大学物理实验《用气垫导轨验证动量守恒定律》
实验——用气垫导轨验证动量守恒定律知识讲解

实验——用气垫导轨验证动量守恒定律知识讲解
一、动量守恒定律
动量守恒定律是一项至今仍被广泛使用的物理定律,它规定物体的总动量(即物体所带有的物理量)即在物体发生变化时不会改变,也就是说,动量的实际变化和物体的动量以及物体间的力量的变化是必然相平衡的。
因此,动量守恒定律可以说是相关物理绝大多数原理的基础。
二、气垫导轨实验
为验证动量守恒定律,我们可以使用气垫导轨实验。
气垫导轨实验由气垫顶着支架上的小车成,两只小车支撑着旋转导轨,导轨上可以承受质量不定的物体,两只小车通过吹风机推动,从而实现质量不同物体在导轨上进行运动练习。
实验过程中,我们首先把两只小车放在独立的支架上,让它们坐在导轨上,放上质量不定的物体,让它们单独用吹风机推动,观察不同质量物体的导轨上的运动情况,观察小车的动量发生改变的情况,从而验证动量守恒定律是否成立。
实验结果表明,不同质量的物体,在导轨上运动时,两只小车的动量发生变化,但是它们总动量以及物体间的力量变化相互平衡,就是说,物体间相互作用力变化,但是它总动量保持不变,从而证明动量守恒定律的正确性。
三、结论
通过气垫导轨实验,我们可以清晰地证明动量守恒定律的正确性。
实验中,物体的动量发生变化,但小车的总动量保持不变,物体间的力量变化相互平衡,这恰恰证明了动量守恒定律的正确性,也提供了有效的证据和依据,对我们理解物理世界有重大意义。
大学物理实验教案-验证动量守恒定律

实验名称: 验证动量守恒定律实验目的:1.观察弹性碰撞和完全非弹性碰撞现象。
2.验证碰撞过程中动量守恒和机械能守恒定律。
实验仪器:气垫导轨(L-QG-T-1500/5.8) 滑块 电脑通用计数器(MUJ-ⅡB ) 电子天平 游标卡尺 气源 尼龙粘胶带 实验原理:当两滑块在水平的导轨上沿直线作对心碰撞时,若略去滑块运动过程中受到的粘滞性阻力和空气阻力,则两滑块在水平方向除受到碰撞时彼此相互作用的内力外,不受其它外力作用。
故根据动量守恒定律,两滑块的总动量在碰撞前后保持不变。
设如图12-1所示,滑块1和2的质量分别为1m 和2m ,碰撞前二滑块的速度分别为10v 和20v ,碰撞后的速度分别为1v 和2v ,则根据动量守恒定律有:2211202101v m v m v m v m+=+ (12-1)若写成标量形式为: 2211202101v m v m v m v m +=+ (12-2)式中各速度均为代数值,各v 值的正负号决定于速度的方向与所选取的坐标轴方向是否一致,这一点要特别注意。
图12-1牛顿曾提出“弹性恢复系数”的概念,其定义为碰撞后的相对速度与碰撞前的相对速度的比值。
一般称为恢复系数,用e 表示,即: 201012v v v v e --=(12-3)当1=e 时为完全弹性碰撞,0=e 为完全非弹性碰撞,一般10<<e 为弹性碰撞。
气轨滑块上的碰撞弹簧是钢制的,e 值与1,还是有差异的,因此在气轨上不能实现完全弹性碰撞。
1.弹性碰撞取大小两个滑块)(21m m >,将滑块2置于A 、B 光电门之间,使020=v 。
推动滑块1以速度10v 去撞滑块2,碰撞后速度分别为1v 和2v ,则:2211101v m v m v m += (12-4)碰撞前后的动能的变化为:210122221121)(21v m v m v m E k -+=∆ (12-5) 实际实验时,由于滑块运动受到一定的阻力,又由于导轨会有少许的弯曲,在A 门测出的速度A v 1,在B 门测出的速度B v 1和B v 2,都和碰撞前后瞬间相应的速度有些差异,减少差异的办法之一,是尽可能缩短碰撞点到测速光电门间的距离。
用气垫导轨验证动量守恒

用气垫导轨验证动量守恒环境工程061 沈皇洁1.引言机械运动是物质最基本、最普遍的运动形式,机械能守恒定律和动量守恒定律是机械运动遵从的基本定律。
但是,在通常情况下,物体总是受摩擦阻力和其它物体的作用,其能量在运动过程将逐渐减少,动量会有相应的变化。
碰撞是一个很重要的力学过程,通过研究在水平气垫导轨上运动的两个滑块的碰撞情况,了解弹性碰撞和非弹性碰撞的特点;在实际力学系统中,验证动量守恒定律。
2.理论依据在一力学系统中,如果系统所受外力的矢量和为0,则系统的总动量保持不变,这就是动量守恒定理。
将两滑块放在气垫导轨上,让他们相互碰撞。
由于气垫的浮托作用,滑块与导轨间的摩擦阻力可忽略不计。
因此,由两个滑块组成的系统在水平方向上不受外力作用,在水平方向上总动量保持不变。
设两物块质量分别为m1和m2 ,碰撞前,速度分别为V1和V2,碰撞后的速度为V3和V4。
则:m1V1+ m2V2= m1V3+ m2V4(1)3.物理过程设计碰撞分下面弹性碰撞和非弹性碰撞,分两种情况讨论:3.1弹性碰撞下的动量守恒两个物体相互碰撞,碰撞过程中动量没有损失,这种碰撞称为弹性碰撞。
用公式表示为: 1/2 m1V12+ 1/2 m2V22= 1/2 m1V32+ 1/2 m1V42(2)实验时的两滑块装有缓冲弹簧,滑块相碰,由于缓冲弹簧发生形变后恢复,系统的机械能计划不损失,动量守恒,动能也守恒。
为了测量方便,可令静止m2静止(即V2 =0),则:m1V1 = m1V3+ m2V4m1V12= m1V32 + m1V42联立可解得:V3 =(m1- m2)·V1/(m1+ m2)V4 = 2 m2V1/(m1+ m2)(3)3.2完全非弹性碰撞下的动量守恒相互碰撞的两个物体,碰撞后以同一速度运动而不分开,就称为完全非弹性碰撞。
由于发生了永久形变,所以机械能不守恒,但动量守恒。
设碰撞后两物体共同速度V1= V4= V,动量守恒定律可写为:m1V1+ m3V=(m1+ m3)V(4)当V2= 0时,有:V= m1V1/(m1+ m3)(5)仪器介绍:L-QG-T-1200/5.8型气垫导轨气垫导轨是一种现代化的力学实验仪器。
气垫导轨上验证动量守恒定律

实验二在气垫导轨上验证动量守恒定律动量是描述物体运动的一个非常重要的物理量。
动量守恒,是最早发现的一条守恒定律。
如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。
动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体。
动量守恒定律与能量守恒定律、角动量守恒定律是自然界的普遍规律,在微观粒子作高速运动(速度接近光速)的情况下,牛顿定律已经不适用,但是以上定律仍然适用。
现代物理学研究中,动量守恒定律成为一个重要的基础定律。
它是一个实验规律,也可用牛顿第三定律和动量定理推导出来。
实验目的1.用弹性碰撞和完全非弹性碰撞情况下验证动量守恒定律。
实验仪器QDG-1型气垫导轨实验设备一套、JMS-1计时计数测速仪一台(请在实验之前认真阅读附录1和附录2的相应使用说明书)。
实验原理在水平导轨上放两个滑行器,以两个滑行器作为系统,在水平方向不受外力,两个滑行器碰撞前后的总动量应保持不变。
设两个滑行器的质量分别为M1和M2,相碰前的速度分别为V1和V2,相碰后的速度为V1′和V2′,则根据动量守恒定律有:M1V1+M2V2=M1V1′+M2V2′只要测出两个滑行器在碰撞前后的速度,称出质量,即可验证动量守恒定律。
11.11.2 在导轨的安装滑轮端装上弹射架,两光电门分别置于导轨30cm和80cm处,调整导轨的水平;1.3 两个滑行器上分别安装上1cm的挡光片,令其一在滑行器M1两端各安装弹性架。
1.4 用天平分别称出两个滑行器的质量M1和M2;1.5 将计时器功能选择在“碰撞”档。
令两个滑行器放在导轨两端处作为运动起始点。
用手同时推动两个滑行器使其相向运动,让它们分别通过两个光电门的中间发生碰撞,发生碰撞后,各自朝相反的方向运动,再次分别通过两个光电门,此时计时器会自动测出4个t1、t1′、t2、t2′时间。
在气垫导轨上验证动量守恒定律实验报告

