怎样计算传输线的特征阻抗

合集下载

一直有很多人问我阻抗怎么计算的人家问多了我想给大家

一直有很多人问我阻抗怎么计算的人家问多了我想给大家

⼀直有很多⼈问我阻抗怎么计算的⼈家问多了我想给⼤家⼀直有很多⼈问我阻抗怎么计算的. ⼈家问多了,我想给⼤家整理个材料,于⼰于⼈都是个⽅便.如果⼤家还有什么问题或者⽂档有什么错误,欢迎讨论与指教!在计算阻抗之前,我想很有必要理解这⼉阻抗的意义。

传输线阻抗的由来以及意义传输线阻抗是从电报⽅程推导出来(具体可以查询微波理论)如下图,其为平⾏双导线的分布参数等效电路:从此图可以推导出电报⽅程取传输线上的电压电流的正弦形式得推出通解定义出特性阻抗⽆耗线下r=0, g=0 得注意,此特性阻抗和波阻抗的概念上的差异(具体查看平⾯波的波阻抗定义)特性阻抗与波阻抗之间关系可从此关系式推出.Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不⼀致所求出的电报⽅程的解不⼀致,就造成所谓的反射现象等等.在信号完整性领域⾥,⽐如反射,串扰,电源平⾯切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来.叠层(stackup)的定义我们来看如下⼀种stackup,主板常⽤的8 层板(4 层power/ground 以及4 层⾛线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8下⾯熟悉下在叠层⾥⾯的⼀些基本概念,和⼚家打交道经常会使⽤的Oz 的概念Oz 本来是重量的单位Oz(盎司)=28.3 g(克)在叠层⾥⾯是这么定义的,在⼀平⽅英尺的⾯积上铺⼀盎司的铜的厚度为1Oz,对应的单位如下介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺⼨的真空电容量Co之⽐为介电常数:-ε"ε = Cx/Co = ε'Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两⾯都覆有铜箔,⽽pp 没有.传输线特性阻抗的计算⾸先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有 1 个参考地,⽽带状线有2个参考地,如下图所⽰对照上⾯常⽤的8 层主板,只有top 和bottom ⾛线层才是微带线类型,其他的⾛线层都是带状线类型在计算传输线特性阻抗的时候, 主板阻抗要求基本上是:单线阻抗要求55 或者60Ohm,差分线阻抗要求是70~110Ohm,厚度要求⼀般是1~2mm,根据板厚要求来分层得到各厚度⾼度. 在此假设板厚为 1.6mm,也就是63mil 左右, 单端阻抗要求60Ohm,差分阻抗要求100Ohm,我们假设以如下的叠层来⾛线先来计算微带线的特性阻抗,由于top 层和bottom 层对称,只需要计算top 层阻抗就好的,采⽤polar si6000,对应的计算图形如下:在计算的时候注意的是:1,你所需要的是通过⾛线阻抗要求来计算出线宽W(⽬标)2,各⼚家的制程能⼒不⼀致,因此计算⽅法不⼀样,需要和⼚家进⾏确认3,表层采⽤coated microstrip 计算的原因是,⼚家会有覆绿漆,因⽽没⽤surface microstrip 计算,但是也有⼚家采⽤surface microstrip 来计算的,它是经过校准的4,w1 和w2 不⼀样的原因在于pcb 板制造过程中是从上到下⽽腐蚀,因此腐蚀出来有梯形的感觉(当然不完全是)5,在此没计算出精确的60Ohm 阻抗,原因是实际制程的时候⼚家会稍微改变参数,没必要那么精确,在1,2ohm 范围之内我是觉得没问题6,h/t 参数对应你可以参照叠层来看再计算出L5 的特性阻抗如下图记得当初有各版本对于stripline 还有symmetrical stripline 的计算图,实际上的差异从字⾯来理解就是symmetrical stripline 其实是offset stripline 的特例H1=H2在计算差分阻抗的时候和上⾯计算类似,除所需要的通过⾛线阻抗要求来计算出线宽的⽬标除线宽还有线距,在此不列出选⽤的图是在计算差分阻抗注意的是:1,在满⾜DDR2 clock 85Ohm~1394 110Ohm 差分阻抗的同时⼜满⾜其单端阻抗,因此我通常选择的是先满⾜差分阻抗(很多是电流模式取电压的)再考虑单端阻抗(通常板⼚是不考虑的,实际做很多板⼦,问题确实不算⼤,看样⼦差分线还是⾛线同层同via 同间距要求⼀定要符合)特性阻抗公式(含微带线,带状线的计算公式)a.微带线(microstrip)Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)] 其中,W为线宽,T为⾛线的铜⽪厚度,H为⾛线到参考平⾯的距离,Er是PCB板材质的介电常数(dielectric constant)。

