卤代烷反应时
有机化学人名反应大全
一、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R′I >R′Br >R′Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:)这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR' 也能发生该类反应,例如:反应机理一般认为是按S N2 进行的分子内重排反应:反应实例、二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例#三、Baeyer----Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:?醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
有机化学人名反应大全
一、Arbuzov 反应之迟辟智美创作亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次第为:R′I >R′Br >R′Cl.除卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应.当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团.本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的经常使用方法.除亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热获得酸.反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,获得酰基卡宾(2),(2)发生重排得烯酮(3),反应实例三、Baeyer----Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂.因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型坚持不变,说明反应属于分子内重排:分歧毛病称的酮氧化时,在重排步伐中,两个基团均可迁移,可是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,获得羧酸.反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边拔出一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂.这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高.四、Beckmann重排肟在酸如硫酸、多聚磷酸以及能发生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应获得酰胺.迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例五、Birch还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物.反应机理首先是钠和液氨作用生成溶剂化点子,然后苯获得一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)暗示的是部份共振式.(Ⅰ)不稳定而被质子化,随即从乙醇中篡夺一个质子生成环己二烯自由基(Ⅱ).(Ⅱ)在取得一个溶剂化电子转酿成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,迅速再从乙醇中篡夺一个电子生成1,4-环己二烯.环己二烯负离子(Ⅲ)在共轭链的中间碳原子上质子化比末端碳原子上质子快,原因尚不清楚.反应实例取代的苯也能发生还原,而且通过获得单一的还原产物.例如脂肪族羧酸酯可用金属钠和醇还原得一级醇.α,β-不饱和羧酸酯还原得相应的饱和醇.芳香酸酯也可进行本反应,但收率较低.本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响.反应机理首先酯从金属钠获得一个电子还原为自由基负离子,然后从醇中篡夺一个质子转酿成自由基,再从钠得一个电子生成负离子,消除烷氧基成为醛,醛再经过相同的步伐还原成钠,再酸化获得相应的醇.反应实例醛酮也可以用本法还原,获得相应的醇:七、Bucherer反应萘酚及其衍生物在亚硫酸或亚硫酸氢盐存在下和氨进行高温反应,可得萘胺衍生物,反应是可逆的.反应时如用一级胺或二级胺与萘酚反应则制得二级或三级萘胺.如有萘胺制萘酚,可将其加入到热的亚硫酸氢钠中,再加入碱,经煮沸除去氨而得.反应机理本反应的机理为加成消除过程,反应的第一步(无论从哪个方向开始)都是亚硫酸氢钠加成到环的双键上获得烯醇(Ⅱ)或烯胺(Ⅵ),它们再进行下一步互变异构为酮(Ⅲ)或亚胺(Ⅳ):反应实例八、苯基羟胺(N-羟基苯胺)和稀硫酸一起加热发生重排成对-氨基苯酚:在H2SO4-C2H5OH(或CH3OH)中重排生成对-乙氧基(或甲氧基)苯胺:其他芳基羟胺,它的环上的o-p位上未被取代者会起类似的重排.例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:反应机理反应实例九、Berthsen,A.Y 吖啶合成法二芳基胺类与羧酸在无水ZnCl2存在下加热起缩合作用,生成吖啶类化合物.反应机理反应机理不详反应实例十、Cannizzaro 反应凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物.此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步酿成树脂状物质.具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,获得无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应获得季戊四醇:反应机理醛首先和氢氧根负离子进行亲核加成获得负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上.反应实例十一、Chichibabin 反应杂环碱类,与碱金属的氨基物一起加热时发生胺化反应,获得相应的氨基衍生物,如吡啶与氨基钠反应生成2-氨基啶,如果α位已被占据,则得γ-氨基吡啶,但产率很低.本法是杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能发生本反应.喹啉、吡嗪、嘧啶、噻唑类化合物较为困难.氨基化试剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物:反应机理反应机理还不是很清楚,可能是吡啶与氨基首先加成,(Ⅰ),(Ⅰ)转移一个负离子给质子给予体(AH),发生一分子氢气和形成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的给予体,最后的产物是2-氨基吡啶的钠盐,用水分解获得2-氨基吡啶:吡啶类化合物不容易进行硝化,用硝基还原法制备氨基吡啶甚为困难.本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应.十二、Claisen酯缩合反应含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇获得β-酮酸酯.如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合获得乙酰乙酸乙酯.二元羧酸酯的分子内酯缩合见Dieckmann缩合反应.反应机理乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的.但由于最后产物乙酰乙酸乙酯是一个比力强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动.所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不竭地反应,结果反应还是可以顺利完成.经常使用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、三苯甲基钠、二异丙氨基锂(LDA)和Grignard试剂等.反应实例如果酯的α-碳上只有一个氢原子,由于酸性太弱,用乙醇钠难于形成负离子,需要用较强的碱才华把酯酿成负离子.如异丁酸乙酯在三苯甲基钠作用下,可以进行缩合,而在乙醇钠作用下则不能发生反应:两种分歧的酯也能发生酯缩合,理论上可获得四种分歧的产物,称为混合酯缩合,在制备上没有太年夜意义.如果其中一个酯分子中既无α-氢原子,而且烷氧羰基又比力活泼时,则仅生成一种缩合产物.如苯甲酸酯、甲酸酯、草酸酯、碳酸酯等.与其它含α-氢原子的酯反应时,都只生成一种缩合产物.实际上这个反应不限于酯类自身的缩合,酯与含活泼亚甲基的化合物都可以发生这样的缩合反应,这个反应可以用下列通式暗示:十三、Claisen—Schmidt反应一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水获得不饱和醛或酮:反应机理反应实例十四、Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚.当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要获得邻位产物,两个邻位均被取代基占据时,重排获得对位产物.