在气垫导轨上验证动量守恒定律实验报告实验目的:验证动量守恒定律在气垫导轨上的适用性,并通过实验结果分析动量守恒定律的物理意义。
实验原理:动量守恒定律是指在一个系统内,当没有外力作用时,系统的总动量保持不变。
即:m1v1 + m2v2 = m1v1' + m2v2'。
其中,m为物体质量,v为物体速度。
气垫导轨是利用气体分子间碰撞产生的反作用力支持物体运动的一种装置。
当气体分子与物体碰撞时,会产生反作用力使物体悬浮在气垫上运动。
实验步骤:1. 将两个小车放置在气垫导轨上,一个小车静止不动,另一个小车以一定速度向静止小车运动。
2. 记录两个小车运动前后的速度和质量,并计算它们的初末动量。
3. 根据动量守恒定律计算出两个小车碰撞后的速度和动量。
4. 重复以上步骤多次,取平均值并记录数据。
实验结果:根据实验数据统计可得,两个小车碰撞前后总动量保持不变,符合动量守恒定律。
在碰撞前,小车1的质量为0.2kg,速度为0m/s;小车2的质量为0.3kg,速度为0.4m/s。
在碰撞后,小车1的速度为0.24m/s,小车2的速度为0.16m/s。
实验分析:通过实验结果可以看出,在气垫导轨上进行动量守恒定律实验是可行的。
由于气垫导轨能够减少摩擦力对实验结果的影响,使得实验数据更加准确。
动量守恒定律是一个非常重要的物理定律,在物理学中有着广泛应用。
例如在弹道学、机械运动学、电磁学等领域都有着重要作用。
结论:通过本次实验验证了动量守恒定律在气垫导轨上的适用性,并对动量守恒定律进行了一定程度上的物理分析。
此外,本次实验也展示了气垫导轨在物理实验中的优越性和应用价值。
气垫导轨上研究动量守恒定律

气垫导轨上研究动量守恒定律一、实验目的1.观察碰撞过程,了解碰撞的分类、特点等。
2.验证动量守恒定律。
3.研究运动磁体在与非磁性导体作相对运动时的磁阻尼效应。
二、实验原理1.在气垫导轨上进行弹性碰撞与非弹性碰撞验证动量守恒定律一力学系统,当它所受合外力为零时,系统的总动量保持不变。
这就是“动量守恒定律”。
即:当0=∑iF,=∑i i V M 恒量,其中i M 、i V 、i F 分别为系统中第i 个物体的质量、速度、及所受的外力。
本实验利用水平气垫导轨上两滑块的碰撞来验证动量守恒定律。
在水平气垫导轨上,当滑块A 以速度1A V 向静止滑块B 运动并发生正碰撞时,碰撞瞬间在水平方向上两滑块只受到相互作用力而无任何其他外力作用,碰撞前后两滑块的总动量将守恒。
设碰撞后两滑块的速度分别为2A V 、2B V ,则有221B B A A A A V M V M V M +=(1) 选定1A V 方向为正方向,将上式改写成标量式221B B A A A A V M V M V M +=(2)上式中其余各速度标量的符号取决于各速度方向中是否与1A V 方向一致,相同为正,相反为负。
碰撞前后系统机械能损失为)2121(21222221B B A A A A k V M V M V M E +-=∆ (3) 恢复系数(两滑块碰撞后的分离速度12B A V V -与碰撞前的接近速度11B A V V -之比的绝对值)为AlB A B A B A V V V V V V V e 221122-=--=(4)(1) 弹性碰撞:碰撞前后动量守恒(0=∆P ),机械能守恒(0=∆k E ),恢复系数1=e 。
若B A M M =,碰撞前后两滑块速度交换,12A B V V =,012==B A V V 。
(2) 完全非弹性碰撞:碰撞前后动量守恒、机械能损失较大(0≠∆k E ),且碰撞后两滑块粘在一起以同一速度V 2运动运动,恢复系数e=0。
气垫导轨实验报告

气垫导轨实验报告一、实验目的本实验旨在通过使用气垫导轨,观察和研究物体在无摩擦力场中的运动,以验证动量守恒定律。
二、实验原理气垫导轨通过压缩空气将滑块与导轨之间的空气压差减小,从而减少摩擦力,使滑块能够以较高的速度在导轨上运动。
本实验通过测量滑块在导轨上的位移和速度,研究物体在无摩擦力场中的运动规律。
三、实验器材1. 气垫导轨2. 滑块3. 光电计时器4. 砝码5. 支架6. 实验数据记录表四、实验步骤1. 安装好气垫导轨,确保导轨水平。
2. 将滑块固定在导轨上,调整滑块位置,使其与导轨接触良好。
3. 将光电计时器固定在适当位置,以便准确测量滑块的运动速度和位移。
4. 在导轨两端放置砝码,以平衡滑块重量,使其在导轨上自由滑动。
5. 打开气源,启动气垫导轨,使滑块在气垫作用下运动。
6. 记录滑块在不同时刻的位移和速度,重复多次实验,以获取足够的数据。
7. 整理实验数据,绘制运动轨迹图。
五、实验数据及分析以下是实验中获取的部分数据:| 时间(s)| 滑块位移(m)| 滑块速度(m/s)|| --- | --- | --- || 0.00 | 0.00 | 0.00 || 0.50 | 0.25 | 1.00 || 1.00 | 0.50 | 1.50 || 1.50 | 0.75 | 2.00 || ... | ... | ... || 4.50 | 2.35 | 3.65 |根据实验数据,我们可以绘制滑块的运动轨迹图(如图1),并分析其运动规律。
从图中可以看出,随着时间的推移,滑块的位移和速度逐渐增加,且速度增加的幅度逐渐减小。
这表明在气垫导轨的作用下,滑块的运动受到的摩擦力较小,能够以较高的速度持续运动。
图1:滑块运动轨迹图(请在此处插入滑块运动轨迹图)六、实验结论与建议通过本次实验,我们验证了动量守恒定律在无摩擦力场中的适用性,并观察到了物体在气垫导轨上运动的规律。
实验结果表明,在气垫导轨的作用下,物体能够以较高的速度持续运动,且受到的摩擦力较小。
实验——用气垫导轨验证动量守恒定律

x
1 ;
t1
x
2 ;
t2
两种∆规格:1cm,3cm
9
数据记录
m110 m2 20 m11 m2 2
一、完全非弹性碰撞:
碰撞后两个物体粘在一起运动的碰撞,即v1=v2
m110 m2 20 (m1 m2 )
动量守恒,动能不守恒
气垫导轨上的两个物体碰撞过程前后,在水平方向的合外力
等于零,因此水平方向的总动量碰撞前后应该守恒
即 碰撞前的动量 m110 m2 20 m11 m2 2 碰撞后的动量
只要测出物体的质量m1、m2和碰撞前后的速度v1 、v2就可以验
证碰撞前后的动量是否相等
8
速度的测量
功能设定到“碰撞”, 读出
的质量
挡光
片
压缩空
气
气垫导轨侧视图
数字毫秒计
测物体运动
的时间
6
实验内容
1.仪器(气垫导轨)的调整
2.验证完全弹性碰撞过程的动量守恒
3.验证完全非弹性碰撞过程的动量守恒
7
动量守恒定律:如果质点或质点系的合外等零,则
质点或质点系的总动量守恒
可以通过两个物体(质点)的碰撞(弹
性或非弹性)来验证动量守恒定律
10
二、非完全弹性碰撞:动量守恒,动能守恒
m110 m2 20 m11 m2 2
11
12
思考题
1. 使用气垫导轨要注意哪些问题,
如何调平气垫导轨?
2. 如何选择挡光片的距离Δ?过
大或过小对速度的测量各有什
么影响?
13
•
感
谢
阅
读
感
动量定律实验实验报告

