小升初典型应用题精练——行程问题(附详细解答)
小升初典型应用题精练——行程问题(学生版)
领航小升初专题四行程问题一、知识点1路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间X速度,时间=路程十速度,速度=路程十时间。
2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)十2,水流速度=(顺流速度-逆流速度)十2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
3、相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:= t度和X相遇吋间,速J度和=总路程一相遇吋间T相遇时间=总路程一速度和f追击问题:[追及时间=追及路程逋度差,追及路程二速度差X追及吋间,I速度差=追及路程+追及时间*在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
二、习题精练1、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?3、戈删比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以 2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?4、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用 3.9时。
问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
小升初行程问题大全(含答案)
小升初行程(Cheng)问题大全(含答案)【题(Ti)目1】有甲乙丙三(San)车各以一定的速度从A到(Dao)B,乙比丙(Bing)晚出发10分钟,出(Chu)发后40分钟追上丙,甲比乙又晚(Wan)出发10分钟,出发(Fa)后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。
已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。
那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。
求AN占AB的几分之几?【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。
如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。
如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。
【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。
甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。
求山脚到山顶的距离。
【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
小升初:行程问题历年经典试题及答案
1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过 6 小时相遇,相遇后快车继续行驶 3 小时后到达乙站。
已知慢车每小时行 45 千米,甲、乙两站相距多少千米?2、甲、乙二人分别以每小时 3 千米和 5 千米的速度从 A、 B 两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达 B 地共行 4 小时,那么 A、B 两地相距多少千米?3 .一列快车从甲城开往乙城,每小时行 65 千米,一列客车同时从乙城开往甲城,每小时行 60 千米,两列火车在距中点 20 千米处相遇,相遇时两车各行了多少千米?4、兄弟两人同时从家里出发到学校,路程是 1400 米。
哥哥骑自行车每分钟行200 米,弟弟步行每分钟行 80 米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。
从出发到相遇,弟弟走了多少米?相遇处距学校有多少米?5、有两只蜗牛同时从一个等腰三角形的顶点 A 出发(如图),分别沿着两腰爬行。
一只蜗牛每分钟行 2.5 米,另一只蜗牛每分钟行 2 米, 8 分钟后在离 C 点 6 米处的 P 点相遇, BP 的长度是多少米?6、甲、乙两人同时从 A、 B 两地相向而行,相遇时距 A 地 120 米,相遇后,他们继续前进,到达目的地后立即返回,在距 A 地 150 米处再次相遇,AB 两地的距离是多少米?7、A、 B 两地相距 38 千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行 8 千米,乙每小时行 11 千米,甲到达 B 地后立即返回 A 地,乙到达 A 地后立即返回 B 地,几小时后两人在途中相遇?相遇时距 A 地多远?8、如图, A、 B 是圆的直径的两端,小张在 A 点,小王在 B 点同时出发,相向行走,他们在距 A 点 80 米处的 C 点第一次相遇,接着又在距 B 点 60 米处的 D 点第二次相遇。
求这个圆的周长。
1、9.如图,两只小爬虫从 A 点出发,沿长方形 ABCD 的边,按箭头方向爬行,在距 C 点 32 厘米的 E 点它们第一次相遇,在距 D 点 16 厘米的 F 点第二次相遇,在距 A 点 16 厘米的 G 点第三次相遇,求长方形的边 AB 的长。
小升初行程问题试题及答案
小升初行程问题试题及答案一、选择题1. 小明和小华同时从甲地出发去乙地,小明的速度是每小时5公里,小华的速度是每小时4公里。
如果两人同时到达乙地,那么小华比小明多用了多少时间?A. 1小时B. 2小时C. 3小时D. 4小时答案:B2. 一辆汽车从A地出发前往B地,速度为每小时60公里。
如果汽车在行驶了一半的路程后速度提高到每小时80公里,那么汽车全程的平均速度是多少?A. 60公里/小时B. 66.7公里/小时C. 72公里/小时D. 80公里/小时答案:B二、填空题3. 小丽和小芳相距1200米,两人同时从各自的位置出发相向而行,小丽的速度是每分钟50米,小芳的速度是每分钟40米。
请问两人几分钟后相遇?_______________________答案:15分钟4. 一艘船顺流而下,速度为每小时20公里;逆流而上时,速度为每小时15公里。
那么这艘船在静水中的速度是多少?_______________________答案:17.5公里/小时三、解答题5. 甲乙两地相距120公里,一辆汽车从甲地出发前往乙地,前一半的路程速度为每小时40公里,后一半的路程速度为每小时60公里。
请问汽车全程用了多少时间?解答:首先,我们需要计算前一半和后一半的路程各是多少。
甲乙两地相距120公里,所以前一半的路程是60公里,后一半的路程也是60公里。
接下来,我们计算前一半路程所用的时间。
汽车以每小时40公里的速度行驶60公里,所需时间为:时间 = 路程 / 速度 = 60公里 / 40公里/小时 = 1.5小时同样,我们计算后一半路程所用的时间。
汽车以每小时60公里的速度行驶60公里,所需时间为:时间 = 路程 / 速度 = 60公里 / 60公里/小时 = 1小时最后,我们将两段时间相加,得到汽车全程所用的时间:总时间 = 1.5小时 + 1小时 = 2.5小时答:汽车全程用了2.5小时。
四、应用题6. 小明和小华参加一个户外徒步活动,他们从同一起点出发,小明每分钟走80米,小华每分钟走70米。
小升初数学行程问题应用题(附答案)