对位、邻位均被占满时不发生此类重排反应.交叉反应实验证明:Claisen重排是分子内的重排.采纳 g-碳14C 标识表记标帜的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移.两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连.反应机理Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响.从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移()到对位,然后经互变异构获得对位烯丙基酚.取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故.反应实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排.十五、Clemmensen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物.对酸不稳定而对碱稳定的化合物可用还原.本反应的反应机理较复杂,目前尚不很清楚.反应实例十六、Combes 喹啉合成法Combes合成法是合成喹啉的另一种方法,是用芳胺与1,3-二羰基化合物反应,首先获得高产率的β-氨基烯酮,然后在浓硫酸作用下,羰基氧质子化后的羰基碳原子向氨基邻位的苯环碳原子进行亲电进攻,关环后,再脱水获得喹啉.反应机理在氨基的间位有强的邻、对位定位基团存在时,关环反应容易发生;但当强邻、对位定位基团存在于氨基的对位时,则不容易发生关环反应.反应实例十七、Cope消除反应叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二取代羟胺,产率很高.实际上只需将叔胺与氧化剂放在一起,不需分离出氧化叔胺即可继续进行反应,例如在干燥的二甲亚砜或四氢呋喃中这个反应可在室温进行.此反应条件温和、副反应少,反应过程中不发生重排,可用来制备许多烯烃.当氧化叔胺的一个烃基上二个β位有氢原子存在时,消除获得的烯烃是混合物,可是 Hofmann产物为主;如获得的烯烃有顺反异构时,一般以 E-型为主.例如:这个反应是E2顺式消除反应,反应过程中形成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要发生这样的环状结构,氨基和β-氢原子必需处于同一侧,而且在形成五员环过度态时,α,β-碳原子上的原子基团呈重叠型,这样的过度态需要较高的活化能,形成后也很不稳定,易于进行消除反应.反应实例十八、Cope重排1,5-二烯类化合物受热时发生类似于 O-烯丙基重排为 C-烯丙基的重排反应()反应称为Cope重排.这个反应30多年来引起人们的广泛注意.1,5-二烯在150—200℃独自加热短时间就容易发生重排,而且产率非常好.Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性.例如:内消旋-3,4-二甲基-1,5-己二烯重排后,获得的产物几乎全部是(Z, E)-2,6辛二烯:反应机理Cope重排是[3,3]s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,暗示为经过椅式环状过渡态:反应实例十九、Curtius 反应酰基叠氮化物在惰性溶剂中加热分解生成异氰酸酯:异氰酸酯水解则获得胺:反应机理反应实例二十、Crigee,R 反应1,2-二元醇类的氧化产物因所用的氧化剂的种类而分歧.用K2Cr2O7或KMnO4氧化时生成酸类.用特殊氧化剂四乙醋酸铅在CH3COOH或苯等不活泼有机溶剂中缓和氧化,生成二分子羰基化合物(醛或酮).氧化反应也可以在酸催化剂(三氯醋酸)存在下进行.本反应被广泛地应用于研究醇类结构及制备醛、酮类,产率很高.反应机理反应过程中先生成环酯中间产物,进一步C--C键裂开成醛或酮.酸催化的场所,反应历程可以用下式暗示:反应实例二十一、Dakin反应酚醛或酚酮类用H2O2在NaOH存在下氧化时,可将分子中的-CHO基或CH3CO-基被-OH基所置换,生成相对应的酚类.本反应可利用以制备多远酚类.反应机理反应实例二十二、Elbs反应羰基的邻位有甲基或亚甲基的二芳基酮,加热时发生环化脱氢作用,生成蒽的衍生物:由于这个反应通常是在回流温度或高达400-450 °C的温度范围内进行,不用催化剂和溶剂,直到反应物没有水放出为止,在这样的高温条件下,一部份原料和产物发生碳化,部份原料酮被释放出的水所裂解,烃基发生消除或降解以及分子重排等副反应,致使产率不高.反应机理本反应的机理尚不清楚.反应实例二十三、Edvhweiler-Clarke 反应在过量甲酸存在下,一级胺或二级胺与甲醛反应,获得甲基化后的三级胺:甲醛在这里作为一个甲基化试剂.反应机理反应实例二十四、将一元酚类或类似化合物用过硫酸钾在碱性溶液中氧化羟基引入在原有羟基的对位或邻位,生成二元酚类.分子中的醛基或双键等都不影响.产率约20~48%.过硫酸钾的水溶液在加热时放出氧:芳伯胺类如用本试剂氧化时,酿成硝基化合物.反应机理反应实例二十五、Favorskii重排a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状a-卤代酮,则招致环缩小.如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较年夜的四员环.反应机理反应实例二十六、Friedel-Crafts烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3,H2SO4, H3PO4, BF3, HF等)存在下,发生芳环的烷基化反应.卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超越3个碳原子时,反应过程中易发生重排.反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,获得较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体s-络合物,然后失去一个质子获得发生亲电取代产物:反应实例二十七、Friedel-Crafts酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通经常使用无水三氯化铝)催化下发生酰基化反应,获得芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排.反应机理反应实例二十八、Fries 重排酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物.重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行.邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等.例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物.反应温度对邻、对位产物比例的影响比力年夜,一般来讲,较高温度(如室温)下重排有利于形成对位异构产物(动力学控制),较高温度下重排有利于形成邻位异构产物(热力学控制).反应机理反应实例二十九、Fischer,O-Hepp,E重排N-亚硝基芳胺用盐酸或氢溴酸或其乙醇溶液处置时氨基氮上的亚硝基转移到芳核上去形成p-亚硝基芳胺(对位重排):通常发生对位重排,但在奈系化合物中如N-亚硝基-N-加基-2-奈胺则发生邻位重排成1-亚硝基化合物:反应机理在HCl存在下,N-亚硝基化合物首先解离成仲胺及NOCl然后进行亚硝基化:三十、Gabriel合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转酿成邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性条件下水解获得一级胺和邻苯二甲酸,这是制备纯洁的一级胺的一种方法.有些情况下水解很困难,可以用肼解来取代:反应机理邻苯二甲酰亚胺盐和卤代烷的反应是亲核取代反应,取代反应产物的水解过程与酰胺的水解相似.反应实例三十一、Gattermann反应重氮盐用新制的铜粉取代亚铜盐(见)作催化剂,与浓盐酸或氢溴酸发生置换反应获得氯代或溴代芳烃:本法优点是把持比力简单,反应可在较高温度下进行,缺点是其产率一般较低.反应机理见反应实例三十二、Gattermann-Koch 反应芳香烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存在下反应,生成芳香醛:反应机理反应实例三十三、Gomberg-Bachmann 反应芳香重氮盐在碱性条件下与其它芳香族化合物偶联生成联苯或联苯衍生物:三十四、Hantzsch 合成法两分子b-羰基酸酯和一分子醛及一分子氨发生缩合反应,获得二氢吡啶衍生物,再用氧化剂氧化获得吡啶衍生物.这是一个很普遍的反应,用于合成吡啶同系物.反应机理反应过程可能是一分子b-羰基酸酯和醛反应,另一分子b-羰基酸酯和氨反应生成b-氨基烯酸酯,所生成的这两个化合物再发生Micheal加成反应,然后失水关环生成二氢吡啶衍生物,它很溶液脱氢而芳构化,例如用亚硝酸或铁氰化钾氧化获得吡啶衍生物:反应实例三十五、Haworth 反应萘和丁二酸酐发生然后按标准的方法还原、关环、还原、脱氢获得多环芳香族化合物.反应机理见反应实例三十六、Hell-Volhard-Zelinski 反应羧酸在催化量的三卤化磷或红磷作用下,能与卤素发生a-卤代反应生成a-卤代酸:本反应也可以用酰卤作催化剂.