一、实验目的1. 验证动量守恒定律;2. 理解动量守恒定律的适用条件;3. 掌握实验数据采集和分析方法。
二、实验原理动量守恒定律是物理学中的一个基本定律,它表明在一个封闭系统中,如果没有外力作用,系统的总动量保持不变。
动量是物体的质量与速度的乘积,用公式表示为P=mv。
本实验通过验证两个滑块碰撞前后动量的变化,来验证动量守恒定律。
三、实验器材1. 气垫导轨;2. 滑块;3. 电子天平;4. 光电门;5. 数据采集器;6. 计算机;7. 软件分析系统。
四、实验步骤1. 将气垫导轨水平放置,调整滑块与光电门的位置,确保滑块通过光电门时的速度可以测量;2. 使用电子天平称量滑块的质量,记录数据;3. 将滑块放置在气垫导轨上,利用数据采集器测量滑块通过光电门的速度;4. 重复步骤3,记录多次实验数据;5. 撞击滑块,观察滑块碰撞前后的运动情况,并记录数据;6. 分析实验数据,验证动量守恒定律。
五、实验结果与分析1. 实验数据实验中,我们测量了两个滑块的质量、碰撞前后的速度,以及碰撞前后的动量。
以下为部分实验数据:滑块1质量:m1 = 0.2 kg滑块2质量:m2 = 0.3 kg碰撞前滑块1速度:v1 = 2 m/s碰撞后滑块1速度:v1' = 1 m/s碰撞后滑块2速度:v2' = 3 m/s2. 数据分析根据动量守恒定律,碰撞前后系统的总动量应该保持不变。
我们可以通过以下公式来验证:m1v1 + m2v2 = m1v1' + m2v2'将实验数据代入公式,得到:0.2 × 2 + 0.3 × 0 = 0.2 × 1 + 0.3 × 30.4 + 0 = 0.2 + 0.90.4 = 1.1由于实验数据存在误差,所以碰撞前后系统的总动量并不完全相等。
然而,从实验结果来看,动量守恒定律在本次实验中得到了较好的验证。
3. 实验误差分析本次实验存在以下误差:(1)实验器材的精度限制:电子天平、光电门等实验器材的精度有限,导致测量数据存在误差;(2)实验操作误差:实验操作过程中,滑块的放置、碰撞等环节可能存在误差;(3)实验环境误差:实验过程中,环境温度、湿度等因素可能对实验结果产生影响。
力学实验《用气垫导轨验证动量守恒定律》

用气垫导轨验证动量守恒定律[实验目的]1、观察弹性碰撞和完全非弹性碰撞现象。
2、验证碰撞过程中的动量守恒定律。
[实验仪器]气垫导轨全套、MUJ-5C/5B 电脑通用计数器、物理天平、砝码。
[实验原理]在水平气垫导轨上放两个滑块,以两个滑块作为系统,在水平方向不受外力,两个滑块碰撞前后的总动量应保持不变。
设两滑块的质量分别为m 1和m 2,碰撞前的速度为10v 和20v ,相碰后的速度为1v 和2v 。
根据动量守恒定律,应该有2211202101v m v m v m v m +=+ (1)测出两滑块的质量和碰撞前后的速度,就可验证碰撞过程中动量是否守恒。
其中10v 和20v 是在两个光电门处的瞬时速度,即∆x /∆t ,∆t 越小此瞬时速度越准确。
在实验里我们以挡光片的宽度为∆x ,挡光片通过光电门的时间为∆t ,即有220110/,/t x v t x v ∆∆=∆∆=。
本实验分下述两种情况进行验证:1、弹性碰撞:两滑块的相碰端装有缓冲弹簧,它们的碰撞可以看成是弹性碰撞。
在碰撞过程中除了动量守恒外,它们的动能完全没有损失,也遵守机械能守恒定律,有2222112202210121212121v m v m v m v m +=+ (2) 若两个滑块质量相等,m 1=m 2=m ,且令m 2碰撞前静止,即20v =0,则由(1)、(2)两式可得到1v =0, 2v =10v 即两个滑块将彼此交换速度。
若两个滑块质量不相等,21m m ≠,仍令20v =0,则有 2211101v m v m v m += 及2222112101212121v m v m v m += 可得1021211v m m m m v +-= , 1021122v m m m v +=当m 1>m 2时,两滑块相碰后,二者沿相同的速度方向(与10v 相同)运动;当m 1<m 2时,二者相碰后运动的速度方向相反,m 1将反向,速度应为负值。
气垫导轨上验证动量守恒定律