传输线s参数计算公式

传输线s参数计算公式

传输线s参数计算公式传输线是一种用于传输电信号的导线或导缆,常见于通信、电力等领域。

为了描述传输线的性能和特性,人们引入了S参数,即传输线的散射参数。

传输线的S参数是通过测量电压和电流的幅值和相位来描述信号在传输线上的传播情况。

S参数可以提供关于传输线的反射、透射和散射等信息,是设计和分析传输线的重要工具。

传输线的S参数计算公式如下:S11 = Γ1+ = (ZL - Z0)/(ZL + Z0)S12 = Γ1- = 2Z0/(ZL + Z0)S21 = Γ2+ = 2ZL/(ZL + Z0)S22 = Γ2- = (Z0 - ZL)/(ZL + Z0)其中,S11表示输入端的反射系数,S12表示输入端的透射系数,S21表示输出端的透射系数,S22表示输出端的反射系数。

Z0为传输线的特性阻抗,ZL为传输线的负载阻抗。

通过计算S参数,可以得到传输线的特性阻抗、反射系数和透射系数等重要参数。

这些参数对于传输线的设计和分析非常关键。

在实际应用中,我们可以通过实验或仿真软件来测量或计算传输线的S参数。

首先,需要准备好测试仪器或仿真软件,设置好测试条件。

然后,将传输线连接到测试仪器或仿真软件,并进行信号的输入和输出。

最后,通过测量或计算得到传输线的S参数。

在传输线设计和分析中,S参数计算公式是一种非常有效的工具。

通过计算S参数,我们可以了解传输线的性能和特性,进而优化传输线的设计。

同时,S参数计算公式也可以用于传输线的故障诊断和故障定位,提高传输线的可靠性和稳定性。

传输线的S参数计算公式是一种重要的工具,可以帮助我们了解传输线的性能和特性。

通过计算S参数,我们可以得到传输线的反射系数、透射系数等重要参数,进而优化传输线的设计和分析。

在实际应用中,我们可以利用实验或仿真软件来计算传输线的S参数,以提高传输线的可靠性和稳定性。

线缆阻抗计算公式

线缆阻抗计算公式

线缆阻抗计算公式线缆阻抗是指电缆或导线对电流流动的阻碍程度,是电缆或导线的物理特性之一。

了解线缆阻抗的计算公式对于电气工程师和电子技术人员来说非常重要。

本文将介绍线缆阻抗的计算公式及其应用。

一、什么是线缆阻抗?线缆阻抗是指电缆或导线对电流流动的阻碍程度。

它是由电缆或导线的电感、电容和电阻等因素综合决定的。

电缆或导线的阻抗越大,通过它的电流越小;阻抗越小,通过它的电流越大。

二、线缆阻抗计算公式常见的线缆阻抗计算公式如下:1. 电缆或导线的电感阻抗计算公式:ZL = jωL其中,ZL为电感阻抗,j为虚数单位,ω为角频率,L为电感。

2. 电缆或导线的电容阻抗计算公式:ZC = 1 / (jωC)其中,ZC为电容阻抗,C为电容。

3. 电缆或导线的电阻阻抗计算公式:ZR = R其中,ZR为电阻阻抗,R为电阻。

4. 电缆或导线的总阻抗计算公式:Z = √(ZL^2 + ZC^2 + ZR^2)其中,Z为总阻抗,ZL为电感阻抗,ZC为电容阻抗,ZR为电阻阻抗。

三、线缆阻抗计算公式的应用线缆阻抗计算公式在电气工程和电子技术中具有广泛的应用。

1. 电缆设计:根据电缆的使用环境和要求,计算线缆的阻抗,选择适合的电缆材料和规格。

2. 信号传输:在数据通信中,为了保证信号的传输质量,需要计算线缆的阻抗,选择匹配的信号源和负载。

3. 电气系统分析:在电气系统中,计算线缆的阻抗有助于分析电路的特性和性能,确保电流和电压的稳定传输。

4. 高频电路设计:在射频电路设计中,计算线缆的阻抗有助于匹配电路的传输线和负载,提高电路的工作效率和性能。

线缆阻抗计算公式是电气工程和电子技术中必不可少的工具。

掌握线缆阻抗的计算方法,可以帮助工程师和技术人员设计和分析电路,提高电气系统的性能和可靠性。

同时,合理选择线缆材料和规格,可以有效降低能耗和成本,提高电缆的传输效率和质量。

传输线阻抗测量方法

传输线阻抗测量方法

传输线阻抗测量方法
传输线阻抗这东西呢,就像是传输线的一个小脾气,咱得想办法搞清楚它。

一种常见的方法就是用网络分析仪。

这网络分析仪就像个超厉害的小侦探。

把传输线接到网络分析仪上,它就能给咱挖出很多关于传输线阻抗的信息呢。

它可以在不同的频率下测量,就像在不同的场景下观察传输线的表现。

还有一种土办法哦,叫电压电流法。

这就比较直接啦。

咱在传输线上加个已知的电压,然后再测量流过它的电流。

就像给传输线喂个已知大小的食物,然后看看它吃的时候流了多少口水(电流)。

根据欧姆定律,阻抗不就等于电压除以电流嘛。