小升初数学行程问题应用题(附答案)小升初数学行程问题应用题1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4。
5千米,乙行了5小时。
求AB两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB 两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0。
5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行已知甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的3分之2 ,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。
小升初行程问题大全含答案
行程问题【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。
已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。
那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。
求AN占AB的几分之几?【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。
如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。
如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。
【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。
甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。
求山脚到山顶的距离。
【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B 地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
小升初行程问题大全含答案
小升初行程问题大全含答案YUKI was compiled on the morning of December 16, 2020行程问题【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。
已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。
那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。
求AN占AB的几分之几?【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。
如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。
如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。
【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。
甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。
求山脚到山顶的距离。
【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B 地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
小升初数学行程问题应用题附答案
小升初数学行程问题应用题1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4。
5千米,乙行了5小时。
求AB两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,假设甲车比乙车早出发2小时,那么乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0。
5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?10、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?11、甲乙两车从相距600千米的两地同时相向而行甲车每小时行42千米,乙车每小时行58千米两车相遇时乙车行了多少千米?12、两车相向,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,货车的速度是客车的3分之2,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?15、甲、乙两车分别从ab两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。
完整)小升初数学行程问题应用题(附答案)
完整)小升初数学行程问题应用题(附答案)1、甲乙两车同时从AB两地相对开出。
已知甲行驶了全程的5/11,每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?解析:设AB两地相距x千米,甲行驶了5/11x千米,乙行驶了5小时,根据速度公式,可列出以下方程组:5/11x = 4.5t (甲的路程)x = 5t (乙的路程)将第二个方程代入第一个方程中,得到:5/11(5t) = 4.5tt = 55/9将t代入第二个方程中,得到:x = 5t = 275/9所以,AB两地相距约为30.56千米。
2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
已知货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解析:设AB两地相距x千米,客车的速度为v,则货车的速度为5v/4.根据题意,可列出以下方程组:x = 4/3(1/4x + 28) + 1/3(1/4x)v + 5v/4 = x/6将第二个方程代入第一个方程中,得到:x = 336所以,AB两地相距约为336千米。
3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解析:设城市周长为x千米,甲乙相遇的时间为t小时,则甲走了8t千米,乙走了6t千米。
根据题意,可列出以下方程组:8t + 6t = x6(t + 4) + 6t = x将第一个方程代入第二个方程中,得到:6t + 24 = 8tt = 12将t代入第一个方程中,得到:x = 96所以,乙绕城一周所需要的时间为16小时。
4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB两地距离是多少米?解析:设AB两地距离为x米,甲走了全程的1/4x米,剩余的3/4x米,乙走了x-640米。
小升初行程问题大全(含答案)
小升初行程问题大全(含答案)【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。
已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。
那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。
求AN占AB的几分之几?【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。
如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。