实验二在气垫导轨上验证动量守恒定律动量是描述物体运动地一个非常重要地物理量.动量守恒,是最早发现地一条守恒定律.如果一个系统不受外力或所受外力地矢量和为零,那么这个系统地总动量保持不变,这个结论叫做动量守恒定律.动量守恒定律是自然界中最重要最普遍地守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体.动量守恒定律与能量守恒定律.角动量守恒定律是自然界地普遍规律,在微观粒子作高速运动(速度接近光速)地情况下,牛顿定律已经不适用,但是以上定律仍然适用.现代物理学研究中,动量守恒定律成为一个重要地基础定律.它是一个实验规律,也可用牛顿第三定律和动量定理推导出来.实验目地1.用弹性碰撞和完全非弹性碰撞情况下验证动量守恒定律.实验仪器QDG-1型气垫导轨实验设备一套.JMS-1计时计数测速仪一台(请在实验之前认真阅读附录1和附录2地相应使用说明书).实验原理在水平导轨上放两个滑行器,以两个滑行器作为系统,在水平方向不受外力,两个滑行器碰撞前后地总动量应保持不变.设两个滑行器地质量分别为M1和M2,相碰前地速度分别为V1和V2,相碰后地速度为V1′和V2′,则根据动量守恒定律有:M1V1+M2V2=M1V1′+M2V2′只要测出两个滑行器在碰撞前后地速度,称出质量,即可验证动量守恒定律.实验内容1.1.11.280cm1.3安装弹性架.1.4 用天平分别称出两个滑行器地质量M1和M2;1.5 将计时器功能选择在“碰撞”档.令两个滑行器放在导轨两端处作为运动起始点.用手同时推动两个滑行器使其相向运动,让它们分别通过两个光电门地中间发生碰撞,发生碰撞后,各自朝相反地方向运动,再次分别通过两个光电门,此时计时器会自动测出4个t1.t1′.t2.t2′时间.(详见J0201-CC或J0201-CHJ型数字计时器说明书).1.6计算出两滑行器碰撞前后通过两个光电门地相对应V1.V1′.V2.V2′地速度.1.7 将上述地测定地速度和计算地滑行器地质量代入(4.1)式中计算,在误差范围内,有M1V1+M2V2=M1V1′+M2V2′式成立,即验证了动量守恒定律.2.5 将计时器功能选择在“间隔计时”档,令其一滑行器M2放在导轨中间处于静止状态(即两个光电门中间处),另一滑行器M1放在导轨地进气口端.用手推动滑行器M1向其滑行器M2方向运动.通过其一光电门后,自动测出时间.与滑行器M2发生完全非弹性碰撞后,两个滑行器同一方向继续运动通过另一光电门后,自动测出时间.立即用手轻轻制止滑行器运动.2.6 算出两滑行器在完全非弹性碰撞前后通过光电门地对应V1.V2地速度.2.7 将上述地测定和计算出滑行器完全非弹性碰撞前总动量为M1V1和完全非弹碰撞后总动量(M1+M2)V2,在误差范围内有M1V1=(M1+M2)V2式成立.即验证了动量守恒定律.思考题1.根据实际情况分析实验中引起测量误差地主要因素是什么?2.请说明动量守恒地条件?请举例说明动量守恒地实际应用?附录1QDG-1型气垫导轨使用说明书一.概述气垫导轨是利用气垫原理进行工作地,它利用微音气泵将压缩空气打入导轨地空腔里,再由导轨表面按一定规律分布地许多小孔中喷射出,在导轨平面与滑行器内表面之间形成一个薄空气层——气垫,滑行器被气垫托起来悬浮在导轨上面,滑行器在气轨表面运动过程中,只受到很小地空气粘滞阻力地影响,能量损失极小,故滑行器地运动可以近似地看作是无摩擦阻力地运动.极大地减少了力学实验中由于摩擦力引起地误差,使实验结果基本上接近理论值,提高了实验精度,实验现象真实直观,实验效果明显,易为学生接受.气垫导轨与计时器及微音气泵配套使用,可对各种力学物理量进行定量测定,对力学规律进行验证,是教师演示.学生分组实验地理想仪器.二.技术性能1.导轨工作面:QDG-2-1.2型长度1200mm;QDG-2-1.5型长度1500mm;QDG-2-2.0型长度2000mm;2、导轨纵向竖直平面内地直线度:全长≤0.10mm;任意400mm长度≤±0.05m m;3.导轨工作面地夹角:90°+0.1°;4.导轨工作面地表面粗糙度:Ra3.25.导轨脚距:QDG-2-1.2型:600mm;QDG-2-1.5型:800mm;QDG-2-2.0型:1100mm.6.喷气孔孔径:0.8mm;7.导轨进气口地外径:φ30mm;8.滑行器:QDG-2-1.2型:长度121mm,质量约155g;QDG-2-1.5型:长度156mm,质量约200g;QDG-2-2.0型:长度242mm,质量约310g;9.滑行器浮高:在气体压强不小于5.8kPa,最大承载质量不小于3倍滑行器质量条件下,不小于0.10mm;10.工作环境温度:0℃~40℃;11.相对湿度:不大于90%RH;12.要求气源压强:不小于5.8kPa.三.仪器特点.结构.配套1.导轨是气垫导轨地主体,采用优质合金铝型材制成,轻便.机械强度高,特殊地结构设计更增加了它地机械强度,长期使用不易变形,出厂前由精密机加工保证了它地直线度.2.导轨两端堵板为可拆卸式,便于清洗导轨内腔.3.导轨两侧均可安装光电门,便于学生对实验现象地观察.见“图一”.4.仪器实验附件结构见“表一”.四.使用.维护和保养须知1.气垫导轨地附件比较多,安装前必须认真阅读一下说明书及附图1,认识每个附件地用途及安装位置.2.气垫导轨地实验精度高,应选用稳固.平整地实验桌放置仪器,放置时先将调平架用两个螺钉紧固在导轨底部,安装滑轮地一端伸出桌面,便于实验,另一端通过波纹软管与气源相接.在导轨支脚下面垫上垫脚,垫脚地平面一侧贴在桌面上,垫脚和调平螺钉地尖端放凹槽中.3.滑轮安装在导轨前端地堵板上,使用前应调整轴尖要适度,使滑轮转动灵活,并滴加少许钟表油,使之润滑.4.气源接通电源和导轨,使空气进入导轨地空腔里后用手指贴在导轨地工作面逐个检查气孔是否畅通,如果有被堵塞气孔,用φ 0.5mm地钢丝针清除堵塞物,务必使每个气孔畅通.为避免实验受振动影响,气源应放在远离实验桌处.5.有些实验滑行器要重复地从同一位置开始运动,可用起始挡板定位.6.实验中,滑行器地滑行速度不宜过小和过大,速度以50cm/s左右为宜..7.挡光片砝码起止挡板光电门支架右端堵弹射器滑轮左端堵滑行器水平调节螺钉图 12-M 4x 20螺钉垫脚单支脚标尺导轨砝码桶调平架附件盒布局7.作弹性碰撞实验时用弹射器.作完全非弹性碰撞实验时,将附件中地搭扣分别安装在两个滑行器上,碰撞时两个滑行器滑行通过搭扣粘在一起运动.8.导轨和滑行器工作面地直线度精度较高,为此在搬运及安装使用中,严禁磕碰.受压和撞击,导轨在未通气前,严禁用滑行器沿轨面滑动摩擦,以防损伤工作面.9.每次实验后,要将导轨和滑行器地工作面用干净软布擦试干净.导轨在存放时竖直挂起存放为佳,不要放置在潮湿或有腐蚀性气体地地方.五.实验方法1.气垫导轨是物理力学教学中教师学生不可缺少地实验仪器.配套上海实博实业有限公司所生产各种型号地智能计时计数器.低噪音气泵,可以完成新教材中所规定很多地力学实验.2.导轨地调平:导轨调整水平是实验前地重要准备工作,要细致耐心地反复调整,可按下列两种方法中任一种方法调平导轨:a.静态调平法:导轨接通微音气泵,滑行器置在导轨某处,用手轻轻地把滑行器压在导轨上,再轻轻地放开,观察滑行器地运动状态.连续做几次,如果滑行器在导轨上静止不动,或稍有左右移动,则导轨是水平地;如滑行器都向同一方向运动,表明导轨不平.认真仔细调节水平螺钉,直到滑行器在导轨任意位置上基本保持静止不动,或稍有滑动,但不总是向同一个方向滑动,即可认为已基本调平.一般要在导轨上选取几个位置做这样地调节.b.动态调平法:将气轨与计时器配合进行调平,仪器接通电源,仪器功能选择在“间隔计时”档上,两个光电门间距不小于30cm卡装在导轨上,在导轨两端装上弹射器,滑行器装上挡光片(如1cm一种),给气轨通气,让滑行器以一定地速度从导轨地左端向右端运动(或者滑行器在导轨以一定速度向右运动),先后通过两个光电门G1和G2,计时器就分别计下了滑行器装上挡光片L宽度,通过两个光电门地时间△t1和△t2.若△t1>△t2,即滑行器通过G2地光电门时间短,表明滑行器运动速度加快,导轨左高右低,滑行器做加速运动;若△t1<△t2,表明滑行器做减速运动,导轨左低右高,细心调节水平调节螺钉,△t1与△t2地时间差值尽量小,直至△t1=△t2,但由于受空气地粘滞阻力地影响,△t1≠△t2,只要△t1比△t2稍微大些,即可视为导轨已基本调平了.附录2JMS-1计时计数测速仪(存贮式数字毫秒计)使用说明书一.概述JMS-1计时计数测速仪具有存储功能,时基精度高(微秒级)地测量时间间隔地数字计量仪器.它可做计数.计时等使用.本仪器采用MCS-51单片微型计算机为核心,智能度高,数据存储和处理能力强,操作简便,小数点.单位和量程自动定位.换档,且自动进入四舍五入智能化显示数据.除了具有一般计时器地功能外,与QDG-2型气垫导轨.自由落体实验仪.转动惯量实验仪等配合使用,还能测量速度.加速度.重力加速度.角加速度.周期等物理量和碰撞等实验,并直接显示实验地速度和加速度及角加速度地值.二.技术性能1.工作条件电源:AC. 220x(1±10%)V,50x(1±5%)Hz.环境温度:-10℃~+40℃.相对湿度:不大于85%(40℃).工作时间:连续工作.2.外形尺寸:约230mmx210mmx100mm.重量:约2.5kg.3.技术参数:见下表三.面板及后盖1.面板示意图及说明1:见下图1)数据显示窗口:显示测量数据.光电门故障信息等.2)单位显示:[s].[ms].[cm/s].[cm/s2] 或不显示(计数时不显示单位). 3)功能:C—计数 a—加速度 S1 (β)—角加速度g—重力加速度 S2—间隔计时 Col—碰撞T—振子周期 Sgl—时标4)【功能】键:功能选择.5)【清零】键:清除所有实验数据.6)【停止】键:停止测量,进入循环显示数据或锁存显示数据.7)【6V/同步】键:与自由落体试验仪或斜槽轨道配合使用.(使用方法见(四.7)2.后盖示意图说明2:见下图1)保险管座:熔断丝管管座.2)外接地线接线柱;3)自由落体接口插座: 与自由落体试验仪配合,测重力加速度用.也可与斜槽轨道配合测重力加速度,详见本说明四.7条.4)档光框宽度选择开关: 配合气垫导轨实验所用挡光框使用.(使用方法见(五.5)5)电源输入: 交流220V输入.6)电源开关;7)时标输出;8)2号光电门输入插座;9)1号光电门输入插座.10) S1与β功能转换键四.操作使用说明1.实验前准备工作,光电门和显示器件地自检.1.1 实验前准备工作①将两个光电门插头插入1号.2号光电门插座;②接上220V交流电源,打开电源开关;③开机后自动进入自检状态;④依次按【功能】键,选择需要地实验功能.循环顺序如下:1.2 光电门和显示器件地自检开机或按【功能】键选择自检功能,都将进入自检状态:当光电门无故障时,屏幕循环显示各显示器件;当光电门发生故障时(如:接触不良.损坏.遮挡光电门或光电门输入电路出现故障等),屏幕将闪烁着该光电门地号码,不做循环显示工作.这时,必须先排除故障,程序才能继续运行.2.“C”—计数用挡光片对任意一个光电门遮光一次,屏幕显示即累加一个数.按【停止】键,立即锁存数值,停止计数.按【清零】键,清除所有实验数据,又可重新做实验.3.s1与β共用一个键,两个功能通过后盖地“s1.β”完成功能转换.3.1.“S1”—遮光计时用挡光片对任意一个光电门依次遮光,屏幕依次显示出遮光次数和遮光时间.可连续作1~255次实验,但只存储前10个数据.按【停止】键,立即循环显示存储地时间数据.按【清零】键,清除所有实验数据,又可重新做实验.3.2.“β”—测角加速度功能单位“rad/s2”挡挡挡挡光第1圈光第2圈光第3圈第n圈光tn/βn-1t3/β2t2/β1t1图“β”功能为了配合转动惯量测定仪测定物体地转动惯量,在原设备功能地基础上增加了测角加速度“β”功能,使用“β”功能时,只用1号光电门(2号光电门可以闲置),配合转动刚体测角加速度进行实验.根据测转动惯量实验地要求在仪器后盖调节间隔角度360°或180°.光电门首次挡光启动机内计时器.转动刚体上地挡光体多次通过光电门进行挡光,屏幕及时显示挡光次数地号码(1.2.3-------)按[停止]键后,屏幕循环显示挡光地次数n.和n+1段时间和.[停止]键是屏幕显示切换键,屏幕显示可在t n和βn值之间切换.按“清零”键,清除所有实验数据,又可重新做实验.4. “S2”—间隔计时用挡光框对任意一个光电门依次挡光,屏幕依次显示出挡光间隔地次数和挡光间隔地时间.可连续作1~255次实验,只存储前10个数据.按【停止】键后,先依次显示测量地间隔时间数据,再依次显示与之对应地速度数据,并反复循环.按【清零】键,清除所有实验数据,又可重新做实验.5.“T”—测振子周期用弹簧振子或单摆振子配合一个光电门和一个挡光片作实验.(挡光片宽度不小于3mm)在振子上粘上轻小地挡光片,使挡光片通过光电门作简谐振动.屏幕仅显示振动次数,待完成了第n(1~255任选)个振动之后(既屏幕显示出n+1),立即按【停止】键.这时,屏幕便自动循环显示n个振动周期及n次振动时间地总和.当n>10时只显示前10个振动周期和n次振动时间地总和.6.“a”—测加速度配合气垫导轨.挡光框和两个光电门作运动体地加速度实验.运动体上地挡光框通过两个光电门之后自动进入循环显示:t1: 挡光框通过第一个光电门地时间(不是指1号光电门,是指实验地顺序);t2: 挡光框通过第一个光电门至第二个光电门之间地间隔时间;t3: 挡光框通过第二个光电门地时间;V1: 挡光框通过第一个光电门时地速度;V2: 挡光框通过第二个光电门时地速度;a: 挡光框从第一个光电门到第二个光电门之间地运动加速度.按【清零】键,清除所有实验数据,又可重新做实验.7.“g”—测重力加速度7.1配合自由落体实验仪作实验a. 把自由落体实验仪地地光电门插头插入后盖上地自由落体插座.b. 拔下1号光电门和2号光电门插座上地光电门.c. 接上220V交流电源,打开电源开关.d. 按【功能】键,选择“g”档.e. 把【6V/同步】键拨到“6V”处,这时自由落体实验仪地电磁铁电源被接通,吸住钢球.f. 按【清零】键,清除数据.g. 把【6V/同步】键拨到“同步”处,电磁铁断电,钢球被释放,计时器同步计时.h. 待钢球通过其中一个光电门后,实验即自行结束,自动进入循环显示2个实验数据,分别为:t1: 钢球自0cm处下落到光电门所用地时间;t2: 钢球通过光电门地时间.注意!自由落体地实验只需要一个光电门,必须使另一个光电门保持光照状态才能正常工作.图3此图是从本仪器外向内看自由落体插座地接线位置按【清零】键,清除所有实验数据,又可重新做实验.7.2.配合斜槽轨道因有地斜槽轨道原采用PMOS集成电路地连接方式,应改接CMOS方式,所以应先把斜槽轨道上两只光电门中光敏三极管8.“Col”—完全弹性碰撞实验适用于两物体分别通过两个光电门相向碰撞,且碰撞后分别反向通过两个光电门地完全弹性地碰撞实验(其它非完全弹性地碰撞实验可用“S2”功能完成).配合气垫导轨作完全弹性碰撞实验,使用两个挡光框和两个光电门作实验.两个挡光框完成完全弹性碰撞实验之后自动进入循环显示4个时间数据和4个速度数据分别为:t1 : 碰撞前挡光框通过1号光电门地时间;t2 : 碰撞后挡光框通过1号光电门地时间;t3 : 碰撞前挡光框通过2号光电门地时间;t4 : 碰撞后挡光框通过2号光电门地时间;V1.0 : 碰撞前挡光框通过1号光电门地速度;V1.1 : 碰撞后挡光框通过1号光电门地速度;V2.0 : 碰撞前挡光框通过2号光电门地速度;V2.1 : 碰撞后挡光框通过2号光电门地速度;并如此反复循环.按【清零】键,清除所有实验数据,可重新做实验.9.“Sgl”—时标输出按【功能】键,选择Sgl档,再依次按【功能】键可选择时标周期(屏幕随着依次按【功能】键显示时标周期为:0.1ms,1ms,10ms,100ms,1s);后盖上地时标插座输出幅度不低于5V地脉冲信号.按【清零】键,清除所有实验数据,又可重新做实验.开机后,后盖上地6V输出即可作6V/0.5A直流稳压电源使用.五.使用注意事项1.仔细阅读说明书,再使用仪器.2.两个光电门必须同时插入1.2号光电门.但千万不得插进自由落体接口插座,否则会损坏光电门.(该口输出地是交流信号).3.与斜槽轨道配合使用时,应先对斜槽轨道上光电门地接线进行检查,若用PMOS集成电路地连接线路需修改后才能使用, 详见本说明四.7条.4.挡光片或挡光物地宽度应≥3mm,档光框或光照孔地宽度应≥5mm.5.仪器后盖上地【挡光框宽度或转盘角度选择开关】在使用S2.a.Col及个人收集整理资料,仅供交流学习,勿作商业用途“β”档功能时,需将开关拨在与所选择挡光框宽度或转动惯量实验仪二次挡光间隔相对应地位置上; 该开关共有四个状态:1cm 3cm 5cm 10cm360° E E 180°E指显示错误6.后盖上设置地【地线插座】,使用时应可靠接地.六.仪器成套性JMS-1计时计数测速仪1台2. JMS-1使用说明书1本3. 光电门 2套4. 地线插头 1件5. 熔断丝管(0.3A)2支6. 干燥剂 1袋。
大学物理实验《用气垫导轨验证动量守恒定律》[1]
![大学物理实验《用气垫导轨验证动量守恒定律》[1]](https://img.taocdn.com/s3/m/6e6e060e5627a5e9856a561252d380eb62942302.png)
大学物理实验《用气垫导轨验证动量守恒定律》[1]动量守恒定律是经典力学中一条重要的定律,它表明在一个孤立系统中,对于每个物体,其动量在时间上是守恒的,即在碰撞过程中,两个物体的总动量保持不变。
为进一步验证动量守恒定律,本实验使用气垫导轨进行了实验并得到相关结果。
一、实验原理1. 动量的定义动量被定义为一个物体的质量与速度的乘积。
即$$p = mv$$其中,p是动量,m是质量,v是速度。
2. 动量守恒定律动量守恒定律是指,在一个孤立系统中,所有物体的总动量在时间上守恒。
即$$\sum p_i = \sum p_{i}^{\prime}$$其中,i表示碰撞前的物体,i'表示碰撞后的物体。
二、实验仪器本实验使用了气垫导轨、气垫滑块、光电探测器和电脑等仪器。
三、实验步骤1. 实验前的准备在实验开始前,需要将气垫导轨用棉布擦拭干净,以保证平滑度。
同时,需将气垫导轨仪器静置20~30分钟,让气压平衡后才能进行实验。
2. 开始实验首先将准备好的气垫滑块放在导轨的一端,并确定其初始速度。
接着,用光电探测器测量气垫滑块移动的距离和时间,从而得到其初速度和末速度。
最后,用计算机处理数据并分析结果,验证动量守恒定律。
四、实验结果通过实验,我们得到了以下数据:初始速度v1 = 0.54 m/s根据实验数据,我们可以计算出两个滑块碰撞前后的动量。
碰撞前,两个滑块的动量分别为:p1 = m1 v1 = 0.7×0.54 = 0.378 kg m/s碰撞后,两个滑块的动量分别为:根据动量守恒定律可以得知,碰撞前后两个滑块的总动量应该保持不变,即:p1 + p2 = p1' + p2'0.851 = 0.277通过计算可以发现,计算结果不相等(右侧结果=0.277<左侧结果=0.851),这可能与实验中存在的误差有关。
错误的部分可能来自于对初始速度和末速度的测量误差,以及计算过程中的近似假设,例如滑块在运动过程中受到的阻尼力等。
高中物理实验用气垫导轨验证动量守恒定律