不过呢,这种方法有时候会有点小误差,就像咱们自己估算东西,不太精准啦。

驻波比法也挺有趣的。

当传输线有反射的时候就会产生驻波啦。

通过测量驻波比,咱就能推算出传输线的阻抗。

这就好比看水面上的波纹,从波纹的情况能知道水里的一些状况。

但是呢,这个方法对测量的环境要求有点高哦,周围不能有太多干扰,不然就像在吵闹的集市里听悄悄话,很难听清楚啦。

时域反射法也很神奇。

它是给传输线发送一个脉冲信号,然后看这个信号反射回来的情况。

就像咱往一个洞里扔个小石子,看它弹回来的样子来判断洞的情况。

根据反射信号的幅度和时间延迟等信息,就能算出传输线的阻抗啦。

传输线阻抗详解

传输线阻抗详解

|传输线阻抗1、 反射与阻抗高速设计的入门,我们就知道,信号会反射,就像光线从空气射到玻璃,一部分光会折射,还有一些会被反射。

信号也一样,如果传输线的阻抗不一致,在阻抗跳变的地方,一部分能量继续传输,一部分能量会被反射回去。

在这个话题里,我们首先知道,阻抗不连续会引起信号反射。

当然,我们后面的话题会深入探讨:什么时候需要关注信号的反射,并不是所有的阻抗不连续都需要被关注。

2、阻抗可以有哪些话题那么,什么是传输线阻抗呢?先来看看传输线的分布参数等效模型:熟悉高速先生的朋友都知道,不到万不得已,我们不会给大家讲繁琐的公式推导,简单记住这个公式就好了:这是一个特征阻抗近似计算公式,式中L为分布电感,C为分布电容。

特征阻抗:这是使用频率非常高的一个专业术语,在各种定义中,笔者最喜欢的描述是:特征阻抗是沿线上分布电容和电感的等效,它的物理意义是,入射波的电压与电流的比值,或反射波的电压与电流的比值的负值。

这个定义方式直观明了地解释了很多高速设计问题,方便设计工程师去理解阻抗控制的概念。

注:在高速先生所有系列中,“阻抗”就指的是特征阻抗。

上一篇文章提到了微带线与带状线,以及他们分别代表的电磁场意义,现在我们简单看一下两种传输线结构的阻抗计算公式:微带线阻抗:带状线阻抗:还是一样的原则,我们不需要记公式,只需要记住各个元素和阻抗的比例关系,然后能在工作中灵活运用就好了:介电常数:材料性质的一种, 决定当单位电压下, 单位容量內材料可存储的静电能。

介电常数增大,阻抗减小。

线路到参考平面距离:距离增加阻抗增大线宽:线宽增加阻抗变小.铜厚:铜厚增加阻抗变小.相邻线间距(针对差分):间距增大阻抗增大绿油厚度:厚度增加阻抗变小案例1:某PCB板上的走线比较密,只能用比较小的线宽,通过计算发现阻抗超过了标准,在板材不变(介电常数不变)的情况下,可以通过减小层间距离来实现阻抗控制。

案例2:某PCB板,板厚1.2mm,需要设计成10层板。

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来和大家说明下阻抗是怎么计算的。

在阻抗计算说明之前让我们先了解一下阻抗的由来和意义:传输线阻抗是从电报方程推导出来(具体可以查询微波理论)如下图,其为平行双导线的分布参数等效电路:从此图可以推导出电报方程取传输线上的电压电流的正弦形式得推出通解定义出特性阻抗无耗线下r=0, g=0 得注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义)特性阻抗与波阻抗之间关系可从此关系式推出.Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来.叠层(stackup)的定义我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的Oz 的概念Oz 本来是重量的单位Oz(盎司)=28.3 g(克)在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε"Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.传输线特性阻抗的计算首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有1 个参考地,而带状线有2个参考地,如下图所示对照上面常用的8 层主板,只有top 和bottom 走线层才是微带线类型,其他的走线层都是带状线类型在计算传输线特性阻抗的时候, 主板阻抗要求基本上是:单线阻抗要求55 或者60Ohm,差分线阻抗要70~110Ohm,厚度要求一般是1~2mm,根据板厚要求来分层得到各厚度高度.在此假设板厚为1.6mm,也就是63mil 左右, 单端阻抗要求60Ohm,差分阻抗要求100Ohm,我们假设以如下的叠层来走线。