如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。
【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。
甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。
求山脚到山顶的距离。
【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
小升初行程问题大全(含答案)精编版
行程问题【题目1】有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。
已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。
那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。
求AN占AB的几分之几?【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。
如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。
如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。
【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。
甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。
求山脚到山顶的距离。
【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
(完整版)小升初行程问题
(完整版)⼩升初⾏程问题⾏程问题考点⼀:⼀般⾏程问题公式,速度×时间=路程路程÷时间=速度路程÷速度=时间考点⼆:相遇问题公式,速度和×相遇时间=相遇路程相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间考点三:追及问题公式,速度差×追及时间=追及距离追及距离÷追及时间=速度差追及距离÷速度差=追及时间考点四:⽕车过桥公式:⽕车速度×过桥时间=车长+桥长考点五:流⽔⾏船公式,顺⽔速度=船速+⽔速逆⽔速度=船速-⽔速船速=(顺⽔速度+逆⽔速度)÷2 ⽔速=(顺⽔速度-逆⽔速度)÷2 顺⽔速度=逆⽔速度+⽔速×2 逆⽔速度=顺⽔速-⽔速×2考点六:环形⾏程问题公式,封闭环形上的相遇问题,利⽤关系式:环形周长÷速度和=相遇时间封闭环形上的追及问题,利⽤关系:环形周长÷速度差=追及时间【例1】甲⼄⼆⼈同时从两地出发,相向⽽⾏。
⾛完全程,甲需要60分钟,⼄需要40分钟。
出发后5分钟,甲因忘带东西⽽返回出发点,取东西⼜耽误了5分钟。
甲再次出发,多长时间后两⼈相遇?【例2】两列⽕车从甲、⼄两地相向⽽⾏,慢车从甲地到⼄地需要8⼩时,⽐快车从⼄地到甲地多⽤31的时间。
如果两车同时开出,那么相遇时快车⽐慢车多⾏40千⽶。
求甲、⼄两地的距离。
【例3】⼀艘轮船顺流航⾏120千⽶,逆流航⾏80千⽶共⽤了16⼩时,逆流航⾏120千⽶也⽤了16⼩时。
求⽔流速度。
【例4】已知某铁路长1000⽶,⼀列⽕车从桥上通过,测得⽕车从开始上桥到完全下桥共⽤了120秒,整列⽕车完全在桥上的时间为80秒,求⽕车的速度和长度。
【例5】甲⼄⼆⼈在操场的400⽶跑到上练习竞⾛,两⼈同时出发,出发时甲在⼄的后⾯,出发后6分钟甲第⼀次追上⼄,22分钟时甲第⼆次追上⼄。
假设两⼈的速度都保持不变,问:出发时甲在⼄⾝后多少⽶?【例6】甲⼄两车分别从A 、B 两地同时出发,在A 、B 之间不断往返⾏驶。
小学数学典型应用题行程问题
行程问题经典题型(一)1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。
问他走后一半路程用了多少分钟?分析:解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟答:他走后一半路程用了42.5分钟。
2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:解法1:设路程为180,则上坡和下坡均是90。
设走平路的速度是2,则下坡速度是3。
走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75答:上坡的速度是平路的0.75倍。
3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型应用题精练(行程问题)
1、路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:
路程=时间×速度,
时间=路程÷速度,
速度=路程÷时间。
2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:
顺流速度=静水速度+水流速度,
逆流速度=静水速度-水流速度,
静水速度=(顺流速度+逆流速度)÷2,
水流速度=(顺流速度-逆流速度)÷2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
3、相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:
相遇问题:
追击问题:
在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
1 、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?
2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?
3 、划船比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?
4 、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用时。
问:小明往返一趟共行了多少千米?
5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?
6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
求这条河的水流速度。
7、甲车每小时行40千米,乙车每小时行60千米。
两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。
求A,B两地的距离。
8、小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。
有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?
9、小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。
已知火车全长342米,求火车的速度。
10、铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。
这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。
求火车的全长。
11、如右图所示,沿着某单位围墙外面的小路形成一个边长300米的正方形,甲、乙两人分别从两个对角处沿逆时针方向同时出发。
已知甲每分走90米,乙每分走70米。
问:至少经过多长时间甲才能看到乙?
12、猎狗追赶前方30米处的野兔。
猎狗步子大,它跑4步的路程兔子要跑7步,但是兔子动作快,猎狗跑3步的时间兔子能跑4步。
猎狗至少跑出多远才能追上野兔?