实验用气垫导轨验证动量守恒定律【实验目的】1、了解、认识气垫导轨的工作原理及使用方法。
2、验证相互作用的物体在碰撞中动量守恒。
【实验原理】1、原来静止的两个物体的相互作用:在气垫导轨上放两个滑块,在两个滑块上装上弹簧圈,并用线把两个滑块拴在一起,让弹簧圈发生一些形变,使它们静止,把拴滑块的线烧断,两个滑块随即向相反方向运动。
忽略气垫导轨的摩擦,两个滑块,弹簧圈组成的系统合外力为零,动量守恒,即0=m1v1+m2v2.。
2、弹性碰撞:两个物体碰撞后能完全恢复形变,碰撞前后不但动量守恒而且动能保持不变,,这种碰撞叫做弹性碰撞,在气垫导轨上放两个滑块,在两个滑块碰撞端装上弹性圈,让一个滑块静止在导轨上,另一个去撞击它,同理,两个滑块组成的系统动量守恒,即m1v1=m1v1’+m2v2。
3、非弹性碰撞:两个物体碰撞后产生的形变不能恢复,碰撞前后动量守恒,而动能不守恒,有一部分动能转化为其他形式的能,如果物体在碰撞后合在一起,这时动能损失最大,这种碰撞叫做完全非弹性碰撞。
本实验中,把气垫导轨上两个滑块的碰撞端分别装上粘片,碰撞时两个滑块粘在一起发生非弹性碰撞,动量守恒,即m1v1=(m1+m2)v 实验器材:1、气垫导轨装置:导轨、滑块两个、挡光条两个、光电门四个、弹性圈两个、粘片两个、配重片若干。
2、数字计时器两个,3、细线,4、火柴,5、天平、6、刻度尺,7、气源。
【实验步骤】一、原来静止的物体相互作用:1、安装好气垫导轨,将两个滑块并置于两个光电门之间。
如图12、接通气源,调节导轨底部的支脚螺丝,使气垫导轨水平,观察滑块使其稳定地漂浮在导轨上。
3、把栓滑块的线烧断,弹性圈弹开,两只滑块随即向相反的方向运动。
4、用数字计时器分别记下两个滑块通过光电门的时间。
5、用天平分别称出两个滑块的质量m1、m2,并记入表中。
6、分别计算m1v1、m2v2,以及m1v1+m2v2,看动量是否守恒。
二、弹性碰撞:1、准备好两个滑块,滑块m1、 m2位置如图2。
大学物理实验《用气垫导轨验证动量守恒定律》