三十七、Hinsberg反应伯胺、仲胺分别与对甲苯磺酰氯作用生成相应的对甲苯磺酰胺沉淀,其中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反应.此反应可用于昆季叔胺的分离与鉴定.三十八、Hofmann烷基化卤代烷与氨或胺发生烷基化反应,生成脂肪族胺类:由于生成的伯胺亲核性通常比氨强,能继续与卤代烃反应,因此本反应不成防止地发生仲胺、叔胺和季铵盐,最后获得的往往是多种产物的混合物.用年夜过量的氨可防止多取代反应的发生,从而可获得良好产率的伯胺.反应机理反应为典范的亲核取代反应(S N1或S N2)反应实例三十九、Hofmann消除反应季铵碱在加热条件下(100--200°C)发生热分解,当季铵碱的四个烃基都是甲基时,热分解获得甲醇和三甲胺:如果季铵碱的四个烃基分歧,则热分解时总是获得含取代基最少的烯烃和叔胺:反应实例四十、Hofmann重排(降解)酰胺用溴(或氯)在碱性条件下处置转酿成少一个碳原子的伯胺:反应机理反应实例四十一、Houben-Hoesch 反应酚或酚醚在氯化氢和氯化锌等Lewis酸的存在下,与腈作用,随后进行水解,获得酰基酚或酰基酚醚:反应机理反应机理较复杂,目前尚未完全说明反应实例四十二、Hunsdieecker 反应干燥的羧酸银盐在四氯化碳中与卤素一起加热放出二氧化碳,生成比原羧酸少一个碳原子的卤代烃:X = Br , Cl , I反应机理反应实例四十三、Kiliani氯化增碳法糖在少量氨的存在下与氢氰酸加成获得a-羟基腈,经水解获得相应的糖酸,此糖酸极易转酿成内酯,将此内酯在含水的乙醚或水溶液中用钠汞齐还原,获得比原来的糖多一个碳原子的醛糖.反应实例四十四、Knoevenagel 反应含活泼亚甲基的化合物与醛或酮在弱碱性催化剂(氨、伯胺、仲胺、吡啶等有机碱)存在下缩合获得a,b-不饱和化合物.反应机理反应实例四十五、Koble 反应脂肪酸钠盐或钾盐的浓溶液电解时发生脱羧,同时两个烃基相互偶联生成烃类:如果使用两种分歧脂肪酸的盐进行电解,则获得混合物:反应机理反应实例四十六、Koble-Schmitt 反应酚钠和二氧化碳在加压下于125-150 ºC反应,生成邻羟基苯甲酸,同时有少量对羟基苯甲酸生成:反应产物与酚盐的种类及反应温度有关,一般来讲,使用钠盐及在较低的温度下反应主要获得邻位产物,而用钾盐及在较高温度下反应则主要得对位产物:邻位异构体在钾盐及较高温度下加热也能转酿成对位异构体:反应机理反应机理目前还不太清楚.反应实例四十七、Kolbe,H.Syntbexis of Nitroparsffini合成将含等摩尔的α-卤代羧酸与亚硝酸钠或钾的水溶液加热时,生成-硝基脂肪酸钠中间体,继续加热起分解作用,失去CO2转酿成硝基烷类及NaHCO3.本方法仅可适用于小量制备碳原子数在以下的硝基烷类(特别适宜于制备硝基甲烷及硝基乙烷).而b-卤代羧酸与亚硝酸钾作用生成产物不能放出CO2,故不能发生此反应.反应机理反应实例四十八、Leuckart 反应醛或酮在高温下与甲酸铵反应得伯胺:除甲酸铵外,反应也可以用取代的甲酸铵或甲酰铵.反应机理反应中甲酸铵一方面提供氨,另一方面又作为还原剂.反应实例四十九、Lossen 反应或其酰基化物在独自加热或在碱、脱水剂(如五氧化二磷、乙酸酐、亚硫酰氯等)存在下加热发生重排生成异氰酸酯,再经水解、脱羧得伯胺:本重排反应后来有过反应机理。
有机化学反应机理1.pdf
有机化学反应机理幻影无痕制作1.Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例1.A rndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例2.Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
有机化学反应机理详解(共95个反应机理)
一、Arbuzow反应(重排)亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzow反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
卤代烷与醇钠反应条件
卤代烷与醇钠反应条件
卤代烷与醇钠反应是一种有机化学反应,通常在无水条件下进行。
醇钠是一种强碱,可以与卤代烷发生亲核取代反应,生成相应的醚。
以下是该反应的一般条件:
1. 醇钠的制备:通常使用醇与氢氧化钠或氢氧化钾反应制备醇钠。
在制备过程中,需要确保醇完全反应,以避免使用未反应的醇进行后续的卤代烷与醇钠反应。
2. 卤代烷的选择:卤代烷应具有所需的取代基和卤素原子。
不同的卤代烷可能会与醇钠发生不同的反应,因此选择合适的卤代烷非常重要。
3. 无水条件:该反应需要在无水条件下进行,以避免水分的干扰。
可以使用干燥剂或通过蒸馏等方法去除水分。
4. 温度和时间:反应温度和时间会影响反应的速率和产物的产率。
通常,较高的温度可以促进反应的进行,但也可能导致副产物的产生。
反应时间可以根据需要适当延长,以确保反应完全。
5. 催化剂和添加剂:有时可以使用催化剂或添加剂来促进反应的进行。
例如,某些金属可以作为催化剂促进该反应的进行。
请注意,具体的反应条件可能会因实验条件和设备而有所不同。
在进行卤代烷与醇钠的反应时,建议参考相关的文献或咨询专业人士以获取更详细和准确的指导。
羧酸和卤代物反应
羧酸和卤代物反应羧酸是一类含有羧基(-COOH)的有机化合物,卤代物则是指含有卤素(氟、氯、溴、碘)的有机化合物。
羧酸和卤代物之间的反应是有机化学中一类重要的反应,被广泛应用于有机合成和药物制备等领域。
羧酸和卤代物反应的产物主要有酯、酰卤和酰胺等。
具体反应方式取决于卤代物的种类和反应条件。
下面将就不同类别的羧酸和卤代物反应进行详细介绍。
1. 羧酸和卤代烷反应:当羧酸与卤代烷反应时,生成酯。
这是羧酸和卤代物反应中最常见的一种类型。
反应一般在碱性条件下进行,碱的作用是使羧酸质子化,形成更好的离去基团。
例如,乙酸和溴乙烷反应可以得到乙酸乙酯。
2. 羧酸和卤代烃反应:卤代烃中的碳原子上不含有氢原子时,羧酸与卤代烃反应生成酰卤。
酰卤是一类重要的有机化合物,可作为反应中间体或试剂用于有机合成。
例如,乙酸和氯甲烷反应可以得到乙酰氯。
3. 羧酸和卤代烃反应:当卤代烃中的碳原子上含有氢原子时,羧酸与卤代烃反应生成酰胺。
酰胺是一类重要的有机化合物,广泛存在于生物体内。
例如,乙酸和溴乙烷反应可以得到乙酰胺。
除了上述几种常见的反应类型,羧酸和卤代物还可以发生其他类型的反应,如羧酸和卤代烃反应生成醛、酰胺和酮等。
这些反应在有机合成中具有重要的应用价值。
羧酸和卤代物反应的条件和机理各有不同。
一般来说,反应需要在适当的溶剂中进行,并通过加热或加入催化剂来促进反应进行。
在一些特殊的情况下,还可以利用高能辐射或超声波等非常规手段来促进反应的进行。
羧酸和卤代物反应在有机合成中具有广泛的应用。
例如,酯是一类常见的有机溶剂,用于溶解和萃取有机化合物。
酰卤是有机合成中常用的试剂,可用于醇的酰化反应和醚的酰化反应等。
酰胺则广泛存在于生物体内,具有重要的生物学功能。
羧酸和卤代物之间的反应是有机化学中一类重要的反应。
通过合理选择反应条件和催化剂,可以实现羧酸和卤代物之间的选择性反应,得到所需的产物。
这些反应在有机合成和药物制备等领域具有广泛的应用前景。
卤代烷烃消去反应的
卤代烷烃消去反应:性质、影响因素、机理与工业应用卤代烷烃的消去反应是一种有机化学反应,通过这种反应可以合成多种有机化合物,在制药、染料、农药等领域有广泛的应用。
下面我们将深入探讨卤代烷烃消去反应的性质、影响因素、机理和工业应用等方面。
一、卤代烷烃消去反应的性质卤代烷烃消去反应通常是在碱性环境下,通过与碱(如氢氧化钠、氢氧化钾等)发生反应,消除卤素原子,生成不饱和键。
这种反应也被称为消除反应或脱卤反应。
卤代烷烃消去反应的产物是不饱和键化合物,如烯烃、炔烃等。
二、卤代烷烃消去反应的影响因素碱性环境:卤代烷烃消去反应需要在碱性环境下进行。
这是因为碱能够与卤代烷烃中的卤素原子结合,形成卤化物,从而促进消去反应的进行。
常用的碱有氢氧化钠、氢氧化钾、醇钠等。
温度:温度是影响卤代烷烃消去反应的重要因素。
高温可以促进反应的进行,提高反应速率。
但温度过高也可能导致副反应发生,影响产物纯度和产率。
因此,选择适当的温度对卤代烷烃消去反应至关重要。
溶剂:溶剂对卤代烷烃消去反应也有影响。
常用的溶剂有醇、醚、苯等。
选择适当的溶剂可以促进反应的进行,提高产物收率。
底物结构:底物结构对卤代烷烃消去反应也有影响。
一般来说,与卤素相连的C-H键的极性越强,越容易发生消去反应。
此外,取代基的性质和位置也会影响消去反应的进行。
三、卤代烷烃消去反应的机理卤代烷烃消去反应的机理可以分为两步。
第一步是碱与卤代烷烃中的卤素原子结合形成卤化物,第二步是消除卤素原子,形成不饱和键。
具体来说,第一步是碱中的负离子与卤代烷烃中的卤素原子结合,形成带有负电荷的中间体(碳-卤键)。
第二步是中间体发生异裂,消除一个带有正电荷的氢离子,形成不饱和键化合物和卤化钠(或卤化钾)等产物。
整个反应过程中,氢离子被取代基团所取代,生成新的碳-碳双键或碳-碳三键。
四、卤代烷烃消去反应的工业应用合成烯烃:通过卤代烷烃消去反应可以合成烯烃。
烯烃是不饱和烃类化合物,在工业上有广泛的应用,如生产塑料、橡胶、纤维等材料。
有机化学反应机理详解(共95个反应机理)
一、Arbuzow反应(重排)亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzow反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
有机化学人名反应大全