典型应用题精练(行程问题)参考答案
1、分析与解:求车队有多少辆车,需要先求出车队的长度,而车队的长度等于车队115秒行的路程减去大桥的长度。
由“路程=时间×速度”可求出车队115秒行的路程为4×115=460(米)。
故车队长度为460-200=260(米)。
再由植树问题可得车队共有车(260-5)÷(5+10)+1=18(辆)。
2、分析与解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没有路程,似乎无法求速度。
这就需要通过已知条件,求出时间和路程。
假设A,B两人同时从甲地出发到乙地,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到。
B到乙地时,A距乙地还有10×2=20(千米),这20千米是B从甲地到乙地这段时间B比A多行的路程。
因为B比A每小时多行15-10=5(千米),所以B从甲地到乙地所用的时间是
20÷(15-10)=4(时)。
由此知,A,B是上午7点出发的,甲、乙两地的距离是
15×4=60(千米)。
要想中午12点到,即想(12-7=)5时行60千米,速度应为
60÷(12-7)=12(千米/时)。
3、分析与解:路程一定时,速度越快,所用时间越短。
在这两个方案中,速度不是固定的,因此不好直接比较。
在第二个方案中,因为两种速度划行的时间相同,所以以 3.5米/秒的速度划行的路程比以2.5米/秒的速度划行的路程长。
用单线表示以2.5米/秒的速度划行的路程,用双线表示以3.5米/秒的速度划行的路程,可画出下图所示的两个方案的比较图。
其中,甲段+乙段=丙段。
在甲、丙两段中,两个方案所用时间相同;在乙段,因为路程相同,且第二种方案比第一种方案速度快,所以第二种方案比第一种方案所用时间短。
综上所述,在两种方案中,第二种方案所用时间比第一种方案少,即第二种方案好。
4、分析与解:因为上山和下山的路程相同,所以若能求出上山走1千米和下山走1千米一共需要的时间,则可以求出上山及下山的总路程。
因为上山、下山各走1千米共需
所以上山、下山的总路程为
在行程问题中,还有一个平均速度的概念:平均速度=总路程÷总时间。
例如,第4题中上山与下山的平均速度是
5、分析与解:设等边三角形的边长为l厘米,则蚂蚁爬行一周需要的时间为
蚂蚁爬行一周平均每分钟爬行
6、分析与解:水流速度=(顺流速度-逆流速度)÷2
=(418÷11-418÷19)÷2
=(38-22)÷2
=8(千米/时)
答:这条河的水流速度为8千米/时。
7、分析与解:先画示意图如下:
图中C点为相遇地点。
因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。
这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B两地的距离是(40+60)×2=200(千米)。
8、分析与解:因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),
所以小明比平时早出门900÷60=15(分)。
9、分析与解:
在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点。
由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),
从而求出火车的速度为19-2=17(米/秒)。
10、分析与解
与前面类似,只不过由相向而行的相遇问题变成了同向而行的追及问题。
由上图知,37秒火车头从B走到C,拖拉机从B走到A,火车比拖拉机多行一个火车车长的路程。
用米作长度单位,用秒作时间单位,求得火车车长为
速度差×追及时间
= [(56000-20000)÷3600]×37
= 370(米)。
11、分析与解:当甲、乙在同一条边(包括端点)上时甲才能看到乙。
甲追上乙一条边,即追上300米需
300÷(90-70)=15(分),此时甲、乙的距离是一条边长,而甲走了90×15÷300=(条边),位于某条边的中点,乙位于另一条边的中点,所以甲、乙不在同一条边上,甲看不到乙。
甲再走条边就可以看到乙了,即甲走5条边后可以看到乙,共需
12、分析与解:这道题条件比较隐蔽,时间、速度都不明显。
为了弄清兔子与猎狗的速度的关系,我们将条件都变换到猎狗跑12步的情形(想想为什么这样变换):(1)猎狗跑12步的路程等于兔子跑21步的路程;
(2)猎狗跑12步的时间等于兔子跑16步的时间。
由此知,在猎狗跑12步的这段时间里,猎狗能跑12步,相当于兔子跑
也就是说,猎狗每跑21米,兔子跑16米,猎狗要追上兔子30米需跑21×[30÷(21-16)]=126(米)。