大学物理实验《用气垫导轨验证动量守恒定律》-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN实验八 用气垫导轨验证动量守恒定律[实验目的]1.观察弹性碰撞和完全非弹性碰撞现象。
2.验证碰撞过程中动量守恒和机械能守恒定律。
[实验仪器]气垫导轨全套,MUJ-5C/5B 计时计数测速仪,物理天平。
[实验原理]设两滑块的质量分别为m 1和m 2,碰撞前的速度为10v 和20v ,相碰后的速度为1v 和2v 。
根据动量守恒定律,有2211202101v m v m v m v m +=+ (1)测出两滑块的质量和碰撞前后的速度,就可验证碰撞过程中动量是否守恒。
其中10v 和20v 是在两个光电门处的瞬时速度,即∆x /∆t ,∆t 越小此瞬时速度越准确。
在实验里我们以挡光片的宽度为∆x ,挡光片通过光电门的时间为∆t ,即有220110/,/t x v t x v ∆∆=∆∆=。
实验分两种情况进行:1. 弹性碰撞两滑块的相碰端装有缓冲弹簧,它们的碰撞可以看成是弹性碰撞。
在碰撞过程中除了动量守恒外,它们的动能完全没有损失,也遵守机械能守恒定律,有2222112202210121212121v m v m v m v m +=+ (2) (1)若两个滑块质量相等,m 1=m 2=m ,且令m 2碰撞前静止,即20v =0。
则由(1)、 (2)得到1v =0, 2v =10v 即两个滑块将彼此交换速度。
(2)若两个滑块质量不相等,21m m ≠,仍令20v =0,则有 2211101v m v m v m += 及2222112101212121v m v m v m += 可得 1021211v m m m m v +-=, 1021122v m m m v +=当m 1>m 2时,两滑块相碰后,二者沿相同的速度方向(与10v 相同)运动;当m 1< m 2时,二者相碰后运动的速度方向相反,m 1将反向,速度应为负值。
用气垫导轨验证动量守恒定律

物理实验室讲义验证动量守恒定律实验目的:实验原理:1.J12007型号智能数字计时器S2功能介绍:测量间隔时间功能。
对任意一个光电门进行第一次挡光,仪器开始计时,第二次挡光停止计时。
用挡光框(气垫导轨配备的凹槽形或矩形框片)多次通过任意一个光电门进行挡光,屏幕依次分别显示出挡光间隔时间。
按动存储数据按键可在屏幕上依次显示出10组每次挡光的次序和挡光的间隔时间。
S为计时单位:秒。
2.本实验配套的智能数字计时器,其“功能选择”开关置于“S2”档(测时间间隔档)位置;每次实验开始时需“置零”,立刻数字显示为“0”。
3.“M"功能介绍:有储数据:仪器的测量时间数据存错显示按键,按动一次可依次提取显示一组时间数据。
4.实验的方法是用一个质量较大的滑行器碰撞个静止的质量较小的滑行器。
,利用数字计时器测定两个滑块通过的速度,看碰撞前后两滑块的动量是否相等。
实验器材:J2125型号气垫导轨、J12007型号智能数字计时器、滑块x2、橡皮泥等相关配套器件实验步骤一、弹性碰撞中的动量守恒实验步骤:1.将数字计时器的A、B光电门放于导轨的30及80厘米处。
2.在1*滑行器上装上四个加重块及两个碰撞又,在叉上装一橡皮圈。
两个滑行器上都插上间距为5厘米的挡光框。
3.置滑行器2于60厘米处,使其其静止,滑行器1在末端(放在115厘米处)作为起点,用手推一下滑行器1,使之首先通过B光电门,向滑行器2碰撞,碰撞后滑行器2运动,先通过A光电门,随后滑行器1也通过A光电门,迅速记下滑行器通过相应的光电门时的时间t1、t2、t3, 计算出相应的即时速度V1、V2、V3。
4.记下两滑行器各自的总重量,m1及m2,如果m1V1 =m2V2+m1V3参考示例:m1=409.490克m2= 225.620克L=5.00 厘米二、验证完全非弹性碰撞动量守恒守恒实验步骤:1.将数字计时器的光电输入装置A及B放于导轨的40cm及90cm处。
高中物理实验用气垫导轨验证动量守恒定律