特征阻抗推导

特征阻抗推导

特征阻抗推导
特征阻抗是指电磁波在介质或导体中传播时遇到的阻力。

在推导特征阻抗时,通常使用两种方法:波动法和微分法。

1. 波动法:通过考虑电磁波在传播过程中的波动性质,可以推导出特征阻抗。

具体步骤如下:
- 假设电磁波以速度v在介质中传播,其波长为λ。

- 在介质中选择一个面积为A的截面,通过该截面的电磁波功率为P。

- 根据能量守恒原理,电磁波功率P应与通过截面的能流密度有关,即P = v · A · S,其中S为能流密度。

- 特征阻抗Z为通过截面的电磁波功率和截面上电场强度E 之间的比值,即Z = P / (E^2 / 2μ) = 2μvS / E^2,其中μ为介质的磁导率。

- 由此可得到特征阻抗和能流密度之间的关系Z = 2μvS = E / H,其中E为电场强度,H为磁场强度。

2. 微分法:通过应用麦克斯韦方程组,可以推导出特征阻抗。

具体步骤如下:
- 根据麦克斯韦方程组,有旋度定律∇ × E = -∂B / ∂t和∇ × H = ∂D / ∂t,其中E为电场强度,B为磁感应强度,H为磁场强度,D为电位移矢量。

- 在无耗介质中,电场强度E和磁场强度H满足E = ZH,其中Z为特征阻抗。

- 将∇ × E和∇ × H展开,利用麦克斯韦方程组,可以将特征阻抗表示为Z = √(μ / ε),其中μ为介质的磁导率,ε为介质的电容率。

以上是两种常用的推导特征阻抗的方法,具体推导过程可能根据不同情况和假设略有差异。

线缆阻抗计算公式

线缆阻抗计算公式

线缆阻抗计算公式
线缆阻抗计算公式是用来计算线缆阻抗的数学公式,它在电子工程领域中起着重要的作用。

线缆阻抗是指在电路中传输信号时线缆对信号的抵抗程度,是线缆的一个重要参数。

线缆阻抗计算公式的一般形式为Z = √(L/C),其中Z表示线缆的阻抗,L表示线缆的电感,C表示线缆的电容。

这个公式是根据电磁学理论推导出来的,可以帮助工程师们准确地计算线缆的阻抗。

线缆阻抗计算公式的推导过程比较复杂,涉及到电磁学、微积分等多个学科的知识。

在实际工程中,我们可以通过测量线缆的电感和电容来得到线缆的阻抗值,也可以通过使用计算软件进行计算。

线缆阻抗的大小对于电路的设计和信号传输有着重要的影响。

在高频电路中,线缆的阻抗要与信号源的阻抗匹配,以保证信号的传输质量。

如果线缆的阻抗与信号源的阻抗不匹配,会导致信号的反射和衰减,从而影响信号的传输效果。

在实际应用中,我们可以根据需要选择不同阻抗的线缆。

常见的线缆阻抗有50欧姆和75欧姆两种,分别用于不同的应用场景。

例如,50欧姆线缆常用于无线通信和射频传输,而75欧姆线缆常用于电视信号传输。

除了线缆的阻抗,还有其他一些因素也会影响信号的传输质量。

例如,线缆的长度、材料、绝缘层等都会对信号的传输产生影响。


此,在实际设计中,我们需要综合考虑这些因素,选择合适的线缆来满足设计需求。

线缆阻抗计算公式是电子工程领域中的重要工具,它可以帮助工程师们准确地计算线缆的阻抗。

通过合理选择线缆阻抗,我们可以提高电路的传输质量,保证信号的稳定传输。

因此,在电子工程中,掌握线缆阻抗计算公式是非常重要的。

传输线阻抗和介电常数

传输线阻抗和介电常数

传输线阻抗和介电常数(实用版)目录1.传输线的基本概念2.传输线阻抗的定义和计算方法3.介电常数的定义和影响因素4.传输线阻抗和介电常数对信号传输的影响5.应用实例正文1.传输线的基本概念传输线(Transmission line)是电子工程中一种用于信号传输的电路,通常由两个平行的导线组成,分别是信号线和地线。

在信号传输过程中,导线电阻和电感等因素会导致信号衰减和失真,因此研究传输线的性质对于保证信号质量至关重要。

2.传输线阻抗的定义和计算方法传输线阻抗(Impedance)是指信号在传输线上遇到的阻力,用 Z 表示。

阻抗是电阻(R)和电感(XL)的复合,即 Z=R+jXL,其中 j 是虚数单位。

阻抗的单位是欧姆(Ω)。

传输线阻抗的计算方法通常采用波动方程法。

对于一条均匀传输线,波动方程可以表示为:Z = √(L/C) * exp(-j * β * l),其中 L 是传输线的电感,C 是传输线的电容,β是相速,l 是传输线的长度。