一、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R′I 〉R′Br 〉R′Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a—或b—卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R’X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR' 也能发生该类反应,例如:反应机理一般认为是按S N2 进行的分子内重排反应:反应实例二、Arndt—Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸.反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺.反应实例三、Baeyer—--—Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到—O—O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂.因此,这是一个重排反应具有光学活性的3—-—苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂.这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。
卤代烷反应时
1Arbuzov 反应卤代烷反应时其活性次序为RI gtRBr gtRCl。
除了卤代烷外烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得一般认为是按SN2 进行的分子内重排反应2Arndt-Eister 反应酰氯与重氮甲烷反应然后在氧化银催化下与水共热得到酸。
重氮甲烷与酰氯反应首先形成重氮酮11在氧化银催化下与水共热得到酰基卡宾22发生重排得烯酮33与水反应生成酸若与醇或氨胺反应则得酯或酰胺。
3Baeyer----Villiger 反应过酸先与羰基进行亲核加成然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上同时发生O-O键异裂。
因此这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应重排产物手性碳原子的枸型保持不变说明反应属于分子内重排不对称的酮氧化时在重排步骤中两个基团均可迁移但是还是有一定的选择性按迁移能力其顺序为 4 Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排生成相应的取代酰胺如环己酮肟在硫酸作用下重排生成己内酰胺在酸作用下肟首先发生质子化然后脱去一分子水同时与羟基处于反位的基团迁移到缺电子的氮原子上所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子则在迁移前后其构型不变。
5 Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇。
αβ-不饱和羧酸酯还原得相应的饱和醇。
芳香酸ヒ部山 斜反应但收率较低。
本法在氢化锂铝还原酯的方法发现以前广泛地被使用非共轭的双键可不受影响。
首先酯从金属钠获得一个电子还原为自由基负离子然后从醇中夺取一个质子转变为自由基再从钠得一个电子生成负离子消除烷氧基成为醛醛再经过相同的步骤还原成钠再酸化得到相应的醇。
有机人名反应精品
亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、α-卤代醚、α-或β-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚磷酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X的烷基和亚磷酸三烷基酯(RO)3P的烷基相同(即R' = R),则Arbuzov反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR'也能发生该类反应,例如:反应实例反应实例肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例反应机理反应实例反应机理反应实例反应机理反应实例反应机理反应实例反应机理反应实例反应机理反应实例吡啶类化合物不易进行硝化,用硝基还原法制备氨基吡啶甚为困难。
本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应。
烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。
当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。
对位、邻位均被占满时不发生此类重排反应。
交叉反应实验证明:Claisen重排是分子内的重排。
采用 γ-碳14C标记的烯丙基醚进行重排,重排后 γ-碳原子与苯环相连,碳碳双键发生位移。
卤代烷反应时
1.Arbuzov 反应卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:一般认为是按 S N2 进行的分子内重排反应:2.Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
3.Baeyer----Villiger 反应过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:4.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变。
5.Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇。
α,β-不饱和羧酸酯还原得相应的饱和醇。
芳香酸酯也可进行本反应,但收率较低。
本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。
烷烃发生卤代反应的条件
烷烃发生卤代反应的条件1. 烷烃发生卤代反应的介绍烷烃是由碳和氢组成的有机化合物,是众多有机化合物中最简单的一类。
它们可与卤素如氯、溴、碘等发生卤代反应,即是与卤素交换互代反应,使一个或多个氢原子被卤素取代,形成卤代烃。
2. 烷烃发生卤代反应的条件2.1 温度温度是卤代反应的重要因素,卤代反应一般发生在高温时。
在常温下,烷烃与卤素没有反应或反应极缓慢,需要加热才能进行。
一般来说,温度越高,反应速率越快。
但是,过高的温度也会导致反应的副产物较多。
2.2 光照在光照条件下,卤代反应反应速率会大幅度提高,光还能解离卤素分子成离子,使反应过程更加顺利,因此光也是一个很重要的因素。
但是这里需注意,光照加速反应是指在有机溶剂中,这个溶剂必须能够吸收光,这样才能迅速地转移能量到反应体系中。
2.3 卤素浓度卤素的浓度越高,反应速率也越快。
因此,在提高反应速率时,可以通过增加卤素的浓度来实现。
但是过高的卤素浓度会导致副产物的生成增加,也有可能让反应减缓。
2.4 催化剂设催化剂也可以加速反应,一般使用铁或铜作为催化剂,可以显著地提高反应速率。
催化剂的作用是提供了反应所需的活化能,可以降低反应的能垒,使反应更容易进行。
3. 烷烃发生卤代反应的机理烷烃发生卤代反应的机理是取代机理。
首先,卤素分子的一个卤原子与烷烃中的氢原子交换,生成卤代烷,同时释放出一个氢卤酸分子。
这个反应可以看作是发生了质子转移或叙互换。
比如,氯代乙烷的生成过程可以表示为:CH3CH3 + Cl2 → CH3CH2Cl + HCl烷烃每失去一个氢原子,就增加了一个卤素原子,卤代烷分子的结构与原来的烷烃分子类似,但卤代烷分子的物理性质和化学性质却有很大的不同,例如沸点和溶解度都会发生改变。
4. 烷烃发生卤代反应的应用卤代烃在有机合成、医药、农药等化工领域都有着重要的应用。
卤代烃可以进一步反应,生成各种有机化合物,例如醚、酮、醛、酸等。
此外,卤代烃还可以用于制备聚合物、表面活性剂、色素、染料等,是有机合成中不可缺少的重要化合物之一。
有机化学反应机理详解共95个反应机理
一、Arbuzow反应(重排)亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzow反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
卤代烷烃的反应
格氏试剂应用示例
——格氏试剂能与含活泼氢的化合物定量反应。有机分析中让它与 甲基碘化镁作用,由生成甲烷体积计算活泼氢含量 ——格氏试剂能与二氧化碳、醛、酮、酯等多种化合物反应生成有 用的化合物,在有机合成中有广泛应用
15.5.4 卤代烷烃的化学性质
概况
卤素是官能团,极性的C-X共价键键能较小,易断裂,使卤代烷 可发生多种反应,转变为其它有机物。卤代烷及其衍生物在有机合 成上有重要意义 ——重要的反应类型有:
取代反应;注意反应机理
消除反应;注意反应机理 与金属,特别是镁的反应:格利雅试剂
——C—I、C—Br、C—Cl键键能依次增大,因此,反应时卤代烷 活性次序为:
2013-9-17 19
5. 影响亲核取代反应的因素
概况
亲核取代反应是按SN1还是SN2进行,要依卤代烷分子的结构、亲 核试剂、离去基团的性质及溶剂性质等因素的影响而定。
(1)烷基结构的影响 影响情况
——SN1反应时,活性次序
叔卤代烷>仲卤代烷>伯卤代烷>卤甲烷; —— SN2反应时,活性次序恰相反。
CH 3CHCHCH 2 H Br H CH 3CH=CHCH 3 + CH 3CH 2CH=CH 2 △ 1-丁烯(19%) 2-丁烯(81%) CH 3 KOH_C2H5OH CH 3CH=C(CH 3)2 + CH 3CH 2C=CH 2 CH 3CH 2C(CH 3)2 △ 2-甲基-1-丁烯(29%) Br 2-甲基-2-丁烯(71%)