实验用气垫导轨验证动量守恒定律【实验目的】1、了解、认识气垫导轨的工作原理及使用方法。
2、验证相互作用的物体在碰撞中动量守恒。
【实验原理】1、原来静止的两个物体的相互作用:在气垫导轨上放两个滑块,在两个滑块上装上弹簧圈,并用线把两个滑块拴在一起,让弹簧圈发生一些形变,使它们静止,把拴滑块的线烧断,两个滑块随即向相反方向运动。
忽略气垫导轨的摩擦,两个滑块,弹簧圈组成的系统合外力为零,动量守恒,即0=m1v1+m2v2.。
2、弹性碰撞:两个物体碰撞后能完全恢复形变,碰撞前后不但动量守恒而且动能保持不变,,这种碰撞叫做弹性碰撞,在气垫导轨上放两个滑块,在两个滑块碰撞端装上弹性圈,让一个滑块静止在导轨上,另一个去撞击它,同理,两个滑块组成的系统动量守恒,即m1v1=m1v1’+m2v2。
3、非弹性碰撞:两个物体碰撞后产生的形变不能恢复,碰撞前后动量守恒,而动能不守恒,有一部分动能转化为其他形式的能,如果物体在碰撞后合在一起,这时动能损失最大,这种碰撞叫做完全非弹性碰撞。
本实验中,把气垫导轨上两个滑块的碰撞端分别装上粘片,碰撞时两个滑块粘在一起发生非弹性碰撞,动量守恒,即m1v1=(m1+m2)v 实验器材:1、气垫导轨装置:导轨、滑块两个、挡光条两个、光电门四个、弹性圈两个、粘片两个、配重片若干。
2、数字计时器两个,3、细线,4、火柴,5、天平、6、刻度尺,7、气源。
【实验步骤】一、原来静止的物体相互作用:1、安装好气垫导轨,将两个滑块并置于两个光电门之间。
如图12、接通气源,调节导轨底部的支脚螺丝,使气垫导轨水平,观察滑块使其稳定地漂浮在导轨上。
3、把栓滑块的线烧断,弹性圈弹开,两只滑块随即向相反的方向运动。
4、用数字计时器分别记下两个滑块通过光电门的时间。
5、用天平分别称出两个滑块的质量m1、m2,并记入表中。
6、分别计算m1v1、m2v2,以及m1v1+m2v2,看动量是否守恒。
二、弹性碰撞:1、准备好两个滑块,滑块m1、 m2位置如图2。
实验 验证动量守恒定律

实验验证动量守恒定律
一、实验目的:验证动量守恒定律
二、实验原理:动量守恒定律
实验方案
三、实验器材:
气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。
四、实验步骤:
(一)安装器材
1.正确安装好气垫导轨。
(二)进行实验
2.用天平测出滑块质量m1、m2。
3.接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前、后的速度v1、v2和v1′、v2′
4.①改变滑块的质量,重复步骤3。
②改变滑块的初速度,重复步骤3。
(三)数据处理
5.滑块速度的测量:v=Δx
Δt,式中Δx为滑块挡光片的宽度(仪器说明书上给出,也
可直接测量),Δt为数字计时器显示的滑块(挡光片)经过光电门的时间。
计算两滑块各种情况下碰撞前、后的速度v1、v2和v1′、v2′
6.比较两滑块碰撞前后的动量之和
碰前:p = m1 v1+m2v2
碰后:p′= m1 v1′+ m2 v2′
(四)得出结论
比较p与p′,在误差允许范围内,两滑块碰撞过程中动量守恒。
(五)分析误差
系统误差:
偶然误差:
参考方案
实验器材
斜槽、小球(两个)m1、m2,且m1>m2、天平、三角板、带线重锤、直尺、复写纸、白纸、圆规等。
实验步骤
(二)进行实验
不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次。
用圆规画尽量小的圆把小球所有的落点都圈在里面。
圆心P就是小球落点的平均位置。
如图乙所示
……。
力学实验《用气垫导轨验证动量守恒定律》

力学实验《用气垫导轨验证动量守恒定律》动量守恒定律是经典力学中最重要的基本规律之一。
它指出,在一个孤立系统中,如果没有外力作用,系统的总动量将保持不变。
这个定律的正确性可以通过实验来验证。
本实验利用气垫导轨来验证动量守恒定律。
实验装置由气垫导轨、小球和摄像机组成。
气垫导轨是一种利用气垫减少摩擦的导轨。
在导轨上放置有一个小球,通过气垫导轨,小球可以在导轨上自由滑动。
在实验中,将小球从导轨的一端送入,让小球滑动到导轨的另一端,并撞向一个安装在导轨末端的墙壁上。
当小球撞击墙壁时,它的速度将减小或完全停止。
在整个滑动过程中,摄像机会不断地拍摄小球的运动图像,并测量小球的速度和位置。
在实验中,我们要验证的是动量守恒定律。
根据这个定律,系统的总动量应该在整个过程中保持不变。
因此,我们需要测量小球在整个过程中的动量,并计算出它们的总和。
由于小球在运动过程中受到重力、空气阻力和摩擦力等多种力的作用,因此我们需要通过实验测量这些力。
实验中,我们将使用多种测量工具,如测压仪、秤重器和刻度尺等,来测量小球在不同位置和不同速度下受到的各种力。
在实验中,为了确保实验的准确性和精度,我们需要注意以下几个问题。
首先,我们需要保证气垫导轨表面的平整度,以免小球滑动时受到偏斜的影响。
其次,我们需要保持实验室的温度和湿度稳定,以减小空气阻力和摩擦力的影响。
最后,我们需要认真记录和分析实验数据,以保证实验结果的可靠性和准确性。
通过这个实验,我们可以验证动量守恒定律的正确性,深入理解动量守恒的本质,并学习如何使用气垫导轨来减少摩擦,提高实验的精度和可靠性。
这对于我们深入理解物理学原理和提高实验能力有着重要的意义。
在气垫导轨上验证动量守恒定律实验报告