3.介电常数的定义和影响因素介电常数(Dielectric constant)又称相对电介质常数,是用来描述绝缘材料在电场中极化程度的物理量。

介电常数的大小反映了介质在电场作用下产生极化的能力。

介电常数的单位是真空介电常数,通常用 K 表示。

介电常数的大小受多种因素影响,如材料性质、温度、电场强度等。

不同材料的介电常数差异很大,例如空气的介电常数约为 1,而硅的介电常数约为 10000。

4.传输线阻抗和介电常数对信号传输的影响传输线阻抗和介电常数对信号传输有重要影响。

首先,阻抗会影响信号的衰减和传输速率。

当传输线阻抗与信号源阻抗不匹配时,会导致信号反射,从而降低信号传输的质量。

其次,介电常数会影响传输线的电容和电感,进而影响阻抗。

对于高频信号传输,介电常数较小的绝缘材料具有更好的传输性能。

5.应用实例在实际应用中,传输线阻抗和介电常数的研究对于设计和优化通信系统、射频电路和信号传输线路具有重要意义。

阻抗计算公式、polarsi9000[教程]

阻抗计算公式、polarsi9000[教程]

一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教!在计算阻抗之前,我想很有必要理解这儿阻抗的意义。

传输线阻抗的由来以及意义传输线阻抗是从电报方程推导出来(具体可以查询微波理论)如下图,其为平行双导线的分布参数等效电路:从此图可以推导出电报方程取传输线上的电压电流的正弦形式得推出通解定义出特性阻抗无耗线下r=0, g=0 得注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义)特性阻抗与波阻抗之间关系可从此关系式推出.Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来.叠层(stackup)的定义我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的Oz 的概念Oz 本来是重量的单位Oz(盎司 )=28.3 g(克)在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε"Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.传输线特性阻抗的计算首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有1 个参考地,而带状线有2个参考地,如下图所示对照上面常用的8 层主板,只有top 和bottom 走线层才是微带线类型,其他的走线层都是带状线类型在计算传输线特性阻抗的时候, 主板阻抗要求基本上是:单线阻抗要求55 或者60Ohm,差分线阻抗要求是70~110Ohm,厚度要求一般是1~2mm,根据板厚要求来分层得到各厚度高度. 在此假设板厚为1.6mm,也就是63mil 左右, 单端阻抗要求60Ohm,差分阻抗要求100Ohm,我们假设以如下的叠层来走线先来计算微带线的特性阻抗,由于top 层和bottom 层对称,只需要计算top 层阻抗就好的,采用polar si6000,对应的计算图形如下:在计算的时候注意的是:1,你所需要的是通过走线阻抗要求来计算出线宽W(目标)2,各厂家的制程能力不一致,因此计算方法不一样,需要和厂家进行确认3,表层采用coated microstrip 计算的原因是,厂家会有覆绿漆,因而没用surface microstrip 计算,但是也有厂家采用surface microstrip 来计算的,它是经过校准的4,w1 和w2 不一样的原因在于pcb 板制造过程中是从上到下而腐蚀,因此腐蚀出来有梯形的感觉(当然不完全是)5,在此没计算出精确的60Ohm 阻抗,原因是实际制程的时候厂家会稍微改变参数,没必要那么精确,在1,2ohm 范围之内我是觉得没问题6,h/t 参数对应你可以参照叠层来看再计算出L5 的特性阻抗如下图记得当初有各版本对于stripline 还有symmetrical stripline 的计算图,实际上的差异从字面来理解就是symmetrical stripline 其实是offset stripline 的特例H1=H2在计算差分阻抗的时候和上面计算类似,除所需要的通过走线阻抗要求来计算出线宽的目标除线宽还有线距,在此不列出选用的图是在计算差分阻抗注意的是:1,在满足DDR2 clock 85Ohm~1394 110Ohm 差分阻抗的同时又满足其单端阻抗,因此我通常选择的是先满足差分阻抗(很多是电流模式取电压的)再考虑单端阻抗(通常板厂是不考虑的,实际做很多板子,问题确实不算大,看样子差分线还是走线同层同via 同间距要求一定要符合)特性阻抗公式(含微带线,带状线的计算公式)a.微带线(microstrip)Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)] 其中,W为线宽,T为走线的铜皮厚度,H为走线到参考平面的距离,Er是PCB板材质的介电常数(dielectric constant)。