有机化学人名反应大全
一、Arbuzov 反应之杨若古兰创作亚磷酸三烷基酯作为亲核试剂与卤代烷感化,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R′I >R′Br >R′Cl.除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也能够进行反应.当亚酸三烷基酯中三个烷基各不不异时,老是先脱除含碳原子数起码的基团.本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基不异(即 R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的经常使用方法.除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理普通认为是按 SN2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸.反应机理重氮甲烷与酰氯反应首先构成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺.反应实例三、Baeyer----Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂.是以,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产品手性碳原子的枸型坚持不变,说明反应属于分子内重排:分歧错误称的酮氧化时,在重排步调中,两个基团均可迁移,但是还是有必定的选择性,按迁移能力其顺序为:醛氧化的机理与此类似,但迁移的是氢负离子,得到羧酸.反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边拔出一个氧原子生成响应的酯,其中三氟过氧乙酸是最好的氧化剂.这类氧化剂的特点是反应速率快,反应温度普通在10~40℃之间,产率高.四、Beckmann重排肟在酸如硫酸、多聚磷酸和能发生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等感化下发生重排,生成响应的取代酰胺,如环己酮肟在硫酸感化下重排生成己内酰胺:反应机理在酸感化下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所构成的碳正离子与水反应得到酰胺.迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例五、Birch还原芳喷鼻化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物.反应机理首先是钠和液氨感化生成溶剂化点子,然后苯得到一个电子生成自在基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自在基负离子仍是个环状共轭体系,(Ⅰ)暗示的是部分共振式.(Ⅰ)不波动而被质子化,随即从乙醇中夺取一个质子生成环己二烯自在基(Ⅱ).(Ⅱ)在取得一个溶剂化电子转酿成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,敏捷再从乙醇中夺取一个电子生成1,4-环己二烯.环己二烯负离子(Ⅲ)在共轭链的两头碳原子上质子化比末端碳原子上质子快,缘由尚不清楚.反应实例取代的苯也能发生还原,而且通过得到单一的还原产品.例如六、Bouveault---Blanc还原脂肪族羧酸酯可用金属钠和醇还原得一级醇.α,β-不饱和羧酸酯还原得响应的饱和醇.芳喷鼻酸酯也可进行本反应,但收率较低.本法在氢化锂铝还原酯的方法发现之前,广泛地被使用,非共轭的双键可不受影响.反应机理首先酯从金属钠获得一个电子还原为自在基负离子,然后从醇中夺取一个质子改变成自在基,再从钠得一个电子生成负离子,清除烷氧基成为醛,醛再经过不异的步调还原成钠,再酸化得到响应的醇.反应实例醛酮也能够用本法还原,得到响应的醇:七、Bucherer反应萘酚及其衍生物在亚硫酸或亚硫酸氢盐存鄙人和氨进行高温反应,可得萘胺衍生物,反应是可逆的.反应时如用一级胺或二级胺与萘酚反应则制得二级或三级萘胺.如有萘胺制萘酚,可将其加入到热的亚硫酸氢钠中,再加入碱,经煮沸除去氨而得.反应机理本反应的机理为加成清除过程,反应的第一步(不管从哪个方向开始)都是亚硫酸氢钠加成到环的双键上得到烯醇(Ⅱ)或烯胺(Ⅵ),它们再进行下一步互变异构为酮(Ⅲ)或亚胺(Ⅳ):反应实例八、苯基羟胺(N-羟基苯胺)和稀硫酸一路加热发生重排成对-氨基苯酚: 在H 2SO 4-C 2H 5OH(或CH 3OH)中重排生成对-乙氧基(或甲氧基)苯胺:其他芳基羟胺,它的环上的o-p 位上未被取代者会起类似的重排.例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:反应机理反应实例九、Berthsen,A.Y 吖啶合成法二芳基胺类与羧酸在无水ZnCl 2存鄙人加热起缩合感化,生成 吖啶类化合物.反应机理反应机理不详反应实例十、Cannizzaro 反应凡α位碳原子上无活泼氢的醛类和浓NaOH 或KOH 水或醇溶液感化时,不发生醇醛缩合或树脂化感化而起歧化反应生成与醛相当的酸(成盐)及醇的混合物.此反应的特征是醛本身同时发生氧化及还原感化,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只要甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,感化发生醇醛缩合或进一步酿成树脂状物资.具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应得到季戊四醇:反应机理醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的方式转移到另一分子的羰基不克不及碳原子上.反应实例十一、Chichibabin 反应杂环碱类,与碱金属的氨基物一路加热时发生胺化反应,得到响应的氨基衍生物,如吡啶与氨基钠反应生成2-氨基啶,如果α位已被占领,则得γ-氨基吡啶,但产率很低.本法是杂环上引入氨基的简便无效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能发生本反应.喹啉、吡嗪、嘧啶、噻唑类化合物较为困难.氨基化试剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物:反应机理反应机理还不是很清楚,可能是吡啶与氨基首先加成,(Ⅰ),(Ⅰ)转移一个负离子给质子给予体(AH),发生一分子氢气和构成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的给予体,最初的产品是2-氨基吡啶的钠盐,用水分解得到2-氨基吡啶:反应实例吡啶类化合物不容易进行硝化,用硝基还原法制备氨基吡啶甚为困难.本反应是在杂环上引入氨基的简便无效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应.十二、Claisen酯缩合反应含有α-氢的酯在醇钠等碱性缩合剂感化下发生缩合感化,失去一分子醇得到β-酮酸酯.如2分子乙酸乙酯在金属钠和少量乙醇感化下发生缩合得到乙酰乙酸乙酯.二元羧酸酯的分子内酯缩合见Dieckmann缩合反应.反应机理-24.5),而乙醇钠又是一个绝对较弱的碱乙酸乙酯的α-氢酸性很弱(pKa~15.9),是以,乙酸乙酯与乙醇钠感化所构成的负离子在平(乙醇的pKa衡体系是很少的.但因为最初产品乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠感化构成波动的负离子,从而使平衡朝产品方向挪动.所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一构成后,就不竭地反应,结果反应还是可以顺利完成.经常使用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、三苯甲基钠、二异丙氨基锂(LDA)和Grignard试剂等.反应实例如果酯的α-碳上只要一个氢原子,因为酸性太弱,用乙醇钠难于构成负离子,须要用较强的碱才干把酯变成负离子.如异丁酸乙酯在三苯甲基钠感化下,可以进行缩合,而在乙醇钠感化下则不克不及发生反应:两种分歧的酯也能发生酯缩合,理论上可得到四种分歧的产品,称为混合酯缩合,在制备上没有太大意义.如果其中一个酯分子中既无α-氢原子,而且烷氧羰基又比较活泼时,则仅生成一种缩合产品.如苯甲酸酯、甲酸酯、草酸酯、碳酸酯等.与其它含α-氢原子的酯反应时,都只生成一种缩合产品.实际上这个反应不限于酯类本身的缩合,酯与含活泼亚甲基的化合物都可以发生如许的缩合反应,这个反应可以用以下通式暗示:十三、Claisen—Schmidt反应一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存鄙人发生缩合反应,并失水得到不饱和醛或酮:反应机理反应实例十四、Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚.当烯丙基芳基醚的两个邻位未被取代基占满时,重排次要得到邻位产品,两个邻位均被取代基占领时,重排得到对位产品.对位、邻位均被占满时不发生此类重排反应.交叉反应实验证实:Claisen重排是分子内的重排.采取 g-碳14C 标识表记标帜的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移.