴DE=BE•tan45°=2.7 米, 在 Rt△CEB 中,∠CEB=90° ∴CE=BE•tan30°=0.9 3米, 则 CD=DE﹣CE=2.7﹣0.9 3≈1.2 米. 故塑像 CD 的高度大约为 1.2 米.
2014.12
∵∠AME=45°,∴∠AMD=∠MAD=45°,
∵AM=180 海里,
∴MD=AM•cos45°=90 2(海里),
D
答:渔船从 A 到 B 的航行过程中与小岛 M
B
之间的最小距离是 90 2海里。
2014.12
中考链接
2.(2014•珠海)如图,一艘渔船位于小岛 M 的北偏东 45°方向、距
离小岛 180 海里的 A 处,渔船从 A 处沿正南方向航行一段距离后,
到达位于小岛南偏东 60°方向的 B 处.
(2)若渔船以 20 海里/小时的速度从 B 沿 BM 方向行驶,求渔船
从 B 到达小岛 M 的航行时间(结果精确到 2≈1.41, 3≈1.73, 6≈2.45)
0.1
小时).(参考数据:
A
解:(2)在 Rt△DMB 中,∠ADM=90°
∵∠BMF=60°,∴∠DMB=30°,
解:如图,在 Rt △ABC 中,∠C=90°
CB
∵sinA=
BC AB
=
5.2 54.5
≈0.0954
∴∠A≈5°28′
A
2014.12
中考链接 1.(2014•四川自贡)如图,某学校新建了一座吴玉章雕塑,小 林站在距离雕塑 2.7 米的 A 处自 B 点看雕塑头顶 D 的仰角为 45°,看雕塑底部 C 的仰角为 30°,求塑像 CD 的高度.(最后结 果精确到 0.1 米,参考数据: 3≈1.7)
(1)使用这个梯子最高可以安全攀上多高的 墙(精确到0.1m) (2)当梯子底端距离墙面2.4m时,梯子与地 面所成的角a等于多少(精确到1°)?这时人 是否能够安全使用这个梯子?
解:
B
α
A
C
(2)由题可知,当 AC=2.4m,AB=6m。
∵cosA=
AC AB
=
2.4 6
=4
∴由计算器可得 α≈66°
中考链接
2.(2014•珠海)如图,一艘渔船位于小岛 M 的北偏东 45°方向、距
离小岛 180 海里的 A 处,渔船从 A 处沿正南方向航行一段距离后,
到达位于小岛南偏东 60°方向的 B 处.
(1)求渔船从 A 到 B 的航行过程中与小岛 M 之间的最小距离(结
果用根号表示);
A
解:(1)过点 M 作 MD⊥AB 于点 D,
∵MD=90
2海里,∴MB=
MD cos30°
=60
6,
D
∴渔船从 B 到达小岛 M 的航行时间为
B
60 6÷20=3 6=3×2.45=7.35≈7.4(小时),
答:渔船从 B 到达小岛 M 的航行时间约为 7.4