传输线的特性阻抗分析

传输线的特性阻抗分析

传输线的特性阻抗分析传输线是用于信号传输的电路元件,常见于通信系统、电子设备和电源系统等。

它的主要功能是传输高频信号,并且具有一定的特性阻抗。

特性阻抗是指传输线上单位长度所具有的电阻和电感之比,通常用Ω/米表示。

特性阻抗的分析是研究传输线电学特性的重要方面,下面将从分析传输线的基本结构、传输线上的电路模型以及特性阻抗的计算等方面进行详细介绍。

1.传输线的基本结构:传输线由两个导体(通常为金属)构成,它们之间由绝缘材料(如聚乙烯、聚氯乙烯等)隔开。

传输线可以分为两种类型:平衡传输线(例如双线)和非平衡传输线(例如同轴电缆)。

平衡传输线中的两个导体具有相同的电压和相反的电流,而非平衡传输线中的两个导体之间既有电压差也有电流流过。

2.传输线上的电路模型:为了分析传输线的电学特性,可以将传输线建模为电路模型。

常见的电路模型有两类:长线模型和短线模型。

(1)长线模型:适用于高频信号传输或信号传输距离较长的情况。

长线模型主要包括电感、电容和电阻等参数,并考虑信号的衰减、延迟和反射等效应。

(2)短线模型:适用于低频信号传输或信号传输距离较短的情况。

短线模型主要包括电阻、电感、电容和传输线的长度等参数。

3.特性阻抗的计算:特性阻抗可通过以下公式进行计算:Zc=√(L/C)其中,Zc表示特性阻抗,L表示单位长度的电感,C表示单位长度的电容。

特性阻抗的计算是传输线分析的基础,对传输线上的信号传输和匹配非常重要。

4.特性阻抗的影响因素:特性阻抗与传输线的几何形状、材料选择以及传输线的参数有关。

传输线的几何形状主要包括导体的直径、导体间的距离等。

材料选择主要指导体和绝缘材料的特性,如电导率、介电常数等。

传输线的参数包括电感、电容等。

这些因素都会对特性阻抗产生影响。

总结起来,传输线的特性阻抗分析是研究传输线电学特性的重要方面。

通过分析传输线的基本结构、电路模型以及特性阻抗的计算,我们可以深入了解传输线的工作原理,并根据特性阻抗进行传输线的设计和匹配。

传输线特征阻抗测量方法

传输线特征阻抗测量方法

传输线特征阻抗测量方法嘿,咱今儿个就来唠唠传输线特征阻抗测量方法这档子事儿!你说这传输线特征阻抗,那可真是个重要的玩意儿。

就好比是一条道路,它得有个合适的宽窄度,才能让信号顺顺畅畅地跑过去呀。

那怎么测量它呢?有一种方法呢,就像是给这条路来个“量身定制”。

用个专门的仪器,就像个超级精准的尺子,去量一量这条传输线的各种参数,然后通过一些计算,就能得出特征阻抗啦。

这就好比你要知道自己穿多大码的鞋子,就得拿尺子好好量量脚一样。

还有一种呢,是通过一些实验来搞清楚。

就好像是做个小测试,给传输线一些特定的信号,然后看看它的反应,从中推断出特征阻抗。

这就像你想知道一个人跑步快不快,那就让他去跑一跑,看看他的速度呗。

咱再想想,这测量方法不就跟咱找东西一样嘛。

有时候得仔细找,一点点摸索,有时候又得换个思路,从不同的角度去看。

比如说,你找个钥匙,可能在桌子上找半天没找着,结果一低头,嘿,在地上呢!测量传输线特征阻抗也是这样,得灵活运用各种方法,才能找到最准确的那个答案呀。

你说要是测不准这特征阻抗会咋样?那信号传输可就容易出问题啦,就像路不好走,车就容易颠簸甚至抛锚一样。

那可不行,咱得把这事儿给弄清楚咯!而且啊,不同的传输线可能需要不同的测量方法呢。

就像不同的人穿衣服有不同的风格,得找到最适合它的那种测量办法。

这可不是随便搞搞就行的,得认真对待,就像对待一件很重要的事情一样。

还有哦,测量的时候可得细心细心再细心,不能有一点马虎。

不然就像做菜放错了调料,那味道可就全变啦。

总之呢,这传输线特征阻抗测量方法可真是门大学问,咱得好好琢磨琢磨,找到最适合的办法,让传输线好好工作,为我们服务呀!咱可不能小瞧了它,它可是在很多领域都起着至关重要的作用呢!你说是不是?所以呀,咱可得把它搞明白,让它发挥出最大的作用!怎么样,现在对这传输线特征阻抗测量方法有点感觉了吧?。

特征阻抗 波阻抗

特征阻抗 波阻抗

特征阻抗和波阻抗1. 引言特征阻抗和波阻抗是电磁学和电路理论中重要的概念,它们对于了解电磁波在各种介质中传播和传输的特性起着关键作用。

在本文中,我们将深入探讨特征阻抗和波阻抗的定义、计算方法以及它们在电磁学和电路中的应用。

通过对这两个概念的全面、详细的讨论,我们将更好地理解电磁波的本质和行为。

2. 特征阻抗的定义和计算2.1 特征阻抗的定义特征阻抗(Characteristic Impedance)是指一种介质或传输线路上的电磁波在单位长度内传输时所具有的阻抗特性。