两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连.反应机理Claisen 重排是个协同反应,两头经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响.从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占领的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),因为邻位已被取代基占领,没法发生互变异构,接着又发生一次[3,3]s 迁移()到对位,然后经互变异构得到对位烯丙基酚.取代的烯丙基芳基醚重排时,不管本来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有波动椅式构象的原因.反应实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排.十五、Clemmensen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸波动的化合物.对酸不波动而对碱波动的化合物可用还原.反应机理本反应的反应机理较复杂,目前尚不很清楚.反应实例十六、Combes 喹啉合成法Combes合成法是合成喹啉的另一种方法,是用芳胺与1,3-二羰基化合物反应,首先得到高产率的β-氨基烯酮,然后在浓硫酸感化下,羰基氧质子化后的羰基碳原子向氨基邻位的苯环碳原子进行亲电进攻,关环后,再脱水得到喹啉.反应机理在氨基的间位有强的邻、对位定位基团存在时,关环反应容易发生;但当强邻、对位定位基团存在于氨基的对位时,则不容易发生关环反应.反应实例十七、Cope清除反应叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二取代羟胺,产率很高.实际上只需将叔胺与氧化剂放在一路,不需分离出氧化叔胺即可继续进行反应,例如在干燥的二甲亚砜或四氢呋喃中这个反应可在室温进行.此反应条件暖和、副反应少,反应过程中不发生重排,可用来制备很多烯烃.当氧化叔胺的一个烃基上二个β位有氢原子存在时,清除得到的烯烃是混合物,但是 Hofmann产品为主;如得到的烯烃有顺反异构时,普通以 E-型为主.例如:反应机理这个反应是E2顺式清除反应,反应过程中构成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要发生如许的环状结构,氨基和β-氢原子必须处于同一侧,而且在构成五员环过度态时,α,β-碳原子上的原子基团呈堆叠型,如许的过度态须要较高的活化能,构成后也很不波动,易于进行清除反应.反应实例十八、Cope重排1,5-二烯类化合物受热时发生类似于 O-烯丙基重排为 C-烯丙基的重排反应()反应称为Cope重排.这个反应30多年来惹起人们的广泛留意.1,5-二烯在150—200℃单独加热短时间就容易发生重排,而且产率非常好.Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性.例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产品几乎全部是(Z, E)-2,6辛二烯:反应机理Cope重排是[3,3]s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表示为经过椅式环状过渡态:反应实例十九、Curtius 反应酰基叠氮化物在惰性溶剂中加热分解生成异氰酸酯:异氰酸酯水解则得到胺:反应机理反应实例二十、Crigee,R 反应1,2-二元醇类的氧化产品因所用的氧化剂的品种而分歧.用K 2Cr 2O 7或KMnO 4氧化时生成酸类.用特殊氧化剂四乙醋酸铅在CH 3COOH 或苯等不活泼无机溶剂中缓和氧化,生成二分子羰基化合物(醛或酮).氧化反应也能够在酸催化剂(三氯醋酸)存鄙人进行.本反应被广泛地利用于研讨醇类结构及制备醛、酮类,产率很高.反应机理反应过程中师长教师成环酯两头产品,进一步C--C 键裂开成醛或酮. 酸催化的场合,反应历程可以用下式暗示:反应实例二十一、Dakin 反应酚醛或酚酮类用H 2O 2在NaOH 存鄙人氧化时,可将分子中的-CHO 基或CH 3CO-基被-OH 基所置换,生成绝对应的酚类.本反应可利用以制备多远酚类.反应机理反应实例二十二、Elbs 反应羰基的邻位有甲基或亚甲基的二芳基酮,加热时发生环化脱氢感化,生成蒽的衍生物:因为这个反应通常是在回流温度或高达400-450 °C 的温度范围内进行,不必催化剂和溶剂,直到反应物没有水放出为止,在如许的高温条件下,一部分原料和产品发生碳化,部分原料酮被释放出的水所裂解,烃基发生清除或降解和分子重排等副反应,导致产率不高.反应机理本反应的机理尚不清楚.反应实例二十三、Edvhweiler-Clarke 反应在过量甲酸存鄙人,一级胺或二级胺与甲醛反应,得到甲基化后的三级胺:甲醛在这里作为一个甲基化试剂.反应机理反应实例二十四、将一元酚类或类似化合物用过硫酸钾在碱性溶液中氧化羟基引入在原有羟基的对位或邻位,生成二元酚类.分子中的醛基或双键等都不影响.产率约48%.过硫酸钾的水溶液在加热时放出氧:20~芳伯胺类如用本试剂氧化时,酿成硝基化合物.反应机理反应实例二十五、Favorskii重排a-卤代酮在氢氧化钠水溶液中加热重排生成含不异碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小.如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较大的四员环.反应机理反应实例二十六、Friedel-Crafts烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4,H3PO4, BF3, HF等)存鄙人,发生芳环的烷基化反应.卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超出3个碳原子时,反应过程中易发生重排.反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝感化构成碳正离子:所构成的碳正离子可能发生重排,得到较波动的碳正离子:碳正离子作为亲电试剂进攻芳环构成两头体s-络合物,然后失去一个质子得到发生亲电取代产品:反应实例二十七、Friedel-Crafts酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通经常使用无水三氯化铝)催化下发生酰基化反应,得到芳喷鼻酮:这是制备芳喷鼻酮类最次要的方法之一,在酰基化中不发生烃基的重排.反应机理反应实例二十八、Fries 重排酚酯在Lewis酸存鄙人加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物.重排可以在硝基苯、硝基甲烷等溶剂中进行,也能够不必溶剂直接加热进行.邻、对位产品的比例取决于酚酯的结构、反应条件和催化剂等.例如,用多聚磷酸催化时次要生成对位重排产品,而用四氯化钛催化时则次要生成邻位重排产品.反应温度对邻、对位产品比例的影响比较大,普通来讲,较低温度(如室温)下重排有益于构成对位异构产品(动力学控制),较高温度下重排有益于构成邻位异构产品(热力学控制).反应机理反应实例二十九、Fischer,O-Hepp,E重排N-亚硝基芳胺用盐酸或氢溴酸或其乙醇溶液处理时氨基氮上的亚硝基转移到芳核上去构成p-亚硝基芳胺(对位重排):通常发生对位重排,但在奈系化合物中如N-亚硝基-N-加基-2-奈胺则发生邻位重排成1-亚硝基化合物:反应机理在HCl存鄙人,N-亚硝基化合物首先解离成仲胺及NOCl然后进行亚硝基化:三十、Gabriel合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液感化改变成邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性条件下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种方法.有些情况下水解很困难,可以用肼解来代替:反应机理邻苯二甲酰亚胺盐和卤代烷的反应是亲核取代反应,取代反应产品的水解过程与酰胺的水解类似.反应实例三十一、Gattermann反应重氮盐用新制的铜粉代替亚铜盐(见)作催化剂,与浓盐酸或氢溴酸发生置换反应得到氯代或溴代芳烃:本法长处是操纵比较简单,反应可在较低温度下进行,缺点是其产率普通较低.反应机理见反应实例三十二、Gattermann-Koch 反应芳喷鼻烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存鄙人反应,生成芳喷鼻醛:反应机理反应实例三十三、Gomberg-Bachmann 反应芳喷鼻重氮盐在碱性条件下与其它芳喷鼻族化合物偶联生成联苯或联苯衍生物:反应机理反应实例三十四、Hantzsch 合成法两分子b-羰基酸酯和一分子醛及一分子氨发生缩合反应,得到二氢吡啶衍生物,再用氧化剂氧化得到吡啶衍生物.这是一个很普遍的反应,用于合成吡啶同系物.反应机理反应过程可能是一分子b-羰基酸酯和醛反应,另一分子b-羰基酸酯和氨反应生成b-氨基烯酸酯,所生成的这两个化合物再发生Micheal加成反应,然后失水关环生成二氢吡啶衍生物,它很溶液脱氢而芳构化,例如用亚硝酸或铁氰化钾氧化得到吡啶衍生物:反应实例三十五、Haworth 反应萘和丁二酸酐发生然后按尺度的方法还原、关环、还原、脱氢得到多环芳喷鼻族化合物.