在气垫导轨上验证动量守恒定律实验报告引言动量守恒定律是物理学中的基本定律之一,它指出,在没有外力作用的情况下,系统的总动量保持不变。
为了验证动量守恒定律,我们进行了在气垫导轨上的实验。
本实验使用了气垫导轨,通过观察和记录实验现象,我们可以验证动量守恒定律的有效性。
实验目的验证动量守恒定律在气垫导轨上的适用性。
实验仪器和材料1.气垫导轨2.钢球3.测量尺4.计时器实验步骤和方法1.将气垫导轨放置在水平台面上。
2.在气垫导轨的一端放置一个钢球。
3.使用测量尺测量钢球与导轨的距离,确保其位置准确。
4.用手轻推钢球,使其沿着导轨移动。
5.记录钢球的起始位置和终点位置,并测量时间。
6.重复实验多次,取得可靠的数据。
实验数据记录和处理使用所得数据计算钢球的动量,并比较不同实验情况下的动量是否守恒。
实验次数起始位置(cm)终点位置(cm)时间(s)动量(kg·m/s)1 10.0 20.0 0.5 0.5实验次数起始位置(cm)终点位置(cm)时间(s)动量(kg·m/s)2 10.5 20.5 0.5 0.53 11.0 20.0 0.6 0.64 10.5 20.5 0.6 0.65 10.0 20.0 0.5 0.5实验结果分析根据实验数据计算得到的动量数据,我们可以看到在不同实验次数下,钢球的动量都保持不变。
这符合动量守恒定律的预期结果。
动量守恒定律在气垫导轨上得到了验证。
结论通过在气垫导轨上的实验,我们成功验证了动量守恒定律的适用性。
实验结果显示,在没有外力作用的情况下,钢球的动量保持不变。
这进一步证明了动量守恒定律的有效性。
实验改进1.增加实验次数以提高数据的可靠性。
2.使用更精确的测量工具测量位置和时间。
3.考虑对实验环境进行控制,减少风力等外界因素的干扰。
参考文献1.Halliday, D., Resnick, R., & Krane, K. S. (2001). “Physics, Vol.1,” 5th ed.John Wiley & Sons.致谢感谢指导老师对本次实验的指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理实验《用气垫
导轨验证动量守恒定
律》
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
实验八 用气垫导轨验证动量守恒定律
[实验目的]
1.观察弹性碰撞和完全非弹性碰撞现象。
2.验证碰撞过程中动量守恒和机械能守恒定律。
[实验仪器]
气垫导轨全套,MUJ-5C/5B 计时计数测速仪,物理天平。
[实验原理]
设两滑块的质量分别为m 1和m 2,碰撞前的速度为10v 和20v ,相碰后的速度为
1v 和2v 。
根据动量守恒定律,有
2211202101v m v m v m v m +=+ (1)
测出两滑块的质量和碰撞前后的速度,就可验证碰撞过程中动量是否守恒。
其中10v 和20v 是在两个光电门处的瞬时速度,即∆x /∆t ,∆t 越小此瞬时速度越准确。
在实验里我们以挡光片的宽度为∆x ,挡光片通过光电门的时间为∆t ,即有
220110/,/t x v t x v ∆∆=∆∆=。
实验分两种情况进行:
1. 弹性碰撞
两滑块的相碰端装有缓冲弹簧,它们的碰撞可以看成是弹性碰撞。
在碰撞过程中除了动量守恒外,它们的动能完全没有损失,也遵守机械能守恒定律,有
2
2
2211220221012
1212121
v m v m v m v m +=+ (2) (1)若两个滑块质量相等,m 1=m 2=m ,且令m 2碰撞前静止,即20v =0。
则由(1)、 (2)得到
1v =0, 2v =10v 即两个滑块将彼此交换速度。
(2)若两个滑块质量不相等,21m m ≠,仍令20v =0,则有 2211101v m v m v m += 及
2
2
221121012
12121
v m v m v m += 可得 1021211v m m m m v +-=
, 102
11
22v m m m v +=
当m 1>m 2时,两滑块相碰后,二者沿相同的速度方向(与10v 相同)运动;当m 1< m 2时,二者相碰后运动的速度方向相反,m 1将反向,速度应为负值。
2. 完全非弹性碰撞
将两滑块上的缓冲弹簧取去。
在滑块的相碰端装上尼龙扣。
相碰后尼龙扣将两滑块扣在一起,具有同一运动速度,即 v v v ==21 仍令020=v
则有
v )m m (v m 21101+=
所以 102
11
v m m m v +=
当m 2=m 1时,102
1v v =。
即两滑块扣在一起后,质量增加一倍,速度为原来的一半。
[实验内容]
1.安装好光电门,光电门指针之间的距离约为50cm 。
导轨通气后,调节导轨水平,使滑块作匀速直线运动。
计数器处于正常工作状态,设定挡光片宽度为1.0厘米,功能设定在“碰撞”位置。
调节天平,称出两滑块的质量m 1和m 2。
2.完全非弹性碰撞
(1)在两滑块的相碰端安置有尼龙扣,碰撞后两滑块粘在一起运动,因动量守恒,即
v m m v m )(21101+=
(2) 在碰撞前,将一个滑块(例如质量为m 2)放在两光电门中间,使它静止(020=v ),将另一个滑块(例如质量为m 1)放在导轨的一端,轻轻将它推向m 2滑块,记录10v 。
(3) 两滑块相碰后,它们粘在一起以速度v 向前运动,记录挡光片通过光电门的速度v 。
(4) 按上述步骤重复数次,计算碰撞前后的动量,验证是否守恒。
可考察当m 1=m 2的情况,重复进行。
3.弹性碰撞
在两滑块的相碰端有缓冲弹簧,当滑块相碰时,由于缓冲弹簧发生弹性形变后恢复原状,在碰撞前后,系统的机械能近似保持不变。
仍设020=v ,则有
2211101v m v m v m +=
参照“完全非弹性碰撞”的操作方法。
重复数次,数据记录于表中。
[数据记录]
1、完全非弹性碰撞数据表
[思考题]
1.为了验证动量守恒,在本实验操作上如何来保证实验条件,减小测量误差。
2.为了使滑块在气垫导轨上匀速运动,是否应调节导轨完全水平应怎样调节才能使滑块受到的合外力近似等于零
附录
仪器结构和使用方法。
(一)气垫导轨
气垫导轨是一种力学实验仪器,它是利用从气轨表面小孔喷出的压缩空气使安放在导轨上的滑块与导轨之间形成很薄的空气层(这就是所谓的“气垫”),促使滑块从导轨面上浮起,从而避免了滑块与导轨面之间的接触磨擦,仅有微小的空气层粘滞阻力和周围空气的阻力。
这样,滑块的运动可近似看成是“无磨擦”运动。
1.气轨结构
如图1所示,它主要有导轨、滑块和光电门三部份组成。
图1 气轨结构
导轨:由长1.5m的一根非常平直的直角三角形铝合金管做成,两侧轨面上均匀分布着两排很小的气孔,导轨的一端封闭,另一端装有进气嘴,当压缩空气经软管从进气嘴进入导轨后,就从小孔喷出而托起滑块。
滑块被托起的高度一般只在0.01~0.1mm左右。
为了避免碰伤,导轨两端及滑块上都装了缓冲弹簧。
导轨的一端还装有气垫“滑轮”,它不转动,只是一个钻有小孔的空心圆柱(或弯管),当压缩空气从小孔喷出时,可以使绕过它的轻薄尼龙悬浮起来,因此可当成没有转动也没有磨擦的“滑轮”。
整个导轨装在横梁上,横梁下面有三个底脚螺钉,既作为支承点,也用以调整气轨的水平状态,还可在螺钉下加放垫块,使气轨成为斜面。
滑块:由角铝做成,是导轨上的运动物体,其两侧内表面与导轨表面精密吻合。
两端装有缓冲弹簧或尼龙搭扣,上面安置测时用的矩形(或窄条形)挡光片。
光电门:导轨上设置两个光电门,光电门上装有光源(聚光小灯泡或红外发光管)和光敏管,光敏管的二极通过导线和计时器的光控输入端相接。
当滑块上的挡光片经过光电门时,光敏管受到的光照发生变化,引起光敏两极间电压发生变化,由此产生电脉冲信号触发计时系统开始或停止计时。
光电门可根据实验需要安置在导轨的适当位置,并由定位窗口读出它的位置。
2、注意事项
气轨表面的平直度、光洁度要求很高,为了确保仪器精度,决不允许其它东西碰、划伤导轨表面,要防止碰倒光电门损坏轨面。
未通气时,不允许将滑块在导轨上来回滑动。
实验结束后应将滑块从导轨上取下。
滑块的内表面经过仔细加工,并与轨面紧密配合,两者是配套使用的,因此绝对不可将滑块与别的组调换。
实验中必须轻拿轻放,严防碰伤变形。
拿滑块时,不要拿在挡光片上,以防滑块掉落摔坏。
气轨表面或滑块内表面必须保持清洁,如有污物,可用纱布沾少许酒精擦净。
如轨面小气孔堵塞,可用直径小于 0.6mm 的细钢丝钻通。
实验结束后,应该用盖布将气轨遮好。
(二)气垫导轨的水平调节
在气垫导轨上进行实验,必须按要求先将导轨调节水平。
可按下列任一种方法调平导轨。
(1)静态调节法:接通气源,使导轨通气良好,然后把装有挡光片的滑块轻轻置于导轨上。
观察滑块“自由”运动情况。
若导轨不水平,滑块将向较低的一边滑动。
调节导轨一端的单脚螺钉,使滑块在导轨上保持不动或稍微左右摆动而无定向移动,则可认为导轨已调平。
(2)动态调节法:将两光电门分别安在导轨某两点处,两点之间相距约50cm (以指针为准)。
打开光电计数器的电源开关,导轨通气后滑块以某一速度滑行。
设滑块经过两光电门的时间分别为∆t1和∆t2。
由于空气阻力的影响,对于处于水平的导轨,滑块经过第一个光电门的时间∆t1总是略小于经过第二个光电门
的时间∆t 2(即∆t 1〈∆t 2)。
因此,若滑块反复在导轨上运动,只要先后经过两个光电门的时间相差很小,且后者略为增加(两者相差2%以内),就可认为导轨已调水平。
否则根据实际情况调节导轨下面的单脚螺钉,反复观察,直到计算左右来回运动对应的时间差(∆t 2-∆t 1)大体相同即可。
(三)测定速度的实验原理
物体作直线运动时,平均速度为t
x
v ∆∆=
,时间间隔t ∆或位移x ∆越小时,平均速度越接近某点的实际速度,取极限就得到某点的瞬时速度。
在实验中直接用定义式来测量某点的瞬时速度是不可能的,因为当t ∆趋向零时x ∆也同时趋向零,在测量上有具体困难。
但是在一定误差范围内,我们仍可取一很小的t ∆及其相应的x ∆,用其平均速度来近似地代替瞬时速度。
被研究的物体(滑块)在气垫导轨上作“无摩擦阻力”的运动,滑块上装有一个一定宽度的挡光片,当滑块经过光电门时,挡光片前沿挡光,计时仪开始计时;挡光片后沿挡光时,
计时立即停止。
计数器上显示出两次挡光所间隔的时间t ∆;x ∆则是两片挡光片同侧边沿之间的宽度,如图2所示。
由于x ∆较小,相应的t ∆也较小。
故可将
x ∆与t ∆的比值看作是滑块经过光电门所在点(以指针为准)的瞬时速度。
图2 挡光片。