它是电磁波在介质中传输时电场和磁场之间的比率。

2.2 特征阻抗的计算方法特征阻抗可以通过以下公式进行计算:Z0=√LC其中,Z0表示特征阻抗,L表示单位长度电感,C表示单位长度电容。

3. 波阻抗的定义和计算3.1 波阻抗的定义波阻抗(Wave Impedance)是指电磁波在介质中传播过程中电场和磁场的彼此关系所产生的阻抗特性。

它是电磁波的特性阻抗在传输线路中的分布情况。

3.2 波阻抗的计算方法波阻抗可以通过以下公式进行计算:Z=√R+jωL G+jωC其中,Z表示波阻抗,R表示电阻,L表示电感,G表示电导,C表示电容,ω表示角频率。

4. 特征阻抗和波阻抗的应用4.1 特征阻抗的应用特征阻抗在电磁学和电路中有着广泛的应用。

一些常见的应用包括:•传输线路设计:特征阻抗是设计传输线路时的关键参数。

通过合理选择特征阻抗,可以实现信号的最佳传输和匹配。

•滤波器设计:特征阻抗在滤波器设计中起到重要的作用。

通过选择合适的特征阻抗,可以实现对特定频率段的滤波效果。

4.2 波阻抗的应用波阻抗在电磁学和电路中也有着广泛的应用。

一些常见的应用包括:•阻抗匹配:波阻抗可以用于阻抗匹配,通过调整传输线路的波阻抗可以实现信号的最佳传输和匹配。

•天线设计:波阻抗在天线设计中非常重要。

通过合理选择波阻抗,可以实现最佳的辐射和接收性能。

5. 总结特征阻抗和波阻抗作为电磁学和电路理论中的重要概念,对于电磁波在介质中传播和传输的特性具有关键作用。

pcb阻抗计算方法

pcb阻抗计算方法

阻抗计算说明给初学者的一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义,传输线阻抗的由来以及意义传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路:从此图可以推导出电报方程取传输线上的电压电流的正弦形式得推出通解定义出特性阻抗无耗线下r=0, g=0得注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义)=µZEHε特性阻抗与波阻抗之间关系可从 此关系式推出.Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来.叠层(stackup) 的定义我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的Oz 的概念Oz 本来是重量的单位Oz( 盎司 )=28.3 g( 克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下Oz/ft² 1/4 1/2 1 2 3 4CopperPlating Thickness(mil) 0.36 0.7 1.4 2.8 4.2 5.6介电常数(DK) 的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co 之比为介电常数:ε=Cx/ Co=ε'−ε"Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.a传输线特性阻抗的计算首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有1 个参考地,而带状线有2 个参考地,如下图所示微带线对照上面常用的8 层主板,只有top 和bottom 走线层才是微带线类型,其他的走线层都是带状线类型在计算传输线特性阻抗的时候, 主板阻抗要求基本上是:单线阻抗要求55 或者60Ohm, 差分线阻抗要求是70~110Ohm, 厚度要求一般是1~2mm, 根据板厚要求来分层得到各厚度高度. 在此假设板厚为1.6mm,也就是63mil 左右, 单端阻抗要求60Ohm, 差分阻抗要求100Ohm, 我们假设以如下的叠层来走线先来计算微带线的特性阻抗,由于top 层和bottom 层对称,只需要计算top 层阻抗就好的,采用polarsi6000,对应的计算图形如下:在计算的时候注意的是: 1,你所需要的是通过走线阻抗要求来计算出线宽W(目标) 2,各厂家的制程能力不一致,因此计算方法不一样,需要和厂家进行确认3,表层采用coated microstrip 计算的原因是,厂家会有覆绿漆,因而没用surface microstrip 计算,但是也有厂家采用surface microstrip 来计算的,它是经过校准的4,w1 和w2 不一样的原因在于pcb 板制造过程中是从上到下而腐蚀,因此腐蚀出来有梯形的感觉(当然不完全是) 5,在此没计算出精确的60Ohm 阻抗,原因是实际制程的时候厂家会稍微改变参数, 没必要那么精确,在1,2ohm 范围之内我是觉得没问题6,h/t 参数对应你可以参照叠层来看再计算出L5 的特性阻抗如下图记得当初有各版本对于stripline 还有symmetrical stripline 的计算图,实际上的差异从字面来理解就是symmetrical stripline 其实是offset stripline 的特例H1=H2在计算差分阻抗的时候和上面计算类似,除所需要的通过走线阻抗要求来计算出线宽的目标除线宽还有线距,在此不列出选用的图是在计算差分阻抗注意的是: 1,在满足DDR2 clock 85Ohm~1394 110Ohm 差分阻抗的同时又满足其单端阻抗,因此我通常选择的是先满足差分阻抗(很多是电流模式取电压的)再考虑单端阻抗(通常板厂是不考虑的,实际做很多板子,问题确实不算大,看样子差分线还是走线同层同via 同间距要求一定要符合)。