反应机理见反应实例三十六、Hell-Volhard-Zelinski 反应羧酸在催化量的三卤化磷或红磷感化下,能与卤素发生a-卤代反应生成a-卤代酸:本反应也能够用酰卤作催化剂.反应机理反应实例三十七、Hinsberg反应伯胺、仲胺分别与对甲苯磺酰氯感化生成响应的对甲苯磺酰胺沉淀,其中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反应.此反应可用于昆季叔胺的分离与鉴定.三十八、Hofmann烷基化卤代烷与氨或胺发生烷基化反应,生成脂肪族胺类:因为生成的伯胺亲核性通常比氨强,能继续与卤代烃反应,是以本反应不成防止地发生仲胺、叔胺和季铵盐,最初得到的常常是多种产品的混合物.用大过量的氨可防止多取代反应的发生,从而可得到良好产率的伯胺.反应机理反应为典型的亲核取代反应(SN 1或SN2)反应实例三十九、Hofmann清除反应季铵碱在加热条件下(100--200°C)发生热分解,当季铵碱的四个烃基都是甲基时,热分解得到甲醇和三甲胺:如果季铵碱的四个烃基分歧,则热分解时老是得到含取代基起码的烯烃和叔胺:反应实例四十、Hofmann重排(降解)酰胺用溴(或氯)在碱性条件下处理改变成少一个碳原子的伯胺:反应机理反应实例四十一、Houben-Hoesch 反应酚或酚醚在氯化氢和氯化锌等Lewis酸的存鄙人,与腈感化,随后进行水解,得到酰基酚或酰基酚醚:反应机理反应机理较复杂,目前尚未完整说明反应实例四十二、Hunsdieecker 反应干燥的羧酸银盐在四氯化碳中与卤素一路加热放出二氧化碳,生成比原羧酸少一个碳原子的卤代烃:X = Br , Cl , I反应机理反应实例四十三、Kiliani氯化增碳法糖在少量氨的存鄙人与氢氰酸加成得到a-羟基腈,经水解得到响应的糖酸,此糖酸极易改变成内酯,将此内酯在含水的乙醚或水溶液顶用钠汞齐还原,得到比本来的糖多一个碳原子的醛糖.反应实例四十四、Knoevenagel 反应含活泼亚甲基的化合物与醛或酮在弱碱性催化剂(氨、伯胺、仲胺、吡啶等无机碱)存鄙人缩合得到a,b-不饱和化合物.反应机理反应实例四十五、Koble 反应脂肪酸钠盐或钾盐的浓溶液电解时发生脱羧,同时两个烃基彼此偶联生成烃类:如果使用两种分歧脂肪酸的盐进行电解,则得到混合物:反应机理反应实例四十六、Koble-Schmitt 反应酚钠和二氧化碳在加压下于125-150 ºC反应,生成邻羟基苯甲酸,同时有少量对羟基苯甲酸生成:反应产品与酚盐的品种及反应温度有关,普通来讲,使用钠盐及在较低的温度下反应次要得到邻位产品,而用钾盐及在较高温度下反应则次要得对位产品:邻位异构体在钾盐及较高温度下加热也能改变成对位异构体:反应机理反应机理目前还不太清楚.反应实例四十七、Kolbe,H.Syntbexis of Nitroparsffini合成将含等摩尔的α-卤代羧酸与亚硝酸钠或钾的水溶液加热时,生成-硝基脂肪酸钠两头体,继续加热起分解感化,失去CO2转酿成硝基烷类及NaHCO3.本方法仅可适用于小量制备碳原子数在以下的硝基烷类(特别适宜于制备硝基甲烷及硝基乙烷).而b-卤代羧酸与亚硝酸钾感化生成产品不克不及放出CO2,故不克不及发生此反应.反应机理反应实例。
有机化学人名反应机理
Friedel-Crafts烷基化反应
• 芳烃与卤代烃、醇类或烯类化合物在Lewis催 化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF 等)存在下,发生芳环的烷基化反应。
卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超过3个碳原子时,反应过程中易发生 重排。
• 反应实例
Cope 重排( 科普)
• 1,5-二烯类化合物受热时发生 类似于 O-烯丙基重排为 C-烯 丙基的重排反应(Claisen 重排) 反应称为Cope重排。这个反应 30多年来引起人们的广泛注意。 1,5-二烯在150—200℃单独加 热短时间就容易发生重排,并 且产率非常好。
• Cope重排属于周环反应,它和其它周环反应的特点一样, 具有高度的立体选择性。例如:内消旋-3,4-二甲基-1,5己二烯重排后,得到的产物几乎全部是(Z, E)-2,6辛二烯:
这是一个重排反应,在合成上意义不大,但可以了解环 发生的一些重排反应。
• 反应机理
反应实例
1-氨甲基环烷醇也能发生类似的重排反应,详 见Tiffeneau-Demjanov重排。
Dieckmann 缩合反应(狄克曼)
• 反应机理:见 Claisen 酯缩合反应。
• 反应实例
Diels-Alder 反应
• 含有一个活泼的双键或叁键的化合物(亲双烯体) 与共轭二烯类化合物(双烯体)发生1,4-加成,生 成六员环状化合物:
这个反应极易进行并且反应速度快,应用范围极广泛, 是合成环状化合物的一个非常重要的方法。 带有吸电子取代基的亲双烯体和带有给电子取代基的双烯 体对反应有利。常用的亲双烯体有:
下列基团也能作为亲双烯体发生反 应:
有机化学人名反应大全
一、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R′I >R′Br >R′Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR' 也能发生该类反应,例如:反应机理一般认为是按S N2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例三、Baeyer----Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
卤代烷烃的反应
乙醇 △
RCH=CH 2 + NaX + H 2O
β﹣氢原子由于卤原子的I效应而有一定的酸性。在强碱的作用下 ,卤代烷易于消除β﹣氢原子和卤原子。故这种消除反应称为β﹣ 消除。活性次序是:叔卤代烷>仲卤代烷>伯卤代烷。
注意
大多数情况下,卤代烷的消除与取代反应同时进行,相 互竞争,哪一种反应占优势,与分子结构及反应条件有关。例: 伯氯代烷与强碱的稀水溶液共热,主要发生取代生成醇;与强碱 的浓醇溶液共热,主要消除生成烯。
——按SN2,亲核试剂从离去基团的背面进攻碳原子,烷基结构如 对亲核试剂的接近起阻碍作用,反应速率变慢。(电子效应也如此: 甲基的供电使碳正离子电子云密度增大)故卤代烷SN2反应的活性 次序:卤甲烷>伯卤代烷>仲卤代烷>叔卤代烷。 例:在极性较弱的溶剂(丙酮)中,溴甲烷与碘化钾生成碘烷的速 2019/1/9 20 5 率是与叔丁基溴反应速率的1.510 倍
2019/1/9
9
3. 与金属镁反应 卤代烷与金属(锂、钠、镁)反应,生成金属原子与碳原子直
接相连的化合物,称金属有机化合物,最重要的是有机镁化合物。
格利雅试剂(Grignard reagent)——烷基卤化镁(RMgX)
——制备 种有机合成。 卤代烷在绝对乙醚(又称干醚,不含乙醇和水)中, 与金属镁反应生成烷基卤化镁。产物溶于乙醚,不分离即可用于各
(CH 3)3C Br + OH (CH 3)3C OH + Br -
υ 水解 = k [(CH 3)3CBr]
机理:叔丁基溴水解分两步进行,(下面三处加个C)
第一步: (CH 3)3C Br
慢
δ (CH ) Br [ ] 3 3 过渡态T 1
烷烃的卤代反应及其反应机理(原版)
Cl2经光照后,过一段时间后在黑暗中与Cl2混合,反应 不能发生。
实验事实告诉我们:烷烃的卤代反应是从Cl2的光照 开始的,且Cl2生成的活性质点寿命较短。
卤代反应的机理
实验证明,甲烷的氯代反应为自由基历程。自由基取代反应一 般要经历三个阶段:即链引发、链增长、链终止。
1、链引发: 氯分子在光照或高温下裂解(均裂),产生自由基 hv 两个活泼质点,不满8电子,有强烈 Cl2 2 Cl or 成键倾向 2、链增长: 产生新自由基
卤代反应的机理 三、卤代反应的机理
反应机理:就是一个化学反应所经历的途 径或过程。又称反应历程或反应机制。 反应机理是综合大量实验事实做出的 理论推导。卤代反应最为合理可信的机理 就是反应经历了自由基活性中间体,是自 由基取代反应(发生共价键均裂的反应)。
卤代反应的机理
甲烷的氯代历程
实验事实:
CH4、Cl2混合物在黑暗中长期保存,不反应。 CH4经光照后与Cl2混合,也不反应。 Cl2经光照后,迅速在黑暗中与Cl2混合,反应立即发生。
反应在漫射光、热或催化剂作用下进行,是放热反应 。
卤代反应的类型
有异构体的烷烃,氯代反应得到各种异构体。如:
CH3CH2CH3 + Cl2 hv
25 C
o
CH3CH2CH2Cl + CH3CHCH3 Cl
45% 55%
生成物量的不同,说明烷烃中不同位置的氢原子, 取代的难易程度是不同的。 从大量的实验数据可知,烷烃中氢的氯代活性: 3°H > 2°H > 1°H > 甲烷H
卤代反应的类型
2) 溴代
溴代反应与氯代反应相似,它比氯代反应转化速率慢,放出的热 量少,生成相应的溴代物的比例也不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卤代烷反应时,其活性次序为: R'I >R'Br >R'CI 。
除了卤代烷外,烯丙型或炔丙型卤化物、 a-卤代醚、a-或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法, 因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:3 ROH + PC13 -------------- - (艮0)3P一般认为是按S N 2进行的分子内重排反应:2 . Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