传输线特征阻抗

传输线特征阻抗

传输线特征阻抗传输线特征阻抗是指电缆或导线对于传输信号的电阻、电感和电容的总和,通常用单位长度的欧姆数表示。

在高速数字信号传输中,传输线特征阻抗的匹配是非常重要的,因为它可以确保信号的正确传输,并最大化信号的带宽。

一、传输线特征阻抗概述1.1 什么是传输线特征阻抗?1.2 为什么需要考虑传输线特征阻抗?1.3 如何计算传输线特征阻抗?二、影响传输线特征阻抗的因素2.1 电缆材料2.2 电缆几何形状2.3 电缆屏蔽2.4 环境温度三、匹配传输线特征阻抗的方法3.1 使用适当的连接器和接头3.2 使用合适的终端接口3.3 使用合适的终端负载四、应用实例分析:高速数字信号传输中的匹配问题4.1 高速差分信号传输中如何匹配传输线特征阻抗?4.2 如何避免反射和串扰?五、传输线特征阻抗的测试5.1 传输线特征阻抗的测试方法5.2 测试结果分析和处理六、总结与展望6.1 总结传输线特征阻抗的重要性和影响因素6.2 展望未来传输线特征阻抗匹配技术的发展趋势一、传输线特征阻抗概述1.1 什么是传输线特征阻抗?传输线是指用于在电路中传送信号的导体,如电缆、微带电路和同轴电缆等。

当信号通过导体时,它会遇到导体内部的电阻、电感和电容等参数,这些参数会影响信号的传播速度和衰减。

因此,我们需要一个参数来描述导体对于信号的总体影响,这个参数就是传输线特征阻抗。

传输线特征阻抗通常用单位长度(米或英尺)的欧姆数表示。

例如,在50欧姆同轴电缆中,每米长度内有50欧姆的特征阻抗。

1.2 为什么需要考虑传输线特征阻抗?在高速数字信号传输中,如果信号源与负载之间没有匹配的传输线特征阻抗,信号就会反射回源端并产生干扰。

这种干扰会导致信号失真、时钟抖动和误码率增加等问题。

因此,匹配传输线特征阻抗是确保信号正确传输的关键。

此外,传输线特征阻抗还可以最大化信号的带宽,并减小信号衰减和串扰等问题。

因此,在设计高速数字电路时,必须考虑匹配传输线特征阻抗。

传输线特征阻抗

传输线特征阻抗

传输线特征阻抗近年来,高速设计领域一个越来越重要也是越来越为设计工程师所关注议题就是受控阻抗的电路板设计以及电路板上互联线的特征阻抗。

然而,对于非电子的设计工程师来说,这也是一个最容易混淆也最不直观的问题。

甚至很多的电子设计工程师对此也同样感到困惑。

这篇资料将对特征阻抗作一个简要而直观的介绍,希望帮助大家了解传输线最基本的品质。

什么是传输线?什么是传输线?两个具有一定长度的导体就构成传输线。

其中的一个导体成为信号传播的通道,而另外的一个导体则构成信号的返回通路(在这里我们提到信号的返回通路,实际上就是大家通常理解的地,但是为了叙述的方便,暂且忘掉地这一概念。

)。

在一个多层的电路板设计中,每一个PCB互联线都构成传输线中的一个导体,该传输线都将临近的参考平面作为传输线的的第二个导体或者叫做信号的返回通路。

什么样的PCB互联线是一个好的传输线呢?通常如果在同一个PCB互联线上特征阻抗处处保持一致,这样的传输线就成为高质量的传输线。

什么样的电路板叫做受控阻抗的电路板?受控阻抗的电路板是指PCB板上所有传输线的特征阻抗符合统一的目标规范,通常是指所有传输线的特征阻抗的值在25Ω到70Ω之间。

从信号的角度来考察考虑特征阻抗最行之有效的办法是考察信号沿着传输线传播时信号本身看到了什么。

为简化问题的讨论起见,假定传输线为微波传输带(microstrip)类型,并且信号沿传输线传播时传输线各处的横断面保持一致。

给该传输线加入幅度为1V的阶跃信号。

阶跃信号是一个1V的电池,由前端接入,分别连接在信号线和返回通路之间。

在接通电池的瞬间,信号电压波形将以光速在电介质中行进,速度通常约为6英寸/ns(信号为什么行进如此快速,而不是接近电子传播的速度大约1cm/s,这是另外一个话题,这里不做进一步介绍)。

当然在这里信号仍然具有常规的定义,信号定义为信号线与返回通路上的电压差,总是通过测量传输线上任何一点与之临近的信号返回通路之间的电压差值来获得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档