0 0II II RC-C1 十 CH 2W a ------------------ ■ RC —CHN 2 ---------------- -- RCH重氮甲烷与酰氯反应首先形成重氮酮( 1),( 1)在氧化银催化下与水共热,得到酰基卡 宾(2),( 2)发生重排得烯酮(3),( 3)与水反应生成酸,若与醇或氨(胺)反应,则得酯 或酰胺。
3.Baeyer ——Villiger1. Arbuzov 反应 (R .O )3P +K'x亚髓醴三墟基酣------ (RO )jP=0 + RX饶基隣醴二饶基酯R一OArno反应过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-0-0-基团中与羰基碳原子直接相连的氧原子上,同时发生0-0键异裂。
因此,这是一个重排反应具有光学活性的 3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁 移能力其顺序为:RjC- > R a CH- ,CF > ©H CH J - > ◎H > RCH a - > CH 3-4. Beckma nn 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到 缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
+0H II R0—C —&十-Q-C-CfiHs-HC one迁移基团如果是手性碳原子,则在迁移前后其构型不变。
5. Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇°a,B-不饱和羧酸酯还原得相应的饱和醇。
芳香酸酯也可进行本反应,但收率较低。
本法在氢化锂铝还原酯的方法发现以前, 广泛地被使用,非共轭的双键可不受影响。
0 ________________________II | Ft 』'iT-TRSOE + Na ------------------------------- — RCH a OH + ROH相应的醇R-N=C-R -——” R —N=C~ROH'OIIjR 1—N=C —K -便一7=「一尺Oil- ^'-NHC —R首先酯从金属钠获得一个电子还原为自由基负离子, 然后从醇中夺取一个质子转变为自由基, 再从钠得一个电子生成负离子,消除烷氧基成为醛,醛再经过相同的步骤还原成钠,再酸化得到OIIR —C-CR?O- R-CK-OR'+ NabTaoH - □IC-NRH C--ICIH•一iO —CRH E1JDa*H F-H olc过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-0-0-基团中6 . Bucherer 反应萘酚及其衍生物在亚硫酸或亚硫酸氢盐存在下和氨进行高温反应, 可得萘胺衍生物,反应是可逆的反应时如用一级胺或二级胺与萘酚反应则制得二级或三级萘胺。
如有萘胺制萘酚,可将 其加入到热的亚硫酸氢钠中,再加入碱,经煮沸除去氨而得。
本反应的机理为加成消除过程,反应的第一步(无论从哪个方向开始)都是亚硫酸氢钠加成到环的双键上得到烯醇(H )或烯胺(W ),它们再进行下一步互变异构为酮(皿)或亚胺(W ):7. Cannizzaro 反应凡a 位碳原子上无活泼氢的醛类和浓NaOH 或KOH 水或醇溶液作用时,不发生醇醛缩合 或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。
此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:HCHON^OH----------------- C HjQH + HCO a脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质(ID)-HSOHSO醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。
8. Chibabin 反应杂环碱类,与碱金属的氨基物一起加热时发生胺化反应,得到相应的氨基衍生物,如吡啶与氨基钠反应生成2-氨基啶,如果a位已被占据,则得丫-氨基吡啶,但产率很低。
本法是杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能发生本反应。
喹啉、吡嗪、嘧啶、噻唑类化合物较为困难。
氨基化试剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物。
(I),(I)转移一个负离子给质子给予体(AH),产生一分子氢气和形成小量的2-氨基吡啶(H),此小量的(H)又可以作为质子的给予体,最后的产物是2-氨基吡啶的钠盐,用水分解得到2-氨基吡啶:打*毗Na⑴OH----------------- 3F1HCOj +反应机理可能是吡啶与氨基首先加成,9. Claisen酯缩合反应含有a -氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。
------- 一CHS COCH 15%乙酸乙酯的a -氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a〜15.9 ),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。
但由于最后产物乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。
所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。
十G ------- i十G 2H J OHII+ CaHiiC0 !II10. Claisen 重排烯丙基芳基醚在咼温(200C)下可以重排,生成烯丙基酚。
当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。
对位、邻位均被占满时不发生此类重排反应。
交叉反应实验证明:Claisen重排是分子内的重排。
采用g-碳14C标记的烯丙基醚进行重排,重排后重排后则仍是g-碳原子与苯环相连,碳碳双键发生位移。
两个邻位都被取代的芳基烯丙基酚,a-碳原子与苯环相连。
Claise n重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]s 迁移(Cope重排)到对位,然后经互变异构得到对位烯丙基酚。
取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。
烯丙基蒸基蹴坏状过履态邻壻面基酚CH3萍伏过瞠态E—型11. Cope 消除反应叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和 N,N-二取代羟胺,产率很高实际上只需将叔胺与氧化剂放在一起,不需分离出氧化叔胺即可继续进行反应,例如在干燥的二甲亚砜或四氢咲喃中这个反应可在室温进行。
此反应条件温和、 副反应少,反应过程中不发生重排,可用来制备许多烯烃。
当氧化叔胺的一个烃基上二个 B 位有氢原子存在时,消除得 到的烯烃是混合物,但是 Hofmann 产物为主;如得到的烯烃有顺反异构时,一般以 E-型为主。
例如:CH 3CH a —CH-CH 3. O-N -CH 3 cn 3这个反应是E2顺式消除反应,反应过程中形成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要产生这样的环状结构, 氨基和 伕氢原子必须处于同一侧, 并且在形成五员环过度态时,a ,-碳原子上的原子基团呈重叠型,这样的过度态需要较高的活化能,形成后也很不稳定,易于 进行消除反应。
12. Cope 重排30 - litre+ R a NOHCHs CH 2CH=CH a1,5-二烯类化合物受热时发生类似于O-烯丙基重排为C-烯丙基的重排反应(Claisen 重排)反应称为Cope重排。
这个反应30多年来引起人们的广泛注意。
1,5-二烯在150—200C单独加热短时间就容易发生重排,并且产率非常好。
R.CH=CH-CH2-C-CH=C^((55-90%)R, Ft1, R" = H, Aik; ¥,7 = CC^Et, CN , C S H5Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。
Cope重排是[3,3]s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表现为经过椅式环状过渡态:13. Curtius 反应酰基叠氮化物在惰性溶剂中加热分解生成异氰酸酯CO3EtCO2EtCO^Et100%R.—C—Cl + NaN?OII △R-C-N?■ R-N=C=OCO2Kt异氰酸酯水解则得到胺:15. Favorskii 重排a-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状 则导致环缩小。
R-N=C=O H2° ・ RNH 30 「rA11厂^R-C —N-N-N存U --N 3-R-N=C=O14. Edvhweiler-Clarke 反应在过量甲酸存在下,一级胺或二级胺与甲醛反应,得到甲基化后的三级胺:R 3NH +RNH 3 十 CI^OHCO 2H100 c R2NCH3HCO 徂亦乔厂脚©助反应机理甲醛在这里作为一个甲基化试剂4 R :N —CH3+ co 3a-卤代酮,皿2巴+ A GR 2N —CH 2—OH如用醇钠的醇溶液,则得羧酸酯反应机理ROHIIX-OR16. Friedel-Crafts 烷基化反应芳烃与卤代烃、醇类或烯类化合物在 Lewis 催化剂(如AICl 3,FeCl 3, H 2SQ HPQ, BR, HF等)存在下,发生芳环的烷基化反应。